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FRONTISPIECE 

Programming sticks upon the shoals 
Of incommensurate multiple goals 

And where the tops are no one knows. 
When all our peaks become plateaus 
The top is anything we think 
When measuring makes the mountain shrink. 

The upshot is, we cannot tailor 
Policy by a single scalar. 
Unless we know the priceless price 
Of Honor, Justice, Pride and Vice 
This means a crisis is arising 
For a simple-minded maximizing. 

A headnote by Kenneth Boulding, 
contributed to Chapter V of 
Charnes, A. and Cooper, W. W., 
"Constrained extremization models 
and their use in developing 
system evaluation measures," in 
Views on General Systems Theory, 

M. D. Mesarovich, ed. (New York: 
John Wiley and Sons, 1964). 
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ABSTRACT 

Prioritization and Pruning 

In Multicriterion Mathematical Programming 

(May 1978) 

J. N. Morse, A.B., Williams College 
B.B.A., University of Massachusetts 
Ph.D., University of Massachusetts 

Directed by: Professor Kenan E. Sahin 

This dissertation aims at filling some gaps in the treatment 

of the multiple objective situation, particularly the subset known as 

the multiobjective linear programming model. First, the appropriate¬ 

ness of multicriterion models is examined, rather than being assumed. 

Second, both behavioral science and mathematical reasoning are 

invoked to show that goal programming is not so appropriate as 

multiobjective linear programming. Third, to deal with the very 

large size of what is called the nondominated set generated by multi¬ 

objective programming, a two-stage pruning algorithm is proposed. In 

the first stage cluster analysis is employed to minimize redundancy 

and avoid information overload. In the second stage a series of the 

duals of a linear programming problem guides the decision maker in 

his search for one final solution from the nondominated set. The 

two-stage pruning algorithm appears to be applicable to a wide range 

of multidimensional choice situations. 

The pluralism of modern societies implies the existence of 

multiple objectives, but the traditional microeconomic theory of the 

vii 



firm still consists of a single criterion maximizing paradigm. 

Wealth maximization has served well as an approximation of commer¬ 

cial behavior; it is an inadequate description of basic business 

processes themselves. To show that the multiple objective situation 

is characteristic of the firm, a taxonomy is developed. I present 

three views of the firm: the disaggregation approach, the agency 

approach and the autopoietic approach. A hypothetical example from 

the field of corporate finance is used to illustrate that there are 

situations in which the optimal value of a single objective function 

(such as profit) is no more important than the values of the decision 

variables themselves. 

The purpose of this dissertation is to examine in depth a sub¬ 

set of this multiple objective situation, namely the multiobjective 

linear programming model. Although this model can apply to groups as 

well as to individuals, I concentrate on the case of the single deci¬ 

sion maker acting alone or articulating group objectives. 

The literature search of multiple criteria decision making is 

divided into a mathematical chapter and a behavioral chapter. Topics 

covered include some optimization theories, aspects of human choice 

theory, and human information processing. This background leads to 

two mathematical programming techniques for solving multicriterion 

problems: goal programming and multiobjective linear programming. 

I use the theory of eigenvalues to show that, for a large subset of 

decision models, goal programming is less appropriate than multi¬ 

objective linear programming. The most difficult task of goal 

• • • 
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programming is that of prioritization or setting weights on goals. 

Having thus justified multiobjective linear programming, I 

discuss a new optimization concept that it uses. Rather than a 

single optimal point, there is a nondominated (efficient, or Pareto- 

optimal) set. This set consists of solutions that are preferred to 

all solutions outside it; however, within the set no rank order 

exists unless new evaluative criteria are introduced. Although 

sequential, information-seeking, and imitative thought processes are 

discussed, the most attention is paid to algorithmic (mechanistic) 

methods. 

The overwhelming handicap of the multiobjective linear pro¬ 

gramming approach is the sheer size of the nondominated set of solu¬ 

tions. Since this is true even in the nonlinear case, I attack the 

more general problem of reducing the size of the nondominated set in 

any multicriterion mathematical programming problem. This process 

will be called pruning. The tactic adopted is to divide pruning into 

two stages. In the first, most of the work is done by the computer. 

In the second, much more of the task is completed by the decision 

maker. 

In the first stage a data analysis technique called cluster 

analysis is used to prune the nondominated set down to a representa¬ 

tive subset called the generator set. Many clustering experiments 

are reported, and six other less satisfactory pruning strategies are 

reviewed. 
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In pruning’s second stage, ranking, weighting, paired compari¬ 

sons and linear programming are combined to further cut the generators 

of the nondominated set down to one final solution. The algorithm 

proposes reducing the amount of data manipulation by the decision 

maker, but promises to increase its sophistication and usefulness. 

The goal is to encourage the decision maker to consider compensatori- 

ness, incommensurability and interdependence of attributes and to 

discover new evaluative criteria. 

In sum, this dissertation explores the applicability of 

multiple criteria decision making to individual decisions. The 

prioritization (ranking and weighting) of objectives is shown to be 

more difficult than commonly perceived. This leads from the rela¬ 

tively naive goal programming model to the more appropriate multi¬ 

criterion mathematical programming paradigm. The unwieldiness of the 

very large nondominated set produced by the latter is reduced through 

a two-stage pruning algorithm. The computer is used to do the sort 

of structured combinatorial reasoning that it does best, while the 

human mind is liberated for what it does best—unstructured, holistic 

and creative thinking. 
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CHAPTER I 

THE MULTIPLE OBJECTIVE SITUATION 

This dissertation will examine decision making in the multiple 

objective situation. Earlier literature has concentrated on a parti¬ 

cular segment of the decision process, leaving several gaps in the 

body of techniques called multiple criteria decision making (MCDM). 

The aim of the present work will be to create and justify a two-stage 

pruning process for treating the nondominated set which results from 

multiobjective mathematical programming (linear or nonlinear). 

Two important questions will be posed and responded to: 

a) Should the decision maker use goal programming or multi¬ 

objective linear programming? 

b) What can be done to aid the decision maker in choosing one 

final solution from the large unwieldy set of nondominated 

solutions which is generated if he uses multiobjective 

linear programming? 

The area stressed is the multiobjective linear programming model of the 

individual decision maker. To answer the first question, I shall 

review behavioral and mathematical support for the rejection of a_ 

priori ranking methods. The implication of this is that goal pro¬ 

gramming may be less applicable than multiobjective linear programming, 

since in using the latter technique it is not necessary to prioritize 

the objectives. For the second question a two-stage pruning algorithm 

is proposed; this aids the decision maker to search a large nondominated 
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set for one final solution. 

The latter part of this chapter of my dissertation will deal 

briefly with several theories of the industrial firm, with the 

multiple objectives inherent in public organizations (i.e., non¬ 

profit), and with the need to extend research into the group multiple 

objective decision situation. 

The second chapter will search the literature of mathematical 

programming. I begin with the origins of the field in general, and 

then discuss the optimization approach to the special problem of 

decision making with multiple objective functions. Since models that 

are not foreign to the mind’s perceptual and cognitive habits are 

more likely to be successfully implemented. Chapter III will treat 

the individual choice theories of mathematical psychology. 

The natural limits on man's ability to process information will 

be viewed as significant in the choice of a multicriterion model. 

Several disciplines provide examples which pertain to this. The result 

of Chapter III is a pessimistic assessment of our ability to set a_ 

priori weights on multiple goals. This does not mean, however, that 

MCDM is not practical. It indicates that goal programming (GP) may be 

far less applicable than multiobjective linear programming (MOLP), 

because MOLP does not require advance setting of weights on goals. 

Whereas GP pre-empts the decision by prematurely discarding most of 

the nondominated set, MOLP relinquishes control to the DM in the prun¬ 

ing stage. 

Chapter IV drives in the same direction as the previous chapter; 
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this time the reasoning is mathematical, rather than behavioral. The 

way in which the priority weights in GP drive a linear equation is 

hard to predict. The effects of changing the weight vector can be 

counterintuitive. This will be illustrated by a discussion of naive 

weights. Naive weights are obtained when the DM associates the high¬ 

est weights with the most important goals. I will analyze the unsatis¬ 

factory nature of this weighting procedure by working with the eigen¬ 

values and eigenvectors of the criterion matrices of several repre¬ 

sentative goal programming problems. 

In Chapters V and VI we face the problem of the often over¬ 

whelming size of the nondominated set (N). Although integer and other 

nonlinear cases in multicriterion programming are still under develop¬ 

ment, they do share with the linear case the concept of nondomination. 

We attack the general problem of reducing the size of this nondominated 

set of solutions. This process will be called pruning; here it emerges 

as a two-stage process. In the first stage most of the work is done 

by the computer. In the second, much more of the task is completed 

by the decision maker. 

The fifth chapter treats the first stage of pruning by using 

the data analytic technique called cluster analysis. The idea is to 

generate a representative subset of the nondominated set (N). Cluster 

analysis partitions N into groups that are relatively homogeneous 

within their boundaries. Broadly speaking, a very general new evalua¬ 

tive criterion is to be considered implicitly: minimum redundancy. 

Since there is a threshold of resolution which hinders the decision 
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maker in perceiving the difference between two very similar solution 

vectors, there is little point in making him waste time in processing 

all of N as he searches for a final solution. 

Chapter VI uses a limited concept of weights once we have 

reduced the nondominated set to a manageable size. In this second 

stage of the pruning process weights are used for fine tuning, just 

as we turn the knobs once a channel has been chosen. By trial and 

error we use the feedback from our eyes to move toward the best pic¬ 

ture (knowing that there might be a better setting that is not easily 

discoverable). The ranking algorithm of this chapter asks the DM to 

make binary comparisons between particular elements of the nondominated 

set. He does not deal directly with criterion weights, just as the 

person using a television set does not need calibrated knobs. The TV 

viewer reacts to "better" or "worse" pictures, and moves the knobs as 

a consequence. The DM in the ranking algorithm of Chapter VI responds 
i 

to alternatives that are available in decision space as better or 

worse; the weights merely fall out as a side effect of a proposed 

linear programming approach. As will be seen, they are not of very 

general applicability or reliability. It is suggested that they serve 

to confirm the DM's judgment and increase confidence in the final 

solution. 

Since my viewpoint is that of management science, not mathematics, 

techniques developed here are designed to be relevant to the management 

of organizations. Whether an individual executive makes decisions for 

the organizations or multiple objectives derive from multiple agents. 
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it is important to justify the use of multicriterion methods in organi¬ 

zational processes. From microeconomic theory we have inherited the 

concept that the firm is a black box that maximizes profit. A refine¬ 

ment is to add that the firm might sacrifice profit in some periods, 

because its true goal is to maximize the terminal wealth of its share¬ 

holders . 

In reaction to this orthodox view of the firm a large literature 

has grown which speculates on alternative goals of the firm. Examples 

are theories of satisficing [Simon, 1969, pp. 64-65, 75-76], managerial 

welfare maximizing [Findlay and Whitmore, 1973], the agency theory of 

the firm [Jensen and Meckling, 1976], strategic goal setting [Quinn, 

1977], natural selection [Winter, in Day and Groves, 1975], fatal flaw 

processes [Kierulff, 1976], partial ignorance [Loasby, 1976], absence 

of value maximization [Grossman and Stiglitz, 1977] and multiobjective 

firms [Beedles, 1977]. Three approaches will be discussed: the dis¬ 

aggregation approach, the agency theory approach and the autopoietic 

approach. 

To illustrate the disaggregation approach, we draw on the norma¬ 

tive theory of finance which maximizes shareholder wealth over time. 

When the firm must choose among available projects, it may use well- 

known tools such as the payback method, the net present value method, 

the internal rate of return method and the profitability index. When 

the actualization of the ranked projects would exceed the total funds 

available, the problem becomes one of capital rationing. A typical 

decision model of this sort is (cf. Weingartner [1963]): 
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Maximize: n 

z pjxj j=i 3 3 

Subject to: n 

E a. x, < M for t = 1, 2, 

j-i 3t 3 = 1 
, T 

x, = 0 or 1, j = 1, 2, . . . ,n 

where: 

x. 
J 

is the go/no-go decision on project j, 

is the net present value of project j, 

is the gross expenditure required for project j in 

time period t, and 

is the limit on capital funding in period t. 

This model can be made richer by adding concepts of dividend 

growth, uncertainty, borrowing, reinvestment of income and logical rela¬ 

tionship among projects (the reader who wishes to see how others have 

treated these extensions is referred to the excellent summary in 

Reardon [1974]). 

Essentially, equations (1.1.) are concerned with profit maximiza¬ 

tion, adjusted for the time value and availability of money. Can this 

single objective serve to simulate all the goals of the firm? It can, 

provided that all corporate desiderata correlate reliably and linearly 

with profit. I feel that in most cases they do not. 

For example, the New York money market banks are restricted from 

competing in certain fields with "Article XII" banks. These are special 
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entities licensed by the New York State Department of Banking. As 

such, they can own brokerage houses, underwrite securities, and con¬ 

centrate lending power for one borrower. According to Bennett [1976], 

a goal of the money center banks is to encourage federal regulation of 

the Article XII banks, or to gain similar powers for themselves. 

Working toward this could be named as a goal for 1977. Citi¬ 

corp, hypothetically, could allocate a block of funds for this purpose. 

But how would all this be worked into the objective function of the 

capital rationing model above? There is no neat relationship between 

the goal and profits. Is there a way to support this kind of strategic 

planning with a rational decision tool? 

When the relationship of decision variables to the present value 

of future profits is fuzzy, managers tend naturally toward articulating 

multiple goals. For years management scientists forced these multiple 

goals into a single goal, or performance measure, because they lacked 

alternative models. To achieve the worthy goal of aiding human minds 

with the intelligence contained in "models,” the subtle goal structures 

of the real world were aggregated into single goal models. 

Recently, a new field called multiple criteria decision making 

(MCDM) has matured to the point of being useful. In the banking example 

above, MCDM does not require measuring the progress toward several goals 

in profit (dollar) terms. For each goal, a separate objective function 

can be specified, whose coefficients may be incommensurable^ with those 

in other objectives. Here the secondary objective function might be: 

■^Incommensurable means "not measurable in the same units." 
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Maximize: n 

Z k.x. (1.2.) 

j=l 3 3 

where k. represents the face value of loans "kept away" from Article 

til 
XII banks by the j project. 

It is claimed here that multiple objectives (goals) should be 

considered explicitly. An example from international banking has 

been used to illustrate the case of disaggregation of objectives. 

The agency theory of the firm views the commercial organization 

as a complicated polity of stakeholders. The firm originates by 

investors pooling their capital and sharing the risks inherent in the 

commitment to productive activity. Therefore, the dominant group is 

the holders of the common stock. As owners, this group subcontracts 

certain tasks to other groups. 

Management, for example, serves as the agent of the common 

shareholders, performing a stewardship function. Groups such as the 

Securities and Exchange Commission (SEC) and the Financial Accounting 

Standards Board (FASB) provide a monitoring service for owners. When 

the owners of a firm seek amplification of their income-providing asset 

base by borrowing money, they must pay bonding costs, which are 

incurred in demonstrating the ability to make good on the claims of 

debt-holders. The SEC and the FASB also provide bonding services, 

since they attest to the viability of the firm, and to some extent 

make it harder for new competitors to raise capital. Other forms of 

bonding costs are restrictions on dividend payout ratios, guidelines 

for debt/equity ratios and liability insurance premiums. 
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In some sense the owners hire employees, accountants, govern¬ 

ment regulators and debtholders as agents to perform services that are 

exxential for shareholders. An intriguing example is a new view of 

securities analysis. It is well known that many studies have failed 

to prove that professional securities analysts add value each period 

to investors’ portfolios. Why then do they continue to exist? Who 

pays them? According to the agency theory, these securities analysts 

are funded by society for two reasons. First, there is a large con¬ 

sumption value to capital and money market investors. Second, the 

analysts discipline corporate managers and promulgate rational think¬ 

ing throughout an industry as they go to print with detailed compara¬ 

tive analyses of companies. They are an added level of executive 

talent; the existence of this group reduces the variance of the 

returns to firms, and hence adds to their capitalized value. 

Agency costs consist of monitoring expenses by the owners, bond¬ 

ing expenses which are paid by agents on behalf of owners, and what 

Jenson and Meckling [1976, p. 308] call "residual loss." The defini¬ 

tion of this term will show the relevance of the multiple objective 

model. 

Each owner has a utility function that is presumably monotocally 

increasing in terminal wealth. But each agent described above exer¬ 

cises some control over the income-producing assets. Although an 

optimal level of monitoring and bonding costs may exist, the inclusion 

of multiple stakeholders in the firm as agents and claimants intro¬ 

duces their utility functions. For example, the chief executive 
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officer of the modern corporation is interested in maximizing the 

share price. But he/she also derives utility from a larger expense 

account, fancy office furniture, prestige due to span of control 

(sales maximization versus profit maximization) and reduction of per¬ 

sonal risk. Similarly, the utility of each agent diverges, to some 

extent, from that of the owner(s). That divergence is called the 

residual loss. 

The stakeholders (i.e., owners and agents) must somehow ag¬ 

gregate their objectives into a firm that survives. The political 

(consensus-building) processes of the modern firm tend to generate 

multiple objectives; this is often a way to reduce conflict among 

agents. The communication if of the form "I'll help achieve your 

objective if you'll help achieve mine." In this way we can see the 

firm evolving as a set of maximands subject to a set of constraints. 

Another justification of the multiple criteria approach is the 

theory of self-organizing firms. The concept, under the name 

autopoiesis, developed in the biological systems area (for that 

history, see Zeleny [1977]). An autopoietic organization is one that 

maintains itself by the action of particular processes on the system's 

components. These processes are essentially local rules of inter¬ 

action which generate the same kind of network from which they came. 

Examples of these closed systems are cells reproducing cells, social 

groups producing people that maintain group norms and corporations 

which perpetuate managerial styles and levels of employee morale. 

Zeleny [1977] develops a very lengthy algebra of the behavior 
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of the components and operators that are used to describe autopoietic 

systems. He then gives examples from biology and moves on to speculate 

about social organization. Societies maintain continuity and recog- 

nizability by rules of conduct that have been generated from their own 

history. Human systems, he suggests, have evolved into very complex 

systems; these cannot be changed by simplistic rules such as theory X 

or theory Y. They can be managed, to some extent, by providing cer¬ 

tain environments. An example is making deserts bloom by providing 

irrigation, thus changing the environment. 

The relationship to the firm in multiple objective situations 

(MOS) follows naturally. We must be cautious about assuming that firms 

or not-for-profit organizations are purposive. It may only seem that 

they have multiple objectives. For example, water running down a hill 

may appear to have that as its "objective." But we also know that 

water is an inanimate form which is moving as the residual effect of 

the interaction of gravity and mass. Our intent here is not to deter¬ 

mine whether organizations have motives, objectives, or purpose. I 

have proposed that under the agency theory and the disaggregation 

paradigm the firm either actually has multiple objectives, or it can 

be more effectively managed and described by resorting to them as a 

hypothetical construct. In this section I state, without formal proof, 

that even if the firm is merely a set of interactive components, the 

knowledge of MCDM is still of great importance. 

If the firm’s behavior is not purposeful, but instead autopoietic, 

we have a collection of individuals and groups which react to stimuli. 
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Various theories of how they do this are found in Chapter III. In 

brief, multiple cues are perceived by cognitive agents (such as people 

or groups of people), which react to each cue with one of a set of 

multiple responses. 

In Chapter II the formal multiobjective linear programming 

model will be introduced as 

Maximize Cx = {z} 

Subject to Ax < b 

(1.3.) 

where C represents a matrix formed by multiple objectives. 

This is a paradigm which assumed top-down purposive organization. If 

the autopoietic view of the firm is more correct, then we would con¬ 

sider the multiple criteria as multiple attributes of cues. The co¬ 

efficients of C would measure the intensity of attributes and their 

tentative direction (i.e., good or bad, positive or negative). In 

other words, MCDM would be used not as a decision-making technology, 

but instead as a multiattribute response model (MARM). Executives, 

in this view of the world, have not articulated objectives, but do 

react for some reason to the attributes inherent in different corporate 

strategies. 

A hypothetical example will now be constructed to illustrate 

the agency theory, the disaggregation paradigm, and the autopoietic 

approach to the firm. 

To make the above discussions tangible we call on the field of 

financial management for an example in which the firm must choose a 
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subset of an opportunity set of capital investment projects. For a 

more thorough treatment of capital budgeting with side criteria, see 

Bernardo and Lanser [1977] and Morse [1978]. This hypothetical firm 

will also be referred to in later chapters. 

Imagine that there is a firm named Transoceanic, Inc., a large 

multinational corporation. It operates under some form of capital 

rationing, and at first it appears that (1.1.) is a good model of 

Transoceanic. But when the capital outlay planning committee meets 

in June, one of the members brings of a strategic planning dilemma 

that does not fit into the single criterion model of (1.1.). 

The firm's marketing group is about to close on a $500 million 

construction contract in a wealthy foreign nation. A certain citizen 

of that country purports to be the agent of the ruling clique. He has 

informed Transoceanic that a bribe of $50 million must be paid to him; 

in turn the agent will guarantee that the company will get the job. 

Since the ruling clique, for reasons of politics, tradition, and 

dignity, cannot be open about receiving side payments, they will not 

even officially confirm that the "agent" works for them. 

The $50 million side payment could be added onto the sales price 

of the contract. But should Transoceanic pay that vast amount of money 

to a person who might not really represent the ruling group? This 

uncertainty is hard to represent in the value maximizing objective 

function of (1.1.). 

Will the directors feel that paying bribes is immoral? Does the 

staff analyst in charge think the same? Or is he/she, by chance. 
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violently sympathetic to the cause of the client nation involved? 

Already we see two stakeholders in this firm, each having at least one 

possible objective. This is an example of the ideas of the agency 

theory of the firm. 

Suppose that the bribe were paid and the contract signed. Pre¬ 

sumably, the total market value of Transoceanic would rise by an amount 

equal to the risk-adjusted (time) discounted future cash flows associ¬ 

ated with this new business. It is possible that within six months 

auditors of the Securities and Exchange Commission will discover the 

bribe. The resultant fines, bad publicity and managerial involvement 

might reduce the value of the firm by more than the above amount! 

Several objectives arise naturally: maximize "morality," minimize the 

probability of being "caught," maximize the probability that the agent 

truly can guarantee the contract, maximize stability of the firm’s 

employment level (to aid morale and minimize overtime in rush situa¬ 

tion), maximize rate of sales growth, and finally maximize earnings 

per share for the upcoming fiscal year. These optimands do not corre¬ 

late linearly with the net present value of the firm. There are com- 

2 
plicated linkages with the existing activities of the firm. As an 

example of the contingent nature of the problem, the probability of 

being caught by the auditors correlates inversely with the size of the 

contract finally agreed upon. And the perpetuation of the ruling 

clique of the client state is not independent of the quality of the 

infrastructure investments it provides for its citizens. But the 

2 
In this view the firm is a "mutual fund of projects." 
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likelihood of war with neighboring states is a complicated function of 

the nation’s industrial capacity. In short, how could any alert finan¬ 

cial analyst possibly condense this entire discussion into one of the 

coefficients p_. of (1.1.)? Firms do face decisions like this one; 

disaggregating the metacriterion of profit into multiple objectives 

may make it easier to tolerate this complexity. 

For specific examples of this complex goal structure, let us 

look more closely at Transoceanic. It is considering four other 

capital outlays which are described in Table 1.1. At this point the 

data are used only to illustrate the disaggregation approach. In later 

chapters I will make more analytical references to the investment 

opportunity set of Transoceanic, Inc. 

Table 1.1 

Investment Opportunity Set of Transoceanic, Inc. 

Attribute or objective 

(criterion) 

Project 

A B C D 

Net present value $1,000,000 $1,500,000 $900,000 $1 ,400,000 

Percentage of the pro¬ 

ject’s fixed assets that 

will be in politically 

unstable countries 30% 40% 30% 40% 

Is there significant 

foreign exchange risk 

(low, medium or high)? medium medium high high 

Is the project in South 

Africa (cf. opposition of 

church groups, etc.)? yes yes no no ' 
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Many people feel that corporate directors will, when inter¬ 

viewed, agree that they are interested in many goals. Almost any goal 

that the interviewer can name has something good about it. Quinn 

[1977] points out that chief executives are particularly unwilling to 

articulate precise operating goals such as per share earnings figures. 

He says that the more concrete the goal, the more likely is personal 

disutility if it is not achieved. But chief executives often do 

articulate metacriteria such as "Be number one in market share for our 

main products," or "Provide great service," or "Be the small car com¬ 

pany" (e.g., American Motors Corporation). More specific goals, 

although articulated by some companies, can backfire by creating 

rigidity and focusing opposition within the corporation. These are 

some of the confusing side effects in the use of management by objec¬ 

tives (MBO) and zero-base budgeting (ZBB). 

While objectives may not be precisely articulated, it is cer¬ 

tainly true that the management of Transoceanic would have reactions 

to the four capital investment projects of Table 1.1. Perhaps each 

project should be characterized as a set of attributes, rather than as 

criterion-achieving actions. Then the multiple stakeholders in the 

affairs of Transoceanic would react to the projects. Some form of 

aggregating, consensus-building political process would ensue; the 

firm would act. This is what the autopoietic approach is attempting 

to explain (also see the Brunswik Lens Model in Chapter V). 

3 
I define objective as an unbounded direction of aspiration, 

measured by a scale, and goal as a particular target point on that 

scale. 
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Having promoted the need for multiple criteria decision making 

in general, this dissertation henceforth will treat the limited case 

of the individual decision maker (DM). This DM may act on his own 

behalf, or he/she may represent the culmination of some group process. 

For a sample of research on the group, or social decision situation, 

see Johnson [1968], Keeney and Raiffa [1976], Arrow [1951], and 

Fishburn [1973]. 



CHAPTER II 

PREVIOUS RESEARCH IN MULTICRITERIA PROGRAMMING 

II.1 Historical Remarks 

The word optimum was revived by Leibniz. Etymologically the 

source was Ops, the Roman goddess of fertility and agricultural 

abundance [Wilde and Beightler, 1967, p. 468]. These happy circum¬ 

stances seemed like the "optimum," or best, of all worlds. Classical 

optimizers did not have to face the problem of what best meant. 

Early applications were directed toward physical science applications. 

The calculus was developed to find extrema of functions of at most 

several variables. 

To handle initial conditions, or side conditions, the concept 

of constrained maximization (minimization) was necessary. Lagrange 

suggested his "multipliers," a simple method which has proved useful 

over the years in more sophisticated problems, such as integer pro¬ 

gramming. Then problems involving linear functions were envisioned 

in which the roots of the system were to be confined to the non¬ 

negative domain. But since no pressing application fit this format, 

no solution techniques were immediately found. 

Economic philosophers began to conceive of "homo economicus" 

allocating scarce resources. According to George Dantzig [1963, p. 16] 

the first interface between linear models and economics occurred in 

1759 in Le Tableau Economique by Quesnay. No known successors to 

18 
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Quesnay worked on the problem in the nineteenth century. However, men 

like Cauchy, Jordan, Fourier, Farkas, Minkowski, and Motzkin worked on 

other aspects of linear equation systems. 

During World War II, the British military organized accountants, 

mathematicians, physicists, and others into a multidisciplinary team 

which they named the "operational research" group. The United States 

followed suit; in 1947 Project SCOOP was funded by the Air Force. 

SCOOP meant "scientific computation of optimum programs"; the tradi¬ 

tion of acronyms in mathematical programming had begun. 

This research group, whose activities are described by George 

Dantzig [1963, Ch. 2], generalized the Leontief model of the economy. 

That model was called the "linear programming problem" (LP). By the 

end of the summer of 1947, the group had a reliable solution technique 

which was called the "simplex method," since its finiteness depended 

on the use of a geometric structure called the simplex. It is curious 

that a Russian mathematician named Kantorovitch worked on a similar 

theory in Russia in the late 1930s. But his work was not discovered 

in the West until much later. 

From this seminal point grew a study known first as "activity 

analysis," and later as linear programming. Literature in this field 

now includes thousands of citations. 

II.2 Linear Programming 

The LP approach to economic modeling takes the following well- 

known form (with superscript T denoting transpose and c, x, A and b 

properly dimensioned vectors and matrices): 
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T 
Maximize c x (2.1.) 

Subject to Ax < b 

x > 0 

One can see that the objective function is a scalar; one 

objective, defined by its "price coefficients" c is multiplied by a 

conformable activity vector x. For example, in classical micro¬ 

economics, the firm is presumed to maximize its profit, or minimize 

its costs, subject to scarce resources (the "right-hand side," RHS). 

When a model-builder wishes to incorporate other objectives, the standard 

approach has been to use profit as a surrogate for them. The working 

assumption, in this approach, is that other objectives such as safety, 

legality, aesthetics, market phase, longevity, net worth and debt 

position all have some strong, stable relationship with profit. 

Sometimes the firm’s decision variables are rather clearly 

related to these other goals. It may also be that the relationship 

between decision variables and profit is obscure. In this way 

multiple objectives become explicitly and separately stated. 

II. 3 Multiple Objectives and Commensurability 

Koopmans [1951, pp. 33-97] was the first to talk of multiple 

objectives or goals. He introduced the formalism known as the vector 

maximization problem (VM): 

Maximize (f^(x), f2(x), . . .. , f^(x)} (2.2.) 

x 

Subject to g^(x) =b» k = 1, 2, . . . , m 
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where x is an n-dimensional vector of decision variables; f^(x), 

i = 1, 2, . . . , n represent n objective functions; and g^(x), 

k = 1, 2, . . . , m are m constraint functions. 

The objective functions f^(x) can be "commensurable" or 

"noncommensurable." Whether or not we attempt to aggregate the 

objectives into a super-objective function, the problem of commen- 

surability is a severe one. We want to avoid adding apples and 

oranges, as we tell our children. 

Price theory in economics deals with this issue. Physically, 

noncommensurable quantities that trade freely in noncoercive markets 

are nicely commensurated by monetary units. Another example of corn- 

mensuration via a pricing mechanism is the attempt of the federal 

pollution laws to "charge" violators for environmental damage. The 

government defines certain polluting activities to be non-criminal, 

but damaging to the environment. By the use of fines, this environ¬ 

mental objective is incorporated into the firm’s goal structure via 

the numeraire of dollars. Some experimental techniques for massaging 

the coefficients of the objective functions can be found in Morse and 

Clark [1975] and Widhelm and Doyle [1976]. 

When faced with absolute noncommensurability, rational decision 

making is not possible. For example, we teach our children that they 

can add apples, but not apples and oranges. But can we even add 
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apples when they differ in weight, taste, and dimensions? Of course 

we can; we make the apples commensurate by disregarding certain 

attributes that differ. We say, that for the purposes of addition, 

all apples are identical. The point is that coramensurability is a 

mental construct. In reality, it rarely exists, but we achieve it, 

when necessary, by modifying our representation of the world. 

In practical affairs, fortunately, humans are able to take 

objectives (or goals) and rank them, trade them off against each 

other or partition them into types; in short, we can act, within 

limits, as if our objectives were commensurable to some degree. 

To the extent that we make them commensurable, they are commen¬ 

surable. That is how objectives differ from real apples and oranges. 

To review this issue we could recall the vector maximization 

problem (2.2.). If the f^(x) were perfectly commensurable, linear, 

and separable, then they could simply be summed up into a super¬ 

objective function of the form 

n 
z = [ Z f. (x) ] (2.3.) 

i=l 1 

In short, this is a new linear programming problem. 

II.A Weighted Sums 

Suppose that the decision maker(s) felt that they could con¬ 

struct a vector 



23 

0 [® 1 > ®2* • • • » ®n] 

that weighted the n objectives according to their importance. Insert¬ 

ing 0 into the objective function would yield the Weighted Sums 

Problem (WSP). 

Maximize n 
x Z 0. f.(x) (2.4.) 

1 I 

i=l 

Subject to g^(x) < 0, k = 1, 2, . . . , m 

^ > 0, i = 1, 2, . . . , n 

E 0. = 1 
. l 
l 

A major theme of this dissertation will be that this weight vector 

cannot be constructed a. priori. A technical problem with the para¬ 

metric approach is the potential for what is called the "duality gap." 

Due to its simplicity, the weighted sums method has been 

popular in applied work [Major, 1969; Haimes, 1970; McGrew and Haimes, 

1974; Geoffrion, 1968; Reid and Vemuri, 1971; Krajewski and Ritzman, 

1973]. 
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II.5 Vector Maximization and Multiobjective Linear Programming: 

Work of Historical or Peripheral Importance 

Kuhn and Tucker [1951] amplified Koopman's [1951] idea of vector 

maximization in their oft-cited article on nonlinear programming. 

They developed, in particular, a duality theory that showed that a 

point x° in the constraint set is efficient if and only if its dual 

vector, which is a sort of ’'price" vector, is positive. They left a 

void to be filled in by later researchers, since LP algorithms deal 

with nonstrict inequalities. In other words, these methods cannot be 

used directly to find a dual vector that is strictly positive. 

Bod [1963] gave an algorithm that decides whether a point x° is 

efficient. Geoffrion [1968] created a whole theory of vector maximiza¬ 

tion which included nonlinear programming as a special case. He 

formulated a new version of what Kuhn and Tucker had called "proper 

efficiency." 

DaCunha and Polak [1967] traced vector maximization from Pareto 

[1896], through Karlin [1959], Debreu [1959], Kuhn and Tucker [1951] 

and finally to the control theory literature of Chang [1966] and 

Zadeh [1963]. DaCunha and Polak explained how a vector-valued criterion 

usually induces a partial ordering on the set of alternatives. This 

excludes the notion of optimality, and efficiency is discussed instead. 

Their paper developed a theory of necessary conditions for character¬ 

izing efficient points, and ways of knowing when a vector-valued 

criterion problem could be decomposed into a family of problems with 

scalar-valued criteria. Philip [1972] reviewed the literature and 
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presented several algorithms for the existence and uniqueness of 

efficient points. His efforts are somewhat forgotten, in the sense 

that later authors cite him in a perfunctory way. 

Benayoun, Montgolfier, and Tergny [1971] were the first to bring 

multiobjective linear programming (MOLP) to the decision maker (DM) in 

a well-documented, practical way. Their STEM method involves a sequen¬ 

tial exploration of solutions. This exploration is aided by a care¬ 

fully defined interaction between the DM and the algorithm. This 

man-machine symbiosis need not converge. If after p iterations (the 

number of objectives) the DM is not satisfied, the algorithm concludes 

that there is no "best compromise solution." It is hoped that the 

process will enable the DM to learn to recognize good solutions and 

the "weights" of the various objective functions. In general, this is 

the approach taken by the active researchers in the field of MOLP. I 

believe that the reliance on the DM to modify constraints is precisely 

the kind of job for which the human mind is poorly equipped. This 

idea will be expanded in Chapter III. 

Roy [1971 and 1973] carefully expounds his method called ELECTRE. 

He explicitly treats aggregation of objectives, progressive definition 

of preferences, partial orders on alternatives, uncertainty and 

incomparability. ELECTRE is extremely cumbersome, although it may 

be very worthwhile to those DMs trained for it. 

Belenson and Kapur [1973] add to the growing machinery for MOLP. 

They form pay-off matrices, as in two-person zero-sum games. Then 
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during interface with the DM, information is elicited, the problem is 

respecified, and sequential decision making proceeds. This approach 

has not been adopted by many other authors. 

Kornbluth [1974] makes a major contribution. He goes back to 

the duality theory of vector maximization that was started by Kuhn, 

Tucker and Geoffrion. He shows that there is a dual solution tt* for 

every efficient MOLP solution vector x*. He calls this tt* the "prices" 

of the resources of the problem. They depend on the subjective 

weights of the primal problem. He shows how different trade offs 

between objectives can lead to the same efficient solution but dif¬ 

ferent valuations of resources. He also is the first author to pro¬ 

pose a theory of "post-optimality analysis" for MOLP. An interesting 

concept is that the right-hand side of a MOLP problem is an aggrega¬ 

tion, into one vector, of many separate resource vectors. 

Silverman and Hatfield [1973] produce outlines of satisficing 

strategies. A complete ordering of objectives is never required from 

the DM. Goals are allowed to be either flexible or inflexible. This 

is done by introducing "preference sets." The preference set identi¬ 

fies all objective functions which are of lesser importance to the DM, 

a. priori. Their iterative procedure first solves a goal programming 

problem without incorporation of the preference sets. Using this as 

a starting solution, the feasible space is augmented to include the 

preference sets. 

Lawrence and Koch [1975] and Lawrence and Lawrence 

[1975] have written many applications papers that have appeared in 
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conference proceedings. There is no algorithmic or theoretical re¬ 

search here. An interesting feature, however, is that real problems 

are solved both by MOLP and by goal programming. 

A tradition of solving MOS problems has developed in management 

science. A parallel technology has grown up in the field of water 

resource management, but there has been almost no cross-fertilization! 

In the field of water resource management, falling under the 

rubric of cost-benefit analysis, there is a well-worked-out system called 

the Environmental Evaluation System (EES) [Dee et al., 1973]. The EES 

is based on a hierarchical arrangement of quality indicators covering 

ecology, environmental pollution, aesthetics and human interest. From 

these four categories 78 parameters are developed, which can be tracked 

empirically. Next the research team assigns values between 0 and 1, 

to indicate how each parameter affects each of the four major areas. 

Then these value functions are summed to yield commensurate units 

called "environmental impact units." Using these units, the environ¬ 

ment is assessed with, and without, each project. This is supposed to 

indicate whether the proposed projects will have a positive or a nega¬ 

tive effect on the environment. Economic effects and constraints are 

not incorporated into EES. Hence the whole process, despite its 

sonorous name, is just a careful implementation of a very simple uncon¬ 

strained maximization concept. 

Another very simple effort in this literature is Personal Value 

Information [Groves and Kahalas, 1975]. This is a way of gathering 

preference data from the local population. 



28 

Somewhat more interesting is the e constraint approach. This 

method [Haimes, 1970] replaces (n-1) objective functions with (n-1) 

constraints as in 

Maximize F.(x) 

x 

Subject to g^(x) - 0 » k = 1, 2, . . . , m (2.5.) 

fj(x) < >• j / i, j = 1, 2, . . . , n 

where the are maximum tolerable levels. Although Haimes saw that 

(2.5.) could be transformed into PP, he showed no citation for goal 

programming. As late as 1973, Gembicki [1973] was claiming independent 

development of a "goal attainment" method. 

Another example which uses maximum tolerable goal level is 

Sahin [1976]. This paper, which deals with the prediction of corporate 

bankruptcy, also uses minimum tolerable levels for each goal. This 

would be like the interval goal programming models, except that 

Sahin’s objective function is quadratic. 

The water resources work to date has been collected in a new 

book [Haimes, Hall, and Freedman, 1975]. For the myriad of ad hoc 

techniques, I direct the reader to that source. The most interesting 

part of that book concerns the Surrogate Worth Trade-Off Method, which 

uses duality theory to assess trade offs between goals. 
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II. 6 Modern Approaches 

II.6.1 The Surrogate Worth Trade-Off Method. The Surrogate Worth 

Trade-Off Method [Haimes and Hall, 1974] begins with the vector maxi¬ 

mization problem (VM) in minimizing form. It finds the minimum value 

of each objective function, treated alone, subject to the system of 

constraints. Next the problem is reformulated in e constraint form 

(as in 2.5.). Here is how the maximum tolerable levels £. will be 
J 

related to f^(x) (this is the notation for the jt^1 objective function, 

treated as if it were the only objective function). 

If one objective function is allowed to dominate, and the 

others are satisfied by being treated as constraints, there will be 

(n-1) Lagrange multipliers associated with the (n-1) objectives as 

constraints. When the Lagrange multiplier is non-zero, it means that 

that particular constraint does limit the optimum. It is shown that 

the non-zero Lagrange multipliers correspond to the non-inferior"*" 

solutions, and the zero multipliers are associated with the inferior 

solutions. Additionally, these non-zero Lagrange multipliers show us 

the trade-off ratios between the main objective and each of the 

objectives which are expressed as constraints. 

^Non-inferior solutions are basically the preferred solutions; 

the DM is indifferent between solution (X) vectors in this set. 
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These trade-off ratios have the form 

df (x) 

Tij(x) = df .(x) 
(2.6.) 

where 

n 3f.(x) 

df.(x) = I T -- 

1 k=l 3xk 
lxk 

(2.7.) 

or equivalently as 

[V f (x), dx] 

T (x) = —=- 
ij' [V f (x) , dx] 

A X 

(2.8.) 

where V is the del operator. 

Using concepts of duality, regression analysis, and Kuhn-Tucker 

conditions, the authors search for an operational equivalent of the T 

matrix, which they denote X..[A(e.)], In their published work, they 

prove that these trade-offs can be obtained for any noncommensurable 

objective functions. For instance, "let the units of f^(x) be dollars 

and the units of f^(x) be DO (dissolved oxygen). Then the units of 

are dollars/DO" [Haimes and Hall, 1974, p. 619]. 

The decision makers are provided with A for one objective, 

given certain attained levels of other objectives. Then they are asked 

the question, "Is the marginal change (A_) in the objective func¬ 

tion [fi(x)] worth more or less than one unit of change in the j^ 

objective function?" If the first alternative is believed to be true. 

then objective f^(x) should be minimal at the expense of f (x) ; if not, the 
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opposite is true” [Haimes and Hall, 1974, p. 620]. The set of A^ 

which are simultaneously neutral to this question leads to the desired 

non-inferior region. This type of interface with the DM is captured 

in the "Surrogate Worth Function," W.. = f(A..). 
ij i j 

Three computational approaches for determining W . are avail- 

able. They all require certain assessments from the DM. I will return 

to this point in Chapters III and IV, where the DM's ability to make 

such assessments is questioned. 

II.6.2 Work of Zionts and Wallenius. In Zionts and Wallenius [1976], 

Wallenius and Zionts [1975], and Wallenius [1975], an eclectic approach 

to multicriteria optimization is developed and then tested in a 

laboratory setting. These authors assume that the objective functions 

are concave and that they are to be maximized. In addition, the con¬ 

straint set is assumed to be convex. The DM does not know his own 

utility function explicitly, but Zionts and Wallenius assume that it 

is either linear or, more generally, a concave function of the objec¬ 

tive functions. 

Laboratory experimentation and the intuition of the authors both 

indicated that European managers prefer to assess their trade-off 

functions via concrete choices. Instead of setting weights on goals, 

Zionts and Wallenius propose "trades" to the DM; these will be de¬ 

scribed below. 

Using multidimensional assessment strategies that are reviewed 

in Raiffa [1969], the original objectives are modified In their 

arguments so that the condition known as separable additive utility 
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prevails. For example, the profits of a firm may be an obvious 

objective; but it may be regarded as a nonlinear function of decision 

variables. The modified objective function might turn out to be a 

linear function of the square root of profits, or the natural loga¬ 

rithm of profits. This type of modification is common in statistics, 

where different functional forms are changed so that they can repre¬ 

sent data on linear regression equations. 

In the 1976 paper, Zionts and Wallenius begin by presenting 

a "naive" method, which contains some of the ideas and motivations 

of their actual methods. 

The problem is denoted as: 

Maximize: p 
E A.u. (2.9.) 

• i ii 
i=l 

Subject to Ax = b 

ui < f-jx, j = 1, 2, . . . , p 

Eu - Dx < 0 

u > k 

x > 0 

where A, x, and b are properly dimensioned matrices and vectors; 

P 
A > e, e is a sufficiently small positive number, E A. = 1; and 

1 " i=l 1 

3 
A vector-valued function f(x), x = [x^, x^, . . . , x^] that 

can be written in the form f(x) = f,(x.) + f~(x0) + . . . f (x ) is 
11 2 2 n n 

"separable additive." 
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each objective function is of the form u^ = f^(x), i = 1, 2, . . . p. 

Zionts and Wallenius approximate this function by appending a set of 

constraints 

ui = fl * J = 1> 2.p(i) (2-10) 

where f^ is a row vector of appropriate order and u^ is the value of 

til 
the i objective function, f^(x). This can be summarized in matrix 

notation as 

Eu - Dx < 0 (2.11.) 

where E = I, the identity matrix, for the case of linear objective 

functions, and D is a matrix of the objective function coefficients. 

If the set (f^(x)} is nonlinear, then E becomes a transposed permuta¬ 

tion matrix. This model also incorporates lower bound, on objectives, 

that is 

u > h (2.12.) 

where h is a figure named by the DM or the analyst. 

It is known from previously cited work [Philip, 1972; Zeleny, 

1974 (a)] that there is a (non-unique) efficient point for any set of 

weights X.. An arbitrary set of weights such that E X = 1 is chosen. 
1 i 1 

This solves the problem of (2.9.) ; as a matter of fact, the 

solution is an efficient one. It is not possible, holding the X^ 
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3 
constant, to improve one objective without devaluing another. 

Next the nonbasic variables in the latest tableau are examined. 

The authors have a way of classifying them into two sets. If the 

introduction of a nonbasic variable leads to an efficient adjacent 

extreme point, then it is called an "efficient variable." Otherwise 

it is called an inefficient variable. 

From the theory of linear programming we know that the intro¬ 

duction of a nonbasic variable decreases the objective function. Zionts 

and Wallenius use this as a way of helping the DM quantify trade-offs 

between objectives. For each variable that is efficient, according to 

the definition above, the DM faces this type of questioning: 

Here is a trade. Are you willing to accept a decrease in 
objective function u^ of W^., a decrease in objective func¬ 
tion u. of W ,, . . . and aJdecrease in objective function 

2 wi 
u of W .. Respond yes, no, or indifferent to the trade. 

^ ^ [Zionts and Wallenius, 1976, p. 658]^ 

Note that W.. is the decrease in the i obiective function due to 
ij 

making x^. basic. Solving a series of LP subproblems, the method con¬ 

structs the set of A_^ that best approximates the solution to the original 

vector maximization problem. In my opinion, of all the methods described 

above, that of Zionts and Wallenius does the best job of asking questions 

that the DM can handle; it elicits quantitative information without going 

beyond the information processing ability of the human. 

If the reader is interested, he should review Yu and Zeleny 
[1975] and Philip [1972] for uniqueness and existence theorems on 
efficient points. 

^The trade is based on switches of efficient variables; the DM 
is informed that the "decrease" may in some cases be negatively signed, 

i.e., positive. 
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These two authors have also used their methods for the case of 

concave, rather than linear, utility of objectives. Using a cutting 

plane algorithm, they also have attacked the integer multicriteria 

problem. They always move along an efficient hyperfrontier, from 

extreme point to extreme point, asking in essence, "Are new solutions 

better than the old ones?" 

Unlike many authors, Zionts and Wallenius have tested their 

methods extensively with corporate managers. Most of this experience 

was with European corporations. In Wallenius [1975] and Wallenius 

and Zionts [1975, 1976], Zionts and Wallenius [1976], this field 

work is analyzed, and their own method is rigorously compared with the 

approaches of Dyer [1972] and Benayoun et al. [1971]. 

II.6.3 Goal programming. Goal programming (GP) will be covered only 

very briefly because it is so widely known, and so adequately explained 

in the literature. As early as 1952 GP was developed to handle 

regression problems where the least squares methods was inappropriate. 

This history is reviewed in Charnes and Cooper [1975]. Then GP made 

its real bow in an article on executive compensation [Charnes, Cooper, 

and Ferguson, 1955]. In the subsequent two decades, GP provided the 

technology for thousands of papers. 

The main popularizer of GP has been Sang Lee [1972] whose book 

and articles deal with finance, marketing, school busing, accounting, 

media selection and many other applications. Lee has added very little 

to the mathematics of GP, but his eloquent educational activities have 

done a great deal to make American managers receptive to mathematical 
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techniques for multiple objective situations (MOS). 

GP is a clever extension of LP. The objective becomes the 

minimization of a functional which consists of deviations from targets. 

The targets are appended as additions or modifications to the RHS. 

The whole GP problem is formatted 

Minimize E (d^ + d ) 

iel 1 1 

Subject to Ax < b 

Cx - Id+ + Id = g 

+ — 
x, d , d >0 

(2.13.) 

In (2.13.), d_^ represents overachievement of the i goal, and 

d_^ represents underachievement, C is the matrix of policy constraints, 

and I is the appropriately sized identity matrix. Since the simplex 

methods choose a basis whose columns are linearly independent, we are 

assured that d* and d^ will never appear simultaneously at a positive 

level. If absolute priorities are to be indicated, this can be 

achieved by large weights, or by constraints of the form: 

dt < d+ (2.14.) 
i = 1 

Since the final tableau ensures the relationship d^ d_^ = 0, (2.14.) 

will ensure the absolute priority even if the objective formation 

assigns a high weight to d~!". Many further subtleties, as well as 

historical remarks can be found in Charnes and Cooper [1975]. 

Another way to model priorities is to use preemptive priority 
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weights. This takes the following form. For example: 

Minimize z = Pi ^l + Pi ^2 + P2 d3 (2.15.) 

This means that the variables and d^ are to be minimized as much as 

possible before the algorithm moves on to d^. The is meant to show 

that attention to d^ is of the second priority, while the first order 

of priority is reserved for the other two deviational variables. Hence 

we use the word preemptive. For more on goal programming with this 

weighting scheme, see the modification to the simplex algorithms in 

Lee [1972]. Ignizio [1976] extends these to the nonlinear and the 

integer case. 

Chapters III and IV will make comparisons of the applicability 

of the two popular multicriteria paradigms, goal programming and 

multiobjective linear programming. 

II.6.4 Multiobjective linear programming. Multiobjective linear pro¬ 

gramming developed from the theories cited in Section 11.5. Zoleny 

[1974(a)], Yu and Zeleny[1975] and Evans and Steuer [1973] independently 

created variants of the revised simplex method to handle multiple 

objective functions. All of these authors drew heavily on existing 

management science theory [see in particular Philip (1972), and 

DaCunha and Polak (1967)]. But the creation of the multicriteria 

simplex methods was a great achievement; even the sizes of the 

tableaux are awesome. 

As with linear programming it could be said that the MOLP 

methods are examples of brilliant bookkeeping. Masses of Information 
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are transformed and made useful by the successive tableaux. The 

several men associated with MOLP use different notations, but the 

formulation is actually identical: 

Maximize c?" x. 4- c^ x_ + . . . + c^ x = z, 
112 2 n n 1 

2 , 2 2 
C. X- + C_ X- + . . . + C X = z_ 
112 2 n n 2 

Subject to: 

Xx + c2 x2 + 

Ax < b 

x > 0 

. + c^ x = z 
n n p 

(2.16.) 

This can be written succinctly as 

Maximize Cx = z (2.17.) 

Subject to Ax < b 

x > 0 

In both (2.16.) and (2.17.), x_., j = 1, 2, . . . , n, is the 

decision vector; z^, q = 1, ...» s, is the decision vector mapped 

into criterion space; b_., j = 1, 2, . . . , m, is the RHS of appropriate 

dimension; A is the technology matrix; and the c^, j = 1, 2, . . . , n 

and i = 1, 2, . . . , p, is the criterial coefficient for the j^ 

tli i 
variable measured along the i criterion. The aggregate into 

the C matrix of (II.6.12.). 

The solution of these systems results in a set of x vectors 
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which are termed nondominated (or elsewhere in the literature 

efficient, noninferior, or Pareto-optimal). Formally, a point x is 

nondominated iff^ x ( X ) Cx > Cx and Cx £ Cx. The concept originated 

with Pareto [1896], who was defending market economics from the attacks 

of Karl Marx; it was refined by Kuhn and Tucker [1951] and Geoffrion 

[1968]. In recent years a similar concept called kernels of preference 

structures has received some attention [see White (forthcoming)]. 

Since the set {x} is not singleton, neither is its image in 

criteria space. We have Cx = z, where z takes the form of a set of 

column vectors, with each one corresponding to a nondominated x^. In 

Chapter V it will be convenient to collect the z vectors into a 

matrix Z. 

The essentials of the multicriterion simplex method are as 

follows: 

1) Find a basic feasible solution for one trial set of weights 

(cf. the parametric problem [2.4.]). 

2) From that b.f.s., move on to find an efficient extreme point 

or terminate if one does not exist. 

3) From this efficient extreme point, find all other efficient 

extreme points. 

The computational details of the three steps have never been 

described in less than ten pages in the literature. I find that Yu 

and Zeleny [1975] is the best treatment of domination structures and 

their relationship to MOLP. Zeleny [1974 (a)] is the best description of 

an approach called the decomposition of the parametric space. This 
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approach is appealing in theory but appalling in (computational) 

practice. Evens and Steuer [1973] provide the most compact exposition, 

but they require the most complete theoretical background in optimiza¬ 

tion theory. Both Zeleny [1974(a)] and Steuer [1974] share their 

tremendous investment in computer coding with the research community. 

The ADBASE code of Steuer is easier to implement and offers more 

options for algorithmic experimentation. 

Duality theory for MOLP is currently following several paths. 

Of note are Kornbluth [1974], Duesing [1976] and Isermann [1977]. The 

MOLP dual requires the conception of the primal as having multiple RHS. 

Several b vectors would collapse to only one when weighted; these would 

be the objective function weight in the dual problem. 

GX 
Each x e N (the set of nondominated extreme points) is 

GX 
associated with a particular set of weights {ki}. With each x e N 

is also associated the RHS weights, which we will call u (RHS). But 

GX 
many u vectors may correspond to each x e N . Each corresponds to a 

"pricing" of scarce resources. Since this is multiple pricing, one 

thinks of corporate applications such as transfer pricing schemes with 

subsidies. Another application would be pro forma capital budgeting 

where the parent company is evaluating the physical and financial 

budgets of several units that might be merged. 

II.6.5 Recent dissertations. One of the leaders in the MCDM remarked 

that "the field was mined." It is no accident that the Multiple 

Criteria Session at the May 1978 TIMS-ORSA National Meetings is 
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expected to be very applications-oriented. New theories are beginning 

to re-invent the wheel. The field is currently trying to synthesize, 

to package itself in a more mature way. 

Seven dissertations will be reviewed here. None, with the 

exception of Bergstresser [1976], seems to be as important theoretically 

as were the seminal dissertations of Steuer [1973] and Zeleny [1974(a)], 

Gomes [1976] offers a multiple criteria framework for the 

evaluation of forest and road capital projects. Both quantitative and 

qualitative measures are used to capture the environmental system and 

the value systems of the decision-making participants. A "project 

valuation matrix" with columns as indicants of the partial utility of 

projects is constructed. When pairwise comparisons can be made, they 

are massaged by an algorithm, in the hope of creating a complete order. 

Gomes uses a heuristic to estimate the loss of information in his 

methods. This approach is reminiscent of the very well known (but 

rarely understood) outranking relationships of B. Roy [1971, 1973, 

1976]. 

Akyilmaz [1976] is concerned with the analysis of trade-offs in 

the realm of transportation. A detailed typology of these trade-off 

methods is offered. 

Keefer [1976] uses decision analysis for resource allocation in 

the presence of uncertainty, multiple objectives and organizational 

constraints. 

Lindsay [1976] analyzes alternative sewage sludge disposal sys¬ 

tems by means of several multiobjective programming approaches. 
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Ryan [1976] applies goal programming to actual industrial safety 

and health problems. A detailed model is built up in the context of 

the Occupational Safety and Hazard Act (OSHA). 

The problem of public investment planning in developing nations 

is characterized as a multiple objective problem in the dissertation of 

Sfeir-Younis [1976]. He uses goal programming to study project 

priorities and macroeconomic impact. The model also serves as a 

management information system. Projects are ranked on an ordinal scale 

by computing distances from an optimal set of goal accomplishment. (I 

question the advisability of the heavy utilization of goal programming 

and discuss this at length in Chapter IV.) 

The dissertation of Bergstresser [1976] seems to be the most 

advanced in theory. Using domination structures like those in Yu 

[1974], he explores n-person games. It is shown that traditional solu¬ 

tion concepts for single criterion n-person games in both normal and 

characteristic function form induce domination structures in various 

spaces such as the pay-off space. These structures indicate the shar¬ 

ing of power by the n players. The author uses balance sets and derives 

a necessary and sufficient condition for the core of a game to be non¬ 

empty. He develops a parametrization process to relate multicriterion 

games to single criterion games. This is like Zeleny’s original work 

[1974(a)] on the decomposition of parametric space in the MOLP context. 

Chapter II has introduced the literature from the mathematical 

programming standpoint. Chapter III will provide a literature review 

from the behavioral sciences. 



CHAPTER III 

PREVIOUS RESEARCH IN HUMAN CHOICE THEORY AND INFORMATION PROCESSING 

III.l Introduction 

Classical economics provided the behavioral paradigms that led 

to the applications of optimization theory in a management context. 

Homo economicus was assumed to be a single criterion maximizer who 

knew what was available and who knew what he liked. Thus management 

science evolved as an information-assuming discipline. This chapter 

follows the tradition of Zeleny [1974 (a) ]> and Keeney and Raiffa [1976] 

in examining the information-seeking aspects of management science. 

The models reviewed here are less tractable than those now implicit in 

management science, but in this very lack of simplicity lie the seeds 

of a fruitful direction for research. 

III.2 Review of Human Choice Theory 

III.2.1 Thurstone. In 1927 Thurstone [1927(a), 1927(b)] developed a 

mathematical model for describing the way an organism responds to 

stimuli. He felt that the task of psychophysics was to develop 

scales or ranges of numbers which represent the subjects' responses to 

psychological continua such as heat, light or sound. The scale should 

be constructed so that it captures the discriminal process along each 

dimension of interest. 

The discriminal process is random, in the sense that the 

organism does not always make the same response to the same stimulus. 

43 
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The goal is to be able to observe an organism and record its responses 

as points on a scale. It would be nice if each point had an unambi¬ 

guous meaning. This is usually not possible since the responses do not 

come out as a metric function. 

Thurstone’s law of comparative judgment tries to derive a scale 

from a set of subject responses to paired comparisons among stimuli. 

We seek a scale denoted by s. Let s_. and s^ correspond to the scale 

values of two stimuli j and k. Also necessary are a. and a , the 
j k 

standard deviations associated with a given stimulus-response set. 

When two stimuli are presented to the subject, two "discriminal pro¬ 

cesses," d. and d. , occur. The quantity (d, - d.) is called a "dis- 
3 k k 3 

criminal difference." 

The two stimuli are repeated many times, and Thurstone 

postulated that the discriminal differences (d - d.) would form a 
k 3 

normal distribution on the psychological continuum. The expected 

value of this probability distribution is equal to the difference be¬ 

tween s. and s. . 
3 k 

From statistical theory, we know that 

2 2 ^ 
f, , = (a. + a. - 2r a .a. ) 
dk-dj 3 k 3k 3 k 

(3.1.) 

in which r.. is the sample correlation coefficient between the values 
3k 

of the discriminal processes associated with s_. and s^ (over some 

number of repeated trials). 

During the presentations of the stimuli, the subject experiences 

stimuli s_. and s^ and indicates a "comparative judgment" such as 



softer, louder, brighter, etc. 

The number of times that s- is judged greater than s, is useful 
J K. 

information in creating a scale; some standardization is proposed by 

Thurstone. He uses x., to mean the number of times that s. > s, , 
jk 1 k 

measured in a, , units. This transformation allows the difference 
d. -d. 

k J 
s, - s. to be determined from a table of the area under a normal 
k J 

curve. 

After a few steps of this sort, Thurstone wrote 

sk - sj = xjk°d -d. (3-2-) 
K 3 

Substituting equation (3.1.) we obtain 

sk - sj = xjk(oj + °k - 2rjk°jak)!i (3-3-> 

This was called the "complete form of the law of comparative judg¬ 

ment." The goal was to achieve scaling as the solution to a simul¬ 

taneous system of equations. 

But, as is shown in studious detail by Thurstone, the "complete" 

form of the law yields more unknowns than equations. To make a 

solvable system of equations, nine different sets of simplifying assump¬ 

tions are used to modify the complete law. For example, Thurstone 

imposed constant covariance, equal correlations or homoscedasticity of 

discriminal differences. 

He then proceeded to a more subtle version of his general judg¬ 

ment paradigm and called it the "law of categorical judgment." This 

law begins by assuming that each attribute under examination is 
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associated with a psychological continuum divided into categories. 

The subject is required to place the stimuli in a particular category, 

or area of the continuum. In effect, this model of human information 

processing treats the boundaries of the categories as additional 

stimuli. As was the case of the complete law, a system of equations 

results which can be solved only when some special conditions are 

superimposed. 

Thurstone’s two laws are combined into a theory of discriminal 

processes. Together the laws are known as the "general judgment" 

model and they imply a set of testable hypotheses. The empirical work 

was carried out, and later researchers were able to use these beginnings 

to analyze the choices that organisms make. 

III.2.2 Luce. Luce felt that it is very difficult to study individual 

choice behavior apart from the discriminal processes that interested 

Thurstone. He wrote that psychologists had searched for lawfulness 

between stimuli and responses [1959, p. l]. His suggestion was to 

model choice behavior, whether the organism happened to be choosing 

among stimuli or among responses. 

Utility theories from economics were algebraic in nature. They 

assumed perfect discrimination of cues, and tried to explain the com¬ 

plexity of response by increasingly subtle functional forms for pre¬ 

dicting the alternatives chosen by the human subject. Luce felt that 

by idealizing discrimination, utility theory became needlessly complex 

and almost disheartening. He believed that the richness of the 

response set did not necessarily find its most parsimonious representa- 
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tion by algebraic utility functions, but instead by the inclusion of 

a probabilistic model of the perception of stimuli. 

In his book, Luce tried to use a single axiom that related "the 

various probabilities of choices from different finite sets of alterna¬ 

tives." Thus, by exploiting whatever lawfulness exists between 

choice situations, whether these are choices among responses or among 

stimuli, he was able to extend his famous Axiom of Choice to psycho¬ 

physics, utility theory and learning theory. Luce had restricted his 

research (as of 1959) to situations where there existed a well-defined 

finite set X, whose elements corresponded to crisp alternative choices. 

The axiom defines T as a finite subset of a domain of discourse 

U (possibly infinite), and for every set S C T, Pg is defined. The 

notation Pg is a general form of more specific expressions such as 

P(x,y), the probability that x will be chosen over y from the set S = (x,y}. 

Luce’s Axiom of Choice is 

(i) If P(x,y) ± 0,1 for all x,y z T, 

then for R C S C T 

Pt(R) = Ps(R)Pt(S) (3.4.) 

(ii) If P(x,y) = 0 for some x,y e T, 

then for every S C T, 

PT(S) = PT_{x}(S " {x})- 

Part (i) is a rather technical condition that has to do with 

the division of a large set of choices into a sequence of simpler 
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choices from subsets of the original set. 

Part (ii) means that if y is always chosen in preference to x, 

then x may be excluded from T whenever choices from T are under 

analysis. As Luce says, if a person never selects liver in preference 

to roast beef, then when the choice between liver, roast beef and 

chicken is presented, the decision maker should (or does) deal with 

the smaller problem of roast beef versus chicken. 

The beauty of Luce’s axiom is that it implies a condition called 

’’independence from irrelevant alternatives." Formally, if 

P(x,y) 4 0,1 for all x,y e T, 

then the axiom of choice (3.4.) implies that for any S C T such that 

x,y e S, 

P(x,y) pg(x) 

P(y,x) Pg(y) 

(3.5.) 

At first glance this seems to mean that the addition of new 

elements to a choice set does not change the original choice proba¬ 

bilities. For example, if a certain woman probably would choose a 

blond man rather than a brown-haired man, then her choice process would 

not be upset by the addition of a red-haired man to the set of 

available men. Early applications of Luce's theories were unclear 

about this point. (3.5.) implies that the ratio of probabilities is 

unaffected by changes in the feasible choice element, if the changes 

are truly "irrelevant." In the above example, P(blond, brown) might 

change with the arrival of the redhead, but the ratio of P(blond. 
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brown) to P(brown, blond) would not change. 

Luce's work was truly seminal, but later researchers became 

dissatisfied with the implications of (3.5.). Richer models of human 

choice deal rather intensely with the possibility that new choice 

alternatives are not truly irrelevant, and that they do affect the 

ratios of the original choice probabilities. 

III.2.3 Coombs. In A Theory of Data (1964) Coombs attempted to 

unify the existing ideas of choice theory, data types and statistical 

analysis. He wrote of a theory of unfolding—a way to elicit scales 

for individual attributes from joint scales of responses to multi- 

attributed objects. This book categorized the kinds of data that are 

generated in empirical mathematical psychology. Coombs' data became 

widely accepted in the fields of mathematical psychology, social 

psychology and marketing research. Finally a set of techniques was 

developed to analyze the data. Prominent in this set was metric and 

non-metric factor analysis, and multidimensional unfolding. 

Unfolding is most easily visualized in the one-dimensional 

case. Several subjects are presented with a stimulus. They are pre¬ 

sumed to have the ability to specify an ideal point, which is what 

they consider an optimal point on the stimulus continuum. Each sub¬ 

ject reacts to discrete points on the continuum. The distance of each 

point from the ideal point varies inversely with the subject's 

preference for that point. For example, in Figure 1, point b is 

preferred to point a because it is closer to I, the subject's ideal 

point. Point d possesses "more" of the stimulus, but it is not 
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preferable to point b, because it is farther from I. 

Figure 3.1 

A Single-Peaked Preference Function 

One 

subj ect's 

preference 

level 

a b I c d 

Coombs’ studies emphasized that if each subject had a different 

ideal point I, then each would have a different rank-ordering of the 

stimulus objects. So if we were to fold the stimulus scale of 

Figure 3.2 at I, we would create a graph of a preference ordering on 

a, b, c and d for one subject. 

Suppose that instead of beginning with the stimulus scale, a 

researcher had preference scales available. By unfolding these scales 

at the ideal point I, the underlying stimulus scales could be derived. 

The multidimensional analog of this unfolding has been developed and 

is known as multidimensional scaling. It must be remembered though, 

that the subjects must have single-peaked preference functions on the 

stimulus of interest. In other words, they do not follow the 

economist's assumption that "more is better." 
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Figure 3.2 

An SPF for the Number of Boys 

Preference 

level 

12 3 4 

Number of boys 

This chapter has been treating how humans react to sets of 

cues and sets of choices. Coombs uses the concept of single-peaked 

preference functions, which he attributed originally to Black [1948(a), 

1948(b)], The single-peaked preference function (SPF) is unimodal and 

need not be symmetic (see Figure 3.1). 

Note that the function in Figure 3.2 achieves a unique maximum 

at three boys. Assume that the context is research into family forma¬ 

tion preferences [Coombs, 1975]. Why would the preference in boys 

drop off so decisively? Perhaps three is considered an optimum family 

size by the subject. Alternately, the desire to have daughters may 

become stronger, once boys have been born. Coombs and his wife also 

elicited, in various countries, SPFs for girls. Then they derived 

SPFs for both the sum of boys plus girls, and the difference of boys 

minus girls (see Figure 3.3). 
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Figure 3.3 

An SPF for Total Number of Children 

Preference 

level 

Number of boys plus girls 

The attractiveness of this approach is that it provides a 

psychological theory for non-monotone preferences. By considering an 

observed scale to be the joint effects of several underlying scales, 

one can "unfold" those scales for closer verification. 

Many researchers have proposed choice models where various 

attributes were weighted and added to form a joint scale. Coombs 

explains very cogently how these models implicitly assume that there 

is no interaction among the attributes. Since there are many worldly 

phenomena where interaction does occur, it is very important to pursue 

research that incorporates this interdependence. 

To be thorough in his review of multidimensional choice models, 

Coombs reviews (in Chapter 9) several other concepts. One is called 
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the personal compensatory model. The formal definition of this is 

P !c1 - proj q (3.6.) 

where |c| is the norm or length of the vector from the origin to the 

ideal point, proj q is the projection of the stimulus vector in the 

direction of the individual's vector c, and P is the performance 

measure. Although this notation is unfamiliar to management scientists, 

this is precisely the kind of model implied by the objective function 

of a goal programming problem which does not make the weights preemptive. 

Another idea that Coombs reviews is lexicographic ordering. Of 

/ 

several objects in the choice set, the one chosen will be that which 

has the highest level of the most influential attribute. The decision 

maker disregards the information inherent in the levels of other less 

important dimensions of the objects of choice. This is known in the 

optimization literature as goal programming with preemptive priority 

weights. It is also allied to another MS/OR technique called lexico¬ 

graphic programming. However, Harrald, et al. [1975] show how this 

lexicographic model is inconsistent with the existence of a utility 

function in the mind of the decision maker. 

The next model discussed, the city block model, is an additive, 

compensatory model which assumes no interaction. There is a peculiar 

form to the additivity of dimensions. The distance between choice 

elements is defined as the arithmetic sum of their differences along 

each dimension. This model has appeared independently in several 

fields, but its applicability is hard to prove. 
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Coombs [1964, p. 206] states that "one of the most desirable 

consequences of developing alternative models and their (associated) 

algorithms for data analysis is that their existence destroys any 

naive complacency with any one model and leads to a search for ways 

of testing and comparing alternative theories." 

This entire section from Coombs has dealt with first-choice 

preferences. A very different choice behavior may result if the sub¬ 

ject is asked to pick his second-best choice. This subtle point has 

been raised again, over a decade after Coombs' research, by 

Zeleny [1976(c)] and by Farquhar [1977]. 

One other issue from A Theory of Data deserves some attention. 

In Chapter 13 Coombs says that the real world is full of choice sets 

that include incomparable (noncomparable) elements. Social scientists, 

he feels, are sometimes criticized for building multidimensional 

utility functions that crunch these elements together incorrectly, 

invalidly or haphazardly. But societies do consummate decisions. 

Since the compression of partial orders into complete orders is often 

made by a small subset of the population, it is especially important 

for scientists to improve our methodologies for making these choices. 

This point is reminiscent of Shepard [1964] and Zeleny [1976(c)]. 

Both review experiments that show the limited information processing 

ability of the human. The arrival at a decision from among a set of 

multiattributed alternatives implies that a set of weights has been 

assigned to the attributes. But that set may be the transient weights 

of a particular frame of mind. Here is a source of subjective 
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nonoptimality (or satisficing) in individual decisions. A spurious 

resolution of a conflict situation may be adopted, which, although 

untenable in the long run, will allow one alternative to be chosen. 

This is the individual analog of the problem Coombs [1964, Ch. 13] 

cites from political economy. These grave but chancy situations 

invite the concern of the social science community. At least let us 

dignify the choice processes, if we cannot improve them, by demonstrat¬ 

ing that they are personal and organizational research processes that 

provoke learning. 

III.2.4 Tversky. Of the many contributions of Tversky to various 

fields of psychology and utility theory, we will restrict ourselves to 

his elimination-by-aspects model (EBA). EBA resembles somewhat 

lexicographic utility and lexicographic programming. They all share 

a preemptive viewpoint on choice; one goal, or stimulus dimension 

somehow dominates all others. The lexicographic (often called 

conjunctive in the field of marketing research) models are determin¬ 

istic, whereas the dominance of an aspect is a random event in 

elimination models discussed here. 

EBA may also remind some of linear programming in the way it 

"sweeps out" the set of feasible choices. Tversky added philosophical 

and experimental rigor to this type of algorithm. Instead of just 

listing EBA as a human choice model, he developed a probabilistic 

behavioral theory of human choice. In his paper entitled "Choice by 

Elimination," Tversky [1972(b)] analyzed the human who is faced with a 
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set of choices as a stochastic elimination operator. 

Individual choice behavior has been observed for centuries in 

art and literature, and for decades by scientific researchers. 

Apparently, choosing is often inconsistent and random. This could be 

due to the "unreliability" of human desires, poor experimental 

designs, or inappropriate models. 

To improve the fit of models to experimental results, proba¬ 

bilistic concepts have been explicitly introduced. There are two 

important recent representatives, the random utility models and the 

constant utility models. In random utility models the utility or 

value of each alternative is subject to random fluctuations; the one 

with the highest value at the moment of choice is selected. In models 

of constant utility, the scale values associated with each alternative 

are not random variables. But the choice rule (function) is random. 

The two basic models differ only in the point at which the stochastic 

nature of choice is permitted to enter the model. 

A third probabilistic viewpoint is proposed by Tversky—the 

elimination models. These view choice as a multi-stage process, a 

sequence of eliminations. It is a structure which may prove useful to 

management science (cf. also Fishburn [1974(b)] and Zeleny [1975, 1976]). 

To motivate EBA, Tversky reviews concepts such as simple 

scalability, order independence and independent random utility models. 

Then he shows, either by mathematical reasoning or by citing experi¬ 

mental results, that none of the three holds in general. 

The formal treatment in Tversky [1972(a)] is highly mathematical. 
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Even the anecdotal examples used are very subtle and serve to illus¬ 

trate fine points. But in Tversky [1972(b), p. 297], in addition to 

reporting some laboratory tests of EBA, the following quotation 

illustrates that the author’s paradigm of covert elimination is easy 

to grasp. 

The following television commercial serves to intro¬ 
duce the problem. "There are more than two dozen 
companies in the San Francisco area which offer train¬ 
ing in computer programming." The announcer puts 
some two dozen eggs and one walnut on the table to 
represent the alternatives, and continues: "Let us 
examine the facts. How many of these schools have 
on-line computer facilities for training?” The 
announcer removes several eggs. "How many of these 
schools have services that would help you find a 
job?" The announcer removes some more eggs. "How 
many of these schools are approved for veteran’s 
benefits?" This continues until the walnut alone 
remains. The announcer cracks the nutshell, which 
reveals the name of the company and concludes: "This 
is all you need to know in a nutshell." 

To refine this exposition, notation is introduced [1972(a), 

p. 346], Given an offered set A, one chooses a (nonempty) subset of 

A, say B, with probability Q (B). Now, making B the offered set, 
A 

C C B is selected with probability Q (C), and so on until the selected 
*— JD 

subset is a singleton set. One alternative has been chosen. 

Tversky interprets the transition probability Q^(B) as the 

probability of eliminating from A all alternatives that are not 

included in B e A. At each of several stages, or states, the subject 

divides a set of alternatives into "acceptable" and "unacceptable" 

sets. The relative frequencies of these segmentations could serve as 
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estimates, if one performed a designed experiment, of the transition 

probabilities. It has been suggested to me informally that, in the 

context of the prediction of choice behavior, these transition 

probabilities are non-stationary and inestimable. But, in the pre¬ 

scriptive or normative world of multicriterion optimization, these 

probabilities are evident (or at least implicit) in the actual behavior 

of the decision maker, under the EBA hypothesis. Thus, the choice 

probabilities of the corresponding Markov chain are: 

P(x,A) = Z Q (B )P(x,B.) (3.7.) 

BCA A 1 X 
r~ 

To introduce a theory of choice which is open to experimental 

validation, an assumption is introduced. A set of transition proba¬ 

bilities satisfies proportionality whenever 

VB) 

Vc) 
z W7 E w 

B fiA=B 1 J C flA=C 1 1 
j i 

(3.8.) 

when both denominators are constrained to be positive. But if the 

denominator on the left vanishes, so must the one to the right of the 

equal signs. A theorem follows: 

Main EBA Theorem: Given the general elimination model 

described above, the proportionality condition holds if 

T 
there exists a scale U on 2 (the set of all subsets of 

T) such that for any X c A C T 
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P(x,A) = Z U(B )P(x,A B )/ Z U(A ) (3.9.) 

B. 3 ^ A A^O k 
3 k 

A proof and some extensions follow in Tversky’s paper. 

The EBA Theorem treats a set of multiattributed elements of a 

nonempty set. They are alternatives offered for choice; each 

alternative consists of several aspects or components. At each Markov 

transition point one chooses an aspect from those that are evident in 

the choice set. Let us say that each aspect is ranked in importance 

by means of a weight (overt or covert); then the probability of an 

aspect being chosen is proportional to its weight. 

Once an aspect surfaces to dominate, all the alternatives that 

do not include that particular aspect are eliminated. Successively, in 

this way, alternatives are placed into "acceptable” and "unacceptable" 

categories, until only one remains. Note that the selection (or more 

precisely, elimination) criteria are aspects, and the order in which 

the attributes or aspects surface vary from one time to another. 

Zeleny [1974 (a), p. 170] states that the weights are "transitory, and not 

in the possession of the decision maker." Tversky in a slightly 

different context agrees. 

There is more to be said on weights. For ACT, let U(A) be 

the sum of the weights of all the aspects that are to be found in all 

the alternatives of A. In addition, no weight is associated with any 

aspect which exists in an alternative not included in A. Therefore, 

U(A) is a measure of the unique advantage of those alternatives in A. 

It should be noted then that U(A) is not the same as "utility" as 
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commonly defined in management science. 

This (by now) classical type of utility has not typically dealt 

with interdependence of aspects. Fishburn [1964] and Keeney and 

Raiffa [1976] assume that dependence can be eliminated. Farquhar 

[1974 (a)] does deal specif ically with dependent aspects in a utility 

context. But Tversky is mainly responsible for the careful treatment 

of the decision situation where there is no dependence among aspects 

but where there is a structural dependence among alternatives. 

To talk of structural dependence, we define general scalability 

— X 
as a condition which holds iff J a scale U defined on 2 (as defined 

before, the set of subsets of T) and functions F , 2 ^n < t, such 
n 

that for all x e A £ T 

P(x,A) = F (U[tt(x,A,1)], U[tt(x,A,2) ], ...» U [n(x,A,2t ]) , 
a 

(3.10.) 

in which a and t denote, respectively, the cardinality of A and T. 

Also, 7T(x,A) = [tt(x,A, 1) , tt(x,A,2) , ...» Tr(x,A,2t)] is a permuta- 

T 
tion of 2 . Still following TverskyTs treatment of general scalability 

[1972(a), p. 363] it is assumed that for choice probabilities P(x,A) 

that are not 0,1 

(i) F increases in each argument U [it(x, A, i) ], 
a 

i = 1, . . . , 2tf such that A/3 TT(x,A,i) is {x}, and 

(ii) F decreases in each argument such that A fi fr(x,A,i) 
a 

is nonempty and does not include {x}, and 
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(ill) F is constant in each argument such that A fl 7i(x,A,i) 
a 

is either empty or equal to A. 

In other words, general scalability is an attempt to explain 

human choices that seem to depend on the composition of the feasible 

set of alternatives. Using the example I constructed when reviewing 

the work of Luce [1959], if "a certain woman would choose a blond man 

rather than a brown-haired man" for some purpose, then that preference 

might be upset by the addition of a red-haired man to the choice set. 

Again this is reminiscent of Zeleny [1974, 1975, 1976] who talks of 

how weights depend on the particular composition of the available 

alternatives. 

VThat this means is the disavowal of Luce's condition of inde¬ 

pendence from irrelevant alternatives. Choice probabilities do^, I 

believe strongly, depend on "irrelevant" but available alternatives 

(cf. Zeleny [1974(a), 1975, 1976]on ideal points). Our preferences 

change; we actually relearn them, to some extent, when the choice set 

is altered. 

Specifically, F increases with the value of aspects that 
cl 

belong to x and to no other alternative of A. Fa decreases with the 

value of aspects that belong to some alternative of A but not to x. 

Also, F is independent of aspects that do not belong to any of the 
3L 

aspects of A, or belong to all the alternatives of A (cf. Zeleny 

[1974, p. 177] on weights as measures of the information that a 

criterion generates). 

EBA modeling of human choice includes the condition called 
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scalability. Bluntly, it is implied that the addition of an alterna¬ 

tive to a set of choices "hurts'1 alternatives that are similar to the 

one that was added more than those that are less similar to it. 

Tversky [1972(b), p. 283] cites empirical validation of this 

phenomenon. 

When talking of multicriterion optimization, we are dealing 

with normative models. But the above descriptive models have been 

explicated because the chance of a model’s acceptance increases with 

its intuitive appeal. 

If a mathematical programming approach asks for input from the 

decision maker in a natural way, the whole interactive process between 

man and machine (or DM and analyst) is likely to be improved. Thus the 

discussion of EBA models versus weighting models is relevant at this 

point. 

When the DM is choosing among a complicated set of multiattri- 

buted objects, a vast amount of information must be accommodated. 

True optimization methods require that weights be assigned to the 

different attributes, and that these weights be combined by some 

mathematical aggregation function. Another technique is to assess 

trade-off rates among the attributes (see, for example, Geoffrion 

[1968], Geoffrion, Dyer and Feinberg [1972], Haimes and Hall [1974] 

and Zionts and Wallenius [1976]). 

Human choice in large multiattribute or multicriterion situa¬ 

tions is probably going to develop using EBA models or paired com¬ 

parison models. These will fall more naturally within the limits of 
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human perceptual and cognitive ability than do the weighting models. 

The above studies of mathematical psychology are in some danger 

of being outdated by the process-oriented models of artificial intelli- 

gence. It is too early to see whether this will be the case. Since 

the methods developed in this dissertation are really a hybrid algo¬ 

rithm of searching and branching processes, they are akin in spirit to 

artificial intelligence. Arbib [1972] provides a good sense 

of this field. The next section covers some of what we know about 

how the human mind processes information. 

III.3 Review of the Difficulties of Human Information Processing 

III.3.1 The Brunswik Lens Model. The Brunswik Lens Model will be 

surveyed as a view of the environment in which humans process informa¬ 

tion. This treatment follows Rappoport and Summers [1973, p. 16 ff.]. 

(See Figure 3.4.) 

Figure 3.4 

Brunswik Lens Model 

cues 

o 

criterion judgment 

O O o 
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When the decision process is represented by a structural or 

process scheme, it is defined as consisting of a list of variables or 

attributes (morphology), and a list of functional relations among 

them (mechanisms). The process’s morphology is divided into two 

classes of variables: external and internal to the decision maker. 

Another way to say this is that a cognitive system is any 

minimally organized set of relationships between an individual’s 

judgments and the information (’’cues") on which judgments are based. 

In connection with judgment phenomena, cognitive systems can be 

thought of as policies. That is, to the extent that an individual 

finds meaning in a body of uncertain information, he does so through 

application of an implicit or explicit policy concerning the causal 

relationships indicated by the information and the relation of his 

outstanding goals or purposes to that information. Technically, 

policy may be seen as a set of rules for using available evidence to 

reach a decision in an uncertain situation. The environmental system 

is the situation itself. 

The Brunswik Lens Model provides a useful framework for describ¬ 

ing the judgment process. It allows us to see that environmental 

systems consist essentially of an object, event or variable, i.e., a 

criterion, that is presented to cognitive systems as an array of cues. 

The criterion usually generates multiple cue information, and this is 

denoted by showing three cues, but the number can be larger or smaller. 

The lines running from the criterion to the cues denote the relation¬ 

ship of each cue to the criterion. Virtually all environmental 



65 

systems to which man tries to adapt are uncertain, rather than fully 

determined. Thus man rarely encounters situations in which cues are 

perfectly related to a criterion. 

Similarly, the cognitive system depicted by the lens scheme 

consists essentially of a set of relationships between judgments about 

the criterion and the multiple probabilistic cues upon which these 

judgments are based. The lines connecting the cues to the judgment 

denote the relationship between each cue and the individual's judg¬ 

ments. These are also not fully determined. 

Three specific advantages of the lens model methodology are: 

1) Any environmental system may be described by assessing cue-criterion 

relationships (environmental "cue validities") and overall uncertainty 

(variance in the criterion not accounted for by all the cues). 2) Any 

cognitive system can be described by determining the manner in which 

each cue is used by the individual ("functional cue validities") as 

well as by the uncertainty in the individual's policy (variance in the 

policy not accounted for by all the cues). 3) The general efficiency 

or utility of any policy can be described by establishing the accuracy 

of the judgments it produces. The efficiency of that policy can be 

explicated by comparing functional cue validities with environmental 

cue validities. 

Ill.3.2 Examples of problems with cues and judgments. This early 

reference is useful to give a sense of the complex nature of human 

information processing. Hermann von Helmholtz (in Boring [1950] p. 311) 
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dealt with a theory of perception. This was that "the bare sensory 

pattern, as directly dependent upon the stimulus object, was called a 

Perzeption. A pure Perzeption is comparatively rare; it is nearly 

always supplemented and modified by an imaginal increment dependent 

upon memory and induced by unconscious inference." Von Helmholtz 

believes that the key to perception lies in the "Anschaung" which 

involves both sensation and imagery, both stimulation and unconscious 

inference. Von Helmholtz concluded, "Thus the properties of objects 

are merely their effects upon our senses, the relations of the objects 

to the organs of sense." 

The best known reference on the information overload problem is 

Miller [1956, 1965, and 1967]. He reviewed a multitude of 

experiments that showed the human brain capable of holding only about 

seven symbols active in short-term memory. He corroborated this 

number seven by citing its frequent appearance in the literature and 

customs of many cultures. For example, the week has seven days and 

(before area codes) telephone numbers were seven digits long. 

Miller said that most people can recode primitive symbols to 

increase their span of attention. For example, one could use A as the 

symbol for all states that begin with that letter. But, in general, 

to assess either weights or trade-offs, vast numbers of symbols must 

be simultaneously considered. Miller's work leads to a cautious view 

of our ability to do this—hence the oft-reported instability of 

weights, and the sense of frustration as the trade-off methods stop 

converging. Perhaps our confidence is highest when weights or trade- 
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off rates are used ex post facto to justify or explain a decision 

that really resulted from a far more complex compensatory model. 

Fixation (Scheerer [1963]) is often an obstacle to problem 

solving. Fixation is caused by an inaccurate perception of the type 

of solution needed to solve the problem; often the wrong assumptions 

are made. Learning to use familiar objects in an unusual way is often 

impeded by fixation. Over-motivation, such as strong ego-involvement, 

can also hinder solution. Insight occurs and may overcome fixation 

when one suddenly perceives the problem or its methods of solution in 

a different way. An important lesson of pivoting in mathematical 

programming is that problem solving can be viewed as successively 

changing the representation of a problem. Certain transforms cause 

fixation to subside, since they stimulate new assumptions and new 

trial solutions. 

In Bass, Pessemier, Teach, Talarzyk [1969] it was found that 

brand preference is related to the attributes of brands as perceived 

by individuals. Another intuitive result was that in some cases there 

was an additive weighting structure on the attributes. Bass et al., 

"policed," as they put it, for non-additivity due to interaction 

affects and noise. When it became necessary, they replaced the de¬ 

rived scales of subjects by market share data. This is reminiscent of 

Samuelson’s theory of revealed preference. 

Mason and Moskowitz [1972] found that human subjects are more 

conservative than "reconstructed logics," such as Bayesian statistics. 

Conservatism refers to revising estimates in the direction indicated 
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by the data, but not as far in that direction as Bayes’s Law would 

indicate. Conservatism was also found to be an increasing function of 

"quality” and "primacy." Quality refers to the informativeness (or 

surprise value) of the data. Primacy is a word used to describe data 

to which more attention is paid because it comes early in a sequence. 

Bass, Lehmann, and Pessemier [1972] support the Fishbein atti¬ 

tude model which says that attitude is a function of one’s perception 

and evaluation of attributes in an object. Despite constant attitudes 

and preferences, brand switching occurs, probably due to the need for 

occasional variety. Switching to similar brands occurs more often 

than switching to dissimilar brands. 

In Wilkie and Weinreich [1973] it is shown that increasing the 

number of attributes to be evaluated can be detrimental to decision 

making. Decision making is also affected by the type and order of 

attributes presented. 

Wright [1974] described how time pressure caused subjects to 

weight negative evidence more heavily. Also as time allotted to deci¬ 

sion tasks decreased, individuals used less of the data that was 

available to them. 

A large scale data base on preferences has been developed in the 

field of mathematical nutrition and menu planning. Balintfy, et al. 

[1974] worked with large numbers of college students and military per¬ 

sonnel; utility functions were assessed and used in advanced optimiza¬ 

tion models. One of the most interesting results was the discovery and 

quantification of time-preference functions. The utility of a 
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particular food was found to be a decreasing function of its frequency 

of consumption. 

Scott and Wright [1976] attempted to evaluate weights used by 

buyers in evaluating products through multiple regression. It was 

found that the subjects’ self-reported weights differed from the 

weights found through regression. Three or fewer cues accounted for 

most of the explained variance in the decisions. Increasing the num¬ 

ber of cues to six caused the decision maker's weighting process to 

become unstable. 

Gehrlein and Fishburn [1976] have developed an algorithm which 

exploits a subset of information available to the decision maker and 

demonstrates that better decisions can be made when some information 

is withheld. Although information overload is well known among human 

information processors, the authors prove that even machines suffer 

in this way. 

Troutman and Shanteau [1976] discovered favorable information 

was weighted more heavily than neutral information. This is like 

Zeleny’s [1974(a)] entropy concepts and Tversky’s [1972] attention 

levels. According to this article, a functional form to capture this 

behavior is an averaging model, as opposed to an additive model. 

In "Funes the Memorious,” the Argentinian writer Jorge Luis 

Borges describes the alien situation of a boy who is very good at a 

certain kind of information processing. The boy is literally incap¬ 

able of forgetting anything. He says, "I have more memories in myself 

alone than all men have had since the world was a world" [Borges, 

1962]. Forgetting trivia is also important. 



There is an overlap here with a concept from psychoanalysis. 

Although the limits on information processing may at first seem to 
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impede multicriterion optimization, perhaps they aid it by preserving 

sanity and rationality. Becker [1973, p. 178] talks of an idea that 

appears in Freud, Rank, and Kierkegaard. It is alternately called 

partialization or fetishization. To avoid being "crippled for action," 

man "narrows his world, shutting off experience, developing an obli¬ 

viousness both to the terrors of the world and to his own anxieties." 

This repression, a small part of which the above literature search 

describes, prepares the mind for the decision making stage. 

III.4 Implications for Multicriterion Optimization 

The human choice and information-processing literature con¬ 

cludes that choosing is very difficult. Large amounts of data aggre¬ 

gate poorly, cause human frustration and are associated with weights 

and trade-offs that are unstable over time. They also cannot be cap¬ 

tured by separable additive utility functions. 

This means that the goal programming (GP) of Charnes and 

Cooper [1961], which uses cardinal weights on goals, is probably at 

best a trial representation of the decision environment. GP reveals 

too little of decision space to the decision maker. If the weights 

chosen are wrong, then they will drive the linear equation system in 

an undesired direction. But the "solution" will have the appearance 

of validity, since it came from an optimization algorithm. 

In addition, the GP of Lee [1972], which uses cardinal weights 
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nested within ordinal weights, also underrepresents decision space. 

In Harrald et al. [1975, p. 13], the following insight is presented 

for the first time to the management science community: "Pre-emptive 

priority levels are equivalent to a lexicographic preference ordering 

of these levels. As is shown in note 2 on pages 72 and 73 of Debreu 

[1959] the existence of a lexicographic preference ordering is incon¬ 

sistent with a utility function structure of these preferences." 

Thus Lee's GP suffers from the usual difficulty in weighting in addi¬ 

tion to mathematical representation that distorts utility maximization. 

A related mathematical proof showing the inconsistency of GP weights 

is in Chapter IV of this dissertation. 

To replace GP, we have multiobjective linear programming (MOLP) 

as developed independently by Yu and Zeleny [1975] and Evans and 

Steuer [1973]. In MOLP it is not necessary to provide point estimates 

of the weights on objectives. Of course, if the set of nondominated 

solutions turns out to be large, there are problems of choice to which 

this paper is devoted. 

These methods may be embedded in a man-machine symbiosis. This 

was proposed by Zeleny [1975(a) and 1975(b)]. Why not let man do what 

he does best, and let the computer do what it does best? Man can per¬ 

form a sequence of paired ordinal comparisons, and the computer can do 

the bookkeeping and the aggregation. The combinatorial work on the 

elementary human judgments can often yield a matric preference struc¬ 

ture. When no such structure is apparent, owing to interdependent 

attributes, learning, etc., then computers still free man to do the 
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kind of broad, synthetic, exploratory, information-creating reasoning 

in which he excels. 

The DM can show varying levels of attention to different stages 

of the decision process. Referring back to partialization [Becker, 

p. 178], by a judicious sharing of tasks with the computer, man is 

prepared to concentrate his constrained abilities on the holistic 

aspects and externalities of the problem. 



CHAPTER IV 

PRIORITIZATION: A THEORY OF NAIVE WEIGHTS 

IV.1 Introduction 

Two of the most popular techniques for multiple criteria deci¬ 

sion making (MCDM) are goal programming (GP) and multiobjective linear 

programming (MOLP). GP implicitly depends on a multiattribute, 

separable additive utility function. It moves through the decision 

space to an optimum by exploiting a known preference structure. MOLP 

encourages a search of the preference structure because the decision 

maker must compare several nondominated solutions. The purpose of this 

chapter is to help the decision maker (DM) choose between GP and MOLP. 

Specifically, the general applicability of GP will be questioned. 

IV.2 Two Useful Results 

IV.2.1 The difficulty of setting weights. If goal programming is to 

work, the DM must be able to set weights on goals. Considerable 

research in psychology indicates that the information processing 

capacity of the human brain is rather limited. For a survey of the 

choice theory literature (especially Thurstone, Luce, Coombs and 

Tversky) see Chapter III. That chapter also reviews studies of 

information overload in humans. 

For example. Miller [1956] demonstrates that the brain can 

accommodate only seven objects simultaneously in short-term memory. 

73 
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Shepard [1964] cites examples of the difficulties of weight-setting. 

Troutman and Shanteau [1976] experiment with the idea that the addi¬ 

tive (compensatory) model does not capture the consumer's choices 

among multiattributed objects. Zeleny [1974(a), p. 170] states that 

weights on goals are learned throughout the choice process and are not 

independent of the feasible set of alternatives. 

In summary, weight assessment is a difficult search/learning 

task. Nevertheless, more effective use of the DM's time may exist. 

For example, weights can be considered as outputs of a man-machine 

interactive model; but usually in GP they are inputs. 

In MOLP, learning about the preference structure occurs while 

reducing the set of nondominated solutions to one. This pruning pro¬ 

cess (see Zeleny [1974] and Chapter V), which is a sort of 

posteriori weighting, is recommended for capturing the unstructured 

experience of the expert decision maker. 

IV.2.2 Debreu's result. The above behavioral section relates most 

easily to the nonpreemptive weights used by Charnes and Cooper [1961] 

and Ijiri [1965]. Sang Lee [1972] and Ignizio [1976] use preemptive 

weights which they claim are consistent with the DM's desire to 

cluster his multiple goals at several priority levels. This scheme of 

preemptive, or nested goals is subject to all the problems discussed 

in section IV.2.1 above. In addition, Harrald et al. [1975, p. 13] 

present a relatively unknown result: 
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Pre-emptive priority levels are equivalent to a lexico¬ 

graphic preference ordering of these levels. As is 

shown in note 2 on page 72 and 73 of Debreu [1959] 

the existence of a lexicographic preference ordering 

is inconsistent with utility function structure of 

these preferences. 

Thus Lee’s objective function optimizes something, but it does not 

optimize a utility (preference) function. 

IV.3 A Theory of Naive Weights 

It is difficult to predict how the coefficients of the objec¬ 

tive function will drive a linear equation system. We have a mature 

theory of post-optimality analysis in linear programming (LP), but it 

extends at best to two coefficients at a time. In GP with non- 

preemptive weights, we have an LP system with the goal weights as 

objective function coefficients. The management science literature 

treats these weights as numbers from scales (cardinal or ordinal) that 

correspond to priorities among objectives. 

Definition IV.3.1. Weights are a set of scalars k^, i e I, that can 

be used to drive a suitably designed multiple criteria system toward 

a desired state. 

Remark IV.3.1.1. By "suitably designed" it is implied that the 

system under study can be modeled as a mathematical programming 

problem. Weights will appear naturally as coefficients associated 

with either deviations in a GP format, or objective functions in a 

MOLP format. 
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Remark IV.3.1.2. To associate the highest weight with the 

highest goal may seem logical. But does the system (or its mathe¬ 

matical representation) move toward its target state? Under certain 

conditions it may be naive to assume that it does. 

Definition IV.3.2. Naive weights are a set of scalars, k^, i e I, 

such that the highest weight is attached to the most important of 

p goals, and so forth. More formally, let {k^} be the ranked weights 

and {c.}, i e I, be the ranked goals. If 3 a mapping a: {k^} -*■ {c^} 

H the indices of the ordered pairs of a are identical, then the 

weights {k^} are said to be naive. Non-naive weights are defined as 

weights that are not naive. 

The weights {k.} appear in the literature of GP and MOLP. In 

MOLP, there are many combinations of weights that can lead to non- 

dominated points in decision space. The assumptions and the theorem 

that follow are not directed toward MOLP but only apply to GP. 

Particular assumptions follow. 

Definition IV.3.3. An objective is an unbounded aspiration, a desired 

direction as measured along a criterion c^. 

Definition IV.3.4. A goal is a particular setting along the scale 

defined by the criterion c^. It is an objective operationalized by 

a target level. 

Definition IV.3.5. (from Tversky [1972(a), p. 296]). A state of mind 

is a transient psychological state that causes the DM to pay attention 
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to a set of goals or attributes in a certain order. 

Definition IV.3.6. (from Zeleny [1974(a), p.l77ff.]). Contrast 

intensity is a measure related to the average intrinsic information 

t* 

that a given set of decision vectors generates via the l criterion 

c^. For example, profit might be the most important goal in some 

situation. But if the decision vectors under consideration all 

yielded the same profit, that criterion would be of no use in choosing 

among the alternatives. Attention would shift to another goal (or 

criterion), despite its lower importance. 

Definition IV.3.7. A satiety point is a level of goal achievement at 

which the DM’s attention would shift. This might be due to Tversky's 

state of mind ideas, to Zeleny’s contrast intensity or to external 

strategic or cultural influences. 

Now we can define the goal programming problem as 

Minimize p , 

E k. (d. + d.) (4.1.) 

i=i 1 1 1 

Subject to: Ax < b 

Cx - Id+ + Id" = g 

x, d+, d~ > 0 

Where A is m X n, b is m X 1, C is p X n, I is the identity matrix of 

order p, d+ and d are p X 1, and g is p X 1. In addition, the k^, 

i = 1, 2, . . . , p are non-preemptive weights on the p goals. If the 
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preemptive quality is desired, it can be achieved by constraints of 

the form d^ > d^". What distinguishes (4.1.) from the standard GP 

problem is that g, the right-hand side corresponding to the goal con¬ 

straints (also known as policy constraints), is a vector of satiety 

points. 

Typically g is vaguely defined, and the student of the model is 

forced to search for the intent of the model builder by examining the 

weights for symmetry. For example, is k^(d^) = k^(d^)? Lee [1972] 

and Ignizio [1976] stress achieving goals; in other words, deviation 

on the upside is penalized by the objective function, but is generally 

acceptable to the DM. Thus the g vector represents "enough1' goal 

achievement, and restricting it to a vector of satiety points simply 

makes that practice explicit. 

Problem (4.1.) lends itself to changing the weight structure and 

examining the solutions. Due to the satiety point concept, the word 

better is partially defined. Comparing two solutions, for example, 

along two criterial dimensions, the one with less downside deviation 

on the first goal is preferred even if its upside deviation is larger. 

Due to satiety, the DM is indifferent to overachievement of a goal. 

Thus, it may be possible to shift scarce "resources" from b and g by 

changing the weights {k,}.^ 

^This idea came from an off-hand remark by Ralph Steuer at the 

Philadelphia TIMS-ORSA meetings in 1976. He said something about 

"burning weights," by which I think he meant using up weights on the 

wrong goals, i.e., ones that would be achieved even with low weights. 
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Weights in GP have no meaning unless they are derived from a 

finite scale. A weight of 10, for example, is high if. 10 is the 

highest weight that can be placed on a goal. Usually practitioners 

of GP choose weights from a finite scale, such as (0-10) or (0-1). 

Standardizing to the (0-1) range makes it evident that the {k^} form 

a convex combination. Thus, if there are three goals, setting a 

weight of .5 on the most important goal means that only .5 is left to 

be shared between the second and third. 

Recalling the definition of naive weights (Definition IV.3.2), 

a theorem can be stated. 

Theorem IV.3.1. In the context of Problem (4.1.), naive 

weights {k^} do not uniquely generate good solutions. 

Proof. Proof will be by construction. Problems (4.2.) and 

(4.3.) will be constructed and solved. Then it will be demonstrated 

that both naive weights and non-naive weights lead to good solutions. 

Problem (4.2.) 

Minimize 4 

* ki<di + dI) 
i=l 

Subject to 6 10 2 < 100 

4 7 14 x < 30 

12 5 3_ < 40 

~12 4 8 35 

13 6 8 78 

1 8 2 x - Id + Id = 60 

14 6 8 70 

(4.2.) 

and x, d+ and d are properly dimensioned vectors for a problem with 

p = 4 goals. 
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Problem (4.3.) 

Minimize 4 

E 

i=l 
V< + 

Subject to 4 6 8 50 

7 12 34 100 

16 2 19 x <_ 89 

5 20 10_ 120 

~12 4 8“ 32 

2 -4 9 30 

1 8 2 x - Id + Id = 60 

14 6 8 45 

and x, d and d are properly dimensioned vectors. 

(4.3.) 

Conforming to Definition IV.3.7, the g vectors (the RHS for the 

policy constraints) are satiety points. Therefore when the weights are 

set in the objective function, zeroes are assigned to the {d^}, which 

are the deviation variables associated with over-achieving goals. The 

priority weights for under-achievement of goals {d^} may vary between 

0 and 1. In addition, they are chosen to sum to 1. 

Problem (4.2.) was run with various sets of weights. It is 

assumed that the four goals are listed in descending order of importance 

in all cases; thus the reader can readily identify both naive and non- 

naive weights. For {d^, d~, d^ and d^} equal to, in turn 
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{.5 .4 .1 0 } 

{.2 .1 .4 .3 } 

(.1 .2 .4 .3 } 

{.1 .3 .4 .2 } 

{.1 .15 .4 .35} 

{.2 .15 .3 .35} 

{.2 .15 .2 .45} 

{.25 .1 .2 .45} o 
and { 0 .4 .6 0 } 

2 

the solution was, in every case, 

x- = 2.03 
1 

x. = 1.88 xq = 32.97 

(Solution 4.2.1 

x2 = 3.13 x? = 32.84 
X11 = 

22.81 

For priority weights {.2 .4 .1 .3} the solution was 

x. =3.01 x, = 11.41 XQ = 54.42 
1 y 

(Solution 4.2.2 

x^ = 1.28 x^ = 28.58 xn = 17.56 

Next, considering problem (4 .3.) with l priority weights 

{.4 .35 .15 .1} 

{ 0 .2 0 .8} 

{ 0 1 0 0} 

The solution was, in all these cases, 

x_ = 2.74 x, = 19.89 XQ = 52.51 
-L 

(Solution 4.3.1 

x3 = 2.38 x? = 3.13 xn = 12.37 

2Nine GP runs with these nine different weight specification 

were performed. 
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For weights {d^} set at 

{.1 .35 .45 .1} 
{ 0 .35 .55 .1} 

the solution was 

“ 4.56 x. » 44.29 
4 

X 

* 4.69 

x3 = 

x^ - 36.48 X 

For weights 

(0 0 

(0 0 

(0 0 
{0 0 
(0 0 
{0 0 

(0 0 

the solution was 

x^ = .72 x^ = .08 X 

x2 = 5.82 x^ = 51.84 

Finally, for weights {0 0 1 

x2 - 6 Xy = 54 X 

x^ a 8 x9 - 12 

9 

10 

0} 

11 

17.26 

49.78 
(Solution 4.3. 

.9 .1} 

.7 .3} 

.6 .4} 

.5 .5} 

.4 .6} 

.3 .7} 

.2 .8} 

12.72 
(Solution 4.3. 

the solution was 

9 
(Solution 4.3. 

2.) 

3.) 

4.) 

It is evident that solutions (4.2.1.) and (4.3.1.) are gener¬ 

ated identically by naive weights and by non-naive weights. Being 
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optima for weights that, for the moment, are considered valid indica¬ 

tions of the DM’s preference structure, we will say they are "good" 

solutions, and Theorem IV.3.1 is proved. 

These two problems demonstrate that the DM, in some cases, 

should not spend much time setting weights. Since a weight is a 

scalar that is used to drive a system toward a desired state, weights 

are not very useful when they drive a system in the wrong direction, 

or do not change it much at all. For example, as we move from solu¬ 

tion (4.3.3.) to (4.3.4.), the weight on the third goal goes up from 

.2 to .1. However, x^, which represents underachievement of the third 

goal, goes up from 51.84 to 54. 

Zeleny [1974(a), p. 405] writes/'Before the nonlinear case may be 

approached efficiently, more experience is needed not only with 

multiobjective programming, but also with interpretations of non- 

dominated solutions." This important point can be addressed by re¬ 

ferring to problems (4.2.) and (4.3.). 

From Table 4.1 it is seen that for problem (4.2.), solution 

(4.2.1.) is worse than solution (4.2.2.) in terms of Goals 2 and 4, 

but better in terms of Goal 3. For problem (4.3.), solution (4.3.1.) 

is better than (4.3.2.) in terms of Goal 2, but worse in terms of 

Goal 3, and indifferent in terms of Goals 1 and 4 because of satiety. 

The DM in the present context, shifts his attention to other goals 

precisely at the target level g^. That is modeled by using a weight 

of zero on all d+ variables. 

Similarly, from Table 4.1 pairwise comparisons can be made 
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Table 4.1 

Criterial Achievements of Problem (4.3.) 

Goal Attainment 

Solution (4.2.1.) Solution (4.2.2.) 
Goal 1 Over by 1.88 Over by 11.41 
Goal 2 Under by 32.84 Under by 28.58 
Goal 3 Under by 32.97 Under by 54.42 
Goal 4 Under by 22.81 Under by 17.56 

Solution (4.3.1.) Solution (4.3.2.) 
Goal 1 Over by 19.89 Over by 44.29 
Goal 2 Under by 3.13 Under by 36.48 
Goal 3 Under by 52.51 Under by 17.26 
Goal 4 Over by 12.37 Over by 49.78 

Solution (4.3.3.) Solution (4.3.3.) 
Goal 1 Under by .08* Exactly met 
Goal 2 Under by 51.84 Under by 54 
Goal 3 Under by 12.72 Under by 12 
Goal 4 Exactly met Under by 9 

*This will be interpreted as a zero; i.e.. Goal 1 was achieved. 

among all four solutions to (4.3.). In a real decision situation the 

goals would have names and the DM, presumably, could either choose his 

favored solution or go on experimenting with additional sets of 

weights. Even in this abstract problem setting two things are clear. 

First, for these two problems, there seems to be little correspondence 

between priority weights and goal attainment. Second, even though we 

have a formal definition of nondominated (good) solutions it is very 

difficult to determine the best one. This is because in the general 

multiple objective situation (MOS) there exists incommensurability. 
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* This term means that the objectives are not measurable in the same 

units. Whether GP or MOLP is employed, it is not a simple mechanical 

task to reduce a set of good solutions down to a single one for action. 

This task, which can be called pruning, is discussed by Zeleny 

[1976] and will be the subject of Chapter V below. As discussed 

above, setting weights in a GP context does not obviate the need for 

pruning. The following section is concerned with why, in the GP 

environment, naive weights do not uniquely span the space of good 

decisions. 

IV.4 Eigenvalues of Criterial Matrices 

Naive weights do not always suffice to implement the intentions 

of the DM. In this section three simple reasons for this will be pro¬ 

posed. The reasons will be unified by the use of eigenanalysis. 

Finally, since there are certain GP situations where prioritization 

by means of naive weights is possible, a tentative typology of these 

situations will be suggested. 

As the weight vector is changed through the DM's experimentation 

and learning, the initial feasible set of solutions is enlarged. The 

classical theory of LP offers a means—called post-optimality 

analysis—of partially characterizing the shape and size of this 

expanded feasible set. 

In the GP context, however, the actual decision variables have 

zero objective function coefficients. The audit trail on the informa¬ 

tion inherent in the problem's coefficients leads primarily through 
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the RHS of the policy constraints into the objective function. But 

even here GP adds new complexity. These policy constraints [the C and 

the g of problems (4.1.), (4.2.) and (4.3.)] have both slack and sur¬ 

plus variables in them. This makes the optimal basis degenerate (see 

Simmonard [1966, p. 144]). They in turn are manipulated by a set of 

objective function coefficients which are not independent. For one to 

change, at least one other must adjust. Even if the model-builder 

does not restrict himself to weights that are convex combinations, 

changing one weight absolutely changes the relative relationships of 

all the {k.}. 
l 

There are several reasons for the difficulty in weighting. One 

is the natural scaling of the deviation goals. In a road-building 

context, for example, one goal might be to minimize salt run-off and 

another to minimize capital budgets. The deviations for the first 

goal would typically be denominated in parts per million, and those of 

the second goal in millions. The second goal would dominate, even if 

its importance were secondary. Of course rescaling the {k^} can some¬ 

times take care of this problem. But the choice of a right-hand side 

is a complicated matter that influences the size and directionality of 

the deviations. 

Also, if the variance within each row of the criterion matrix C 

is low, that goal will be insensitive to basis changes. 

A third distorting factor will be called amplification. Imagine 

a criterial matrix 
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Each row represents the policy constraint of a goal; assume that all 

three goals are equally weighted. The three columns of C correspond 

to three decision variables x^, x^ and x^. 

The 19 that appears as would penalize x^. Since the 

smallest element of the first row of C is 5, the use of units of x^ 

would be encouraged. In row 2, the ratio of 18 to 3 also forces the 

system toward x^. The two goals represented by rows 1 and 2 are non- 

orthogonal; they amplify each other along. It is possible for goal 1 

to be achieved with a zero weight if other goals '’amplify" it 

sufficiently. This extreme case actually happened in problems (4.2.) 

and (4.3.). 

LP theory has not addressed this issue because in LP the objec¬ 

tive function coefficients are related to columns, not rows, of the 

constraint matrix. The coefficients are estimated independently. In 

GP, however, these coefficients are convex combinations. Therefore, 

to change one weight requires changing at least one other. This de¬ 

pendence among weights is an artifact of the mathematical representa¬ 

tion. This phenomenon called amplification distorts the weight¬ 

setting process, causing the DM to unwittingly "use up" his weights on 

goals that may not need such attention. 

Three issues have been raised as distorting factors in weighting 

they are scaling, variance and amplification. In the next section 
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eigenanalysis will be used as a rough way of unifying and tracking 

these three factors. In practice, using convex combinations of 

weights, one often changes three or four weights at a time. Since 

sensitivity analysis fails here, we will initiate an analysis that is 

both formal and ad hoc. The C matrix will now be discussed in depth, 

ceteris paribus. 

We are concerned here with certain pathologies of the criterial 

matrix. Due to its structure in particular situations, the intent of 

weights set a priori can be lost. 

Let C be a matrix of goals, or criteria, as in (4.1.). Thus C 

is appended to A. 

C = ||Ciji| , for goals i = 1, 2, . . . , p and decision 

variables x., j = 1, 2, . . . ,n 

C is the "mean score" matrix of criteria, i.e., 

o 

C-||c±j||- 

Z 

J=1 

n 

for each i, i = 1, 2, P 

Next define 

D = C' - C', where the superscript ' means "transpose." 

D = ||d^.|| and can be thought of as a matrix composed of devia¬ 

tions about the mean, for each goal. (Note: goals are now columns. 

not rows.) 

Following this paradigm reminiscent of regression analysis. 
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D’D = 
rzdi 

Ed2d1 

Sdpdl 

• • • Ed,d 
1 P 

Ed:? Ed_d 
2 2 p 

• 

• 

Ed d„ ... Ed^ 
P 2 P 

D’D is a sum of squares and cross products matrix. If we now divide 

each d„ by n, the number of original decision variables (as opposed 

to the 2p deviation variables), we obtain 

E [D’D] = VC, a variance-covariance matrix. 

The eigenvalues of VC can be readily computed; since VC is 

square and Gramian it is very tractable. A Gramian matrix G has the 

following properties: 

1) Every principal minor determinant is nonnegative. If G is 

nonsingular, then the minors are positive. 

2) G 1 is also Gramian, and nonsingular if G is nonsingular. 

3) The quadratic form Q = x’Gx is positive semidefinite. 

4) The eigenvalues of G are nonnegative; if G is nonsingular, 

then they are positive. 

Recall also that in the expression Tx = Xx, the eigenvectors x 

are the vectors of a linear transformation T which are stretched, con¬ 

tracted or reversed by T. The vector x makes T "act like" a scalar, 

and as the right-hand side of Tx = Xx shows, that scalar is X, the 

associated eigenvalue. 

It is true that 
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EAi = Ea..^, where Ea. . is the "trace" of A, the matrix of the 

i i i 11 

transformation T. 

In addition, if A is the matrix of T, its determinant D is available; 

that is, D(A) = IIAi. The rank of A is equal to the number of positive 

i 

eigenvalues. Therefore, if any eigenvalue is zero, then A is singular. 

Another convenient property is that the rank of VC is equal to the rank 

of C. 

All these transformations were simply to obtain a square matrix 

for easy analysis. One cannot work directly on C when it is rectangu¬ 

lar. 

The eigenvalues of VC show the inherent variance of the 

criterial system if one were to diagonalize it. The eigenvectors form 

a matrix, V, and V' VC V = diag. In this form we have orthogonal 

goals, and any collinearity or correlation among the original goals is 

eradicated. Typically, there is enough misspecification of goals to 

induce collinearity. And thus the entire criterial force can often 

be explained in fewer than p dimensions. 

In organizational life, the participants often allow each 

other’s goals to be stated in the trial model, to avoid human conflict. 

These goals are often minor variations on each other. For example, 

maximizing profit, maximizing liquidity ratios, maximizing end of period 

net worth and maximizing return on equity are highly correlated goals. 

In theory this is evident through a thorough knowledge of accounting. 

In practice, for management science support groups, it is convenient to 
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have a mathematical way of perceiving all this. 

The phenomenon of collinear goals is indicated by a small 

number of positive eigenvalues in VC. In other words, if VC is "very” 

singular that means that there are non-orthogonal criteria. 

Another way of looking at this is through the actual correlation 

matrix of the p goals. We had VC = D'D. Now let 

It can be shown that R, the correlation matrix among the goals is 

R = AVC A-^ 

Therefore, the phenomenon of goal collinearity is also to be seen as 

an R matrix with large off-diagonal elements. 

We can review the eigenanalysis procedures by working on the 

C matrix of problem (4.2.). For that example, 

VC = 10.67 9.33 -9.33 10.67 

9.33 8.67 -7.33 10 

-9.33 -7.33 9.55 -8.22 

10.67 10 -8.22 11.55 

and 

1 .97 -.92 .96 

.97 1 -.8 .99 

-.92 -.8 1 -.78 

.96 .99 -.78 1 

R = 
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From R it is clear that the goals are extremely correlated. 

The point is made more clearly by the calculation of the eigenvalues 

of VC. There are only two, and the second one is insignificant com¬ 

pared to the first one. For the matrix VC, X^ = 37.75 and X^ = 2.69. 

This means that the entire criterial variance of (4.2.) can be 

expressed in two dimensions. 

The additional eigenvalues X^ and X^ are equal to 0. Neverthe¬ 

less, associated with each of the four X^ is an eigenvector v. Con- 

V, a matrix with v as its columns . For 

V = .53 -.10 .02 

' .47 .34 .77 

-.45 .80 .05 

_. 54 .48 .64 

Conjecture IV.4. 1. 

Nf = (C'V)’ = 19.57 4.54 11.4“ 

10.75 10.95 7.38 

1.24 1.24 1.24 

3.15 3.15 3.15 

.84 

-.27 

.38 

-.27 

is what the "principal components" of C are. In orthogonal goal space, 

almost all the driving power resides in the first row of N*. Rows 3 

and 4 of N' are not equal to zero because of the scaling of the 

original rows of C. 

Now we can see why (4.2.) was so insensitive to changes in the 

weight vector. Viewed after transformation to orthogonal goal space, 

(4.2.) has an "essential dimensionality" = 1. Therefore, changes in 

the {k_^} have no more effect on the x vector than do multiplicative 

transformations on the single criterion of the classic LP problem. 
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To use the language of Zeleny, if the goals do not exhibit 

’’contrast intensity," they should be collapsed to a lower dimension¬ 

ality. This is why, in the terminology of this paper, naive weights 

can be "simulated" by non-naive weights. 

A rough measure of goal collinearity would be 

_ the number of positive eigenvalues 

the number of original goals 

As a drops well below 1, the GP model-builder should be cautious about 

the validity of naive weights. He should experiment with many sets of 

weights, and attempt to redesign a more parsimonious set of goals. A 

serendipity is that while doing this, and while pruning the set of GP 

trial solutions, he will truly begin to learn his preference structure. 

A subject for further research is to determine what type of C 

matrices will be plagued by scaling, variance and amplification. 

Problems (4.2.) and (4.3.) were doomed to have C matrices of less than 

full rank because the number of goals exceeded the number of decision 

variables. Two questions need attention: 

1) By what factor must the number of decision variables exceed 

the number of goals to allow naive weights to function 

intuitively? As n becomes significantly greater than p, 

uncorrelated goals are much more likely. 

2) For typical problems in functional areas like finance, 

marketing and engineering design, what is the typical 

relationship of p to n? 
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Another response to collinear goals would be to change the 

model from GP to MOLP. In that case no _a priori weights need to be 

set. The duals in GP lose much of their interpretability. In MOLP 

a duality theory is currently being studied. 

The RHS of the dual of a MOLP problem can be thought of as a 

multiple right-hand side. This raises interesting practical possi¬ 

bilities. For example, in financial capital budgeting the multiple 

RHS might be interpreted as budgets for different years or states of 

nature. The reader could review Lee [1972] and Ignizio [1976] to 

review the many applications of goal programming. Wherever GP seems 

to have been indiscriminately utilized, there is a reason to experiment 

with the more general multicriterion mathematical programming model. 

IV.5 Summary 

Psychological and mathematical reasoning has been used to 

demonstrate that naive weights are sometimes inappropriate. When this 

occurs, the DM can resort to multiple GP iterations, redesign of the 

problem, or MOLP. We see weights as metacriteria which cannot be 

revealed; this leads to mechanistic improvements to MOLP which are 

discussed in Chapter V. 



CHAPTER V 

PRUNING NONDOMINATED SETS IN MULTIOBJECTIVE LINEAR PROGRAMMING 

V.l Introduction 

Howard Raiffa [1970, p. 155] said, 

Personally, I feel that this quest for a "scientific" 

and "mathematically objective" rule is all wrong! 

When there is a paucity of objective evidence at hand, 

we require a methodology that brings information, 

however vague and imprecise, into the analysis, rather 

than a methodology that suppresses information in the 

name of scientific objectivity . . . ; we should limit 

formal analysis to the characterization of the efficient 

set and let unaided, intuitive judgment take over from 

there. 

This statement is referring to relatively small problems which are 

often characterized by independent choice attributes or goals. In 

other cases Raiffa [1970] and Keeney and Raiffa [1976] are extremely 

sophisticated about eradicating interdependency. But the "vague and 

imprecise" information referred to above is often the decision 

maker’s intuitive sense of dependency among the goals of the MOS or 

of the dependency that is due to the structure of the feasible set 

(see Chapter III for a discussion of dependency). 

Is it true that once the nondominated (N) set has been dis¬ 

covered, all mechanistic approaches are to be discarded? Shepard 

[1964] argues against this at length. Some man-machine symbiosis is 

fruitful when N is very large. 

With the advantage of hindsight, it can be said that Raiffa’s 

95 



96 

1970 remarks became dated when the multicriteria simplex method was 

invented independently by Evans and Steuer [1973] and by Yu and 

Zeleny [1975]. Under the MOLP paradigm N can become immense. For 

example, Zeleny [1974(a), p. 117 ff.] shows that a certain problem with 

eight decision variables, five objective functions and eight con¬ 

straints has seventy nondominated extreme points. If points along 

nondominated faces are considered, the size of N obviously moves 

toward infinity. 

To represent the process of reducing N to one action, we will 

use the word pruning. The DM's perusal of N can be pictured as a 

search on a tree; thus the etymology of pruning becomes clear. 

Whether pruning is heuristic or aided by algorithmic devices, it is 

a search process through which the DM may discover new goals, rela¬ 

tionships and cultural or strategic externalities. To be precise, 

pruning involves, by definition, the addition of new evaluative 

criteria to the problem. Sometimes the new criterion simply mini¬ 

mizes redundancy among the decision vectors of N. The methods of this 

chapter are applicable to both Nex and to any other finite subset of N. 

In particular multiple objective applications new criteria will 

surface to force the DM toward a choice. Or some of the original 

criteria can be dropped, which also reduces the size of N. Here I 

am concerned with methodology; the present criteria are not from a 

real-world problem. Therefore, minimizing redundancy is the criterion 

added for general pruning process. Cluster analysis is proposed for 

this task. 



97 

V.2 Cluster Analysis 

The formation of m groups or clusters of similar objects, 

directly from the n original objects, is called cluster analysis 

(see Anderberg [1973], Bijnen [1973], Hartigan [1975], Sneath and 

Sokal [1973], and Sokal and Sneath [1963]). The clusters are 

usually mutually exclusive, or non-overlapping. In some measurable 

way, the clusters are to be composed of objects that are similar, 

either qualitatively or quantitatively. Operationally, a cluster 

can be defined as whatever results from a clustering algorithm. Or 

it can be one of the set of groups that emerges when some objective 

function, such as within-groups sum of squares, is minimized [Rao, 

1971]. 

Formally speaking, a clustering is a mapping 3: OTU C, when 

OTU is the set of objects to be clustered (called operational 

taxonomic units) and C is the set of clusters. Each element of {C} 

is naturally a non-empty subset of {OTU}, but the mapping 6 is of very 

general form. If 3 is such that each element of {OTU} is mapped into 

one and only one cluster, then 3 is said to be a partition. If 3 forms 

clusters that are nested (i.e., some may be disjointed but others may 

be within larger clusters) then it is called a tree. 

The most appealing view of a cluster comes from Carmichael and 

Julius [1968]. They define natural clusters as areas where the OTUs 

are dense, surrounded by areas where they are sparse. Implementing 

this computationally led to a myriad of attempts as described in the 
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literature; many are, in some way, optimization algorithms themselves. 

Ling [1973] proposes a rigorous way to define clusters, based 

on notions of geometrical probability theory. This work, unfortunately, 

is too theoretical to have an immediate impact on the practice of 

clustering. 

In defining natural clusters homogeneity becomes an objective. 

Since the n objects are represented by a p-element vector, this leads 

to measures of similarity. Metric and nonmetric coefficients of 

similarity are discussed at length by Anderberg [1973]. 

There are three types of clustering strategies. First, the 

divisive approach starts with the n objects as a cluster, and succes¬ 

sively refines this into smaller clusters. Second, the agglomerative 

approach starts each trial cluster as one object. Then these are 

linked together into larger and larger clusters. Third, the iterative 

approach begins with an arbitrary choice of clusters and moves objects 

from cluster to cluster until some homogeneity criterion is met (see 

Anderberg [1973, p. 156 ff.]). 

In clustering large sets of data, optimal search techniques 

converge too slowly to be of practical use. Heuristic methods exist; 

the obvious drawback is that an optimal set of clusters is not guar¬ 

anteed. 

In this chapter we are using cluster analysis as an aid in 

multiobjective programming problems.^ There is an important difference 

^An ironic reformulation appears in Hanson [1977] where multiple 

criteria methods are used as an aid in clustering problems. This is 

called bicriterion cluster analysis. 
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between the treatment of outliers in most statistical applications and 

that of the present chapter. Statisticians normally develop methods to 

reduce the influence of outliers because they are interested in measures 

of central tendency and higher moments which characterize dispersion. 

But in pruning N, we wish to stress the outliers and the boundaries of 

the dense central areas. 

The {z} £ N are (geometric) rays that are "interpreted" by the 

preferences that are elicited from the DM. One ray will end up being 

the final solution vector chosen at the end of a two-stage pruning 

process. Some of the z vectors are so close to each other that the 

finite sensibility of the human mind cannot distinguish them. This 

near-collinearity is most apparent in the dense central areas of N. 

That is precisely why cluster analysis is useful to eliminate this 

redundancy. 

But the outlying z vectors carry much information. They are 

solutions to the MOLP problem that will not join any cluster. They 

represent unique combinations of criterial achievement, or unique 

weights on those same criteria. Therefore it is important systematically 

to collect and display these points, even though they do not fuse 

any clusters. The RESIDUE facility of CLUSTAN does exactly this. 

In Chapter VI the set composed of the outliers plus a representa¬ 

tion of each cluster (this could be the centroid or any other 

element), will be the subject of attention. Letting z be any solution 

vector which joins a cluster, and z" be any one that doesn’t, we can 
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form the set 

{g} = G(N) = {z'}n {z"} C Nex C N. 

The sixth chapter will refer to this set as the generators of N 

(or Nex). 

Summing up, clustering involves choosing distance and joining 

rules so that the DM and the analyst can draw a picture of the infra¬ 

structure of N. The {zM} must be accentuated by means of the RESIDUE 

facility because they carry more information (surprise value) than do 

the {z'}. This is analogous to simplifying and interpreting a 

painting by choosing the points that show what the artist wishes us 

to see and feel. For example, in a picture of a mountain, the point 

that marks the top is more crucial than one of the thousands of points 

that convey the details of the foothills. If the pruning process 

that accompanies MOLP does not expose the DM to {zM}, it fails in the 

same way that goal programming does. Steuer [1975, p. 5] has written 

that GP presents the DM with "too sparse" a representation of the 

nondominated set. 

V.2.1 Direct clustering. Direct clustering was introduced in 

Hartigan [1972], with slight amendments added : in computer codes 

written by the author in Hartigan [1975] and BMD [1975]. This type 

of clustering is initially very appealing to the researcher in fields 
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where taxonomic methods are relatively new. This is because direct 

clustering (also known as block clustering) does not require the 

specification of a distance function. 

The distance function describes inter-object distances which 

are used to create a similarity matrix. An example is the Euclidean 

distance 

n 

[ Z 
j=l 

(x 
ij 

>2]*, for 2, 
2, 

m and 

(5.1.) 
n. 

When one considers both binary, continuous and mixed data, the litera¬ 

ture includes at least fifty different distance coefficients. Since 

the resulting clusters are very dependent on the definition of dis¬ 

tance, the analyst must be wary of spurious clusters. In disciplines 

such as zoology, where the use of cluster analytic methods dates back 

to the first brush with twentieth-century empirical research methods, 

there are theories of distance. It is known, for instance, that 

particular distance coefficients perform well with particular types of 

zoological and biological data. 

In the administrative and policy sciences, only marketing re¬ 

search has passed the beginning of the learning curve with cluster 

analysis. The application at hand, pruning the nondominated sets in 

MOLP problems is the first attempt in the literature. Ralph Steuer 

[1976(a), p. 11] uses a filtering technique that is equivalent to 

forming clusters from given cluster centroids. But he does not call 
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the procedure cluster analysis, nor is the implied algorithm one that 

really finds clusters. 

Since clustering in this context is new, there is no theory of 

distance. The question remains M0f all the possible distance measures, 

which best describes the DM's (psychological) reactions as he compares 

elements of N ? Zeleny [1974(a)] addresses this issue. His distance 

functions are part of a rather mechanistic approach requiring the use 

of an ideal point. This point is that intersection of rays (usually 

not feasible) when each objective function finds its maximum in z 

space (criteria space). 

In this section we will assume that the DM wishes to do some 

searching before the biases inherent in the display of an ideal point 

are introduced. Owing to a lack of such an anchor and to interdependen¬ 

cies of the structure of the feasible set, direct clustering is very 

appealing because it is not necessary to specify a distance function 

(see Appendix III for a description of the direct clustering algorithm). 

For a data set two of the few solved problems in the literature 

were chosen. One will be referred to as the Zeleny problem (see 

Appendix II) and the other will be called the Steuer problem (see 

Appendix III). Both are MOLP problems, and the appendices contain 

both a statement of the problem and a complete list of N . These 

nondominated points form the inputs for the various clustering 

attempts discussed in this chapter. 

Seventy computer runs of direct clustering were performed. As 

in dynamic programming we face the curse of dimensionality; seventy¬ 

way cross tabulation, or chi-square experiments are impossible to 
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interpret. Therefore, for this section we will not concentrate on 

the actual clusters of nondominated points. Since the objectives of 

the test problems are not real-world problems, the clusters have 

little intuitive meaning. 

What will be examined is the behavior of the algorithm itself, 

over a large number of permutations of the discretionary parameters. 

In Tables 5.1 through 5.4 "intervals" refers to the number of 

segments into which each z vector is divided. For example, 

"2,3,6,6,1" means that the range exhibited by the z vectors (Nex 

points) in Appendix II was divided into two intervals for the first 

objective, three intervals for the second objective, six for the 

third objective, and so on. 

The column dealing with blocks refers to the basic output of 

this type of clustering, which is data blocks. By permuting rows 

and columns of the data matrix (which has been transformed into 

intervals) areas of similar values appear. These, in turn, indicate 

case clusters along the vertical margin of a case-by-variables matrix. 

Simultaneously there will be variable clusters created as the marginal 

clusters along the horizontal axis. This can be seen in the part of 

Appendices IV and V labeled "Block Diagram." For a complete explana¬ 

tion refer to Hartigan [1972, 1975]. 

Blocks "not single" means that more than one case (OTU) entered 

the block. In the present application, if the number of "single" data 

blocks is large, no meaningful clustering has been achieved. With our 
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Table 5.1 

Zeleny Data (10 Passes) 

# of blocks 

# of intervals not Pass // Goals Pass // Goals 
within each obj . total single single of joir that .join of join that join 

1, 1, 1, 1, 1 1 1 0 2 3rd ,4 th 10 2nd ,4th,3rd 

1, 1, 6, 6, 1 14 11 3 8 2nd,5th 10 2nd,5th,4th 

2, 2, 2, 2, 2 15 10 5 8 3rd,2nd 10 3rd,2nd ,1st 

2, 2, 4, 4, 2 45 22 23 10 1st,2nd,5tt 
*2, 2, 4, 4, 2 28 26 2 14 1st,2nd,5tt 

3, 3, 4, 4, 3 55 36 19 8 3rd,5th 10 3rd,5th,2nd 

3, 3, 3, 3, 3 51 23 28 8 5th,2nd 10 5th,2nd ,3rd 

4, 4, 3, 3, 4 58 30 28 8 3rd,5th 10 3rd ,5th,1st 

4, 4, 4, 4, 4 66 32 34 8 3rd ,5th 10 3rd,5th,1st 

*4, 4, 4, 4, 4 56 32 24 12 3rd,5th 14 3rd ,5th,1st 

5, 5, 5, 4, 5 81 42 39 8 3rd,5th 10 3rd ,5th,1st 

5, 5, 5, 5, 5 90 39 51 8 3rd,5th 10 3rd,5th,1st 

6, 6, 6, 6, 6 95 46 49 8 3rd,5th 10 3rd ,5th,1st 

7, 1, 1, 1, 1 8 7 1 2 2nd,5th 10 2nd,5th,4th 

7, 7, 7, 7, 7 102 52 50 8 3rd ,5 th 10 3rd ,5th,1st 

8, 8, 8, 8, 8 102 55 47 8 3rd ,5th 10 3rd,5th,1st 

9, 9, 9, 9, 9 107 50 57 8 3rd,2nd 10 3rd, 2nd ,1st 

10, 10, 10, 10, 10 123 55 68 8 3rd,2nd 10 3rd,2nd,1st 

11, 11, 11, 11, 11 125 56 73 8 3rd,2nd 10 3rd, 2nd ,1st 

12, 12, 12, 12, 12 137 51 86 8 3rd,2nd 10 3rd,2nd,1st 

* Indicates that a run with 14 passes was performed. 
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Table 5.2 

Zeleny Data (16 Passes) 

# of blocks 

// of intervals not Pass // Goals Pass 
within each obj total single singly of joir that join of j 

1, 1, 1, 1, 1 1 1 0 2 3rd ,4th 16 

1, 1, 6, 6, 1 14 11 3 12 2nd ,5 th 16 

2, 2, 2, 2, 2 12 10 2 8 3rd,2nd 16 

2, 2, 2, 2, 2 27 21 6 16 5th,1st,2nc 16 

3, 3, 4, 4, 3 46 38 8 12 3rd,5th 16 

3, 3, 3, 3, 3 42 27 15 12 5th,2nd 16 

4, 4, 3, 3, 4 50 29 21 10 3rd,5th 16 

4, 4, 4, 4, 4 56 34 22 12 3rd,5th 16 

5, 5, 5, 4, 5 76 43 33 12 3rd,5th 16 

5, 5, 5, 5, 5 77 41 36 12 3rd,5th 16 

6, 6, 6, 6, 6 91 43 48 14 3rd,5th 16 

7, 7, 7, 7, 7 95 51 44 12 3rd,5th 16 

7, 1, 1, 1, 1 7 7 0 2 4th,5th 16 

8, 8, 8, 8, 8 95 45 50 14 3rd,5th 16 

9, 9, 9, 9, 9 106 55 51 14 3rd,2nd 16 

10, 10, 10, 10, 10 118 57 61 14 3rd,2nd 16 

11, 11, 11, 11, 11 122 55 67 14 3rd,2nd 16 

12, 12, 12, 12, 12 127 53 74 14 3rd,2nd 16 

13, 13, 13, 13, 13 137 53 84 14 3rd,2nd 16 

Goals 
that join 

2nd,4th,3rd 
2nd,5th,4th 
3rd,2nd,1st 

3rd,5th,2nd 
5th,2nd ,3rd 

3rd,5th,1st 
3rd,5th,1st 
3rd ,5th,1st 

3rd ,5th,1st 
3rd,5th,1st 
3rd,5th,1st 

3rd,5th,4th 
3rd ,5th,1st 
3rd,2nd ,1st 

3rd,2nd,1st 
3rd,2nd ,1st 
3rd,2nd,1st 

3rd,2nd ,1st 
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Table 5.3 

Steuer Data (10 Passes) 

// of intervals it of blocks Pass # Goals 
for each obj. total not single single of join that join 

1, 1, 1, 1 1 1 0 10 3rd, 2nd 

2, 2, 2, 2 33 10 23 10 1st, 2nd 

3, 3, 3, 3 41 19 22 10 2nd, 3rd 

4, 4, 3, 4 55 18 37 10 4th, 1st 

5, 3, 5, 4 69 22 47 10 2nd, 4th 

5, 5, 5, 5 75 29 46 10 1st, 3rd 

6, 6, 6, 6 75 30 45 10 2nd, 1st 

7, 7, 7, 7 84 26 58 10 3rd, 1st 

8, 8, 8, 8 84 27 57 10 3rd, 4th 

9, 9, 9, 9 100 32 68 10 2nd, 1st 

10 , 10, 10, 10 102 24 78 10 3rd, 1st 

11 , 11, 11, 11 109 29 80 10 2nd, 1st 

12 , 12, 12, 12 101 29 72 10 3rd, 4th 

13 , 13, 13, 13 112 27 85 10 3rd, 1st 
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Table 5.4 

Steuer Data (16 Passes) 

# of intervals 
within each obj. total 

# of blocks 
not single single 

Pass # 
of join 

Goals 
that join 

1, 1, 1, 1 1 1 0 16 3rd, 2nd 
2, 2, 2, 2 18 16 2 16 1st, 2nd 
3, 3, 3, 3 29 20 9 16 2nd, 3rd 

4, 4, 3, 4 43 25 18 16 4th, 1st 
4, 4, 4, 4 41 22 19 16 4th, 2nd 
5, 5, 5, 4 61 27 34 16 3rd, 1st 

5, 5, 5, 5 69 28 41 16 1st, 3rd 
6, 6, 6, 6 63 38 25 16 2nd, 1st 
7, 7, 7, 7 81 34 47 16 3rd, 1st 

8, 8, 8, 8 83 31 52 16 3rd, 4th 
9, 9, 9, 9 93 32 61 16 2nd, 1st 

10,10,10, 10 97 31 66 16 3rd, 1st 

11,11,11, 11 98 36 62 16 2nd, 1st 
12,12,12, 12 98 47 51 11 3rd, 4th 
13,13,13, 13 109 39 70 16 3rd, 1st 
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managerial focus, we eschew this sort of disaggregation. 

The remaining two columns of Tables 5.1 through 5.4 refer to 

"pass numbers," which are fully explained in Appendix I. Each problem 

was run many times with 10 passes and with 16 passes (an occasional 

run with 14 passes was also performed as part of this empirical 

experiment). More passes allow the algorithm to represent the data 

in fewer blocks, which is desirable. Of course, more passes increases 

the computation time, which is not desirable on large data sets. 

Direct clustering is a two-way splitting technique. That means 

that clustering occurs simultaneously for the rows and for the columns. 

Revealed clusters in the columns show a bad kind of goal congruence, 

namely goal collinearity, or correlation. It is necessary for the 

analyst to check this; the methods of Chapter IV help do that job in 

a reliable way. 

Tables 5.1 through 5.4 show that for the Zeleny data, the third, 

fifth and first objectives join with great frequency when the number of 

intervals is three, four or five. Arbitrarily assuming that ten data 

blocks are considered a good number by the DM, we are forced to reduce 

to two intervals for all objectives for both the Zeleny data and the 

Steuer data. It is more likely that the DM would find greater inter- 

pretability in ten case clusters. By starting sufficiently to the 

left on the joining diagram for cases (see Appendices IV and V), the 

analyst can be assured a wide range of the total number of clusters. 

At any setting of the parameter intervals the tree begins with many 

case clusters on the left, and moves towards the right with fewer and 
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fewer clusters. 
v 

Two things can be said at this point. First, since the joining 

structure of the objectives is so sensitive to the number of intervals, 

we are led to more classic mathematical methods. Second, the reduction 

of intervals, on both data sets, to two on each objective indicates 

a very gross division of the criteria achievement, represented by the 

z^,q=l, 2, . . . ,s and i = 1, 2, . . . ,p. This could lead to 

relatively non-homogeneous clusters. This is often referred to in the 

literature as clusters that are not "tight.” 

Direct clustering performs a degradation on the data; ratio- 

scaled data is coded into ordinally-scaled data. For example, the set 

of z^ values (7, 9.41, 3, 27) could be coded into three intervals on 

the range 3 through 27. The new data would be (1, 1, 1, 3). But 

there is a huge amount of cluster analysis literature on distance 

functions for non-ratio-scaled data. Therefore the claim that direct 

clustering does not require the user to define a distance function is 

very misleading. He does define a distance measure when he chooses 

the level of aggregation (number of intervals) for each objective. 

In the section on "thresholds" in Appendix I, it is implicit 

that distance concepts are used in the algorithm. Perhaps this is why 

Hartigan [1972] said he found "disappointingly few" differences between 

direct clustering and average distance linkage (to be explained in 

section V.2.2) when both were applied to state voting data. 

For Hartigan’s data the average distance linkage method pro¬ 

duced more tiny clusters (a failure to achieve the pruning we desire) 
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and used more computer time. But computer time is of less importance 

each year, since unit computation costs are still dropping. As will 

be seen in section V.2.2 below, the average distance linkage method 

was one of the best of all the algorithms for Zeleny data. 

There is one more way in which direct clustering behaves 

implicitly like the hierarchical distance methods. Hartigan [1972, 

p. 126] explains that direct clustering "splits up" the data matrix 

in such a way that the downside change in error sum-of-squares (SSQ) 

is maximized at each stage. Ward’s method (described below) is one 

of the best hierarchical methods, and fuses clusters at each stage 

using essentially the same minimizing objective function. 

V.2.2 Hierarchical clustering. As the attractiveness of direct 

clustering diminishes, the use of the hierarchical methods is increased. 

This type of clustering system does not split data blocks as does 

direct clustering. Instead it proceeds only on cases in the present 

application, to join OTUs into successively larger clusters. 

Eight different hierarchical algorithms were applied to the 

ex 
Zeleny N points. In the following paragraphs, brief summaries of 

these methods are given. The original references can be found in the 

bibliographies of Anderberg [1973], Hartigan [1975], and Wishart 

[1975]. 

First, there are three linkage methods. In single linkage 
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algorithms the similarity between any two clusters is equal to the 

highest single similarity coefficient between two cases, each of 

which resides in a different cluster. In other words, when searching 

for two intermediate clusters to fuse, the nearest neighbor rule pre¬ 

vails. The single linkage method finds long serpentine clusters very 

well. But on larger data sets this can lead to chaining. Chaining 

occurs when most of the OTUs join one cluster, and the rest form a 

meaningless residue. 

The complete linkage method uses the smallest similarity (or 

highest dissimilarity) to amalgamate two points or two clusters into 

a new one. In other words a farthest neighbor rule is employed. This 

strategy produces spherical clusters. But these may be spurious 

clusters, since group structure is not considered. Outlines may be 

too influential in forcing clustering. 

The third method is the average linkage method, which considers 

the average of all the similarity coefficients for all pairs of indi¬ 

viduals across clusters. Thus group structure is recognized. This 

algorithm, which has been introduced independently by several authors, 

is a well-behaved search strategy which creates spherical clusters. 

The fourth hierarchical option employed was centroid sorting 

(also known in the literature as the weighted group method of Sokal 

and Michener). Clusters are joined by finding the center of gravity, 

or the mean of the clusters. Chaining occurs, but less perniciously 

than in the single linkage method. 

The fifth approach is the median method. Valid mainly with 
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distance type coefficients, this method computes a distance s (r, p+q) 

where r is an arbitrary cluster and p+q is a cluster fused during the 

last stage of the process. The distance s (r, p+q) is measured from 

the centroid of x and the midpoint of the line which joins the centroids 

of p and q. Again, chaining is likely for large populations. 

The sixth type is known as Ward's method, although Orloci and 

Wishart have also written about it. First, the distance of each OTU 

to the centroid of its parent cluster is recorded. For each cluster 

these distances are added up and called the error sum of squares. The 

next two clusters to be joined are those for which the increase in this 

error sum of squares is minimized. Recall that the direct clustering 

technique of section V.2.1 reversed this; a split was performed which 

maximized the decrease in the error sum of squares. Ward's method 

computes minimum-variance spherical clusters. 

The Lance-Williams flexible beta method seems to be very pro¬ 

mising. It offers the chance to dilate or contract space by varying 

only one parameter of a joining measure. In the expression 

s(r, p+q) = {[s(r,p) + s(r,q)(1-3)]/2s(p,q) )3 (5.2.) 

it is 3 that acts like the dilation and contraction operators of 

Zeleny [1974(a), p. 172] or Zadeh [1963]. With 3 = -0.25, the flexible 

beta method is reported to act like Ward's method. 

The last major variant of hierarchical clustering is McQuitty's 

similarity analysis. Two clusters are joined to form one new one by 

minimizing the coefficient 
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s(r, p+q) = [s(r,p) + s(r+q)]/2. (5.3.) 

Notice that this is equivalent to the Lance-Williams method with their 

3=0. Again, chaining occurs with large populations. 

All eight of the hierarchical clustering algorithms were used 

PX 

on the Zeleny N points. As Table 5.5 indicates, no less than five 

of these methods caused terrible chaining problems. About 60 of the 

70 undominated points tended to join one cluster, with the remainder 

forming clusters each with only one, two, or three elements. This 

outcome was useless managerially, since it does not reduce the 

redundancy among the N set. The DM would still have to process all 

the points in the '’chained" cluster heuristically. Chapter III showed 

that the human brain may be poorly suited to this task. 

Table 5.5 

Hierarchical Clustering Methods that Caused Chaining 

1. The single linkage method. NOTE: This method was implemented 

by both BMDP02M (Biomedical Computer Programs [1975]) and Clustan 

1C [1975]. 

2. The complete linkage method (i.e., the farthest neighbor rule). 

3. Gowers median method. 

4. The Lance-Williams flexible beta method. 

5. McQuitty’s similarity analysis. 
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Three of the methods performed well on the Zeleny test data. 

They were Ward's method, the group average method, and the centroid 

method. As Appendix VI shows, the three methods produce clusters with 

fairly similar composition across the methods. In addition, the 

clusters are all of a size that is managerially useful (as will be 

explained in section V.2.3). Appendix VI contains too much data to 

be subjected to a contingency analysis, or chi-square tests. But since 

each method was tested with between ten and five clusters "requested," 

the behavior of the three clustering strategies is not extremely 

difficult to follow by inspection. 

There are commonly used methods to help absorb the masses of 

information provided by a good computer code for clustering. For 

ex 
example, in Figure 5.1 the positions of the N points are plotted 

and numbered. Since the portrayal occurs in the plane, only objec¬ 

tive function //I versus objective function #2 can be visualized in 

this way. Naturally, in a real business decision all pairs of objec¬ 

tive functions could be so plotted. 

Figure 5.2 reduces some of the visual clutter of Figure 5.1 

by drawing circles around the points in each cluster, and eliminating 

the actual case numbers. Since the computer, in this particular case, 

was coded to produce seven clusters, the reader will note seven 

circles. Except for cluster #6, the clusters are reasonably tight, 

spherical and disjointed as seen along the first two criterial 

dimensions. 
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Figure 5.1 

Scatter Diagram of Zeleny Problem 
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Figure 5.2 

Cluster Diagram of Zeleny Problem 
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The most informative graphical aid is the dendrogram, as seen in 

Figure 5.3. The dendrogram draws the joining of two OTUs and indicates, 

on its vertical axis, the level of similarity at which this occurs. 

This is similar, but much clearer than the tree joining which was pro¬ 

vided by Hartigan’s direct clustering (see Appendices IV and V). Figure 

5.3 shows both the clusters that are formed at varying levels of amalga¬ 

mation and the order of that joining. 

For the DM who prefers to think algebraically rather than 

graphically, some interesting data manipulations are available via the 

minimum spanning tree. This has appeared in graph theory and in opera¬ 

tions research (for example, see Kruskal [1956]). 

Consider this structure as it appears in what is called the 

traveling salesman problem. A group of cities is to be connected by a 

system of roadways. Various paris of cities will be linked, and over 

each link there will be a known fixed cost per mile. The problem is to 

find a route through the maze of cities, such that each one is visited 

and the cost is minimized. 

The solution to this problem, in graph theory terms is the minimum 

spanning tree (MST). The DM can develop clusters directly from an 

examination of the MST. By deleting links whose length is greater than 

g, maximal single-linkage type clusters of diameter g are discovered. 

Table 5.6 gives the minimal spanning tree for the Zeleny problem. 

Conceptually similar to the minimum spanning tree is the k-linkage 

list. This shows the k nearest neighbors for each OTU. It is rather 

like Steuer's "filter" method [1976(b), p. 11], which focuses the 

0X 
DM’s attention on a particular set of N points. Steuer 
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Table 5.6 

The Minimum Spanning Tree of the Zeleny Problem* 

Edge 

No. 

First 

Vertex 

Second 

Vertex 

Edge 

Length 

Edge 

No. 

First 

Vertex 

Second 

Vertex 

Edge 

Length 

1 1 7 0.005 36 36 38 0.111 
2 2 1 0.001 37 37 49 0.042 

3 3 53 0.093 38 38 41 0.000 
4 4 53 0.032 39 39 41 0.000 
5 5 7 0.007 40 40 39 0.000 
6 6 56 0.099 41 41 48 0.044 

7 7 50 0.007 42 42 43 0.008 

8 8 55 0.031 43 43 45 0.001 

9 9 55 0.092 44 44 35 0.082 

10 10 51 0.062 45 45 44 0.012 

46 46 69 0.017 

11 11 51 0.047 46 46 69 0.017 

12 12 65 0.021 47 47 30 0.014 

13 13 65 0.046 48 48 58 0.020 

14 14 12 0.212 49 49 67 0.052 

15 15 14 0.147 50 50 24 0.113 

16 16 70 0.167 51 51 8 0.016 

17 17 37 0.071 52 52 11 0.061 

18 18 19 0.011 53 53 66 0.084 

19 19 21 0.021 54 54 69 0.003 

20 20 18 0.016 55 55 67 0.179 

21 21 63 0.511 56 56 53 0.336 

22 22 19 0.059 57 57 54 0.040 

23 23 6 0.140 58 58 25 0.089 

24 24 56 0.178 59 59 28 0.180 

25 25 4 0.053 60 60 29 0.074 

26 26 58 0.033 61 61 4 0.064 

27 27 24 0.051 62 62 59 0.414 

28 28 60 0.174 63 63 62 0.395 

29 29 52 0.130 64 64 62 0.075 

30 30 54 0.003 65 65 52 0.016 

31 31 42 0.081 66 66 70 0.086 

32 32 31 0.074 67 67 58 0.110 

33 33 31 0.006 68 68 16 0.016 

34 34 36 0.052 69 69 33 0.051 

35 35 34 0.002 

* Edge length is Euclidean distance. 
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exhibits a subset of Nex and asks, "Which point do you like best?" 

Then he prints the k nearest neighbors to that point. 

Steuer's procedure is appealing but non-optimal. Certain 

attractive areas of the nondominated set may be prematurely discarded 

in this way. The DM should have the opportunity to examine a neighbor¬ 

hood around a tentatively desirable point and compare it to several 

other neighborhoods. This idea is clearer if the reader refers to 

Appendix VII. This appendix contains partial output from Ward's 

Hierarchical Clustering Aglorithm. The particular code used 

CLUSTAN 1 C) includes many features which help understand the structure 

of N. For example, one can see the order of agglomeration, a dendro- 

fram table, k-linkage lists, and descriptive statistics for each of the 

final clusters. 

V.2.3 Direct clustering versus hierarchical clustering: a summary. 

Direct clustering has two main advantages, computational speed and 

direct interpretation of the data. With modern computers the first 

is only relevant on extremely large problems. Hartigan [1975, p. 267] 

states that two-way splitting (another name for the type of direct 

clustering used in this chapter) draws "beautiful (data) pictures." 

But he cautions that the data must be rescaled so that an error of one 

unit along one variable dimension will be equal to a one-unit error 

along another dimension. This rescaling creates problems when the data 

are of several sorts such as binary, nominal, interval or ratio. 

Hierarchical clustering also has difficulty overcoming mixed data bases. 
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Shift phenomena are particularly well captured by direct clus¬ 

tering. In Hartigan [1972] presidential election data is analyzed. 

In South Carolina, Louisiana and Mississippi the percentage of votes 

cast for Republicans went up greatly from 1960 to 1964, and then down 

again in 1968. This shift over time would not be tracked well by 

hierarchical methods because states and years would not be simultane¬ 

ously clustered. 

From a managerial point of view direct clustering, as mentioned 

earlier, cannot specify the desired number of clusters. An allied 

problem is the meaning of a case cluster. Since these are seen in 

Appendix IV as forming along a subset of the objectives, the DM 

cannot tell whether the cases would cluster if all objectives (or 

criteria) were considered. There is an implicit 0-1 weighting of 

criteria; formation of the case clusters in this way does not inter¬ 

face well with the DM’s intentions. 

In the section on hierarchical clustering we saw how important 

the RESIDUE facility of CLUSTAN was. In direct clustering this feature 

could be copied by taking the small data blocks and listing them as 

additions to the list of generators g e G(N). But sometimes to keep 

the size of G(N) manageable, we need to assign outlying z vectors to 

existing clusters. This can be done with the RELOCATE option of 

CLUSTAN, but cannot be done in direct clustering. 

The conclusion here is that hierarchical clustering methods show 

more promise than direct clustering for the purpose of pruning the non- 

dominated set N. However, the choice of clustering strategy is not 
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as risky as it is in a static taxonomic study. In the dynamic decision 

context we are never quite certain of the effects of our strategies. 

As the problem evolves, new information overwhelms the effect of less 

than optimal clustering in the previous stage. We are not explicitly 

introducing multiperiod decision making. 
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V.3 Other Methods for Pruning the Nondominated Set 

In the preceding sections of Chapter V experiments in pruning 

by clustering were conducted. The conclusion was that the task should 

be conducted by any hierarchical strategy which does not cause chaining 

ex 
on the particular realizations of (z}CN cN. In addition the clus¬ 

tering technique must have the RESIDUE and RELOCATE capibilities. 

The recommended pruning method emerged from a group of possible 

methods. These will now be described, along with reasons for their 

unsuitability. This section comprises an important part of the dis¬ 

sertation, because with the exception of the methods of Roy and 

Zeleny, these pruning methodologies are new to the MCDM literature. 

Although they are rejected here, it is possible that subsequent 

authors will successfully resurrect them. 

V.3.1 Outranking relationships. Outranking relationships [Roy, 1971, 

1973 and 1975(a)] are attempts to capture the information in certain 

binary relationships with a utility function that keeps many of the 

useful properties of the Von Neumann-Morgenstern utility function. Roy 

felt that it might not be necessary to force transitivity and complete¬ 

ness onto the multicriterion preference ordering. His outranking con¬ 

cepts "must not be viewed as an exact reflection of all the DH’s 

preferences, but only as the expression of the part of his preferences 

that can be well accounted for by means of the available data" [from 

Roy, 1971, p. 252]. 
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The set of criteria I = {1, 2, ...» n} is partitioned in this 

three-way design: 

I+ (a*, a"): set of criteria for which a' is preferred to a", 

I (a’, a"): set of criteria for which a' is indifferent to a", 

1 (a', a"): set of criteria for which a" is preferred to a’. 

(5.4.) 

Additionally, let P+ (a', a"), P (a', a"), and P (a’, a”) be three 

scalars that represent, as in weights, the differing importance of each 

of the subsets of I. For example, if the first and second criteria are 

two that favor alternative a' over a", the DM may choose to weight these 

criteria higher than the ones which fail to rank a' versus a". One 

decision making condition could be 

C[P+ (a', a"), P= (a', a"), P~ (a’, a")] > c (5.5.) 

such that a’Ra" cannot be true if the pair (a’, a") does not satisfy 

(5.5.) where R is the relationship "is preferred to." The left-hand 

side of this expression shows how well the three subsets of criteria 

agree on the proposition that a* is preferred to a". The three 

criterial sets concur to various degrees; the term on the right, the c, 

is a level of concordance that is desired by the DM. It is a parameter 

which obviously affects the degree to which a preference relationship R 

2 
approaches the completeness condition. 

2 
Completeness means that V x, y z X: xRy or yRx. In other words 

“there are no indifferent pairs. 
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Other possible types of concordance functions are: 

P+ (a', a") + P= (a', a") > c (5.6.) 

P+ (a', a”)/P~ (a1, a") > c (5.7.) 

or 

P* (a', a") = E P. > c (5.8.) 

l 

where * represents all of the criteria, with their weights, as indi¬ 

cated by the equivalent summation expression in the middle of (5.8.). 

Roy also lets the DM express restrictions on the preference 

ordering by what he calls discordance relationships. For the very 

lengthy associated mathematics see Roy’s cited works or Duckstein and 

David [1975, p. .9 ff.]. I feel that this is an exceptionally cumber¬ 

some version of the separable additive forms that were described in 

Chapter II. It is nice to be free from the precise weighted sums 

format, but the cost is a tremendous interviewing task with the DM, and 

a large investment in algebraic graph theory. It should also be noted 

that the outranking relationship seems like a crude version of the sub¬ 

semiorder which is described in Section VI.4. 

In short, outranking suffers from many of the problems of weight¬ 

ing which were discussed in Chapters II, III, and IV. In addition, it 

is not a parsimonious treatment. It has been used mainly in Europe, 

where the author’s influence is strong. 
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V.3.2 Multidimensional scaling and factor analysis. Multidimensional 

scaling (MDS) [Shepard, Romney, and Nerlove, 1972] and factor analysis 

(FA) [Tatsuoka, 1971] are treated here as dimensionally-reducing 

devices. As in the Principle of Occam’s Razor, empirical researchers 

wish to represent the phenomenon being analyzed as parsimoniously 

as possible. Often the variables that are observed in nature can 

be transformed into a better picture of the underlying structure. 

A potent form of MDS is nonmetric MDS. In nonmetric data 

i 

sets the "distance” between objects is measured in less than ratio 

scales. Authors in this field believe that even from this kind of 

data a great deal of metric information can be extracted. It is 

not clear whether the z vectors in MOLP should be deemed metric or 

nonmetric. That would depend on the scales which were used to form 

the objective functions. Therefore we will describe a very general 

form of MDS. 

For two objects i and j in a set of n objects, let a datum s.. 

be the similarity, substitutability, affinity, association, interaction 

correlation, or more generally "the proximity" between them. The objec 

tive is to discover a way to configure the points in a Euclidean space 

of lower dimension in such a way that the new interpoint distances d_ 

are monotonically related to the original affinity measures as 

follows: 
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dij < dki i£f sij > ski (5.14.) 

This becomes a nonlinear optimization problem. The extent to which the 

monotonicity condition is violated is tracked by a measure called 

"stress." 

In MOLP the application of MDS would be to begin with a matrix 

of distances between every pair of z vectors. The output of MDS would 

be a representation of N in a new set of criterial coordinates which 

would capture most of the meaning of the original criteria. Normally 

MDS is able to reduce a data set down to three dimensions. This would 

allow the DM to wade through to a final choice with the help of 

decision supports such as computer graphic techniques. 

There are several problems with the MDS approach. It is often 

difficult to know how much to lower the dimensionality of the data base. 

More important is the difficulty of naming, or interpreting the new 

dimensions. The similarity matrix which serves as input to MDS re¬ 

quires an s^ measure for every possible pair (i,j) in the data. 

Technically we have this as 

‘ij 

r 

= [ 2 
t=l 

(z 
it 

- z 
2. 

jt> > 
(5.15.) 

when z^ is the i nondominated vector, z^ is the j nondominated vec¬ 

tor and the subscript t represents the summation over criteria. 

But abandoning this technical level of thinking, how meaningful 

is a distance measure within N (or NeX)? Distance concepts were used 
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QX 
to make a first pass through the problem, that is to find N (or N ). 

But the definition of N is that it is a subset of feasible solutions, 

which although preferable to the dominated set, is itself not ordered. 

Within the nondominated set the matrix j|s_|| is probably not meaning¬ 

ful until new evaluative criteria have been superimposed. 

Factor analysis reduces the number of dimensions of the original 

data by forming linear combinations of variables. These factors are 

found by various forms of linear transformation, which take the original 

data points and "name" them according to new coordinates. Algebraically 

new basis vectors are found to span the vector space. Through an eigen- 

analysis it is often clear that a p-variate probability distribution is 

degenerate; it can be represented by less than p coordinate axes (see a 

multivariate statistics book such as Tatsuoka [1971] for an elaboration). 

FA, like MDS, is plagued by the problems of deciding how many 

factors there are, and how to interpret them. Using the capital budget¬ 

ing example from Chapter I, are the criteria "percentage of business in 

unstable lands" and "foreign exchange risk" essentially one factor? FA 

will help us quantify this question by means of the factor loadings. 

But what would we call the new factor? These are classic managerial 

quandaries, and as such we know that similar problems are solved every 

day in the world of affairs. 

The crucial drawback of using FA hers is that the factors are 

based on first-order linear correlations among the criteria. If the 

components of the z vectors interact in a higher order, or nonlinear, 

fashion, then the aggregation into variables would be an information- 
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losing process. For example, two highly correlated variables could 

interact with a third in very opposite ways. If FA hooked both 

variables onto a particular factor, the factor loading of that third 

variable would be close to zero. The interaction effect would be 

completely lost. But as we made clear in Chapter III and IV, the 

consciousness of preference interactions is one of the main points of 

this dissertation. 

V.3.3 Conjoint measurement analysis. Conjoint measurement analysis 

(CMA) [Shepard, Romney and Nerlove, 1972] is a general theory of 

psychological modeling. Tversky (quoted in Shepard, Romney and 

Nerlove [1972]) said that a goal of scientists is to decompose "complex 

phenomena into sets of basic factors according to some specified rules 

of combination." 

In econometric studies these factors (or independent variables) 

can be measured independently. Regression analysis, for example, pro¬ 

vides coefficients which make a separable additive combination rule 

work to explain the joint effect of the variables. In some cases we 

cannot measure the basic factors, or variables. If a man had to choose 

between buying a Harris tweed sport coat or a pin-striped light weight 

wool and polyester suit, several non-measurable factors may be in¬ 

volved. To name a few, Harris tweed has status, durability, resistance 

to wrinkling, informality and warmth. The suit has formality, no 

problem in choosing what pants to wear with it, is more comfortable 

in overheated rooms and probably costs more. 



131 

This is a messy problem; the two choice items do not even have 

the same attributes. Nevertheless most men make decisions 

like this often in their lives. CMA requires only that the ordering 

implied by the joint effects of the intrinsic factors is known. 

The conjoint measurement problem is to reduce these complex 

choice realities to a set of intrinsic factors and a combination rule 

which acts to coalesce them into a scale that recalls the known choice 
& 

order. Thus the conjoint measurement problem is to find a theory of 

behavior. 

The combination rule is a polynomial function which could be one 

of many forms, such as: 

dij - 

n 

[ E 
t=l 

hit + xjtl 
c j b (5.16.) 

di3 = 

n 

[ z 
t=l 

hit - X 1 
jt1 

C]b 
(5.17.) 

d.. = 
ij 

n 

[ z 
t=l 

(xit + v 
c j b 

(5.18.) 

d., = 
ij 

n 

[ 
t=l 

(xit - V 
cjb 

(5.19.) 

d.. = 
13 

n 

[ z 
t=l 

(xit VC] 
b (5. 20.) 

d.. = 
1J 

n 

[ z 
t=l 

hu 

b 
(5.21.) 
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In these expressions b and c are abribrary exponents; particular 

choices of b and c and t can be shown to force attractive interval 

properties onto the scales which measure the t criterial dimensions. 

Equation (5.16.) is called the absolute additive combination rule, 

(5.17.) is the absolute difference combination rule, (5.18.) is the 

additive combination rule, (5.19.) is the difference combination rule, 

(5.20.) is the multiplicative combination rule, and (5.21.) is the 

absolute multiplicative combination rule. 

To summarize, rank order data is processed using regression- 

type mathematics. What surfaces is a set of scales for the various 

factors, and a combination rule that minimizes a stress measure. It 

is clear now that CMA is a generalization of MDS. Its data require¬ 

ments, though, are less stringent. 

Two difficulties with CMA are the need for rank-ordered input * 

data, and monotone utility functions on each of the criteria (in this 

section the word factors was used). Unfortunately, there is no 

evident rank ordering of N. Chapter VI will atempt to rank a subset 

of N, namely the generators g z G(N), in a much simpler fashion. 

Chapter III mentioned the lack of monotonicity that we often find in 

the individual utility functions. For these reasons it seems pre¬ 

mature to apply CMA to prune N. 

V.3.4 Zeleny1s ADAM model. Ideal points are introduced in Zeleny [1974 

(a), p. 171]. Subsequently [Zeleny, 1975(b) and 1976(c)] the author 

switched his focus to a theory of individual choice behavior which he 
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called the attribute-dynamic model (ADAM). 

He begins by citing an article which reviews what he calls the 

compensatory multi-attribute model. This is of the form: 

m 

A. = Z Ai d (5.22.) 

J i=l J 

where A_. is an individual’s attitude toward brand j , m is the number 

of salient attributes, is a weight showing the importance of these 

T_ 

attributes, and d„ is the perception or score of the jLn brand along 

th 
the i attribute. Of course this is identical, except for the 

terminology, to the separable additive form discussed in Chapter II. 

After translating this into the language of MCDM, Zeleny states three 

"failures" of this traditional model. 

First he shows how several sets of weights lead to the same 

decision. This means that the weights in (5.22.) have not retrieved, 

in any unique way, the DM’s mental procedures (cf. an allied result in 

Chapter III). Next we are shown how a good set of weights can lead to 

the wrong decision, when they are elicited independently of the rele¬ 

vant feasible set of alternatives. Finally, in what he calls the 

"fatal failure," the case of a convex approximation of a non-convex 

choice set is treated. The conclusion is that there are situations 

in which no set of weights would predict correctly. 

Zeleny also reviews several mathematical programming models for 

the determination of the weights. He makes the interesting comment 

that these research methods 
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’’bootstrap" themselves into the attribute weights. 

That is the differential weights are not related to 

any intrinsic attribute properties in a given decision 

situation, but rather they are internally computed to 

satisfy the minimization of the Euclidean metric. 

Decision makers are presumed to use the weights so as 

to minimize a particular function. Consequently, any 

other distance metric used would imply a different 

set of weights under otherwise equal conditions. 

[Zeleny, 1976(c), p. 17] 

For these reasons, combined with other thoughts on weighting 

from Chapters III and IV, we will review ADAM. Here Zeleny tries to 

reproduce the iterative dynamics and the context-dependency of indi¬ 

vidual choice behavior (cf. Tversky’s EBA model which was partially 

motivated by "structural dependence of the alternatives"). 

Form a vector of attribute scores d. = (d. ., . . . , d .) in 
J ij mj 

which d^ positions the jalternative with respect to the i*1*1 attri¬ 

bute. A matrix D = ||d.|| is formed from these vectors. The set {d.} 
J J 

implies, for each attribute, the maximum attainable level. This anchor 

value is 

d* = Max d^. 
• T\ J 

jeD 

and associated with any D is (overall) anchor 

d* = (df, . 
* 

. , d ) 
* nr 

(5.23.) 

(5.24.) 

JL 

If 3 j' e d3 dj = d , then there is no decision problem. The ideal of 

all the attributes can be simultaneously achieved in the feasible 

region. Normally, though, the anchor point is not feasible. 
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Definition V.3.4.1 The axiom of choice. Alternatives that are 

closer to the anchor are preferred to those that are farther away. To 

be as close as possible to the perceived anchor point is the rationale 

of human choice. 

Thus between any anchor point and any alternative dj, there is 

a distance. Under various proposed metrics (not very different from 

those in Chapter V) the DM experiments with the "closeness" of several 

alternatives. The word experimentation is used for several reasons. 

First, there are variations of the distance functions which test the 

stability of the proximity to the anchor point. Second, some shuffling 

of the weights {A^} is suggested. 

Definition V.3.4.2 The attention level. An attention level 

til 
A_^, is assigned to the i attribute as a measure of its relative 

importance for a given decision situation, is directly related to the 

average intrinsic information generated by the given set of feasible 

alternatives through the i^ attribute, and, simultaneously, to the 

subjective assessment of its importance, reflecting the decision 

maker’s cultural, psychological and environmental history. 

Let us now use the symbol A^ to be the attention level, which 

has two components. In other words, this will supercede, and hope¬ 

fully refine, the concept of weights. 

Zeleny decomposes these weights into two influences. There is 

one, noted w^, which is quite steady because it reflects the importance 

of an attribute that stems from a person’s make-up and background. The 
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second component is an attention level, A_^, defined as situationally 

dependent. It is a function of each problem's structure. Therefore, 

the Aj, can change radically with changes in the average intrinsic 

information generated by D. 

For example, in the capital budgeting example of Chapter I, 

say each capital investment item scored identically according to one 

of the criteria. Then that criterion would generate no ranking 

information; even if it were the most important attribute, the atten¬ 

tion would naturally shift to another. We can interpret A^ as a 

til 
measure of the contrast intensity of the 1 attribute, noted as 

e(di). 

Next define 

n 

D. = E d.., i = 1, 2, . . . , m (5.25.) 

1 j=i 13 

and, for a finite set D, an entropy-like measure 

e(d±) -k £ (d../D.) 

j=l 13 1 

ln(d../D.) 
ij i 

(5.26.) 

when k > 0 and e(d^) > 0. For the case where all d_'s are equal to 

each other for some i, di_./Di = 1/n, and e(di) is maximized at that 

point. 

What comes from this is the possibility of moving the anchor 

point. Deleting an attribute which had low contrast intensity would 

change all the relative lengths of the {d. in like fashion dropping 
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one brand which was the only outlier along some dimension would dis¬ 

place the anchor (also known as an ideal point). 

It is precisely this dilation and contraction of the distances 

from the anchor, and the changing locus of the anchor itself, which 

Zeleny calls the decision dynamics. His claim is that multiattribute 

utility theory is not relevant because it is static and confuses the 

assessment of risk and uncertainty with the elicitation of preferences. 

As attributes gain or lose attention, "A computer-aided, dynamic, self- 

adjusting, interactive and iterative procedure, based on a man-machine 

interface, emerges" [Zeleny, 1976(c), p. 24]. 

The ADAM paradigm should be studied as a means of pruning N. 

It may suffer from the same cumbersomeness of Roy’s outranking rela¬ 

tionship. But some DMs may find that so much of the work is done by 

the computer that ADAM is stimulating to use. The main problem that I 

see is that each criterion (attribute) is examined essentially in 

isolation, although the entropy measure e(d^) could be considered a 

type of interaction effect. Although Zeleny normalizes the d_, I do 

not see how to incorporate incommensurability and compensatoriness in 

his model.^ 

Conjecture V.3.4.1. ADAM measures (transformed) distances from 

the anchor point; it neglects the ratios of distances over subsets of 

criteria. 

The particular sense in which the words incommensurability and 

compensatoriness are used can be found in Chapter VI. 
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To illustrate this point, consider the story of the Magic 

Mirror. By selling his soul to the Devil the basketball coach of the 

local university has obtained the use of the famous Magic Mirror. When 

you look into this mirror any (single) wish will be granted. 

One of the ball players, John, has height, coordination and 

great reach. But he is myopic, so his shots, even the attempts at 

dunking the ball, fail. The coach gives John one trial with the 

mirror. John says, "Mirror, mirror, on the wall, cure my corneal 

curvature once and for all." The wish is granted and John becomes 

the team's leading scorer. 

Previously Jack was the leading scorer, even though he is 

rather short for a ball player. Seeking to regain his prominence in 

scoring. Jack addresses the mirror, "Mirror, mirror, on the wall, give 

me the reach to dunk the ball." His wish was granted. Jack's arms 

were tripled in length, and he was now able to dunk the ball without 

even jumping. Unfortunately, his hands now dragged on the ground, 

which made his fellow teammates trip on them. It also made ready-to- 

wear clothing impossible to find; his adoring female fans now thought 

he was grotesque. 

The moral of the allegory is that the ADAM model treats the 

distances from the anchor point criterion by criterion. But if 

attributes are misspecified, or if value interdependence is not recog¬ 

nized, Jack's disaster can occur. What he really wanted was a 

simultaneous change in several of his characteristics, such as his leg 
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length, torso length and jumping ability, Certain ratios of char¬ 

acteristics, if properly specified, would have achieved the scoring 

ability he longed for. 

V.3.5 Scaling with eigenvalue analysis. Thomas Saaty [1975 and 1977] 

begins with the premise that a basic problem of decision theory is to 

find out the importance of weights of a set of activities. In his view 

importance is usually judged according to several criteria. He con¬ 

structs a matrix of pairwise comparisons of choice objects (activities). 

In each cell is a number from a scale which tells not only the direction 

of the preference, but also its intensity. 

For n objects, n(n-l)/2 pairwise comparisons must be done. 

Using the scale 1 through 9 (a lengthy justification of this particular 

scale is in Saaty [1977, p. 244 ff.], this is done once for each 

criterion. Saaty1s scale is as follows: 

Table 5.7 

Saaty’s Priority Scale 

Intensity of Importance Definition 

0 
1 
3 

5 

7 

9 

2,4,6,8 

Reciprocals of the 

above numbers 

Not comparable 

Equal importance 

Weak importance of one over another 

Essential or strong importance 

Demonstrated importance 

Absolute importance 

Intermediate values between 1,3,5,7 and 9 

If activity i has a non-zero number that 

represents its dominance over ij, then 

j over i is assigned, by fiat, the 

reciprocal number. 
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The method uses the numbers of Table 5.7. Two kinds of com¬ 

parisons are made—choice objects versus each other according to a 

criterion, or all the criteria compared with each other. The following 

mathematics relates to either type. 

Let A^, A2, . . . , Ah be the choice objects and w^, W2, . . . , 

wn be their weights as in Table 5. . The comparisons are collated in 

the matrix: 

(5.27.) 

A 

positive, 

vector w, 

is called a reciprocal matrix, because all its entries are 

and a.. = 1/a... A can be post-multiplied by the column 
Ji ij 

which yields 

Aw = nw (5.28.) 

which is computable, but not very interesting if we know the weights 

in advance. But if we only knew A and wished to find w, the task would 

be an eigenvalue problem similar to the one in Chapter IV. We are now 

interested in the unknown vector w in 
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(A - nl)w =0 (5.29.) 

This has a positive solution if and only if n is one of the eigenvalues 

of the linear transformation A. Since every row of A is a multiple of 

the first row of A, A has only one linearly independent column. This 

means that the rank r(A) = 1; hence only one of the eigenvalues 

A^, i = 1, 2, . . . , n of A is non-zero. Reviewing a theorem from 

Chapter IV, 

n 

E A. = tr(A) = n (5.30.) 

i=l 1 

where tr means the trace of a matrix. Since all but one of the A. 
l 

are zero, then the one positive one must be equal to n, and will be 

noted A max. 

The solution to (5.30.) is any column of A, all of which differ 

from each other only by a multiplicative constant. But any column of 

A, if normalized, will be a unique scale of weights on the choice 

objects recovered from the cells ||a^||, the dominance ratios. 

A has what can be called the cardinal consistency property. 

which is that 

aij ajk " aik 

Any row of A will generate all the other rows by this property. 

Equation (5.31.) is associated with a preference ordering when a com¬ 

plete transitive ordering is evident. But because of finite human 
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sensibility, transient tastes, and the arrival of new information, 

A matrices that are built up by interviewing the DM often lack the 

cardinal consistency property. The DM is inconsistent if he states 

that > Aj and A^ > A^ but A_^ > A^. Because of the element of 

randomness in human choice, and because of all the aspects of inter¬ 

dependency discussed in Chapters III and VI, inconsistency is a 

managerial reality. It makes allocative decisions more difficult, 

though, and we are motivated to study it in more detail. 

If in Aw = nw one perturbs (slightly) the a_, then there are 

small perturbations of A^ as a consequence. (5.28.) becomes 

A'w’ = A max w1 (5.32.) 

The Perron-Frobenius theorem says that a matrix of positive entries 

has a real positive eigenvalue (of multiplicity 1) whose modulus ex¬ 

ceeds those of all other eigenvalues. The eigenvector solution is non¬ 

negative; some of the other eigenvalues are not necessarily real. 

Does this mathematical apparatus help us track the inconsistency 

of the reciprocal matrix A? If the DM estimates w^/w2» for example, 

is there some difference between his expressed preference ordering 

and his intrinsic (perhaps never to be found) ordering? Using the 

developed notation, how far is A max from n and w’ from w? If they 

are not close we might ask the DM to allocate more of his/her time 

to the estimation of the a^. . Of course we know that in the pruning 

This is related to a more thorough discussion of a sub¬ 

semiorder in Chapter VI. 
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stage of MOLP a new criterion is endurance. We can only push the DM 

up to the point of information stress. It is hard to understand 

exactly what we would be achieving by this extra DM-analyst interface. 

The DM need not be consistent. All we can say is that the "sample" A 

is more likely to be a set of logically related entities than a 

random set of vectors. Obviously this is reminiscent of classical 

hypothesis testing. 

Theorem V.3.5.1. A n X n matrix A with a.. = a, . ^ is con- 
-- ji 13 

sistent iff Xmax = n. 

Proof. See Saaty [1977, pp. 239-240]. 

Because of this theorem we know that in the perfectly con¬ 

sistent case Xmax = n. Otherwise, with inconsistency Xmax > n, 

Theorem V.3.5.2 Preservation of ordinal consistency. If 

(0, , 0o, . . . , 0 ) is an ordinal scale on the activities 
1 Z n 

^1* ^2* * * * » Cn, w^ere = 0^ implies a^ ^ akj * j = i> 2, * * • >n> 

then 0^ > 0^. implies w^ g w^.. 

Proof. It is true from Aw = Xmax w that 

n n 

Xmax w = E a..w. > E a, .w. = Xmax w, 

1 j-i i] J = j=i J k 

with w. > w. . 
1 = k 

Because of this theorem, the expression (X max - n)/(n - 1) can 

be used as an index of the consistency of A. It can also be thought 

of as the reliability of the DM’s estimate w^/w^. With human falli- 
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bility the estimate of w, namely w', will be (w^/w.)(e .), with 
J 3 

e.. >0. 
ij 

The particular generating function of e is dependent on the 

psychological model of the DM’s thinking processes. Several of these 

were reviewed in Chapter III. 

Saaty shows at length that the perturbations of the weight 

vector dw = (dw.. , dw~, . . . , dw ) are complicated nonlinear functions 
J- ^ n 

of the errors in the a^. He develops a single index of inconsistency, 

and a statistical test of its significance. Speaking managerially, 

inconsistency is not wrong; it is a manifestation of imperfect informa¬ 

tion processing ability. If all the problems of incommensurability, 

compensatoriness, nonmonotonicity and interdependence could be solved, 

the DM’s preference order would be consistent. The measure of incon¬ 

sistency tells us approximately the level of "damage" due to those 

problems. 

As for the use of Saaty’s method for pruning the nondominated 

set, we now state some reservations. The number of pairwise judgments 

that must be made, for each criterion or set of objectives, is 

n(n-l)/2. This, I feel, distracts the DM from the important tasks of 

forcing commensurability, compensatoriness and interdependency onto 

his evaluation of the choice set (see Chapter VI for an expansion of 

this thought). The sheer number of comparisons to be made tends to 

lower the quality of managerial thought. Chapter VI suggests a way to 

reduce the number of such comparisons. 
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Perhaps Saaty’s search for ratio-scaled weights is wrong. His 

methods force the non-simultaneous consideration of criterial levels, 

ignoring interactions and local behavior in particular ranges of the 

individual preferences for each attribute. 

On the plus side, it is very attractive to get at strength of 

preference in this quantitative way, and to have available an index 

of intransitivity. Philosophically, it may be wrong to assume that the 

zero representing incomparability is the weakest sort of information in 

the A matrix. It could be said that the indifference relationship 

expresses the most razor-sharp sort of preference comparison we can 

elicit. It represents a very precise statement, not merely an ordinal 

(fuzzy) assessment. A very intriguing statement appears on page 73 

of Saaty [1975]. He states that incomparable activities may inherit 

a relationship via intermediate activities; the powers of the A matrix, 

as the limit is approached, generate information of this sort. But 

the mechanistic approach to decision support systems may infer too 

much from fuzzy input data such as the {a_}. Sophisticated mathe¬ 

matics sometimes makes us too confident in an analysis. 

Summarizing Saaty’s scaling method for priorities, from a matrix 

of paired comparisons of activities, for each objective, activity 

weights are found by solving an associated eigenvalue problem. Then 

from a pairwise comparison matrix of objectives, which also has an 

eigenvalue problem, Saaty obtains a vector of weights on the objectives. 

Now aggregation across the activity-by-criterion matrices is possible 

by using those objective weights; finally the composite priority vector 
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emerges which ranks the set of activities. 

Chapter V has treated the reduction of the nondominated set. 

The larger number of vectors in N (or Nex) has been seen as a draw¬ 

back to MOLP methods, since the DM may not have time or ability to 

sift through thousands of multiattributed items. A subset 

G(N) £ N6* C. N was identified by a data analysis technique known as 

cluster analysis. Many clustering algorithms were utilized; after 

analysis hierarchical clustering with RELOCATE and RESIDUE capabilities 

was recommended. 

Five other methods of pruning the nondominated set were analyzed. 

Roy’s outranking relation was considered cumbersome. Multidimensional 

scaling, factor analysis and conjoint measurement analysis were seen 

to have their assumptions violated. Saaty’s scaling methods used 

eigenanalysis, which was discovered independently in Chapter IV. This 

pruning method warrants further study. Finally, Zeleny’s ADAM model 

was treated as a promising theory of choice behavior. This disserta¬ 

tion decomposes the problem of pruning into two stages. In Chapter V, 

by mechanistic methods, the generator set G(N) is created. This list 

of possible solutions is now analyzed by interactive programming in 

Chapter VI. 



CHAPTER VI 

RANKING: CHOOSING ONE OF THE GENERATORS 

VI.1 Introduction 

At this stage the nondominated set has been calculated and 

pruned down to a subset called the generators. The action implied by 

decision making can commence as soon as one element of the set of 

generators is chosen. To accomplish this, ranking and weighting will 

be examined in the limited context of this final stage of multiobjec¬ 

tive mathematical programming. Binary judgments will be the means the 

DM uses to search his preferences. That information will be collected 

and displayed by a linear programming formulation that is similar to 

the definition of nondominated vectors. A significant reduction in 

the number of paired comparisons needed to solve the second stage of 

the pruning algorithm is achieved. 

It has been said that the multiargument utility function is 

transitory, dependent on the feasible set, and cannot immediately be 

expressed by the DM [Zeleny, 1974(a)]. If such a function could be 

abstracted, its form would be extremely complicated if any inter¬ 

dependence among criteria existed. The measurement error inherent in 

value assessment and evaluation is one type of randomness that we see. 

Another source is the stochastic nature of human response to cues. 

Thus we should view multicriterion decision making as a bi-stochastic 

process in which representations of the problem are to be traded back 

and forth between the human(s) and the computer-based model(s) . 

147 
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In Chapter IV, weights were characterized as naive or non-naive. 

It was shown that a_ priori ranking did not always drive the system in 

a desirable direction. The weighting and ranking in this chapter will 

be exploited gingerly. The particular setting of Chapter IV was a 

constrained problem in which goals were monitored as absolute devia¬ 

tions from targets. The final choice within the generator set G(N) is 

an unconstrained problem. Ranking is possible because we will use 

binary preference relationships between nondominated solutions instead 

of dealing directly with objectives. 

A linear programming (LP) model is proposed in which weights and 

ranks will serve to identify a final choice and to build confidence in 

that choice. We will proceed from the ideas of Kornbluth [1977]. In 

his paper a ranking method is studied in the unconstrained case. 

Kornbluth also suggests that the methodology could be used as a first 

stage in a multicriterion decision process. He points out that in this 

manner one can develop the interval criterion weights that Steuer 

[1975] uses as an a. priori way of pruning N (or N ). The Kornbluth 

model deserves to be expanded to the case of interdependency and 

noncompensatoriness, and to be applied as an appendage to the multi¬ 

criterion simplex methods. 

We have argued in Chapter IV that weights have no intrinsic 

meaning. Their effect depends on the type of solution methodology, 

the feasible set, and the experience of the DM. However, weights do 

affect the system in some way. Since that effect is, in general, not 

known with certainty, we are going to use weights as knobs. Imagine 

a person playing with unmarked knobs on a color television. He does 
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not know the exact influence of each twirl of a knob, and he is even 

less sure of the total effect of several knobs turned at once. But 

by trial and error he learns a setting (or a set of settings) that is 

best for him at that time. Given the possibility of changes in taste, 

and different atmospheric and ambient lighting conditions, those 

settings may need to be modified periodically. The learning of the 

original knob turning process provides a reservoir that hastens the 

updating process. 

Let us place the concept of knobs into the realm of mathematical 

programming. A set of weights corresponds to a set of consequences. 

These consequences, when dealing with the generator set, are really 

ranking implications, or restrictions, on the possible rank orders of 

generators. For example, imagine a college professor who is seeking 

another teaching job. He/she is negotiating with two schools. One 

offers a salary of $20,000 and a nine-hour load. The other school 

offers a $30,000 salary and a twelve-hour load. If the professor 
/ 

prefers the first school, he/she is expressing a feeling that increased 

salary does not compensate for increased teaching load. This is known 

as noncompensatoriness. 

Imagine that the job applicant continues to interview at other 

institutions. If we model that person's choice process on a series of 

paired comparisons, the first preference ordering has implications. A 

likely one is that in the pair [($30,000, 9 hours), ($40,000, 12 hours)] 

the first component would be chosen. The importance of developing 

restrictions on the possible preference orderings of objects in a 

choice set is that much less information must be gathered to form a 
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complete order. 

Since all we seek is a final choice from G(N), the generator 

set, why do we need a complete order? First, a complete order allows 

us to test all the implications of a first choice. Second, the pro¬ 

cess of examining the implied order of choice objects increases our 

confidence in the action that the whole analysis is leading to. 

To summarize this section, think of a set of weights, k e K, 

k = {k.. , k„, . . . , k }, and a set of orderings o. e 0, i e I. The 
12 n i 

orderings are simply ordered lists of the generators g £ G(N). These 

ideas will be useful in the ranking algorithm of the following section. 

VI.2 The Ranking Model 

Within G(N) there are m vectors, each of which represents a 

cluster or comes from the residue set R(N). Each vector is written as 

z^ = ||z^||, k = 1, 2, . . . , m where i = 1, 2, . . . , n represents 

the achievement along the i^ criterion for each z vector. Recall 

that z is the solution vector x £ N as it is mapped into criterion 

space. 

Let k e K = {k^ i * 1, 2, ...» n} be the weights on criteria. 

Since we are using weights as knobs, the weights are initially un¬ 

specified, but almost any set of weights could serve as an initial 

position. Weights will imply that for tP and zq, and k £ K, 

k(z^ - zq) > 0 implies that 2? is preferred to zq. 

Let 0 be the set of permutations of the numbers 1 through m, and 

lc 
let o. e 0 be the first ordering of the z to be dealt with. For 

lc 
example, the initial ordering of z e G(N) could be obtained from any 
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one of the n criteria, creating a simple rule to break ties if 

necessary. 

If an ordering o^ e 0 is judged correct by the DM, then a set 

of weights k e K is implicitly accepted. Preference functions composed 

of such weights are not unique; often several can lead to the same 

ordering. This is similar to what Keeney and Raiffa [1976, pp. 88, 

144] call strategic equivalence. If the DM chooses to think directly 

in terms of weights, the preferred weights generate the preferred 

ordering. For the proofs behind these ideas see Kornbluth [1974 and 

1978] or Zeleny [1974(a)]. 

Kornbluth has developed a methodology for systematically moving 

from O- to a final order o . This is possible because any order 
1 n 

o^ e 0 partitions the weight space k e K as follows: 

K = U K(o) 

o 

K(o.)n K(0i) =0, i t j 

where K(o_^) means the strategically equivalent weights associated with 

an ordering o^. 

To discover K(o^) we must consider constraints formed by adjacent 

members of o^. Non-adjacent pairs form constraints which are redundant. 

Let z(i) be the z vector in the i^ position of the current order; 

then from the relations 

k[z(i) - z(i+l)] >0, is I, keK (6.1.) 
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a linear constraint set can be developed. K(o^) is a function of a 

subset of those constraints, namely the tight ones for which (6.1.) 

could not hold as an equality. For example, if nondominated solutions 

2? and zq are adjacent in an order o^, then k[z(i) - z(i+l)] > 0, 

i e I, k e K will be a tight constraint. This will be clearer as the 

algorithm is explained below. 

If the DM switched his ranking from (z^, zq) to (zq, z^) he would 

be moving from a weight space K(o^) to an adjacent space K(o^). If o^ 

is feasible, o^ will also be feasible, since it is associated with an 

adjacent basis of a dual problem. 

In summary, the ranking algorithm is: 

(i) Find an initial feasible order o^ e 0. 

(ii) Calculate the binding constraints of K(o^). 

(iii) Give the DM the set of pairs in o^ which imply the 

boundaries of K(o^). The form in which the pairs will 

be presented is the z vector format, i.e., the criterial 

achievement associated with each efficient solution in 

the generator set G(N). 

(iv) If o^ is considered correct by the DM, stop. If it is 

not correct, go to step (v). 

(v) Instruct the DM to change the ranking of one of the pairs 

presented in step (iii) and go to step (ii). 

Because of the property that adjacent orders remain feasible, 

there is no danger that any of the DM's pairwise choices will force 

cyclicity or intransitivity into the orders that unfold. 
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The ideas of dyadic and triadic judgments have been used for 

decades to elicit preference functions. The unusual property of the 

present method is the reduction in the number of paired comparisons to 

be made. The DM need only be concerned with the pairs of elements that 

are identified by the binding constraints of the form (6.1.). Pairs of 

efficient vectors that have to do with the slack constraints of K(o^) 

are properly ordered as a consequence of the ranking of the crucial 

parts. 

In Chapter III the difficulties of human information processing 

were briefly stated. All the problems of transitory preferences, 

imperfect discrimination, fatigue and constrained managerial resources 

are exaggerated when m(m-l)/2 paired comparisons are made. Kornbluth’s 

1978 paper reports simulations of the ranking algorithm’s performance. 

For example, for six criteria and twenty choice objects only seven 

paired comparisons were necessary to find the best order and the 

associated weight space. 

VI. 2.1 The mathematics of the ranking algorithm. Begin with a feasible 

order, sich as the lexicographic order that follows from ranking by 

any one of the criteria. We have notated this as o_^ e 0, i e I. Form 

the matrix Aq whose rows AQ(i) are quantified by z(i) - z(i+l). The 

closure, or the convex hull of the weight space K(o^) is the set {k} 

such that: 

A k > 0, 0 a column vector of zeroes, (6.2.) 
o — 

Ik. =1, i e I 
l 

(6.3.) 
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k. > 0, i e I (6.4.) 

There are rows of (6.2.) that are satisfied as equalities for 

some k e K. For these boundary rows of the convex hull of A , the 

value of an objective function, "minimize (i)k subject to (6.2.), 

(6.3.), and (6.4.)," is zero. This means that the optimum of the 

dual problem (formed as 6.5. below) is also zero. In general, m, 

the number of choice objects (z vectors in this context) will be 

greater than n, the number of attributes (criterion achievment). 

This is a reasonable assumption; therefore we consider the dual 

problem: 

Maximize p 

T 
Subject to uAq + JLp < c (6.5.) 

y > 0, p unconstrained 

T indicates the matrix transpose, 1 is a column vector of ones and 

c is a particular row of A such as A (i). 
o o 

For the primal problem (6.2., 6.3., and 6.4.), if a row is 

satisfied as an equality, then that row used as the objective function 

yields an optimum of zero. Any time that a basic feasible solution of 

(6.5.) has p = 0, it must therefore also be a dual optimum. A strictly 

positive dual variable identifies the affiliated primal constraint 

AQ(i)k > 0 as binding. In turn this means that the paired items z(i) 

and z(i+l) which formed that constraint are binding to the ordering 

o. e 0. 
l 
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For these reasons computational savings occur. To ascertain the 

crucial (binding) pairs in o^, it is not necessary to solve all the 

related dual problems of the form (6.5.) with each row of A as the 
o 

til 
right-hand side in turn. If the k column is basic at an optimum of 

(6.5.) the pair of choice objects (k, k+1) will be binding. For the 

typical case of m much greater than n, (6.5.) has many more columns 

than rows, and hence is not too costly to solve. 

The DM's binary (forced) choices among g £ G(N) have led to 

restrictions on the orderings. The implied (through duality) weights 

k £ K can be used to improve confidence in results of the ranking 

algorithm. They should not be used as a priori weights for a new 

problem, for the reasons explained in Chapters III and IV. They serve 

as posteriori weights in the limited case of the generator set for a 

problem that has been attacked by multiobjective mathematical pro¬ 

gramming and the two-stage pruning algorithm of this dissertation. 

VI.2.2 A numerical example. Kornbluth’s example will be translated 

into the notation of this paper. The seven cho ce objects, each with 

three criterial dimensions (i.e., m = 9, n = 3) 

Item 

1 
2 
3 

4 

5 

6 
7 

The z vectors 

8 14 
6 4 2 

5 8 0 
4 0 6 
3 2 6 
2 7 1 

2 4 3 

are as follows: 
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Start with a feasible order = (1,2,3,4,5,6,7) . Then there is an 

(ra x n) A matrix: 

2 
1 
1 
1 
1 

0 

-3 

-4 

8 
-2 
-5 

3 

2 
2 

-6 
0 

5 

-2 

Observe that A is obtained by subtracting the values assumed by the 

°1 
z vector for item 2 from the z values of item 1 in the table above. 

A series of LP problems of the form of (6.5.) must be solved to 

construct the convex hull of the weight space K(o^). Transposing Aq 

we get: 

Maximize p 

Subject to 2y^ + ^2 + + P5 + P < 

(6.6.) 

-3y1 - 4y2 + 8y3 - 2y^ - 5p5 + 3y6 + p < c2 

2p1 + 2y2 - 6p3 - Oy^. + 5y5 - 2y6 + p < c3 

yi > 1, i = 1, 2, . . . ,6 

p unconstrained 

with c = [c , c2, c3] set equal, in turn to the rows of 

For example, if you take the first row of A , then 

°1 

c = [2, -3, 2] and we find that at the optimum p > 0. At this point 

y_ and y. are in the basis. Since they are also set at a non-zero 
2 4 

level, we know that the pairs of items (2,3) and (4,5) are crucial to 

the present ordering. Since y^ is not basic and strictly positive. 
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the pair (1,2) is not crucial, and the first constraint of A is 

°1 
not binding. 

Here is where we start to see the computational savings. Since 

we know that (2,3) is a crucial pair, there is no need to solve the 

problem associated with the second row of A which in the dual 

problem would be c = [-1, -4, 2]. 

For the dual problem with c = [-1, 8, -6] the optimum p is again 

strictly positive. An analysis of the basic variables shows that the 

crucial pairs are (2,3), (4,5), (5,6), and (6,7). Using P to denote i 

binary preference relation, we have 

o e 0 = {2P3, 4P5, 5P6, 6P7). 

With these four binary preferences labeled as crucial, the relations 

1P2 and 3P4 are also valid. But these relations, which can be seen by 

inspecting the first feasible order o^, follow as a consequence of the 

four parts. The DM, with his limited time and attention, should decide 

only whether or not he can live with the four binding pairs. 

Suppose that the DM finds he does not agree that item 2 is pre¬ 

ferred to item 3. This means that o^ = (1, 3, 2, 4, 5, 6, 7) which is 

a move across constraint (2,3) to the adjacent weight space K(o^)• In 

this space the binding pairwise preferences are (3,2), (4,5), and (5,6). 

Geometrically, in this three-dimensional example, each weight 

space associated with an order can be marked off on the triagle 

n 

K = {k | E k. = 1, k. > 0}. Algebraically, the dual variables of 

i=r 1 1 

(6.6.) solve the primal problem that had the weights k e K as its 

decision variables. The problem of the form (6.2.) through (6.4.) 
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implies the dual problem. This dual (6.6.) must be solved between one 

and (m-1) times, using rows of A as the RHS. The process traces 
1 

out the convex hull of the weight space K(o^). The DM can see not only 

the crucial pairs, but can determine if he likes the implicit range of 

weights. 

We know from Chapter IV that weights often behave counter¬ 

intuitively in a goal programming context. But in the relatively 

restricted domain of discourse of Chapter VI we work with binary pre¬ 

ferences on the nondominated solutions in G(N). There is no criterion 

matrix and hence no troubling intercorrelations. 

As the summary of the ranking algorithm at the end of VI.2 

states, at this point the DM can make further pairwise switches, one 

at a time, or he can stop. At the stopping point, a maximal element 

in G(N) has been identified. This was the goal of the present 

chapter—namely choosing a final solution from the generators of the 

nondominated set. 

VI.3 Further Justification of the Ranking Algorithm 

Four issues will be mentioned again: incommensurability, 

compensatoriness, interdependence and the introduction of new evalua¬ 

tive criteria. 

Section VI.1 defined compensatoriness. Chapters I and II men¬ 

tioned incommensurability. We stated that decision making forces, or 

emulates, commensurability. We cannot add apples and oranges; but even 

the addition of apples to apples requires the fiction of fungible apples. 



159 

Chapter II also described forcing commensuarbility by means of fines in 

the case of the polluting firm. 

Similarly, noncompensatoriness,^ although very real, is essen¬ 

tially overcome by the act of picking a strategy. The phenomenon of 

noncompensatoriness arises primarily from the attempt to describe it 

with mathematical functions. In heuristic, intuitive or imitative 

decision making, the DM focuses completely on the attributes for which 

there are no compensations. But within certain ranges of the attribute 

variables the attention shifts (cf. the state of mind of Tversky’s 

elimination-by-aspects model as described in Chapter III). In the 

example of the various salary-teaching load combinations, it is likely 

that the DM we described would be willing to teach a twelve-hour load 

for a salary of $500,000 per annum. There seem to be domains of non¬ 

compensatoriness, separated by a discontinuity which leads abruptly 

(and stochastically) into a domain of a gross sort of compensatoriness. 

It is the discontinuity which we find hard to model explicitly. 

This need not preclude the scientific study of decision making. Just 

as the scales created by multidimensional scaling recapture much of the 

ranking that was apparent in the input data, there are separable addi¬ 

tive utility functions that can represent certain noncompensatory 

structures. Keeney and Raiffa [1976, pp. 88, 144] call this strategic 

equivalence. 

^Noncompensatoriness is defined in the example of the college 

teacher in VI.1. 
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The third point is interdependence of the multiple criteria. 

This was described in Chapters III and IV. In particular the works of 

Peter Farquhar [1974(a), 1974(b), 1975, and 1977] were referenced. 

These papers show that to consider interaction effects is, at best, 

very complicated. 

The final point to be reviewed is the introduction of new 

evaluative criteria into the problem. Consider another example of a 

professor seeking a teaching position. He/she is a marine biologist, 

and therefore begins by ranking the schools in descending order of 

their proximity to the ocean. Soon it is apparent that some unknown 

coastal community college outranks, under this decision system, the 

University of Chicago. Hoping to overcome this distortion the biologist 

adds a new criterion—quality. This process discloses and searches for 

new information. 

These four concepts have been recalled to help justify the rank¬ 

ing algorithm of Chapter VI. In early chapters of this dissertation 

ranking (called prioritization in Chapter IV) of objectives was shown 

to be inappropriate in the goal programming context. I conjecture that 

similar problems would be found if eigenanalysis of the criterion matrix 

in the multiobjective linear programming were performed. This is a 

problem with the priori reduction of N that Ralph Steuer talks 

about in his paper on interval criterion weights programming [Steuer, 

1975]. 

The ranking algorithm of Chapter VI is an a. posteriori method of 

reducing G(N) (or even N or NeX in the case of small problems). Labor¬ 

ing over the limited number of binary preference decisions seems to be 
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one of the best ways to treat four of the major problems of multi¬ 

criterion choice that I reviewed a few paragraphs above. In the non- 

global situation of ranking two elements in G(N), the human brain is 

very subtle. 

To illustrate ray contention that the four named problems can at 

least be approached in this non-formal way, we will use the capital 

budgeting example from Chapter I. 

The choices C > A and D > B indicate that at any cost the firm 

wishes to avoid operating in South Africa. No other attribute of the 

set of projects compensates for that. 

Commensurability is lacking in this example. The four criteria 

of choice appear in the form of dollars, percentages, and two different 

nominal scales. But the DM can nevertheless make paired comparisons. 

As for interdependency, the percentage of business in unstable lands 

is not value independent of foreign exchange risk. Again this can be 

handled in the forced choice representation of Chapter IV. Of course 

programming formulations of this problem are also possible (see 

Bernardo and Lanser [1977] and Morse [1978]). This example does not 

deal with the discovery of new evaluative criteria, but we recognized 

that phenomenon in the situation of the marine biologist. 

VI.4 Summary and Cautionary Remarks 

The ranking algorithm may force a complete ordering onto G(N). 

Two reasons suggest that the order may be less than complete. It 

could, for instance, be a seraiorder or a subsemiorder [Ng, 1977]. 

These terms are now defined. 
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Definition VI.4.1. A binary relation R over the set X is called a 

semiorder of X if the following are satisfied: 

(i) Reflexivity: (Vx) (xRx) 

(ii) Completeness: (Vx, y:x^y) (xRy v yRx) 

(iii) Weak transitivity: (Vx,y,z) (rPxlyPz v rlxPyPz =*■ rPz) 

In these statements a binary relation R over a set X is an 

ordering if it is complete, reflexive and transitive. R is the rela¬ 

tionship "is preferred to or indifferent from," I is "indifference," 

and P means "is preferred to." 

Definition VI.4.2. A binary relation R on a set X is a subsemiorder of 

X iff it is reflexive and complete and satisfies: 

(iv) Mild transitivity: (Vx,y:xDy) (sPrRyPs v sRrPyPs xPs; 

sPxRrPy v sPsPrRy =$> sPy). 

Here D means "does not differ in more than one dimension." 

These concepts were developed to explain intransitivity of 

preference. In the capital budgeting example of Chapter I, the firm 

might prefer C over A, and D over A, but be indifferent between C and 

D, because along the first two dimensions (net present value and per¬ 

centage in unstable lands) there might be a "noticeable difference." 

This kind of imperfect discrimination exists when we rank the elements 

of G(N). 

A related phenomenon is finite human sensibility. Most people 

cannot tell the difference between Coca-Cola and Pepsi-Cola, no matter 

how hard they try. Another difficulty in preference comparisons is lack 
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of data or less than perfect anticipatory ability. I may be indifferent 

between car A and car B because at this moment of choice I do not really 

know how each will suit me. 

Because of these two sources of imperfect discrimination, and 

because of measurement error in the criterial readings (the z vectors), 

intransitivity of preference may exist in G(N). Therefore, it is 

probably wrong to conclude as Kornbluth [1978] does, that the weights 

discovered through the ranking algorithm can be used as inputs to an 

expanded problem based on multiobjective linear programming. 

Although Ng [1977, p. 57] feels that the intrinsic underlying 

preference of a subsemiorder is an ordering, we have no need here for 

this much information. The ranking algorithm relies on the well¬ 

ordering condition. 

Definition VI.4.3. The binary linear relation > on a set X satisfies 

the well-ordering condition if each non-empty subset of X has a maximal 

element. This condition lets us find the maximal element in G(N). 

Choice with G(N) as the domain is probably a subsemiorder pro¬ 

cess. Forcing an ordering onto it is acceptable only because we do not 

seek to explain decision-making behavior or to construct a preference 

function. We do not have here a theory of choice; we have not captured 

the process as a mathematical psychologist strives to do. 

Our plan was to bring the abilities of the computer to bear where 

appropriate, and to force the human mind to concentrate on the kinds of 

reasoning he does best. The binary choice by the DM and the linear 

programming computer analysis have achieved the stated goal of Chapter 
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VI, which was to choose a single response from the set of generators 

G(N) ^ N C. N. This was accomplished by using a complete preference 

order to force introspection and to build confidence in the final 

solution. The ordering was accomplished by forming constraints from 

the differences between the z vectors, finding the convex hull of 

these constraints, and identifying the pairs of z vectors that are 

crucial to an ordering. The DM drives the algorithm by stating 

agreement or disagreement with the order of these pairs. Incommen¬ 

surability, noncompensatoriness, new evaluative criteria, finite human 

sensibility and imperfect anticipatory ability were treated in this 

framework of sequential binary choices of nondominated solution 

vectors. 



CHAPTER VII 

SUMMARY, POSSIBLE EXTENSIONS AND CONCLUSIONS 

London, Sept. 9 1772 

Dear Sir, 

In the affair of so much importance to you, wherein you 
ask my advice, I cannot, for want of sufficient premises, ad¬ 

vise you what to determine, but if you please I will tell you 
how. When those difficult cases occur, they are difficult, 
chiefly because while we have them under consideration, all 
the reasons pro and con are not present to the mind at the 

same time; but sometimes one set present themselves, and at 
other times another, the first being out of sight. Hence 
the various purposes or inclinations that alternately prevail, 
and the uncertainty that perplexes us. To get over this, my 
way is to divide half a sheet of paper by a line into two 
columns; writing over the one Pro, and over the other Con. 
Then during three or four days consideration, I put down 
under the different heads short hints of the different motives, 

that at different times occur to me, for or against the 
measure. When I have thus got them all together in one view, 
I endeavor to estimate their respective weights; and where I 

find two, one on each side, that seem equal, I strike them both 
out. If I find a reason*pro equal to some two reasons con, I 

strike out the three. If I judge some two reasons con, equal 
to some three reasons Pro, I strike out the five; and thus 
proceeding I find at length where the balance lies; and if, 
after a day or two of further consideration, nothing new that 
is of importance occurs on either side, I come to a determina¬ 
tion accordingly. And, though the weight of reasons cannot be 
taken with the precision of algebraic quantities, yet when each 
is thus considered, separately and comparatively, and the whole 
lies before me, I think I can judge better, and am less liable 
to make a rash step, and in fact I have found great advantage 

from this kind of equation, in what may be called moral or 
prudential algebra. 

Wishing sincerely that you may determine for the best, I 
am ever, my dear friend, yours most affectionately. 

B. Franklin 

[From B. Franklin, "A Letter to Joseph Priestly 
(1772), reprinted in The Benjamin Franklin Sampler, 

New York, Fawcett, 1956.] 

VII.1 Summary 

This dissertation has attempted to treat decision making in the 

multiple objective situation. Earlier literature has typically 
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concentrated on a particular segment of the decision process, leaving 

several gaps in the body of techniques called multiple criteria deci¬ 

sion making. The main contribution of the present work has been to 

create and justify a two-stage pruning process for treating the non- 

dominated set which results from multiobjective mathematical pro¬ 

gramming (linear or nonlinear). 

Drawing on both the behavioral and the mathematical sciences, 

it has been possible to address two important questions: 

a) Should the decision maker use goal programming or multi¬ 

objective linear programming? 

b) What can be done to aid the decision maker in choosing one 

final solution from a very large set of nondominated 

solutions? 

The area stressed is the multiobjective linear programming model of the 

individual decision maker. To answer the first question, I show be¬ 

havioral and mathematical support for the rejection of a. priori ranking 

methods. The implication of this is that goal programming may be less 

applicable than multiobjective linear programming, since in using the 

latter technique it is not necessary to prioritize the objectives. For 

the second question a two-stage pruning algorithm is proposed; this aids 

the decision maker to process a large unwieldy nondominated set. 

In Chapter I various conceptualizations of the firm introduced 

the multiple objective situation. These included the agency approach, 

the disaggregation approach, and the autopoietic approach. Additional 

brief remarks on non-profit organizations led naturally to the group 
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decision environment. However, the body of this dissertation was 

solely concerned with the individual decision maker. 

The second chapter searched the literature of mathematical pro¬ 

gramming. I reviewed the origins of the field in genera., and then 

discussed the optimization approach to the special problem of decision 

making with multiple objective functions. Some of the major methods 

included in the review were the surrogate worth trade-off method of 

Haimes, Hall, and Freedman [1975], the interactive programming of Dyer 

et al. [1972], the general parametric programming model, the multi¬ 

criterion simplex methods of Zeleny [1974(a)] and Evans and Steuer 

[1973], and the goal programming of Lee [1973] and Ignizio [1976]. 

Since models that are not foreign to the mind’s perceptual and 

cognitive habits are more likely to be successfully implemented, 

Chapter III reviewed the individual choice theories of mathematical 

psychology. Particularly interesting were Thurstone's [1927(a), 

1927(b)] two laws of comparative and categorical judgment. Luce’s [1959] 

study of individual choice behavior, Coombs’s [1964] theory of data, and 

Tversky's [1972] elimination-by-aspects model. 

The natural limits on man's ability to process information were 

also viewed as significant in the choice of a multicriterion model. 

The Brunswik Lens Model [Rappoport and Summers, 1973, p. 16 ff.] pro¬ 

vided the framework for describing judgment processes. In the Lens 

model, criteria implied cues, which in turn caused judgments. The 

famous Miller [1957] article on how many objects can be accommodated in 

short-term memory led to other work on human limitations. Examples of 

this included fixation, quality, primacy, averaging, and partialization. 
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The result of Chapter III is a pessimistic assessment of our 

ability to set a priori weights on multiple goals. This does not mean, 

however, that MCDM is not practical. It indicates that goal program- 

ming (GP) may be far less applicable than multiobjective linear pro¬ 

gramming (MOLP), because MOLP does not require advance setting of 

weights on goals. Whereas GP pre-empts the decision by prematurely 

discarding most of the nondominated set, MOLP relinquishes control to 

the DM in the pruning stage. This is precisely the point where man's 

creative reasoning ability should take over from the computer's com¬ 

binatorial sort of reasoning. Future research should be cognizant of 

the fact that the dominated set might contain the most desirable 

solution if the DM has reformulated his objectives and trade-offs more 

explicitly. 

Chapter IV drives in the same direction as the previous chapter; 

this time the reasoning is mathematical, rather than behavioral. The 

way in which the priority weights in GP drive a linear equation is ex¬ 

tremely hard to characterize. The effects of a change in the weight 

vector can be counterintuitive. This was illustrated by a discussion 

of naive weights. Naive weights are obtained when the DM associates 

the highest weights with the most important goals. The unsatisfactory 

nature of this weighting procedure was analyzed by woeking with the 

eigenvalues and eigenvectors of the criterion matrices of the goal pro¬ 

gramming proglem. 

In Chapters V and VI we face the problem of the often overwhelm¬ 

ing size of the nondominated set (N). Although integer and other non- 
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linear cases in multicriterion programming are still under development, 

they do share with the linear case the concept of nondomination. We 

attack the general problem of reducing the size of this nondominated 

set of solutions. This effort has been called pruning; here it has 

been treated as a two-stage process. In the first stage most of the 

work is done by the computer. In the second, much more of the task 

is completed by the decision maker. 

The fifth chapter treats the first stage of pruning by using the 

data analytic technique called cluster analysis. The idea is to por¬ 

tray N by a representative subset. Cluster analysis partitions N into 

groups that are relatively homogeneous within their boundaries. Essen¬ 

tially a very general evaluative criterion has been added: minimum 

redundancy. Since there is a threshold of resolution which hinders the 

DM in perceiving the difference between two very similar solution vec¬ 

tors, there is little point in making him wast time in processing all of 

N as he searches for a final solution. 

Throughout the dissertation, weights (on objectives or attri¬ 

butes) are treated as "knobs." Chapters III and IV showed some problems 

with _a priori weighting; if we go to a television set it is nearly 

impossible to set the knobs properly on the first twirl. First the set 

must be switched on, a channel must be picked, and then we can tune 

with the controls. Think of solving the MOLP problem 

Maximize Cx = {z} 

Subject to Ax < b 

as turning on the set. Looking at the static and blur of the TV’s image 
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6X 
as it warms up is like the DM facing the set N (or N). In Chapter V 

clustering is used to "pick a channel." Creating the generator set 

{g} £ G(N) is analogous to the existence of channels; once one is chosen 

we use the tuning knobs to improve the picture. 

Technically, Chapter V experimented with the nondominated set 

of two problems in the literature (Zeleny [1974(a)] and Steuer [1975]). 

Two forms of cluster analysis were tested—direct clustering versus 

hierarchical clustering. Within the group of hierarchical methods eight 

were tried. In the present application the two worst things that could 

happen were clusters that "chained" and outlying vectors (the residue 

set) that were obscured. Under these two criteria, on the particular 

data used, three algorithms worked best—Ward’s Method, the Group Average 

Method, and the Centroid Method. The hierarchical methods are recom¬ 

mended over direct clustering. However, the strength of this statement 

is weakened because some similarity between direct and hierarchical 

clustering was discovered. In the two-stage pruning process, this clus¬ 

tering serves as a first stage to minimize redundancy, and thereby re¬ 

duces the chance that the selection of a final solution will stress the 

DM beyond his information endurance. 

Chapter VI retrieves the concept of weights once the generators 

{g} e G(N) are available. In this second stage of the pruning process, 

weights are used for fine tuning, just as we turn the knobs once a 

channel has been chosen. By trial and error we use the feedback from 

our eyes to move toward the best picture (knowing that there might be a 

better setting that Is not easily discoverable). The ranking algorithm 
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of this chapter asks the DM to make binary comparisons between selected 

g e G(N). He does not deal directly with criterion weights, just as 

the person with a television set does not need calibrated knobs. The 

TV viewer reacts to "better" or "worse" pictures, and moves the knobs 

as a consequence. The DM in the ranking algorithm responds to z vec¬ 

tors as better or worse; the weights merely fall out as a side effect 

of the linear programming approach. 

VII.2 Possible Extensions of the Research 

This dissertation has dealt with mathematical, statistical, 

psychological and financial ideas; however, additional applications come 

to mind. Of paramount interest would be the application of the MOLP 

model with two-stage pruning to a real decision situation. Another 

worthwhile effort would be to compare several competing methods of 

multiple objective decision analysis in a laboratory or field setting. 

Several more theoretical possibilities will be described below. 

VII.2.1 The ranking algorithm versus Saaty's method. The ranking algo¬ 

rithm of Chapter VI deserves to be carefully compared with Saaty’s [1975, 

1977] method of priority scaling. Section V.3.5 describes the strengths 

and weaknesses of this eigenanalysis method. The attraction of the 

approach is that strength of preference is obtained in a quantitative 

mode, and an index of the DM’s inconsistency is available. 

It would be interesting to try to reduce the number of judgments 

that the DM must make. The DM should also be encouraged to deal more 

explicitly with incommensurability, compensatoriness, interdependent 
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preferences and local behavior of individual preferences. 

VII.3.2 Ideal points and second choices. Chapter III mentions Coombs's 

[1964] comment that little work has been done on second choices. 

Zeleny [1976(c)] also mentions this. The idea is that our models are 

fairly successful in the situation of a consumer who must decide 

whether to buy a Porsche, a Lincoln Continental, a Jeep or a Honda 

Civic. But what if this person has just picked one of the cars and we 

say, "You can keep the first car you chose, and we will let you choose 

a second one?" 

Preferences are different for the second choice. The research 

questions here are "portfolio" considerations—the attributes of the 

second car should balance and complement those of the first car. Per¬ 

haps the lucky DM would like to have a Lincoln and a Jeep. 

I suggest two approaches to this problem. Zeleny's [1976(c)] 

nondominated pocket could be one way of freeing the DM from the somewhat 

narrow concept of the nondominated set. Or vectors could be constructed 

for contingent second choices. Various combinations of first and second 

choices form a set of vectors: those could be pruned by the two-stage 

algorithm of this dissertation. 

VII.2.3 The agency theory of the firm. Jensen and Meckling [1976] 

describe the agency theory of the firm (see also Chapter I). Since the 

firm as they conceive it consists of multiple agents with multiple cri¬ 

teria, the techniques of multicriterion mathematical programming fit 

very well both as prescriptive and descriptive models. Research of this 

nature is already in progress at the Wharton School (see, for example. 
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Banker [1977] for a very large MOLP model of a Philadelphia bank). 

VII.2.4 Financial planning models. As I mentioned in Chapter I, 

optimization modeling in finance is strongly rooted in the single¬ 

criterion (profit) maximizing tradition. Since the linkage between 

activities x^. and the objective function is often time-staged and non¬ 

linear, some efforts to disaggregate the firm's objectives have appeared 

in the literature (see, for example, Bernardo and Lanser [1977] and 

Morse [1978]). If the operating budget and the capital budget were 

represented as two right-hand sides in an MOLP framework,^ then we 

might be able to expand on the traditional concepts of capital and money 

markets. To the normal external markets I propose adding an internal 

market, where the various functional areas (such as production and 

marketing) compete for funds. In this way the nascent duality theory 

of multiobjective linear programming (see Duesing [1976] and Isermann 

[1977]) might improve our knowledge of one of the most perplexing 

dilemmas of finance, the cost of capital. 

VII.2.5 Strategic capital budgeting. Strategic capital budgeting is a 

term used to signify the addition of high-level business policy and 

strategy to the purely financial capital budgeting criteria such as 

net present value and internal rate of return. An example of this 

appears in Chapter I. Until recently this has not been possible, 

since capital investment projects on not continuous variables. Last 

year, though, a Brazilian researcher appears to have perfected an 

^Kornbluth [1974] shows how the dual of a MOLP problem has 

multiple right-hand sides. 
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integer variant of multiobjective linear programming (see Bitran 

[1977 ]). 

VII. 2.6 Zero-base budgeting. Zero-base budgeting is currently very 

popular both in the corporate world (see Newsweek Magazine Publishing 

Company [1977]) and in the Carter administration. The output of 

zero-base budgeting is a set of vectors called decision packages. This 

set, like the nondominated set in multicriterion mathematical pro¬ 

gramming, is usually too large to be easily pruned by the DM. I plan 

to try to use the two-stage pruning algorithm on decision packages. 

VII.2.7 Decomposition analysis of financial ratios. Traditional 

financial ratio analysis is a univariate analytical technique. Raw 

ratios fail to recognize trends. They are also not as full of 

information as they are purported to be; for example, does a current 

ratio of 3 mean that the firm is well-managed, or that its investment 

opportunity set is nearly empty? 

One improvement in the use of financial ratios is to treat 

balance sheet items as percentages, and to look at changes over time 

by using natural logarithm transformations and entropy measures. 

Decomposition analysis creates multivariate financial ratios; a set 

of firms becomes a set of vectors. If this number of vectors is very 

large, the two-stage pruning algorithm may be applicable as a decision 

support. For example, securities analysts might want to reduce the 

firms in an industry to a representative subset. The ranking algo¬ 

rithm of Chapter VI could then be applied to formulate portfolio 
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recommendations. Preliminary work on 155 companies in the electric 

utility industry is available (see Dise and Morse [1978]). 

VII.3 Conclusions 

I conclude that individual and group decisions can be described 

and improved by the set of tools that Zeleny [1977] has called multiple 

criteria decision making (MCDM). When decision alternatives must be 

created and compared (this is what Peter Fishburn [1977] refers to as 

multicriterion choice theory) two methodologies have achieved promin¬ 

ence in the management science literature, namely goal programming (GP) 

and multiobjective linear programming (MOLP). The first contribution 

of this dissertation is to demonstrate the more general applicability 

of MOLP. Finite human sensibility and information processing constraints 

indicate that the main drawback to MOLP methods is the arduous job of 

choosing a final solution from the nondominated set. 

The second main result of this dissertation is a two-stage prun¬ 

ing algorithm that automates a large percentage of that choice process. 

The simplicity of the two-stage pruning algorithm offers the hope that 

decision makers can implement MCDM techniques. The generality of the 

two-stage paradigm seems to unify many situations that are essentially 

multidimensional choice processes. 
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APPENDIX I 

EXPLANATION OF HARTIGAN'S DIRECT CLUSTERING 

(from Biomedical Computer Programs, BMP P Series, 

"Block Clustering, Program BMDP3M," adopted from computer output) 

Purpose 

The program represents the data completely with relatively few 

printed symbols. After permutation of rows and columns, a block 

diagram is printed out, and certain blocks, submatrices of contiguous 

values, are outlined. All values within a block may be recovered from 

the value in the upper left-hand corner, so only these calues are 

printed. The row margins of each block form a row cluster, the column 

margins form a column cluster, and the block itself is a cluster of 

equivalent data values. 

Method 

First code all variables into the Range 1,9,A,Z. The number of 

times each variable takes each value is computed. The matrix is com¬ 

puted so that frequently appearing values are pushed to the upper left 

corner, to reduce dependence of the final clusters on input order. A 

leader structure on rows and columns is next computed on the first pass 

through the data, the first row is a leader, and all subsequent rows 

which are not within threshold distance of a previously defined leader. 

If row I is not a leader, but is closest to Row J among previously 

defined leaders, say that J leads I at level 1 on all later passes. 
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only the row leaders are used. On the second pass, column leaders are 

defined similarly, and only these columns are used in later passes. 

The passes continue, alternating on rows and columns, until finally, 

only the first row and column remain. 

Rows and columns are now permuted, so that if I is a leader at 

pass K, no J greater than I has a leader less than I at pass k. A 

leader structure is next defined on the data values themselves. If 

II leads row I at level K and JJ leads column J at level L, then 

(II,J) leads (I,J) if K is less than L, and (I,JJ) leads (I,J) if K 

is greater than L. If the value at (I,J) may be predicted from the 

value for its leader, the value at (I,J) is not printed on the block 

diagram. 

Thresholds 

Thresholds specify the minimum distance between leaders at each 

pass. Most computation time is spent in passes with small thresholds. 

With more passes fewer blocks are necessary to represent the data. 

More than twice the number of variables is rarely necessary. 

Codings 

Each variable is coded onto the range 1. . .9,A. . .Z, 

according to one of the following options. N6 is the number of 

intervals for a variable, then (1) if N6 is greater than zero, the 

range is divided into N6 intervals of equal length. Values in the 

various intervals are coded 1, 2, ... , N6. (2) if N6 equals zero. 
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but the variable takes integer values between 1 and 35, the values are 

coded directly onto 1, . . . Z. (3) if N6 equals zero, but the vari¬ 

able takes values outside the range (1, . . . , 35) the first 35 

different values are ordered and coded 1, ...» Z, respectively. 

Counts 

The number of times each variable takes each of its coded 

values. 

Leaders 

Row and column leaders, after permutation of rows and columns, 

are printed out in tree form. To find the leader of a given row, go 

furthest east, north, west. The position of the north segment of this 

path is the pass number. Each T-intersection defines the cluster of 

all rows which reach the intersection by east or north movements. 

Blocks 

Using the permutation of rows and columns developed to display 

the leader structure, blocks are outlined and values are printed in the 

upper left corner of each block. From the prediction table specifying 

relations between values in different columns. The first row of the 

block may be predicted. All other rows in the block are identical to 

this one. 

Any entry in the data matrix may be recovered from the block 

value of the smallest block containing it. 
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Missing values are represented by asterisks. A good clustering 

is printed/total values =0.1. A mediocre reduction is printed/total 

values = 0.5. 

Prediction 

The prediction table is computed during the construction of 

column leaders. If column J leads column I, a prediction rule is 

given specifying a value in column I for each value in column J, the 

value of I most frequently associated with the given value of J. 

The prediction rules are used for recovering data values in the 

block diagram. Thus, if column 6 takes value 3 in the upper left 

corner of a block, find the values of other columns, on that row in 

the prediction table where variable 6 takes value 3. Fill in the first 

row of the block from these values. 



APPENDIX II 

Maximize 

Subject to: 

THE ZELENY PROBLEM 

(from Zeleny [1974, pp. 117 ff.]) 

3xl 
7X3 + 4x3 + 

x4 
— 

X6 
— 

X7 
+ 00

 
X 

00
 

2x. + 5x + x_ x. + 6x_ + 8x- + 3x_, 2x0 
1 2 3 4 5 6 7 8 

5xi 
— 

2x2 
+ 5X3 + 6X3 + 

7x6 
+ 

2x7 
+ 0

 
00

 

4x_ x„ x. 3xc x~ 
2 3 4 5 8 

xi + X- + x„ + X. + x r + X , + X-, + x0 
1 2 3 4 5 6 7 8 

x, + 3x0 - 4x0 + x, - xc + x, + 2x-. + 4x0 < 40 
1 2 345678 = 

5x- + 2x_ + 4x0 - x, - 3xc- + 7x, + 2x-. + 7x0 < 84 
1 2 345678 = 

4x0 - x„ — x. - 3x,. 
2 3 4 5 

+ Xg < 18 

-3x, - 4x_ + 8x~ + 2x. + 3x_ - 4x, + 5x^ - xQ < 100 
1 2 3456/8 = 

12x^ + 8x^ - X3 + 4x^ + x, + x, 
6 7 

< 40 

+ x2 + x3 + x4 + x5 + x6 + x7 + x8 2 12 

8x^ - 12x^ - 3X3 + 4x^ - x^ < 30 

■5x^ - 6x3 + 12X3 + x^ - x7 + x8 - ^0 

x^ > 0, i = 1, ...» 8 
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10 

11 

12 
13 

14 
15 

16 
17 
18 

19 
20 

21 
22 
23 
24 
25 

26 
27 
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Nondominated Solutions to the Zeleny Problem 

115.93 
116.08 

64.39 
37.20 

110.84 

82.72 
117.25 
-17.73 
-37.52 
-29.00 

-12.09 

-19.09 
-37.72 

-36.53 
-35.00 

-2.78 
-36.37 

8.51 
10.00 
-0.50 

5.33 
24.00 
85.84 
95.40 
31.75 

7.05 
77.84 
35.74 
9.31 

86.73 

-28.75 
-29.07 
16.74 
49.33 

-22.72 

28.52 

-27.75 
106.18 
111.59 
106.55 

102.56 
125.21 
135.90 
159.20 
173.00 

86.78 

105.85 
170.55 
168.94 
176.83 

173.33 
150.00 
38.35 
-1.38 
51.42 

63.63 
12.10 
82.51 
93.48 

-11.89 

Z3 z4 Z5 

87.18 -3.18 26.13 
87.00 -3.00 25.55 

81.13 2.87 17.65 
86.54 -2.54 22.46 

88.12 -4.12 27.12 

111.24 -27.24 28.99 

89.50 -5.50 27.00 

88.45 -4.45 26.64 

74.07 9.92 22.63 

77.55 6.45 29.44 

90.46 -6.47 31.66 

106.13 -22.13 33.43 

98.17 -14.17 31.78 

122.66 -38.66 33.24 

138.00 -54.00 29.66 

84.00 0.00 12.70 

69.48 14.52 14.59 

179.06 -95.06 39.35 

178.94 -94.94 37.49 

176.33 -92.33 38.61 

178.66 -94.66 35.11 

174.00 -90.00 39.00 

124.18 -40.18 33.56 

94.01 -10.01 31.08 

83.17 0.83 26.22 

70.68 13.31 28.11 

89.94 -5.94 31.30 

118.25 -34.25 34.60 

102.80 -18.80 29.03 

74.84 9.16 13.08 



31 
32 
33 
34 
35 

36 
37 
38 

39 
40 

41 
42 
43 
44 

45 

46 

47 
48 

49 
50 

51 
52 
53 
54 
55 

56 
57 
58 

59 
60 

61 
62 

63 
64 

65 

200 

Z1 Z2 Z3 z4 z5 

66.34 -0.34 66.00 18.00 15.00 
66.56 -0.56 66.00 18.00 19.84 
72.00 -6.00 66.00 18.00 14.62 
30.40 35.60 66.00 18.00 14.00 
33.12 32.88 66.00 18.00 14.35 

15.89 50.11 66.00 18.00 16.30 

-17.73 83.73 66.00 18.00 14.80 
29.34 36.65 66.00 18.00 21.37 

30.43 35.57 66.00 18.00 21.36 
30.62 35.38 66.00 18.00 21.42 

29.72 36.28 66.00 18.00 21.50 

56.30 -4.70 51.61 18.00 12.00 

48.85 -0.77 49.63 18.00 12.00 

,40.80 12.20 53.00 18.00 12.00 

47.13 2.71 49.84 18.00 12.00 

72.00 2.67 74.67 9.33 12.00 

95.27 -21.27 74.00 10.00 12.55 

19.55 46.46 66.00 18.00 24.44 

-9.06 75.06 66.00 18.00 17.88 

117.19 -24.95 92.24 -8.24 28.09 

-13.34 99.19 85.85 -1.85 28.22 

-19.18 118.22 99.00 -15.04 29.75 

49.25 35.93 85.18 -1.18 21.20 

84.66 -8.00 76.60 7.33 13.30 

-18.00 102.00 84.00 0.00 24.00 

86.80 15.60 102.40 -18.40 24.80 

91.60 -7.50 84.00 0.00 15.30 

15.88 55.14 71.03 12.96 25.57 

36.34 101.60 138.00 -54.00 34.34 

27.40 73.40 100.80 -16.80 31.13 

23.13 69.95 93.00 -9.07 22.24 

31.75 100.21 131.90 -47.96 23.12 

16.00 140.00 156.00 -72.00 26.66 

49.28 77.60 126.80 -42.80 22.50 

-20.72 121.58 100.86 -16.86 31.80 
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zi Z2 z3 z4 z5 

66 47.80 46.12 93.94 -9.94 17.36 
67 -0.17 71.74 71.57 12.42 21.00 
68 -12.00 96.00 84.00 0.00 12.00 
69 81.37 -6.40 75.00 9.00 12.94 
70 26.00 66.23 92.33 -8.33 15.57 

6X 
There are 70 different N points. Individual maxima of all 

objectives are boxed in to simplify the review of data. 



APPENDIX III 

THE STEUER PROBLEM 

(from Steuer [1975, pp. 18, 26, and 27]) 

Maximize 

1 

2x£ + x3 + 2x4 
— 4x5 - 3x6 + 2x 

3x2 - 4x3 + 
4x4 

+ 5x5 - 2x6 + X 

5x2 - 

2x4 + 3x^ + 5x 

3x2 + 5x3 + 2x^ + 2x^ - 4x 

Subject to 

7xi 
+ 65C3 + 2x4 + 

5x5 
< 100 

4xi 
+ 

7x6 
+ 

9x7 
< 100 

5xi 
+ 6x4 < 100 

9x3 + 4x^ < 100 

2x^ + 8x2 + 5X3 < 100 

xi + 
2x2 + 2X3 + 6x4 + 5x5 + 8x6 + 5x? < 100 

5x3 + 
3x5 

+ 
7x6 

< 100 

x^>0, i = 1, 2, ...» 7 

202 
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Extreme 
Point 

Nondominated Solutions of the Steuer Problem 

z4 Z1 Z2 z3 

1 -80. 100. 60. 40. 
2 -96.92 38.46 120.76 6.15 
3 -30 71.42 31.42 32.85 
4 -87.02 8.10 68.64 58.37 
5 -52.97 60.81 105.94 8.91 

6 33.33 66.66 -33.33 0. 
7 -13.33 55.55 82.22 -26.66 

8 -99.87 -30.32 116.83 28.64 

9 -71.59 11.78 153.37 -16.75 

10 24.44 11.11 -15.55 60. 

11 -15.55 -11.11 20. 68.88 

12 -44.89 10.20 30.61 69.38 

13 -19.34 24.59 63.27 35.08 

14 19.23 23.07 -7.69 50. 

13 -21.98 48.07 75.38 10.19 

16 -58.10 -41.41 43.81 77.19 

17 -15.61 17.12 86.02 20.13 

18 37.03 7.40 -25.92 55.55 

19 37.03 40.74 40.74 -44.44 

20 -18.33 -6.94 129.72 -74.16 

21 2.71 18.51 74.81 -0.74 

22 -76.53 -55.71 87.84 48.97 

23 -93.36 -39.03 116.07 28.31 

24 -26.41 -17.48 116.80 3.49 

25 -65.47 -22.02 139.88 -2.97 

26 -16.54 -13. 10.16 74.46 

27 32.22 6.66 -20. 58.88 

28 -26.03 -18.09 20. 75.87 

29 -7.93 -44.44 23.80 69.84 

30 -27.89 -6.48 34.54 64.90 

31 -2.97 44.04 61.90 -17.85 

32 -5.70 31.17 65.43 14.35 

33 -57.86 -49.63 48.42 74.57 

34 -55.44 -46. 42.37 78.20 

35 -29.76 -47.52 44.91 68.26 
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Extreme 
Point 

zi Z2 Z3 z4 

36 -7.69 -23.07 76.92 30.76 
37 11.81 3.59 60.31 22.03 
38 39.09 7.81 44.85 -13.58 

39 3.70 -13.42 111.57 -81.94 

40 -2.77 -26.38 118.05 -81.94 

41 -0.74 -24.69 107.65 -33.58 

42 -54.21 -66.88 61.49 63.85 

43 -34.91 -60.04 76.41 45.88 

44 -6.73 -23.39 96.39 6.36 

45 -19.23 -40.38 105.76 13.46 

46 -14.76 -41.58 10.47 79.20 

47 -26.98 -57.14 23.80 82.53 

48 -31.70 -54.12 48.79 66.68 

49 -29.62 -51.00 43.58 69.80 

50 16.04 -29.62 93.82 -39.50 

51 11.11 -39.50 98.76 -39.50 

52 -38.05 -67.32 59.89 60.33 



APPENDIX IV 

DIRECT CLUSTERING OF ZELENY PROBLEM 

(partial output) 

Code for Each Variable 

FIRST REAL 1-38.002 40.00 
SECOND REAL -30.00 73.50 
THIRD REAL 49.00 114.50 
FOURTH REAL -96.00 -38.50 
FIFTH REAL 11.00 25.50 

ROW PASS THRESHOLD COL PASS THRESHOLD 

1 .125 2 .125 
3 .250 4 .250 

5 .375 6 .375 

7 .500 8 .500 

9 .625 10 .625 

11 .750 12 .750 

13 .875 14 .875 

15 1.000 16 1.000 

Code Frequencies 

VARIABLE MISSING 1 2 

FIRST 0 43 27 

SECOND 0 41 29 

THIRD 0 57 13 

FOURTH 0 12 58 

FIFTH 0 38 32 
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t r £ 
r A£9 

MJ M 9 5R 

FOURTH 
ThI^’D 
SECOND 
FIRST 
FIFTH 

T F " 
PASS 
RUf BE F 

G 1 V 1 f. G J l T n T N G S i U H C N C p 
111 11 1111120,222*2’2 ‘ " .- - 

0123456 78 95 12 34567r 991 23*56 7*9*' 

r g i w I N G J n l NT 
min ii it 

Cl 67oQC12^4567• 93 

4 
70 --I i T- 

67 --J I T I 
61 —I I T " I" 
48 -- I I T I 
41 --I I I 1 
40 --I I X I 
-*9 --I I T i 
38 --T I i • 

36 — I I i I 
35 --T I i T 
34 -- / I i I 
25 -1 JL I. 
58 — I I I I 
26 --/ I I I 

q -I I I 
c 8 --I I T T 

r'5 --I I X I 
49 —1 I 1 I 
37 --T I I I 
17 --I I T I 
16 --/ I t~ I 

3 -/ I I 
69 --I x I 
66 --T I ▼ x 
C7 —i I i 
56 --I T i 
54 --I I i 

53 --I 1 i 
47 --I T I 
46 --I I 

T 
X 

45 - - I I I 
44 —T I I 

43 --T * -- - 
" T X 

4 2 —I I T 
73 --I - 

... . -T I - 

32 - -1 1 I 
31 --r r ~~r~ 

30 --/ i i 

1‘ - - » - - — 9 " p-r~ i 

50 —I I i 
T 

27 --I I T 
24 --I I I I 

7 --I I I I 
6 — I I I I 
5 --I I I ~ I 

2 --/ T I T 

L S 0 it : 1- c l 
w 

23- 
8 

-•/ 

— r I 
_

 i , 
! 

I 
I 

28 -- T T I 
65 --I I I 
60 --I I 1 

62 --I I I 
51 --I I I 
?9 - - T T I 

13 —x I i 
12 --1 1 I 
11 —1 I I 
io - - / T T 

3 ? - - / r I 
1 — - # * I ■> 

50 —I I X 
T 

27 --I I T 
♦ • ■ 

24 --I I T T 
7 >.J I T I 
6 X I X X* 

5 --1 I I I ~~ 
2 --/ T T T 

23- --/ I I 
8 — > ~ / I 

28 - - T T I 
65 --I i I 
60 --I i" “ 1 ~ 

6 2 --1 i I 
51 --I i" 

_ j-_ 

29 -- T i I 

13 — - x i I 
12 —I l I 
11 —1 “i "I “ 

13 --/ T 
X I 

1- • 

63 --I I 
59 --I 1 
22 —T I 
21 —I ¥ 

2G --I I 
19 --I I 
18 --I I 
15 --/ I 
62.,- 
64 — - — - / 
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r i r v* x r i A R «. - A 
►'•t.i* n=;r r ATA POINTS ..... = 350 
NUM 3£p OF FLOCKS, 
NUM35R OF FLOCKS*NOT SINGLE s'" 10 

0 

FT S F F 
* 

OH 5 I ’ I " . ?L ( ( ) < ) ) 

l11 C R F 7 ( ( ) ( ) ) 

^ R 0 S T 6 I C ) ( ) ) 
i 0 T H 5 ( < ) ( ) ) 
H 

> ' 
- { 

70 ( 
6 71 
61 ( 
»-8 ( 
*-1C 
uO ( 

3 ^ ( 
3M 
36 ( 
35 ( 

34( 

( 
25 ( 

5 8 ( 
26 ( 

( 
( 

9( 
68C 

55 ( 
4Q< 
3 7 ( 
17 ( 
16 C 

( 
( 

7 ( 

’ t 
1 

2 ( 
(i —| 

2 3 ( < 1 ) 
| — 

C 

) ( 
> ( 
) ( 

( 

) ) 
) > 
) ) 
) ) 
) ) 

»“ » 
(?) 

i~y 
( > 

* ■ t 

(2V 

t ) 
TV 

( ) 
rr 

< ) 
r l 

^ •• 

(2 

8 ( 
2* ( 

(2) 
2 ( ) 

("Tf 
( )) 

65 ( ( ) ( )) 
60 ( ( ) ( )) 
52 ( C ) ( )) 
51 ( ( ) c ) J • 
29 ( (j ~< ) ) 
1 3 ( ( ) ( )) 
1 2 C ( ) ( )) 
11 ( ( ) ( )) 
10 ( ( ) ( ->) 

(>- t ) ( ) ) 
1 u ( ( 1 ) c V ( ) ) 
63( < ) ( ) ( ) ) 
59 < ( ) ( ) ( ) ) 
22 C ( ) ( ) ( ) ) 
21 ( ( ) ( ) r ) ) 
20 ( < ) ( ) ( ) > 
19 < ( ) ( V ID 
! 8 ( ( ) ( ) ( )) 
15 ( ( )1T < TT~ 

(*•- *’) 
■“ » ) 

6 2 ( ( 3 ) ) 
( C "3 t 1 

C“- 
— — »r—* — 

__ •• ) 

c 9 ( 
66 ( 

(0 
( ) ) 

57 ( ( ) 
56 ( < ) ) 

( ( ) ) 
53 ( ( > ) 
u7 ( ( ) 
^6 ( ( ) ) 
L5 ( ( ~> ) 
44 ( ( ) ) 
63 ( n ) 
t’l ( ) ) 
3 3 ( — < 0 ) 
72 ( ( ) ) 
31 ( ( o 
3 j ( ( > ) 

( •• — •• ) 
( »•»» “ ») 

1< (?) (2) ) 
5 J ( ( ) f )) 
?7( -1 T ( )T - 
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K f i r o k r i 3 r, f, 
OP rjT* POINTS..... 

NUM9c° Or FLOCK'S.. 
number of cLOCKS> NOT SlNGir 

35 3 

_12 
10“ 

PT S r F 
OH ** 

I ' I‘“ .. 
l'I c R F 
1 R 0 * S T 
TO 
H 

>1 
n 

T H 

?<* ( 

7 ( 
6 ( 
5 ( 
?( 

(t ~~ t 

Z3<<1 ) 
{ 

) ( 
> ( 
) ( 
) ( 
) ( 
) ( 
) C 
"( 

f 

) ) 
) ) 

) ) 
) ) 
) ) 
) ) 
) ) 

) ) 
) ) 

i 
-( 

70 C 
6 71 
61 ( 
*-8 ( 
H ( 
<*0( 
3^( 
3«( 
36 C 

J 
) 
J 
) 
T 
) 
)• 

) 
35 ( — 

) 
34( ) 

( - j ** ", J 
25 ( (? ) ) 
58 ( C n 
Z 6< ( >) 

( “■ "T 
( 

9( 
58 r 
•35 ( 

3 7( 
17( 
16 f 

( 

(?) , - --— 
( ) ) 
r j j 
( ) 
r j 

> 
T----- 

8 ( (?) ~ C)) 
Z *3 ( 2 ( ) ( >) 
? 5 ( ( ) ( h 
63 ( ( ) ( >» 
52 ( ( ) ~ r > j 
C1 ( ( ) ( ) j • 
?9 ( ( ) ( ) > 
1 3 ( ( ) ( > j 
12 ( ( ) ( )) 
11 ( t ) ( >) 
13 ( ( 1 (-)) 

(,- ( ) ( )) 
1 u ( ( i ) ( I-- ( >) 
63( f ) ( ) ( >) 
59 ( ( ) ( ) ( > i 
72 ( ( ) ( ) ( )) 
21 ( ( ) (■■)• — ( )) 
73 ( ( ) ( ) ( >) 
19 ( ( > ( > — (“7)- 
1 8 ( ( ) ( ) ( )) 
1 p ( ( t r~y~ ( ) ) 

* r - - ' j ~, ) 
6?< ( 1 
6'- ( ( 

) 
— -•» v 

) 
-*v —- 

( ) 
T 3 PRFD1CTION i a e i 

( 
■»( 

' " p9C 
66 ( 
57 ( - 
56 ( 

* ~ , 
(2) 

)-;— 
> 

( ) 
( ) 

j 
) 

( ) 
( ) 

) 
) 

c4 ( ( ) > 
53 ( ( ) > 
U7l —- r 
1*6 ( ( ) > 
^ T ( ( > 
bu ( ( ) ) 
L 3 ( O r-■ 
<-’( ( ) ) 

F 
0 

0 

R 

T 
M 

T 

H 
X 

R 
0 

s 
£ 

C 
0 

N 

0 

r 
i 

P 

S 
T 

F 

I 

F 
T 
u 

33( 

’?( 
31 ( 
33C 

( 
( 

1< 
53 ( 
*7( 

T 1 ' 

( ) 
( > 
( ) 

f * t f 
(?) ( 
( ) f 
I ) ( 

r 
) 

) 
) 

-»> 
2) )‘ 

) > 
~n ■ 

1 

2 

2 

1 

2 

1 

1 - 



DIRECT CLUSTERING OF THE STEUER PROBLEM 

PROGPAM REVISED FEBRUARY 7, 1975 
MANUAL DATE ' — 1975 

Q FMrP.TM - PlPC* CLUSTERING 
hf alth SCic. NCES C0,4P' ITT NS FACTUTY 
UNIVERSITY OF CALIFORNIA, LOS ANGELES 

■IN THIS VERSION 0^ 6MDP3M 
— the SAVE FILE IS UNAVAILABLE FOR INPUT OR OUTPUT 

PRO'S'F am C CUT t- 01 INFORMATION 

PROBL 
TITLE IS "CLUSTER ANALYSIS CF ST EUR DATA”,/ 

INPUT VAf I ABLE S ARE l, 

FORMAT IS“(6X,4F6.2)”. 
C AS E= 5 ?,/ 

VARIABLE NAMES ARE FIR ST, SECOND, H II D, F CURTH. 
MAXI MUMS ARE (1)40,(2)100- 0,(3) 154, (MB3. 

MINT MUMS ARE (1)-100,(2)-6 ft, (3)-34,(4)-02. 
TNTEPVAL=5,57575 / 

PASS 
TO7 Al =16. / 

Ef 0/ 

- PROBLEM“TTTLFT—. < , . . . CUUSTEFTANALOTSIS" 0F~ STtURTOATA 

J NUMFER'OF V A r T A BITES TITT FAITTN. ........ 
UUUPEP nr variables ADDED BY tra.4SFofmatt ons. . 

L 

0 

o 

TOTAL nUnBEP OR VARIABLES . 
NUMBFR OF CASES TO READ IN. 

A 
52 

C Ac E LAREli NO VARIABLES ............ 
LIMITS AND HISSING VALUE CHECKED BEFORE IRANSFORNATIONS 

■J 
INPUT UNIT NUMBER . 
PEW I NO INPUT UNIT PRIOR TO READING.. . DATA. . . 

5 
NO 

- INPUT ROf MAT 
{or,1*^6720 

VARIABLES TO BE USED 

— 
1 FIRST 2 SECOND 3 THIRD 4 FOURTH 

TAXIMOM NOi BER OF CASES THAT CAN Be CLirSFFPECrrASSirMiNG 25 0 BLOCKS! = 45 4 

"j 
NUMBER OF CASES READ... 5? 



210 

o CODE F OR £ A C B V A R I A 9 I c 

FIFST TEAL 
1 2 1 
-100.00 -72.00 - 

4 r 
44.CC -16.00 12 00 

o SECOND real 
THIRD Ff At 

-6 ft. 0 tJ -T4.'4'T 
-34.00 3.60 

- . 8C 3?T. 3 p 
41.22 7«,80 

6 6.40” 
11b.40 

o 
FOURTH f c AL -a?.00 -49.00 - 16.00 17.00 50. 00 

t c. F 0W PASS '• HR IFHOL D . COL PASS TMft-:f;H0LD “ 

1 .125 2 .125 
r\ 

vJ
I 

.4
 

1 
1 

. ?c0 

. 375 
-4 

6 
. 25 C 
. 3 75 

7 . 5C0 9 .5 00 
r> 9 , 625 10 . 625 

11 . 750 12 . 750 
13 . 975 14 . 875 
15 1. 0 0 0 IF 1.000 

^ _T F E E_ r I V_x_N r, J U I U T IJ g St Q U c f C E 

"PASS iliii'irili 
NUMBER 0123456789ri?34567ft93 

x 
35 »" > f * * “ 
62 --I I I I 1 1 

X 49 - - T I T I 1 1 
48 --/ I I I T 1 
47 -- I I I I 1 

X 43 --I I I 1 1 
16 ~~ y ~ --/ I I I 1 
42 --I T T I 1 

X 74 -- T T 1 T 1 
33 I 1 I 1 25 ./ I I 

• k 5 -I I I 1 "l 1 -- “ -I 

29 f “ ---■ -I I 1 1 72 — »-7 I T 

46 --/ I I T 1 1 73 I I 

15 -I I T 1 * i 8 

13 -I I I 1 
t ' 1 36 ./ L 

37 --/ I I I 1 • 9 .I 

4 -/ I I i 71 — »~ “I 
26 "■>* " ~ > “»“ 71 r ( 32 IT I T“ 

30 -- T T T T 1 
1 
j 38 --/I II 

? 8 --/ I I 1 1 1 <u 17 ~ -1 1~I 

'■i 11 --/ I 1 1 
1 ♦ 31 T I 

12 -1 ' I 1 " 1 7 --/ T T 
_ / T T 7 O 1 1 

i ^ 
C 

*- Fl » > * ■r I 5 -/ I 
41 — / I 1 I i 10 - 

50 / 1 I 77 -.-.J t r- 

20 ““ > > “ i I i 1 ft --I 1 1 

40 — I r 1 I . 14 “T I 
74 --/ T 1 T 6 -/ I 

39 1 1 1 \ 19 
44 --/ 1 1 I j 

9 
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o C 0 n E F F c 0 u E N C I r S 

VAFIARIE »,T SSTflG 1 2 3 4 5 
O FIRSi 0 6 8 1"5 —15~ 8 

. SFCONP 0 15 14 1 3 7 3 
THIRD 0 5 10 1 9 11 7 

^ FOURTH 0 3 7 11 10 21 

* T PEE r j V I N r. J 0 I N T r • r- S 3 U t f* C E 

"'PASS' “ liirililll2????22222 ~ 
NUM^EP 012345678901234567c5312345673^ _ _ _ 

% 
F Cl'PTH -,-- 

FIRST ---1 I 
% THIRD ./ I 

'SECOND -----------/ . 

i 



BLOC* P I A G R A h 
rUPBcP'OF CATA' POlNTS7Tr.~7 ^ 2O'* 
NUM9FR OF {’LOCKS..... =__ 69 
NUMBIf OF FLOCKSiNOT STNGlE = "?A 

F F T c 

0 I H L 
u P I C 
R c P 0 
T T D N 
H D 

» " 
( » “ — - - ” » 

35 ( 5 ( 3 ) ) 
52T“ ~T“ ) ) 
49 ( ( ) ) 
4 8 ( ( ) ) 
47 ( ( 2 ) ) 
4 3 ( 4 ( ) ) 

( c ) ) 
16 ( (?) ( ) ) 
42( ( ) ( ) ) 
3 4 ( ( ) ( ) ) 
33 < ( ) ( ) ) 

( *•«. *• ( ) ) 
45 ( 3 ( 4 ) ) 

( > ( 9 *# ) ) 
29 ( (4) ( (2) ) ) 
46 ( < ) ( < r ) 

( *• | M •• ) ) 
1 5 ( 3 ( ) 4 ) 

( > ( ) / •; ) 
1 3 ( (4) ( ) (3) ) 
37 C ( ) 4 ( ) ( ) ) 

( *•••• * J" ) •••*• ) 

4 ( j ( ) 3 ) 
C ( J *# ) ) 

26 ( ( (2) ) (?) ) 
30 ( < ( ) ) ( ) ) 
23 ( ( ( ) ) ( ) ) 
nr 4 ( r ) ) 7 ) ) 

( ( ( ) > 
12 ? ( T ) > 3 ) 

3 ( 4 ’ ( ( ) ) 5 ) 
r ( •• ••• ) ) 
( »“»»“»f »-t ) ) 

5 1 ( (2) (4) ( (4) ' ) ) 
41 < ( ) ( ) ( ( ) ) 2 ) 

< ( >r,-"( ( ) y ) 
50 ( < ) 5 ( ( ) ) 2 ) 

( •* > ) 
( ft ft — t ~ i ) 

20 ( 111 ( ( 5 )) (2) ) 
40 ( < > 4 ( ( >) ( ) ) 

■ 2 4 C < TJ ( ( ) r t 1 ) 

( ( >,-,(( > “» ) > ( ) ) 

39( ( > (4> (((4)n < ) ) 
44 ( (3) ( ) ( ( ( ) ) ) ( ) ) ' 

r ( )•*-*•<( ll )) ( ) ) 
25 ( 

r 
(3) 2 (< 

If —-1 14 

>) 
••r 

( ) ) 
—lT^ll *1 

f »•»»“*l ) ) 
1( (4)(1)f ) 5 >" 
(7 )( )( ) ) 

?3( ()()<() ) 4 
'T“f )'( ) ( f 
8( ( ) ( ) < 5 ) 2 

36 ( ( ) (4) (. 
( 

) 2 ) 

( j - —» > 
9 ( (2 ) ) 

( ••- \ 

c,. -1 1-») 
?ir< 3 ) r 3 ) 
32(( ) ( ) 

38 ( < 5 ) T— >) 
17 ( ( 4 4) ( >) 

( ( » -» ) ) > 
31(((2) ) ((4) ) ) 

7 ((( r 4) a yyr 
((••-•• ) )) 

7 ( ) • **) 

r < ) i ~ t ) 
2 n r 5) (4) j 
5 ( ( 2 4) ( ) ) 

-- *• • *• 

» “ ♦ ) 
for 75) T37 
27 ( ( ) ( ) > 
18 ( ( ) ( ) ) 
14 ( ( ) ( ) ) 

r r i ) 
6 ( 3 ( ) 5 ) 

19 ( ~~2 ( ) 2 4 ~i 
J '*• •• 

• ■ - ■ ~ if" ~~~ _ a'i— _* 
) 
"H-- 

PREDICTION TABLE 

F F T S 
0 T H F 
URIC 
R_S R 0 
T TO N 
K 0 

22 5- 
3 4 3 3 

“5TlT 



APPENDIX VI 

A COMPARISON OF THREE HIERARCHICAL CLUSTERING ALGORITHMS 

ON THE ZELENY DATA 

Ward's Method Group Average Method Centroid Method 

#1 

#2 

#3 

10 clusters specified) 

1 1 50 1 
2 2 56 2 
5 5 5 
7 6 6 
50 7 7 

24 24 
27 27 

50 
56 

3 46 3 44 3 42 
30 47 30 45 4 43 
31 54 31 46 25 44 
32 57 32 47 26 45 
33 69 33 54 30 46 

34 57 31 47 
35 59 32 48 
36 33 53 
42 34 54 
43 35 57 

38 61 
39 66 
40 69 
41 70 

4 48 4 48 8 51 

25 53 25 53 9 52 

26 58 26 58 10 55 

38 61 38 61 11 60 

39 66 39 66 12 65 

40 70 40 70 13 

41 41 29 

213 
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#4 6 

23 
24 
27 
56 

#5 8 51 
10 52 
11 55 
12 65 
13 

#6 9 68 

16 
17 
37 
49 
67 

# 7 14 
15 

#8 18 
19 
20 
21 
22 

it 9 28 63 
29 64 
59 
60 
62 

#10 34 
35 
36 
42 
43 
44 
45 

55 14 
60 15 

65 

16 
17 
37 
49 
68 

18 
19 
20 
21 
22 

23 

28 
59 

62 
64 

63 

8 
9 
10 
11 

12 
13 
29 
51 
52 

14 
15 

16 
17 
37 
49 
67 
68 

18 
19 
20 
21 
22 

23 
28 
59 

62 
64 

63 
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(with 9 clusters specified) 

//I 1 24 1 
2 27 2 
5 50 5 
6 56 6 
7 7 
23 24 

27 
50 
56 

1 24 
2 27 
5 50 
6 56 
7 

#2 

#3 

#4 

#5 

3 47 3 36 3 41 
30 54 30 42 4 42 
31 57 31 43 25 43 
32 59 32 44 26 44 
33 33 45 30 45 
46 34 46 31 46 

35 47 32 47 
54 33 48 
57 34 53 
59 35 54 

- 36 57 
38 58 
39 61 
40 66 

69 
70 

4 40 61 4 40 61 8 13 
25 41 66 25 41 66 9 29 
26 48 70 26 48 70 10 51 
38 53 38 53 11 52 
39 58 39 58 12 55 

8 51 8 13 60 14 
10 52 9 29 65 15 
11 55 10 51 
12 65 11 52 
13 12 55 

9 67 14 16 68 

16 68 15 17 
17 
37 
49 

37 
49 
67 

60 
65 

4 
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#6 14 
15 

#7 18 
19 
20 
21 
22 

16 68 
17 
37 
49 
67 

18 
19 
20 
21 
22 

#8 28 63 
29 64 
59 
60 
62 

23 
28 
59 

18 
19 
20 
21 
22 

23 

28 
59 
62 
64 

34 44 62 
35 45 63 
36 64 
42 
43 ' 

63 

(with 8 clusters specified) 

#1 1 23 1 24 1 24 
2 24 2 27 2 27 
5 27 5 50 5 50 
6 50 6 56 6 56 
7 56 7 7 

#2 3 34 44 57 3 31 36 42 58 (Same as cluster 
30 35 45 69 4 32 38 43 61 n when 9 clusters 
31 36 46 25 33 39 44 66 were specified) 
32 42 47 26 34 40 45 69 
33 43 54 30 35 41 46 70 

#3 4 40 61 8 13 60 8 13 60 
25 41 66 9 29 65 9 29 65 
26 48 70 10 51 10 51 
38 53 11 52 11 52 
39 58 12 55 12 55 

#4 8 51 14 14 
10 52 15 15 
11 55 
12 65 
13 
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#5 9 67 
16 68 
17 
37 
49 

16 68 
17 
37 
49 
67 

16 68 
17 
37 
49 
67 

#6 14 
15 / 

18 
19 
20 
21 
22 

18 
19 
20 
21 
22 

#7 18 
19 
20 
21 
22 

23 
28 
59 

23 
28 
59 
62 
64 

28 63 62 
29 64 63 
59 64 
60 
62 

63 

(with 7 clusters specified) 

1 23 1 24 23 
2 24 2 27 28 
5 27 5 50 59 
6 50 6 56 62 
7 56 7 64 

3 34 44 57 (Same as cluster #2 (Same as cluster #2 
30 35 45 69 when 8 clusters were when 8 clusters 
31 36 46 specified) were specified. 
32 42 47 plus 16 
33 43 54 17 

37 
49 
67 
68) 

4 40 61 8 13 49 65 8 13 60 
25 41 66 9 16 51 67 9 29 65 
26 48 70 10 17 52 68 10 51 
38 53 11 29 55 11 52 
39 58 12 37 60 12 55 
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//4 8 51 14 14 
10 52 15 • 15 
11 55 
12 65 
13 

#5 9 67 18 (Same as group 
16 68 19 average method) 
17 20 

37 21 

49 22 

#6 14 60 23 23 
15 62 28 28 
28 63 29 29 
29 64 59 
59 62 

64 

#7 18 62 63 
19 63 
20 64 
21 

22 

(with 6 clusters specified) 

#1 i 23 1 24 1 24 
2 24 2 27 2 27 
5 27 5 50 5 50 
6 50 6 56 6 56 
7 56 7 7 

n (Same as when (Same as when (Same as when 
7 clusters were 7 clusters were 7 < clusters were 
specified) specified) specified) 

n 4 26 41 61 8 13 49 65 8 13 60 
9 37 48 66 9 16 51 67 9 29 65 
16 38 49 67 10 17 52 68 10 51 
17 39 53 68 11 29 55 11 52 
25 40 58 70 12 37 60 12 55 

14 14 
15 15 

11 56 
12 63 
13 

//4 8 51 
10 52 
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#5 14 60 18 
15 62 19 
28 63 20 

29 64 21 

59 22 

#6 18 23 
19 28 
20 59 
21 62 
22 63 

(with 5 clusters specified) 

18 
19 
20 
21 
22 

64 23 64 
28 
59 
62 
63 

#1 

#2 

#3 

1 23 1 27 40 53 (Same as when 
2 24 2 30 41 54 6 clusters were 
5 27 3 31 42 56 specified) 
6 50 4 32 43 57 
7 56 5 33 44 58 

6 34 45 61 
7 35 46 66 

24 36 47 69 
25 38 48 70 
26 39 50 

(Same as when 8 13 49 65 (Same as when 
6 clusters were 9 16 51 67 6 clusters were 
specified) 10 17 52 68 specified) 

11 29 55 
12 37 60 

4 26 41 61 14 8 13 52 
9 37 48 66 15 9 14 55 
16 38 49 67 10 15 60 
17 39 53 68 11 29 65 
25 40 58 70 12 51 

8 14 52 
10 15 55 
11 28 59 
12 29 60 
13 51 62 

63 18 
64 19 
65 20 

21 
22 

18 
19 
20 
21 
22 

#5 18 
19 
20 
21 
22 

23 64 
28 
59 
62 
63 

23 64 
28 
59 
62 
63 



APPENDIX VII 

WARD’S METHOD ON ZELENY PROBLEM 

(partial output) 

CCCCC LL U uu 8SSSS TTTTTT AAAAA NN N II CCCCC 
cc c LL U uu 8$ S TT A AA NNN N III cc 
cc LL U uu SSS TT A AA NNN X( mi cc 
cc LL U uu SSSS3 TT A AA N NN N ii cc 
cc LL U uu SSS TT aaaaaaa N NNN n cc 
cc c LL u uu S ss TT A AA N NN ii cc 

CCCCC LLLLLLt uuuuu sssss TT A AA N N mm CCCCC 

RELEASE 1 or VERSION 1C. 
JULY 1*75 

COMPUTE* CENTpE 

UNIVERSITY college LONDON 
19 GORDON STRrET 
LONDON -C1H 0 A H 

3 trt:::t3in 3X3 

\ 

CONVERTED TO UNIVERSITY OF DELAWARE B6700 MARCH 1*77 
BY UDCC RESEARCH SERVICES 

PROCEDURE FILE 

RUN vITH ZELEnY DECK 

NUMBER OF CASTS ■ 70 
NUMBER OF BINARY VARIABLES ■ 0 
NUMBER OF NUNFRIC VARIABLES ■ 5 

file data matrix 

READ and FILE RA* NUMERIC data 
REPLACE NUMERIC DATA by STANDARD SCORES 
PRINCIPAL COMPONENTS SOLUTION SELECTED FOR NUMERIC 0*TA 
Input DATA format(fcx,5Fb,0) 
RAh DATA FILED 

NUMERIC means filed 
NUMERIC VARIANCES FILEO 
FILE EIGENVALUES 
standard scorfs filed 

5 COMPONENT SCORES FILED 
file complete 
JOB ENDS 

220 
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o « to X O 9 o — IT O IT <v ru <j z> « « ft «» <\l o ft a <v • « O x cr «* 4- * • « tD 40 
X X r*» X >r X •** a •n ft 9 ** a 40 40 ** —i 

•* t* i* « - M 
1 

H* — <4 

X to 40 40 40 40 to OP 
M M M »-« 4-* ft M 4-t ft 4-4 M 4— ft 4-» t—• 4—• 4-* ft« 4-* 4-* 4-1 ft H 4-* 4-* 4-t ft ft 4-4 4-1 M 

I
 

1
 

I
 

]
 

1
 

1
 4-< r-« 

a a Ui Uj UJ UJ UJ UJ U UJ u UJ uj u. Uj UJ UJ UJ UJ u Uj UJ Ui Uj Ui u. UJ UJ Ui UJ Ui Ui UJ UJ UJ Ui 4U Ui UJ UJ UJ Ui Uj uj uj U* 
o o O r> o o o o o O c o o C o o O o o o CJ o o O o o o D c £> o o o o o o o o o e> o o o o o o 
o o o c o o o c c O o o c o o Cj o O CJ o o C. c. Cj Cj o o O o C o o o o c> o o o o o o o o o o o 
u u u u O u u Cl u Cl u Cl Ui Cl CJ Ci Ui Ci CJ 4-1 CJ 4-1 CJ CJ CJ u CJ CJ o o CJ CJ UCiUUUUUU Cl uuuuu 

oc a tt Uf or a a a. a or a or a a or a a ar a a or U u QL or ac QC a a fit a ac 
U Ui Uj Uj UJ u> u Uj Uj Uj u Ui Uj u u Uj UJ u. u. UJ u. Uj u Ui UJ UJ u U- UJ u u U. Uj Cu Uj Ui U u UJ Ui Ui Ui Ui Uj Ui 
ft ft ft 4- 4- 4- 1- 4- 4- 4- r- t- 4- 4- 4~ 4- 4- 4— 4— 4- 4- 4— 4- ft 4— 4- 4- 4— 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- ft- 4- 
«o to 40 X m 40 to X to to to 40 to 40 to to 40 to to to to to 40 40 to to to r) to X to to to to to to X to to to «o 40 t© *) tO tO 
3 r> 3 3 3 3 3 3 =3 3 3 3 3 3 3 3 3 z> 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
—J 3 —J _J 3 -1 -1 -J _J -J —J -» -J -1 -J 3 3 —1 -J —1 -J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
u u u o U Ui Cl u Ui Cl Cl Cl u Ci 4-1 Cl Cl Cl Ci Ui CJ Cl CJ Cl CJ CJ Ci CJ CJ 4-1 CJ Cl 4-1 4-1 4-1 4-1 4-1 Ci Ci CJ Cl CJ 4-1 Ci Cl 4-1 

a UJ 40 Uj 40 UJ UJ Ui u Ui UJ 4Ai UJ Ui UJ Uj UJ UJ UJ Ui Ui UJ t*J UJ UJ UJ UJ UJ Ui Ui uj Uj UJ UJ UJ UJ Uj UJ UJ UJ Ui u< uj Uj uj u< 
2 2 2 Z Z 2 z z 2 z z z z z Z z z z z z z Z z z z Z Z Z z 2 z z z z z z * * z z z z z z z z 

O O O o o o o o o o o o c o o o o o o o o o o o a D o o o o D O O O O O O Ci o o o O O O O O 
z z z z z z z z z z z z z z z z z z z z z z z z z Z z z z z 2 Z z z z z z z z z z z z z z z 

X «0 40 40 40 to to to •o to to to to to to to to 40 40 to to to to 40 to to to to to to to to w M <S M *) V) 40 to 4» to to to to to 
•t a QL tt a a. a Ol a a a a a a a' QC a cr a or tt Of a a a fit m. a: Or a a or t u ac t a a a « ac ar a k z a 
UJ Uj UJ UJ UJ UJ Uj UJ UJ UJ Uj U. Uj UJ UJ Uj Uj u u UJ u Uj Ui UJ UJ UJ UJ u. UJ Ui UJ uJ UJ Ui UJ uj UJ Ui Ui Ui Ui Uj uj uj uj Ui 
ft h ft ft 4- 4- 4- 4- 4- 4— 4- 4- 4- 4— 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4- 4— 4— 4— 4— 1— 4— 4- 4- 4- 4- ft- ft- ft- ft- 
«o to 40 x x r> to to to CO to to to to to to 40 to •O to to to to to •O to to to to 40 to to to to to to to to «» «• 40 tO «0 40 «o «o 
n 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 -J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
_J 3 -J —J 3 _i 3 3 -J -J —J -J 3 3 —1 3 -1 -J —i —1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
u u Cl Ui u u o u> Cl Cl 4-1 Cl Ui Cl Ci CJ Cl Cl Cl 4-1 CJ CJ Cl Cl CJ Cl 4-1 CJ CJ CJ Cl CJ uuouuu Cl Cl Cl CJ CJ 4-1 CJ CJ 

» « 4- 4) X <9 »o a a « ft x 40 9 X f>J C a «c 4- X X HI IVi o a to ft x to a to re o a* 
-o « -e -e X X X -o <4> <0 kT to to to to to to to 40 9 a a m 9 9 a Q a o o X X X X X X 40 M rvj ru r\j 

O o o •— v-1 ftj K1 u X ft- «- 
A 

40 X X X G — a f\J to X F\J — to a X to M cv IT* to 9 X X X to o a in x o ft- ft- o G 
o o o C o o o o o o ru ru ro •o 40 fO 4/> lO »r to X ft- ft- ft- ft- ® X X o «-* —• m to x «* a to to 
o o o o c o c o o o o o o o c o o o o o G G G o o o G G O o o c o O G c 

o o o o o o o o o o o o o o o o o o o o O O O G o o O o o o o o o c o o o o o o o o o o o o 

ft- 4- ft- 4— ft- 4- 4- 4— 4- 4— 4- 4- 4- 4- 4- 4- 4- ft- 4— ft- 4- 4— 4- 4- 4- ft- 4- 4- 4- 4- 4- ft- 4- 4— ft- ft- 4- 4- 4- 4- 4- 4— 4- ►- 4- ft- 

2 Z 2 2 2 z 2 z 2 z z 2 2 2 Z 2 2 z z z 2 2 2 2 2 2 2 2 2 2 2 2 2 z 2 2 2 2 z z z Z z 2 2 z 

UJ UJ Ui UJ Ui UJ Ui Ui UJ Ui Ui Ui Ui UJ Ui Ui Ui Uj Ui Ui Ui UI Ui Ui Ui Ui UJ Ui ui Ui Uj Ui Ui Ui Ui Ui Ui Ui Ui uj ui Ui Ui Ui Ui Ui 

4-t 4-4 4-* 4-t t-4 4^ 4-4 4-4 t~4 4-* t-4 t—• t-* 4—4 4-4 4-4 4-* 4-4 4-4 t—4 t-4 ft-* 4-4 4-4 4-4 4-4 4-4 4-4 4— 4—4 M 4-4 4-4 t-4 t-4 t-4 t-4 ft-4 t-4 t-4 t-4 t-4 4-4 4— 4-4 •-< 

O Ci CJ CJ Ci o CJ CJ CJ Ci Cl Ci o CJ CJ u CJ CJ CJ Cl CJ tL CJ Ci CJ Cl CJ CJ CJ CJ Ci Cl Ci CJ CJ CJ CJ CJ CJ CJ CJ CJ Ci CJ Cl Cl 

H 40 4-4 4-4 4-4 4-4 4-t 4-k Z-4 t-4 4-4 t-4 4— 4—4 4-4 *-4 4-4 4-4 4—4 4-4 4-4 ► 4 4-4 4-4 t-4 4-4 t—• t-4 *—• t-4 *■4 4-4 t—4 #-• t-4 4-4 t-4 t-4 4-4 t-4 •-4 4-4 *-* •—4 

U W u u u u. u u u u u u u u u u u u u u u u u u u U. u. u u u u u w u u u u u u u u u u u. u. u 

u u u u u. -u u. u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u U. U u u u u. u 

Ui Ui Ui Ui Ui UJ Ui Ui Ui Ui Ui UJ tz-< Ui Ui Ui u Ui UJ Ui Ui Ui tAJ u Ui Ui Ui Ui Ui u> u UJ u Ui U- u* Ui UJ Ui Ui Ui Ui Ui U- Ui Ui 

o o c. c o c C o c c o c CL C CL G C c- o G O o o c CL c c O c CL o e O G e O o O C o c c o C c G 

U Ci Cl CJ CJ Cl 4-1 4-1 Cl Cl Cl Ci 4-) CJ Ci Cl CJ Cl Ci CJ o Cl Cl Ci CJ CJ ci Cl Ci Cl Cl Cl Cl CJ CJ Cl CJ Cl Ci CJ CJ Cl Ci CJ Cl Cl 

G — X in M in a a 40 ft X c K* in «c X c m 40 o ft X ft a in X X o X 9 •o G ft x a m a ft — o 9* •— 

<J O tO 9 ftO x in •o — in O X X cr Al in 9 9 9 aj in a a 9 ■o 40 «n« ft u> ir rw a X X •-4 in to 

X x «c to 4 9 G ■ in in ru r\j to X X X — 9 a C ft 9 a €t> X c X o 9 a a X G X 9 o X ft 9 o , X 

40 ftO fO 9 k> >r •n •o 9 in a 
•* a to 40 a •o a a to x X 40 n 40 a 

to to to to tO CO tO CO oo X to to tO to X to X to X 40 X to X X X X X X X X X X 40 X X X X X X X X X X X X X 

ft- ft- ft- 4- ft- 4- 4- ft- 4- 4- 4- 4- 4- t— t— ft- t— ft- ft ft ft ft ft ft ft ft ft ft ft 4- ft t— ft ft ft 4- i- ft ft ft ft ft ft ft ft 4- 

2 Z z z z z z 2 z 2 2 2 z 2 2 z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 z 2 z z z z z z z 2 z z z 2 2 
4-4 t-4 4— t— 4—• 4-4 t—4 t-4 4—4 4-4 4-4 4—» *—4 ft-4 *-4 ft-- t—» 4-4 ft- 4-4 4-4 *— 4-4 4— t—4 4-k 4— 4-4 4-— 4-4 t-4 t-4 t-4 4— ►— t-4 t-4 t-4 t-4 

o o o o o c o O C o c c C c c o o o o o G o G G o o o O o o o c c G o o o o o o o o o o o o 

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 

Ui Ui UJ UJ UJ Ui UJ Ui UJ Ui U, UJ Ui UJ Ui Ui UJ U* Ui UJ Ui UI UJ UJ UJ UI Ui Ui UJ UJ UJ u> a Ui Ui Ui UJ Ui a) UJ a a a a a 

to «o to to to to CO to to «n to to to X X «o X X X 40 tO tn X 40 40 X X X X X X X X X X xxx X X X X X X X 

D Z> 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 —i 3 

u u U U u u u U. u u u U u U u. u It u a a u a a a u a a u. a U U u U U u U U U U a a a a a u a 

2 2 « 2 2 2 2 2 2 2 B 2 2 2 2 2 2 » * 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 X X X X X X z 2 X 2 X 

o o o O O o o O O O Cj O O O o O Cl o o o G O O o O O o O o O O O O Ci O o o o o o o o o o O o 

2 2 z z z z z 2 2 2 Z z 2 z Z 2 2 z z 2 2 2 2 2 2 2 z 2 z 2 2 z 2 2 z 2 z 2 z 2 2 2 z z 2 2 

— rw 40 o in X ft- X X o ru to 9 X ft X x O a 40 9 tn X ft X X o a rO 9 I/I X ft X o G — a 40 9 X X 

fu Au ryJ OJ ai a a a a a 40 40 rO to rO rO to 40 rO ro 9 9 9 9 9 9 9 

Ui UJ Ui Ui UJ Ui Ui Ui Ui UJ Ui Ui UJ Ui Ui Ui Ui Ui UJ Ui Ui UJ UJ Ui UJ Ui Ui Ui Ui Ui UJ Ui UJ UJ Ui Ui Ui UJ Ui Ui a a a a a a 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J ■ J 

CJ CJ CJ iJ CJ CJ CJ Ci CJ Ci CJ CJ CJ CJ G CJ CJ Ci CJ u CJ CJ CJ CJ CJ CJ CJ Cl CJ u CJ CJ Ci CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ CJ u 

► >- ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft ft >- ft ft ft ft ft 

Ci CJ CJ CJ CJ Cl CJ o Ci CJ CJ CJ o CJ CJ CJ u U Cl CJ CJ CJ u Ci Cl Cl CJ CJ Ci u CJ CJ CJ CJ CJ cj cj cj CJ CJ u CJ Ci CJ a cj 
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«T) M to M 

|u UJ i ^ i y I |^j 

OO O O OOD 
o c. o o o o o 
uuuuuuu 

A «f. IT) V) W 

3 D D D D Z> 3 

UUUUUUU 

UJUUUUUU 
* * * Z 2 A M 

O O O O Q O O 2 2 ? 2 2 2 2 

•O «Q 40 «/)«/)«• co 
or a it a a a ft 

•# <o «n io to 0 m 
3 I> !D Z> ^ I> Z> 

uuuuuuu 

H\/U - C OUK 

rv r>j ru - 

q a a a 
OO 

rw»«^ a a a 

O o o o o o o 

2 2 2 2 7 2 2 
i*J W Ui uJ Uj uj uj 
M »-t •—• M •— •—» M 
uuuuuuu 

U U U U 

o c c c o o o 
uuuuuuu 

r- a r-~ « « o 

«Q A U) (A A IA« 

H H h- »- »- H K 
2 2 2 2 2 2 2 

O C O O O O O 
t ft ci o. a a. o. 

UJ Li Ui U U U U 

0 0 a) 0 0 0 « 
3 3 3 3 3 3 3 

O O O O O O O 
2 2 2 2 Z 2 2 
r- « o c - r\i k> 
• ft a it ^ it »n 

uuuuuuu 

uuuuuuu 

a a <v « « o to 3 tt « 3 « cC 53 c© cO 52 5* x a a 
tO 33 Aj — At — AJ a~ mm 

40 u) 40 if) CO CO 
•-« ft-* ft-* ft-A ft-* CL =t CO CO 33 X CO ^3 X X 33 o X a a 

mm AJ cr-« AJ v4 AJ V# mm 
Uj UJ UJ UJ Ul UJ 
o o o o o O 
o o o o o o 
«_> CJ u G u G CO CO 3J 33 CO 33 33 X a a X a a 

-m+ —• ora 
CL tr a QC ct QC 
U- Uj u U> UJ U~ 
4- ft- ft- ft- ►- ft- 
to X X 40 to 40 o o to o- a tA a a to o a to a 52 fO 
3 3 3 3 3 3 
_i G G _» G 
G O o O U O 

is X z X X X (f 33 X a 33 mm o- tO a ro mm a to 
UJ UJ Ui uU Ul UJ to to 
z z z z z z 

o a G o o G 
z z z z z z Z3 40 O X ■^2 to X 33 rO X 52 tO X 

<1 •a < -<■ <?. to — to — — 

X 40 to CO 40 40 to CO X X X <f) 
a a a Ct a a at a cr < a a a 
UJ Lj La- u u UJ UJ *o U ^2 33 to Ut ^2 fO to UJ 33 rO to UJ 52 to to Ul 
ft- 4- ft- ft- ft- ft- ft- •-* ro t- mrn to t- mm t- mm t~ mm ft- 
40 CO 40 cO CO to to 40 X X X X 
—* 3 3 3 3 3 3 3 3 3 3 3 
—A _i _j -1 _» _l G _> G G G G 
CJ g CJ CJ G o CJ to to 3» G CO to 4 G X to 33 G X to S3 G X to 52 G 

x X a to AJ o O X A- X in 
mm mm « • — *+ — — 

(O rf' cO X to X X to X X tO X X 3
 

6
 

ftO CT 33 in a. to 
wr AJ X to a o 

Aj x 30 iC 40 O 40 r~ •-4 33 a a 
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