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ABSTRACT 

This dissertation deals with the application of practical 

heuristics in the small job shop. The emphasis is on heuris¬ 

tic devices of the "rule of thumb" variety, thus negating the 

need to employ extensive machine-computational facilities. 

Early chapters provide the reader with a survey of the sched¬ 

uling literature, as well as with a discussion of fundamental 

scheduling concepts and terminology. Some common priority 

rules are subsequently discussed, and their application is 

illustrated with reference to a typical scheduling problem. 

The supplementary application of several "rules of thumb" is 

then suggested as a device to be used in the improvement of 

schedules. The flowshop problem is subsequently covered in 

detail, and the final part of the dissertation presents a 

non-parametric argument to justify the use of heuristics as 

a workable, highly satisfactory approach to scheduling. 
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CHAPTER I 

INTRODUCTION 

In 1959, Roger Sisson attempted to summarize major ac¬ 

complishments in the area of job shop scheduling. The 

study revealed that the existing research was neither grand¬ 

ly conceived nor far-reaching in terms of practical conclu¬ 

sions. At that stage in the development of the literature, 

most authors seemed content to specify problems, delineate 

complexities, and suggest the need for further research. 

Some went so far as to set up and solve (or partially solve) 

trivial examples, but, for the most part, it was patently 

clear that much remained to be done. 

In 1971, some twelve years later, the field was again 

2 
surveyed, this time by Bravoco. Astonishingly, Bravoco 

drew much of the same conclusion as Sisson: that the job 

shop scheduling problem was still very much unsolved. (In¬ 

deed, the one-machine sequencing case was still being an¬ 

alyzed! ) 

Definition of Scheduling 

Since the term "scheduling" has received various in¬ 

terpretations when used in a job shop context, Webster's 

basic definition is cited as a benchmark: A schedule (def. 

3) is "a usually written plan or proposal for future pro¬ 

cedure, typically indicating the objective proposed, the 
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time and sequence of each operation, and the materials re¬ 

quired. "3 

In the literature, the definitions of "scheduling" and 

"sequencing" have frequently been confused. For our purposes, 

"scheduling" will be used to describe the establishment of a 

"program" in which sequencing (ordering) of operations is 

only part of the programming process. In such a program, 

the operations of each job are assigned to machines for pro¬ 

cessing at specified times. Operations may then be moved 

backwards or foreward in time (i.e. have their schedules "ad¬ 

justed"), but the order of operations is not necessarily dis¬ 

turbed. The emphasis is therefore on the placement of oper¬ 

ations within a time continuum, in which case any reposition¬ 

ing does not necessarily constitute a reordering. (In situ¬ 

ations that deal specifically with the ordering process, the 

term "sequencing" will be applied.) 

Objectives of the Scheduling Process 

The general goal of scheduling analysis is to create 

schedules that are efficient in terms of some criterion or 

set of criteria. Typically, the approach has been geared 

to optimization, even though the practicality of such orien¬ 

tation has always been open to serious question. 

The following is a representative list of commonly pur¬ 

sued objectives: 

(1) Minimization of total processing time over a set of 
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jobs (minimization of "makespan"). 

(2) Minimization of the processing time of each job. 

(3) Minimization of in-process inventory costs. 

(4) Minimization of machine utilization. 

(5) Minimization of the number of late jobs. 

(6) Minimization of total tardiness. 

(7) Minimization of costs due to not meeting due date 

exactly. (Relates to items 5 and 6.) 

Constraints on the Scheduling Models 

Even the most "general" scheduling model frequently 

calls for the imposition of a lengthy set of constraints, 

the relaxing of which renders the model invalid. The con¬ 

straints are not, of course, exactly uniform from model to 

model, but there are, nevertheless, several which are en¬ 

countered with remarkable regularity. In general, unless 

the model analyst specifies otherwise, most or all of the 

4 
following are assumed to be binding: 

(1) No machine may process more than one operation at 

a time. 

(2) Each operation, once started, must be performed to 

completion (no preemptive priorities) . 

(3) Each job, once started, must be performed to com¬ 

pletion (no order cancellations). 

(4) Each job is an entity; that is, even though the job 

represents a lot of individual parts, no lot may be pro- 
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cessed by more than one machine at a time. This condition 

rules out assembly operations. 

(5) A known, finite time is required to perform each 

operation and each operation must be completed before any 

operation which it must precede can begin (no "lap-phasing"). 

The operation time includes setup time. 

(6) The time intervals for processing are independent 

of the order in which the operations are performed. (In par¬ 

ticular, setup times are sequence-independent, and transpor¬ 

tation time between machines is negligible.) 

(7) In-process inventory is allowable. 

(8) Machines never break down, and manpower of uniform 

ability is always available. 

(9) Due dates are known and fixed. 

(10) The job routing is given and no alternative rout¬ 

ings are permitted. 

(11) There is only one of each type of machine. (There 

are no machine groups.) 

(12) All jobs are known and are ready to start proces¬ 

sing before the period under consideration begins. (This 

is the "static" scheduling problem.) 

Problems restricted only by the above set of constraints 

are sufficiently general to warrant attention. The diffi¬ 

culty is that such problems are also annoyingly invulnerable 

to most analytic approaches. While additional constraints, 

such as limitations on numbers of machines and/or jobs, per- 
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mit easier analysis, the net effect is generally to reduce 

the original problem to a trivial special case, in which 

instance solution is no longer profitable. 

Various Problem Approaches 

The job shop scheduling problem has gone wanting a tru¬ 

ly general solution, primarily because it is extraordinarily 

complex. In examples of realistic proportions, the sequenc¬ 

ing issue alone has confounded the analysts. (A simple two- 

machine, three-job case has 36 possible sequences; a five- 

machine, six-job case has 720^!) 

Faced with this predicament, the courses open to the 

analyst are unclear. One alternative is optimization. This 

approach generally involves taking a problem of real dimen¬ 

sions and "whittling" it down by incrementally imposing con¬ 

straints until it becomes a workable abstraction. If a 

digital computer is available, the simplification need be 

less extensive, but such devices are net always available. 

In their absence, the criticisms of the foregoing section 

are relevant; Problems for which optimal solutions are 

readily available are generally of little or no interest. 

A second alternative is suboptimization. Instead of 

striving for a perfect solution to an abstraction, the an¬ 

alyst may attempt to develop a highly refined working ap¬ 

proach to life-size problems that may not guarantee optimal¬ 

ity but works reasonably well most of the time. 
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In the literature, the above alternatives have had their 

counterparts in five major approach areas, four of which will 

now be discussed. 

Enumerative-combinatorial approach. In relatively simple 

situations (say two machines, three jobs), enumeration is a 

reasonable method of attack. It represents a straight-forward 

means of arriving at a guaranteed optimal answer to the se¬ 

quencing problem. This advantage, however, is offset by com¬ 

putational inefficiency, which renders the method quite use¬ 

less in most realistically complex situations. 

5 
The enumerative approach was originally used by Jackson, 

6 7 8 9 10 
Johnson, Bellman, Smith, Mitten, and McNaughton. These 

studies generally confined themselves to cases involving 

three or fewer stages with a single machine at each stage, or 

a single stage with multiple identical machines. More elab¬ 

orate cases were considered by Giffler and Thompson^ and 

Heller, but again the practicality of enumeration was m 

question. (Giffler and Thompson, in fact, suggested that 

sampling techniques be used in large-scale examples.) More 

13 14 15 
recent work by Dudek and Teuton, Gapp, Root, Smith and 

16 17 18 
Dudek, Gupta and Florian et al., has generally em¬ 

braced a modified combinatorial approach in which artificial 

19 
restrictions are used to reduce the search. 

Mathematical programming. (a) Integer Linear Programming. 

Integer linear programming has been suggested by several au- 

20 21 22 ... 
thors, notably Bowman, Wagner and Manne. Optimality is 
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guaranteed, but again the difficulty is computational imprac 

ticality. A simple problem (say four machines, three pro¬ 

ducts) requires 31 variables and 94 constraints by Wagner's 

formulation, and many more by the others. In an application 

study, Wagner himself has pointed to the need for deriving 

"methods which more fully take into account the special 

structure of machine sequencing problems." 

23 
In 1963, Little et al., developed a "branch-and-bound 

24 
algorithm for the traveling salesman problem. This was 

25 
applied to the three-machine case by Lomnicki, and to the 

2 6 
four-machine case by Ignall and Schrage. Further applicar 

27 
tions were discussed by Gilmore and Gomory, Brown and 

28 29 30 
Lomnicki, McMahon and Burton, Greenberg, Charlton and 

31 32 33 
Death, Maxwell, and Florian, Trepant and McMahon. 

(b) Dynamic Programming. Dynamic programming, as an 

approach to the handling of scheduling problems, was sug- 

34 , 35 
gested in 1956 by Bellman and in 1962 by Held and Karp. 

Bellman used it to solve the traveling salesman problem, 

37 
and Held et al. applied it to assembly-line balancing. 

3 8 39 
It was used by Wagner and Shetty, by Bomberger, by 

40 41 42 
Presby and Wolfson, by Moore, by Lawler and Moore, 

and by Glassey.43 Of these, the Moore attempts to treat a 

situation with many jobs (>30) by partitioning these into 

two subsets, an operation which improves computational eifi- 

ciency. The Lawler and Moore uses an equation similar to 

that for the "knapsack problem," and treats a variety or 
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single-machine scheduling problems. 

(c) Basic Linear Programming. In 1959, Dantzig et al.^ 

used a joint linear programming-combinatorial approach to the 

traveling salesman problem. This methodology was later ap¬ 

plied to a simplified m-machine, n-job case.4^ Finally, a 

bivalent ("zero-one") programming model was developed by von 

Lanzenauer.^ 

A weakness of basic linear programming is that its use 

may lead to fractional optimal solutions that are physically 

illogical, e.g. one half of a job processed in one fashion, 

the other half in another. Because integer programming over¬ 

comes this difficulty, it has largely supplanted pure linear 

programming in current usage. 

Monte Carlo sampling and simulation. Basically, the 

Monte Carlo method involves sampling from a population of 

feasible solutions (schedules), the intention being to apply 

principles of statistical inference to the sample. Selec¬ 

tion of the "best" schedule from a given sample does not 

guarantee that other "better" schedules do not exist outside 

the sample, but the likelihood of this possibility can be 

made arbitrarily small. 

The sample of feasible solutions may be generated from 

various "runs" of a job shop simulator. This technique nor¬ 

mally requires construction of a computerized model, which 

is used to duplicate (numerically) actual job shop conditions. 



9 

47 4 8 
Heller and Logemann and Giffler and Thompson both 

applied Monte Carlo sampling in cases that were previously 

approached from a purely enumerative standpoint. Computer 

49 
simulation studies were undertaken by Jackson, Baker and 

50 51 52 52 
Dzielinski, Gordon, Legrande, and Bulkin et al. The 

last of these is an interesting study of production control 

in a fabrication shop at Hughes Aircraft. 

Graphical and miscellaneous approaches. (a) Graphical. 

A graphical, non-numerical approach to the scheduling prob- 

54 
lem was first suggested by Akers and Friedman. Joint dy¬ 

namic programming-graphical techniques were subsequently in- 

55 56 
troduced by Szwarc. Hardgrave and Nemhauser devised a 

graphical version of Giffler and Thompson's early Gantt 

chart approach, enabling them to find minimum total proces¬ 

sing time in the two-machine case. Finally, a precedence 

57 
graph algorithm was concocted by Ashour and Parker. 

(b) Mixed. Several studies have used combinations of 

5 8 
various programming techniques. Elmaghraby, for example, 

uses linear, integer, and dynamic programming methods to 

59 
handle the loading problem. Emmons also uses a combina¬ 

tion of techniques in his analysis of one-machine sequencing. 

Methodological Weaknesses 

It has been suggested that the more mathematically rig¬ 

orous an approach, the more likely it is to encounter diffi¬ 

culty in practical application. To illustrate the validity 
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of this statement, consider, for example, the linear program¬ 

ming interpretation of the scheduling problem proposed by 

6 0 
Bowman. Bowman's suggested approach judiciously adheres 

to all of the rigorously defined precepts of linear program¬ 

ming and, in doing so, quickly becomes self-defeating. 

Bowman's problem involves three jobs, X, Y and Z, and 

four machines. A, B, C and D. The established machine se¬ 

quence for job X is (ABCD); for job Y, (CADB); and for job 

Z, (DA). (Job Z requires no processing on machines B and C.) 

The basic variables in the problem are of the form j(m,i) 

where j refers to the job in question, m refers to the opera¬ 

tion, and i refers to the time period during which the oper¬ 

ation takes place. (For example, X(A,1) stands for job X, 

machine A, and time period 1.) 

Variables can have a value of either zero or one. If, 

for example, X(A,1) has value zero, the interpretation is 

that no work is being performed on job X by machine A during 

time period 1. Alternatively, a value of unity means that 

work is_ being performed. 

The problem requires specification of several different 

sets of constraints. The first set accounts for the fact 

that all variables must have values of either zero or one at 

all times, that ‘is, during a given time period, a process is 

either taking place or not. Hence: 
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1 > X(A,1), X(A,2) • • • t X (A, T) , X (B, 1) , X (B , 2) • • • / 

Y(A,1) • • • / Y(D,T) • • • r Z(D,T) > 0. 

The second set of constraints ascertains that all indi¬ 

vidual operations will be performed in their entireties, (e. 

g. product X requires 5 time units on machine A). Examples 

of these constraints are: 

Y(A,i) = 4, Z(D,i) = 6. 

The third set of constraints ascertains that no two jobs 

will be processed by the same machine at the same time. Con¬ 

straints are of the form: 

X(A,1) + Y(A,1) + Z(A,1) £ 1 

X (A, 2 ) + Y (A, 2) + Z (A, 2) < 1 

X(D,T)+ Y(D,T) + Z(D,T) £ 1 

The fourth set dictates adherence to sequencing require¬ 

ments, specifically, no operation can begin until the previ¬ 

ous operation (as prescribed in the sequence) has been com¬ 

pleted. As an example, job X must be processed for 5 time 

units on machine A before it can begin processing on machine 

B. Similarly, the job must be processed for 2 time units on 

machine B before it can be started on C. Thus, 
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5X(B,j) < I*^"1 X(A,i) 

2X(C,j) < X(B,i) 

6 2 (A, j ) < Z^'1 Z(D,i) 

for all j from 1 to T. 

To prevent interruption prior to completion of any oper¬ 

ation, a fifth set of constraints is added. The constraints 

are of the form: 

5X(A,i) - 5X(A,i+1) + z}“?+2 X(A,j) < 5 

2X(B,i) - 2X(B,i+l) + X(B,j) < 2 

62 (D, i) - 6Z(D,i+l) + E^T+2 Z(D,j) < 6 

for all i from 1 to T. 

Upon analysis, the Bowman formulation is found to re¬ 

quire between 300 and 600 real variables, as well as a sub¬ 

stantially greater number of constraints. Clearly, this 

represents a formidable amount of data, especially when one 

considers the limited scale of the problem (3 jobs and 4 

machines). On this basis, problems of any reasonable size 

would be expected to be entirely unworkable. 

Considerable advances have been made since Bowman ori¬ 

ginally delineated the linear programming approach to job 
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shop scheduling in 1959. Specialized types of programming, 

such as "Zero-One," combined with "branch-and'bound" tech¬ 

niques, have greatly improved computational efficiency, yet 

the disadvantages of rigorous, formal analysis remain. The 

problem-solving process has been made simpler, yet not so 

simple as to permit truly efficient generation of precisely 

optimal solutions to very large problems, even assuming ac¬ 

cess to the most advanced kinds of computational equipment. 

Linear programming is but one example of a formal, an¬ 

alytic approach to the scheduling problem. In practice, 

enumeration and combinatorial techniques are even less suc¬ 

cessful because they make even greater demands on computa¬ 

tional facilities. 

Simulation techniques have been used with some success, 

although accurate modeling of the job shop is likely to be a 

formidable task. Each operation tends to require a special¬ 

ized simulation, which precludes the use of general purpose 

software "packages." Thus, heavy development costs in com¬ 

bination with high costs of the hardware itself generally 

prohibit simulation as a feasible approach in all but the 

largest job shops. 

The answer to all these difficulties would appear to lie 

in the use of a less precise methodology which is not orien¬ 

ted toward extreme accuracy of results. One such methodology 

involves the use of dependable "heuristics." Before proceed¬ 

ing to delineate the advantages of this approach, however, it 
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is first necessary to examine the various interpretations 

that the term has received in the literature. 

Definition of Heuristics 

Webster's Third New International Dictionary defines the 

adjective "heuristic" as "serving to guide, discover, or re¬ 

veal; specif.: valuable for stimulating or conducting empir¬ 

ical research but unproved or incapable of proof- often used 

of arguments, methods or constructs that assume or postulate 

what remains to be proven or that lead a person to find out 

61 
for himself." Similarly, the Random House Dictionary of 

the English Language defines heuristic as (1) "serving to in¬ 

dicate or point out; stimulating interest as a means of fur¬ 

thering investigation" or (2) "encouraging the student to 

discover for himself." 

In common business usage, the term "heuristics" has re- 
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ceived various specialized definitions, each of which tends 

to emphasize a particular aspect of the basic meaning. For 

6 3 
example, many authors equate heuristics with "rules of 

thumb," defined by Webster's as "method(s) of procedure or 

analysis based upon experience and common sense and intended 

to give generally or approximately correct or effective re- 

64 
suits." While connotations of "guidance" are clearly pres¬ 

ent in both definitions, the latter is much more explicit in 

stressing "experience," "common sense," and outcomes that 

are only "approximately correct or effective." 

Another group of authors, following the interpretation 

6 5 
of Simon and Newell, stress the connotation of "self-dis¬ 

covery" or learning.^ (Simon and Newell first applied the 

word "heuristic" to instances in which computers could be 

programmed to duplicate human intelligence, in the sense of 

problem solving and the development of strategies.) 

Still a third group of researchers, suggesting alliance 

with Simon and Newell, have sought to define heuristics pure- 

6 7 
ly in terms of search reduction. For example, any approach 

to the sequencing problem requiring less than full enumera¬ 

tion of all possible sequences is said to be heuristic. Thus, 

all "branch-and-bound" and similar algorithmic approaches 

would properly be included within this definition. (Note 

that while search limitation is part of the heuristic prob¬ 

lem-solving process as defined by Simon and Newell, it does 

not appear as a part of the basic definition of "heuristic.") 
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As Weist aptly points out, it appears that common usage 

permits a heuristic to be defined as "any systematic way of 

solving problems- e.g., systematic cut-and-try based on rea¬ 

sonable rules of thumb at one extreme, and algorithms with 

their supporting theories and known properties at another 

6 8 
extreme." Indeed, this variability of meaning is clearly 

documented in the next section. 

Job Shop Heuristics: Summary of the Literature 

One of the earliest appearances of the word "heuristic" 

in scheduling literature was in connection with a line-bal-‘ 

6 9 
ancing problem described by Tonge. Although Tonge's study 

did not bear directly on the job shop problem, it was sig¬ 

nificant in that it served to test the feasibility of a heu¬ 

ristic approach to complex decision-making. On the basis of 

the outcome, Tonge concluded that heuristics was a valuable 

scheduling tool. 

The basic line-balancing problem is as follows: Given 

an assembly process made up of elemental tasks, each with a 

time required per unit of product and an ordering with other 

tasks, what is the least number of work stations needed to 

obtain a desired production rate? To answer this question, 

Tonge proposed a heuristic procedure consisting of three 

phases: 

(1) Repeated simplification of the initial problem by 

grouping adjacent elemental tasks into compound tasks. 
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(2) Solution of the simpler problems thus created by 

assigning tasks to work stations at the least complex level 

possible, breaking up the compound tasks into their elements 

only when necessary for a solution. 

(3) Smoothing the resulting balance by transferring 

tasks among work stations until the distribution of assigned 

tasks is as even as possible. 

An early major study investigating artificial learning 

processes in a job shop setting was that of Fischer and 

70 
Thompson. The fundamental conjecture was that probabilis¬ 

tic selection of loading rules is initially superior to any* 

other mode of selection, but that learning can be used to. . 

eventually improve the selection process. 

To test this conjecture, an "unbiased random process" 

was used to select a loading rule from a given set of rules. 

(The experimental set consisted of only two rules, the SIO 

("shortest imminent operation") and LRT ("longest remaining 

time"), although any number might have been included.) When¬ 

ever it was necessary to decide which of several jobs should 

be scheduled next on a given machine, a new "drawing" was 

made. 

Fischer and Thompson succeeded in demonstrating the 

validity of the first part of the conjecture: The unbiased 

random process did reasonably well as a scheduling heuristic 

and invariably produced better results than the "worst" rule 

in the set. The second part of the conjecture, however, was 
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not so clearly borne out. 

It was felt that experience with probabilistic selection 

of rules might lead to the formulation of a more systematic 

method of choice that could improve overall results. (For 

example, it seemed reasonable that the SIO rule should be 

employed in early scheduling decisions and the LRT rule in 

later ones.) A learning program was thus designed and tested. 

The remainder of the Fischer-Thompson article contains 

a description of specific learning processes incorporated in¬ 

to the program, as well as elaborate statistical testing of 

results. The discouraging conclusion, drawn from the find¬ 

ings, is that learning is possible, but not very desirable 

in light of the (statistically) very minor advantages that 

accrue. The additional effort required to incorporate a 

learning device into the random selection process simply did 

not appear to be justified. 

Somewhat more optimistic results were obtained by Cra- 

71 
bill. Examining what he calls a "job-at-a-time" adjusting 

procedure, Crabill's method calls for scheduling each opera¬ 

tion of a particular job in order to optimize its effect on 

the maximum flow-time of all jobs. Once an operation is 

tentatively inserted into "best" position, the effect on pre¬ 

viously scheduled operations is determined by computing new 

operation starting times and other relevant data. 

Specifically, the "best" position for a particular oper¬ 

ation of job J is the one that minimizes a lower-bound esti- 
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mate of job flow-time over all jobs. Assume T represents 

the potential starting time of job J on machine I. Also 

assume j=l,2,...,n represents the sequenced set of jobs 

scheduled on machine I, but not completed at time T. (There 

are n+1 positions available for the "insertion" of job J, 

before the first job, or immediately following each of the 

n scheduled jobs.) Finally, let be the current finish 

time of job j on machine I; be the current completion 

time of job j; be the smallest completion time of job j; 

E. be the finish time of job j (J,1,2,...,n) on machine I 
3 ^ 

if job Q is inserted into schedule position q=(0,1,...,n); 

and tj be the processing time of job J on machine I. 

For every schedule position q, Crabill computes the 

quantity: max(CT+ET -T-t-r, max (C.+E. -D.) ) where j=l,..., 

n. The schedule position that minimizes this quantity is 

selected as the position for job J. 

Note that if any job j is completed beyond its current 

finish time on machine I (D^), its overall completion time 

may be increased by approximately E^-D^. (This bound is 

imprecise because waiting time at subsequent operations 

tends to reduce it, while precedence constraints tend to 

amplify it.) If started in position q, the waiting time of 

job J is C-r+E^ -T-t _. The position selected is the one that 
J J Jq J 

minimizes the increase in lower-bound completion time for 

any job. 
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In Crabill's method, "learning” proceeds from an initial 

schedule in which jobs are inserted in decreasing order of 

total processing time. Twenty problems were considered, each 

requiring nine applications of the adjusting procedure. The 

results compared quite favorably with best outcomes obtained 

through the use of dispatching procedures. 

In 1964, Karg and Thompson devised a heuristic approach 

to solving traveling salesman problems. This was of special 

significance because of the close relationship between job 

72 
shop sequencing and the traveling salesman. 

The classic traveling salesman problem may be described 

as follows: A salesman must visit each of a given number of 

cities exactly once before returning home. Locations of all 

cities are specified, and the object of the problem is to 

determine the closed-loop route (or routes) that minimize the 

total distance traveled. (In the analogous machine shop se¬ 

quencing problem, the cities are the machines, and the inter¬ 

city distances are the times spent at each machine. Minimi¬ 

zation of total processing time is akin to minimization of 

total distance traveled.) 

When the number of cities is small, the problem can easi¬ 

ly be solved, either by numerical enumeration, by integer 

programming, or by graphical analysis. When the number of 

cities is very large, however, these methods become impracti¬ 

cal . 
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The heuristic approach is used to obtain an optimal or 

near-optimal solution in instances that cannot easily be 

solved by more mathematically rigorous means. Given a list¬ 

ing of cities a heuristic rule is used to generate a re¬ 

stricted set of closed loop routes that may or may not con¬ 

tain the optimal route. The shortest route is then picked 

from this set. The properties of this shortest route are 

then used to define sub-problems, which are subsequently 

attacked in the same way as the original problem. 

Schwartz considers the n-operation, two-machine se¬ 

quencing problem in terms of precedence diagrams and assign- 

73 
ment matrices. The model permits variable operation times, 

as well as utilization of either or both machines. A simi¬ 

lar approach was used earlier to treat a less flexible m-ma- 

. . 74 
chine case. 

The theory of precedence diagrams is intimately related 

to that of critical path schedules, PERT diagrams, and Gantt 

charts. The precedence diagram is a display of technological 

ordering restrictions in which numbered nodes are used to 

designate the operations, and arrows between the nodes are 

used to indicate precedence. Operation times and machine 

codes are also included in the diagram. 

For computational purposes, Schwartz converts the pre¬ 

cedence diagram to an assignment matrix. When a computer is 

used, nodes are designated by index numbers, and precedence 

is indicated by the positioning of Boolean elements through- 
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out the matrix. (For example, if node i must precede node j, 

a "1" appears in the jth row, ith column.) When problems are 

to be solved manually, the Boolean element "1" is replaced 

with its node designation, and the Boolean element "0" is 

omitted. 

Schwartz's heuristic method can best be illustrated with 

reference to an example. Consider the assignment matrix 

(Figure 1) which was derived from the precedence diagram 

(Figure 2). Note carefully the last two columns of the as¬ 

signment matrix. These contain processing times, required 

for each operation, on machines A and/or B. 

The following definitions pertain: 

(1) Precedence number. The precedence number specifies 

the number of operations that follow any given operation. 

Precedence numbers for each operation are obtained by count¬ 

ing occupied grids in each column of the assignment matrix. 

For example, column 1 has six occupied grids, so 6 other op¬ 

erations must follow operation 1. Furthermore, these opera¬ 

tions are 5, 9, 13, 17, 20 and 23, as may be determined from 

the left-hand scale of the assignment matrix. 

(2) Precedence time. The precedence of an operation is 

the total time required to process all unassigned operations 

that follow it. Precedence time for a given operation is 

thus obtained by adding the A-B column figures appearing in 

only those rows which correspond to subsequent operations. 

For example, operations 19, 22 and 24 follow operation 16 
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and require a total of 4+3+3+1+1=12 time units. The com¬ 

ponents of the addition are read from columns A and B, rows 

19, 22 and 24. 

The procedure involves three basic steps: uncovering 

operations, assignment, and ensuring feasibility. 

(3) Uncovered operations. Uncovered operations have no 

predecessors and may therefore be assigned freely. An un¬ 

covered operation creates a blank row in the assignment ma¬ 

trix. In Figure 2, operations 1, 2, 3, and 4 have no prede¬ 

cessor operations, and their rows are therefore blank. Oper¬ 

ation 5, on the other hand, is preceded by operation 1, oper¬ 

ation 6 by operation 2, and so.on. 

The entire sequencing procedure may be summarized as 

follows: The assignment matrix is prepared and then inspec¬ 

ted for uncovered operations. Operation 1 will always be 

uncovered. If it appears in isolation, it will be assigned 

immediately to a machine. On the other hand, several un¬ 

covered operations may appear simultaneously, in which case 

it will be necessary to determine priorities for their as¬ 

signment. 

Let T^ and T^ be total elapsed running times of machines 

A and B at the time the priority determination must be made. 

If these are equal, then the operation with the greatest 

precedence time is selected for assignment. This assures the 

uncovering of those operations with the greatest total re¬ 

maining time. However, if T and TR are not equal, the oper- 
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a turn whose machine has the minimum accumulated time should 

be chcsen. Such a decision leads to minimization of idle 

tire- in the following period. 

Cnee an operation has been disposed of, the associated 

columnar elements are reduced to zero. This creates at 

least one new blank row and, hence, one new uncovered opera¬ 

tion. (The reader may verify that elimination of column 1 

tnvariably results in the uncovering of operation 2.) Hence, 

new uncovered operations are constantly being generated. 

Finally, uncovered operations are placed in storage and 

sorted into sets of fixed and flexible assignments. Addi- * 

tionally, uncovered oeprations with fixed assignments are 

assigned to designated machines. (The handling of flexible 

assignments is somewhat involved and will not be dealt with 

here. However, such omission in no way interferes with 

Schwartz’s basic heuristic argument.) 

In terms of theory, Schwartz's assignment rules seek to 

minimize idle time and balance the parallel sequences. This 

requires examination of current elapsed time on each machine, 

as well as remaining running time of covered operations. 

Ideally, the total set of operations would be equally di¬ 

vided between the two machines. It is therefore possible to 

compute a lower bound for total elapsed time of the parallel 

sequences (although this lower bound may not necessarily be 

a feasible solution.) 
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Actual application of Schwartz's method reveals that the 

algorithm tends to converge more closely to an optimum (lower 

bound) as the number of operations increases. This occurs 

because the number of permutations on operations increases 

and several optimum solutions may exist. The scope of the 

problem affords many opportunities to make adjustments. Thus 

a bad decision at one point can be offset by a good decision 

at a subsequent point. 

In 1965, Gavett developed three heuristic rules as a 

means of approaching the single machine sequencing problem. 

The objective of the sequencing decision was to minimize ma- 
75 

chine setup time over a set of heterogeneous jobs. 

Under completely deterministic circumstances, it is 

theoretically a simple matter to minimize total machine setup 

time. The procedure involves constructing a matrix of t^s, 

where each t^ is the time required to change the facility 

(machine) from processing job i to processing job j. (t^j is 

not necessarily equal to t^.) If the number of jobs is rel¬ 

atively small, the job sequence requiring minimum total setup 

time can be found by direct enumeration of all possible se¬ 

quences. If the number of jobs is relatively large, the op¬ 

timal sequence can be obtained by applying a variation of the 

classic "branch-and-bound" approach to the "traveling sales- 

7 6 
man" problem. 

Gavett is interested in those situations which do not 

precisely conform to the above description, and, consequently. 
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into which it is desirable to introduce heuristics. In par¬ 

ticular, he aptly points out that the paired-job setup times, 

t^j, are frequently difficult to estimate accurately. This 

fact often negates the validity of enumerative or "branch-and- 

bound" solutions. 

In large-scale problems, the application of "branch-and- 

bound" or other algorithmic techniques frequently places 

heavy demands on computational facilities. If such facilities 

are small or non-existent, the use of such techniques is often 

highly impractical. This is, of course, another point in 

favor of simple heuristic rules. 

Gavett suggests three heuristic rules: 

(1) The "next best" rule. "Always select the unassigned 

job which has the least setup time relative to the job which 

had just been completed." Upon selection of a particular job 

for processing, the rule is applied to the remaining set of 

jobs. This process continues until all jobs are exhausted. 

The "next best" rule is intuitively compelling because 

it suggests that the machine operator, having some knowledge 

of job characteristics, will always schedule similar jobs as 

a group, in order to minimize increases in setup time from 

one job to the next. In many instances, this appears to be 

a reasonably valid point of view. 

(2) The "next best" rule with variable origin. This 

rule initially calls for the application of the "next best" 

rule, in order to determine the first job in the sequence. 
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It then calls for trial insertion of all possible jobs in 

second sequence position, the "next best" rule subsequently 

being applied in each case. 

To illustrate this semi-enumerative rule, consider an 

initial sequence 1-6-2-3-5-4. The first two jobs of subse¬ 

quent trial sequences will be 1-2, 1-3, 1-4, and 1-5. The 

remainder of each sequence will be generated by individual 

application of the "next best" rule, and the sequence chosen 

will be the one for which total setup time is a minimum. 

(Note that this method requires the construction of a setup 

time matrix.) 

(3) The "next best" rule after column deductions. For 

any job J, this rule calls for the reduction of each t^j by 

an amount equal to min(t^j,t2jr ..-/tnJ). The "next best" 

rule is then applied to obtain a feasible sequence. 

To test these rules, a sample of setup-time matrices 

was generated by a computer. The heuristic rules were ap¬ 

plied to each matrix, and results were compared with (1) op¬ 

timum values obtained through application of the "branch-and- 

bound" algorithm, and (2) values obtained through random 

sampling. The conclusion was that the "next best" rule and 

its variants represented a significant improvement over ran¬ 

dom sequencing. 

In the testing, setup times were not held precisely 

rigid, but were assumed flexible over a small range of values. 

The evidence was that small variances did not seriously in- 
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terfere with the general usefulness of the heuristic rules. 

Heuristic Approaches to Date: An Appraisal 

The studies cited in the foregoing section are believed 

to represent a good cross-section of the heuristic litera¬ 

ture. They easily verify Weist's contention that the term 

"heuristic" has been subjected to an enormous range of in¬ 

terpretations . 

It is not our intention to pass judgment on the liber¬ 

ties that authors have taken in defining the term, but mere¬ 

ly to point out that some interpretations appear to be less' 

useful than others. If the primary purpose of the heuristic 

approach is held to be simplification, then there is some 

question as to whether the more highly refined algorithmic 

approaches achieve their goal. Clearly, many of these ap¬ 

proaches do not permit manual generation of solutions and, 

what is worse, many of them require computational facilities 

that could hardly be described as modest. 

In addition to this, the logic underlying many of the 

approaches is extremely difficult to discern, and, in fact, 

many authors seem totally unwilling to engage in any type of 

interpretive discussion. Under these conditions, advocates 

of a given scheme would be expected to proselytize a limited 

number of theoreticians, but with little or no hope of ever 

developing much of a following from the ranks of the practi¬ 

tioners. This is indeed unfortunate, since practical appli- 
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cation should evidently be a matter of first priority. * 

In order to insure maximum acceptability within the 

field, heuristic methods should evidently be oriented towards 

ease of application and simplicity of interpretation. The 

first goal can be achieved by defining "heuristics" in line 

with the "rule of thumb" interpretation; the second can be 

accomplished by stressing the logic underlying every aspect 

of the proposed approach. 

A close examination of the literature reveals that the 

bulk of work dealing with job shop heuristics of the "rule 

of thumb" variety seeks to subject certain priority rules to 

simulative testing. The general approach has been to start 

with some of the more basic rules ("job slack," "first-come, 

first-served," "shortest imminent operation," etc.) and then 

to develop and test more sophisticated rules. At any rate, 

the emphasis has been on the testing of rules in order to 

determine their effectiveness, rather than on practical ap- 

77 
plication and intuitive understanding. 

Curiously, there have apparently been no popular expo¬ 

sitions which seek to explain how one actually goes about 

successfully employing priority rules in an actual, job-shop 

setting. The simulation studies have been reasonable effec¬ 

tive in determining the relative usefulness of certain simple 

and compound rules, but the intelligent application of such 

rules is a matter left to question. Baker and Dzielinski, 

for example, found that the "shortest imminent processing 
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time" rule worked well if it was desired to minimize the 

7 8 
average of all jobs' manufacturing times. But how, pre¬ 

cisely, does one take that knowledge and apply it in actual 

scheduling practice? This is the topic to which we wish to 

address ourselves in the dissertation. 

Basic Approach of the Dissertation 

In order to arrive at a satisfactory solution to the job 

shop scheduling problem, we propose a highly flexible intui¬ 

tive approach that is not limited by the dynamic nature of 

the scheduling environment. The method, in fact, focuses on 

adaptability as the most important single characteristic of 

the job-shop scheduler. 

Of extreme benefit to the small job shop is the proce¬ 

dure's modest requirement in terms of both human and machine 

capability. A basic understanding of Gantt charts, as well 

as some "feel" for the logic behind priority rules, would be 

considered important, but, beyond that, the approach presup¬ 

poses no specialized skills or aptitudes. In addition, any 

required calculations can normally be handled with paper and 

pencil. 

The discussion will center around several prototypic 

examples. In each example, several jobs must pass through a 

set of machines in some prescribed sequence, although this 

79 
sequence may vary from job to job. The processing time re¬ 

quired by each job at each work station is fixed and known. 
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Setup and transferral times are assumed to be included in 

processing times, and assembly times, if any exist, are 

assumed negligible. 

In the initial formulation of the problem, additional 

restrictions preclude cancellation or addition of orders 

during the period over which the original job set is to be 

processed (i.e. the situation is "static."). Once the anal¬ 

ytic framework has been established, however, these con¬ 

straints will be dropped, that is, the scheduling environ¬ 

ment will become "dynamic." 

The approach requires that the sequencing of each job 

be tentatively determined according to one of several simple 

priority rules (to be discussed shortly). The choice of 

priority rules is dependent, to a degree, on the criteria to 

be "optimized," but even the most careful rule selection 

does not guarantee a satisfactory schedule at this point. 

If improvement is desired, adjustment of the original work¬ 

ing schedule may be accomplished by applying one or more of 

several supplementary heuristic rules. 

Objectives. Initially, the objective is to devise a 

schedule that results in "minimum" schedule length (makespan), 

or, alternatively, in "minimum" idle time. In a later sec¬ 

tion, critical dates (due dates) are introduced. The objec¬ 

tive is then to construct a schedule that permits all jobs 

to be completed "on time," or, alternatively, with minimum 

lateness. 
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The use of quotation marks on words such as "minimum," 

"maximum" and "optimum" is meant to suggest that the terms 

are only approximately valid in a context of this sort. A 

true heuristic methodology by nature is incapable of guaran¬ 

teeing an optimal solution to any problem, although exactly 

optimal solutions may occur by accident. The best that can 

be expected is a solution that is very near optimal, al¬ 

though the likelihood of this diminishes somewhat as problem 

size grows beyond the limits of human assimilative ability. 

(The value of methodologies that "suboptimize" rather than 

optimize will be discussed subsequently.) 

Priority rules. In the dissertation, several of the 

more commonly encountered priority rules will be considered. 

The application of these rules will be illustrated, using 

each of the sample problems as an example. 

The following will be discussed: 

(1) First-come, first served. This is the classic rule 

which affords first priority to first arrivals. 

(2) Shortest imminent processing time. According to 

this rule, orders are arranged such that the job requiring 

the least processing time on the very next operation is 

scheduled first. This rule is of particular interest since 

8i 
its use in simulations has produced some very good results. 

(3) Longest imminent processing time. According to 

this rule, orders are arranged such that the job requiring 

the greatest processing time on the very next operation is 
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scheduled first. 

(4) Job slack. Maximum priority is given to the job• 

which has the smallest difference between time remaining to 

its due date and total remaining processing time. 

(5) Job slack- remaining operations. This rule estab¬ 

lishes priority on the basis of the ratio S/N, where S = 

slack and N = the number of operations remaining beyond the 

decision point. The smaller the ratio of S to N, the higher 

the priority of the job in question. 

(6) Job slack- remaining time. This rule asserts that 

the priority of jobs should be judged on the basis of slack 

in relation to total remaining pre-deadline time. Specific¬ 

ally, the measure is S/T; the smaller this ratio, the higher 

the priority of the associated job. 

Secondary rules. The key to successful application of 

priority rules is believed to lie in the scheduler's ability 

to supplement them with dependable heuristics. Frequently, 

for example, a schedule that fails to meet due-date require¬ 

ments can be successfully adjusted by applying secondary 

heuristics, such as "If scheduling according to the primary 

rule causes a job to become late, consider the reassignment 

of priorities" or "If obvious gaps exist, try to fill them." 

These and similar rules will be discussed extensively in 

the course of the dissertation. 
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A Philosophical Note 

Even the most carefully designed heuristic approach is 

subject to criticism by those who maintain that the only 

useful solution to any problem is the optimal one. This 

commonly-encountered argument has not, however, gone without 

rebuttal. For example, in their book Organizations, March 

and Simon state that 

"...finding the optimal alternative is a radically 
different problem from finding a satisfactory alterna¬ 
tive. An alternative is optimal if: (1) there ex¬ 
ists a set of criteria that permits all alternatives 
to be compared, and (2) the alternative in question 
is preferred, by these criteria, to all other alter¬ 
natives. An alternative is satisfactory if: (1) 
there exists a set of criteria that describes mini¬ 
mally satisfactory alternatives, and (2) the alterna¬ 
tive in question meets or exceeds all these criteria. 

Most human decision-making, whether individual or 
organizational, is concerned with the discovery and 
selection of satisfactory alternatives; only in ex¬ 
ceptional cases is it concerned with the discovery 
and selection of optimal alternatives. To optimize 
requires processes several orders of magnitude more 
complex than those required to 'satisfice*. An ex¬ 
ample is the difference between searching a haystack 
to find the sharpest needle in it and searching the g-, 
haystack to find a needle sharp enough to sew with." 

The proposed heuristic approach to shop scheduling is 

very accurately definable in terms of "satisficing." A lim¬ 

ited number of schedules is generated, and each is evaluated 

on the basis of a specific "criterion." The schedule which 

yields the best results, in terms of that criterion, is the 

one selected. 

Linear programmers might argue that March and Simon's 

"criteria" are actually constraints, since they are fixed 

and not capable of being optimized. In a linear programming 
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context, they would, of course, be correct. Note, however, 

that the non-specialized definition of "criterion" is merely 

"a standard of judging," and this is precisely what is im¬ 

plied in the foregoing context. 

In any instance where optimization is either impossible 

or impractical, "satisficing" would appear to be a highly 

attractive alternative, even in spite of the obvious trade¬ 

offs. In the following pages, we outline a heuristic ap¬ 

proach to shop scheduling that is fully consistent with this 

outlook. 
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CHAPTER II 

FUNDAMENTAL CONCEPTS AND DEFINITIONS 

General Problem Statement 

The general job shop problem consists of n jobs, each 

of which requires processing on one or more of m different 

facilities. In general, each facility is comprised of one 

or more single-purpose machines, such as drill presses, 

lathes, or grinders. The route which any job must take 

through the facilities is specified in advance, and is 

dictated, at least to a degree, by inviolable technological' 

2 
considerations. Examples of these include the require¬ 

ments that a hole be drilled before it is tapped, or that 

a part be sanded before it is painted. 

The time required to process a given operation on a 

given facility has been estimated, and, for the time being, 

it is assumed that such estimates are correct and invari¬ 

able. Furthermore, the job file is assumed to be complete¬ 

ly known at t=0, and remains fixed throughout the production 

period. 

Representation of Input Data 

Before problem analysis can begin, the input data to 

the problem must be specified in some systematic fashion. 

The basic inputs are (a) processing times required on each 

facility for each job, and (b) ordering of operations within 
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jobs. Although many adequate representation modes exist, 

the most logical and easily interpreted of these is probably 

the matrix format. Accordingly, this format will now be 

discussed within the context of a sample problem. 

Facility-ordering matrix. Consider a very simple sched¬ 

uling problem consisting of two jobs and three facilities 

each consisting of one machine. Processing times, required 

3 
on each machine for each job, are as follows: 

MACH 1 MACH 2 MACH 3 

JOB 1 

JOB 2 

Additionally, technological considerations dictate the order 

of operations required for each job: 

JOB 1 

JOB 2 

Figure 4 

While the above mode of representation is adequate for 

problems of very small size, the matrix format lends itself 

particularly well to instances of more realistic dimensions. 

The facility-ordering matrix is simply another way of dis¬ 

SEQUENCE 

M3 M2 Ml 

M3 Ml M2 

Figure 3 

playing the information contained in figure 4: 
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13 12 11 

23 21 22 

Figure 5 

The first digit of each cell contains job information; hence, 

row 1 relates to job 1, and row 2 is identified with job 2. 

The second digit of each cell contains sequence information; 

job 1 requires processing, first on facility 3, second on 

facility 2, and third on facility 1. Similarly, job 2 re¬ 

quires processing, first on facility 3, second on facility 1, 

and third on facility 2. 

The facility-ordering matrix can, of course, be adapted 

to any number of facilities and any number of jobs. For a 

problem having n jobs and m facilities, the matrix will be 

n x m. 

Processing-time matrix. The processing time matrix is 

used to display processing times required on each facility by 

each job. The data of figure 1 is converted as follows: 

P = 
5 2 3 

14 3 

Figure 6 

As in the case of F, row 1 relates to job 1, and row 2 is 

identified with job 2. 

Simultaneous consideration of F and P yields the total 

input picture: Job 1 is processed, sequentially, on machine 

3 for 5 minutes, machine 2 for 2 minutes and machine 1 -for 3 

minutes. Job 2 is processed, sequentially, on machine 3 for 
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1 minute, machine 1 for 4 minutes, and machine 2 for 3 

minutes. 

The processing time matrix can also be adapted to any 

number of facilities and any number of jobs. Where n jobs 

and m facilities exist, the matrix will be n x m. 

The Gantt Chart and Feasible Schedules 

Once the input data has been completely specified in 

the facility-ordering and processing-time matrices, the next 

step is to consider the generation of feasible schedules. A 

feasible schedule is some configuration of operations such 

that (a) all input specifications are maintained, and (b) no 

two jobs are processed on the same facility at the same time. 

The generation of feasible schedules is more easily 

accomplished using a technique originally devised by Henry 

L. Gantt in 1920. This procedure makes use of a simple, 

graphical device, consisting of a rectangular coordinate 

system in which time is measured along the horizontal axis, 

and jobs are designated along the vertical axis. 

The following Gantt Chart depicts one feasible schedule 

for the sample problem: 

/ M3 M2. 

r 

A1/ ' 

J 2 i 
M3 M/ m ; 

; ! 

3 

5 5. .'■? j 15 
Figure 7 
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Interpretation is as follows: Job 1 is processed, sequen¬ 

tially, for 5 minutes on machine 3, for 2 minutes on machine 

2, and for 3 minutes on machine 1. Job 2 is processed, se¬ 

quentially, for 1 minute on machine 3, for 4 minutes on ma¬ 

chine 1, and for 3 minutes on machine 2. The schedule is 

feasible because (a) block lengths and sequences are consis¬ 

tent with processing time and facility-ordering specifica¬ 

tions, and (b) no two jobs are processed on the same facility 

at the same time. (The latter can be verified by noting that 

a perpendicular line, drawn at any point, will not intersect 

any two blocks bearing the same machine designation.) 

The following two Gantt charts do not represent feasible 

schedules: 

z 

! i ! : 1: 

M Z | m M3j 

M2 M/ j ■ i 
I- 

till 

, 1 ' ! 
t *• I* * 

I 1 I 

S 

Figure 8 

10 IS 

J 

1 
• 1 ! 

/ M3 HZ i 1 ! i 

2 M3 ! ft! MZ | ■ : il : 1 
0 S 10 IS 

i !.I t 1 

Figure 9 

In figure 8, the facility-ordering specification has been 

violated; in figure 9, both jobs are scheduled to be pro¬ 

cessed simultaneously on the same facility. 
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Using the combinatorial formula, it may be determined 

3 
that there are a total of 2 =8 feasible schedules, of which 

figure 7 is but one example. Two other possibilities are 

as follows: 

/ 

i •:! • H : : i! 

• 

! . . . : ! ! i : !.!•!.! 

; M3 :: j; 
. 

MZ : mi 

M3 Ml M2 ! 
■ 

r 
- - 

' j 

0 I f 
1 ! ■ i L > i .< • 1 Ll i : a. .. L ! -X-i 

10 
1— L 1 ,i i ! 1.1 i ; :. I.-i„ J . j 1 
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' ' 1 i i : : 1 1 

Figure 10 
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.1.,.| 
i! 

/o 

Figure 11 

Intuitively, it is clear that not all feasible sched¬ 

ules, in this or any other problem, will be equally desir¬ 

able. However, before the analyst can amke a choice among 

schedules, he must first establish some criterion upon which 

to base his choice. 

The Concept of an Optimal Schedule 

An optimal schedule is a feasible schedule which op¬ 

timizes some criterion.^ While criteria vary from situation 

to situation, two very commonly encountered ones are make- 

span (the interval of time from the start of processing un¬ 

til all jobs are completed) and idle time. In each instance, 
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the objective of the schedules is to generate a configura¬ 

tion that will result in minimization of the criterion. 

In the problem at hand, the optimal schedule can be 

determined by exhaustive enumeration, since there are only 

8 possibilities. It would be a relatively simple matter to 

generate all 8 schedules, and then choose the best one on 

the basis of the selected criterion. Unfortunately, as 

noted in Chapter 1, the real world is not nearly so ele¬ 

mentary an affair. 

Satisficing: The Concept of a Satisfactory Schedule 

As a practical alternative to seeking optimality, we 

advocate an intuitive procedure which is deemed likely to 

produce, at minimum, a marginally acceptable schedule. The 

method is as follows: 

(1) Several schedules are generated, using simple pri¬ 

ority rules and supplemental heuristics at each decision 

point. 

(2) Each schedule is then evaluated on the basis of 

some criterion. The schedule exhibiting the best charac¬ 

teristics is selected and used in the production process. 

If the "best" schedule falls short of expectations, 

the assumption is that it will be used anyway. The decision 

to employ an imperfect methodology is, in the first place, 

an admission that alternative modes of analysis are even 

less desirable. Under these circumstances, there can be 
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little quarrel with the outcome. 

The sanctioning of trade-offs is hardly an uncommon 

management practice. Recall March and Simon's observation, 

namely, that "most human decision-making, whether individ¬ 

ual or organizational, is concerned with the discovery and 

selection of satisfactory alternatives; only in exceptional 

cases is it concerned with the discovery and selection of 

optimal alternatives. To optimize requires processes 

several orders of magnitude more complex than those required 

to 'satisfice'."5 

There is, therefore, a great deal of justification for- 

choosing the route we have selected. In ensuing chapters, 

the proposed methodology is fully explained and applied to 

a problem of realistic dimensions. 
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Footnotes 

1. For purposes of simplicity, the number of machines 
in each facility is held to one throughout the analysis. 

2. Alternate routings are sometimes permitted. 

3. We arbitrarily assume times in minutes; the dis¬ 
cussion, however, is perfectly general and holds equally well 
for other units (hours, days, etc.) 

4. Multiple criteria are sometimes considered simul¬ 
taneously. 

5. March and Simon, Organizations, pp. 140-141. 



CHAPTER III 

THE APPLICATION OF PRIORITY RULES 

Basic Definitions 

Fundamental to any scheduling problem is the notion of 

a queue. A queue may be thought of as a "line" of jobs that 

await processing on a particular facility. The order in 

which these jobs are actually processed depends on rankings 

established through the application of certain priority rules. 

The act of assigning jobs to facilities is known as dispatch¬ 

ing. Any facility which exhibits a persistent tendency to 

form queues is known as a bottleneck facility. 

Figure 12 depicts a hypothetical situation in which one 

job (Jl) is currently being processed on machine 5, while two 

others (J2 and J3) await processing. If certain assumptions 

MACH 5 Jl 

J2 J3 

Figure 12 

are now made with respect to processing times, the informa¬ 

tion in figure 12 can be transferred to a Gantt Chart: 

Figure 13 
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Using either figure as a reference, it is clear that some 

rule must now be invoked to discriminate between J2 and J3, 

since only one job can be processed at a time. The next 

section contains an in-depth discussion of such rules. 

Some Basic Priority Rules 

We shall illustrate the application of priority rules 

using a 6x6 scheduling problem defined by the following 

matrices: 

P = 

3 

4 

9 

0 

6 

2 

8 8 7 8 6 

1 5 4 4 1 

8 14 16 

6 8 2 5 4 

7 113 9 

8 7 8 3 0 

Figure 14 

14 15 11 16 12 13 

25 23 22 24 26 21 

31 33 35 36 34 32 

42 41 45 44 43 46 

53 56 52 51 55 54 

63 65 64 62 66 61 

Figure 15 

As before, we make the assumption that each facility contains 

one machine. 
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Priority rules not associated with efficiency criteria. 

The most common of these are the random and earliest arrival 

rules. Neither of these takes into account either idle time 

or makespan, but they do provide a systematic way of gener¬ 

ating feasible schedules. 

Since there is very little logic to the notion that 

waiting jobs should be dispatched at random when a facility 

becomes idle, the random priority rule will not be illus¬ 

trated.^- The earliest arrival or "first-come, first-served" 

rule is applied to the sample problem as follows: 

Step 1: Construct a temporary, though infeasible, 

Gantt schedule, by left-justifying all operations on all 

2 
jobs as much as possible. (See figure 17, tableau 1). At 

t=0, all machines are idle, and jobs are queued in front of 

machines as follows: 
1—

1 II 
a

 Q=1 

C
N

 
II 
a

 Q=2 

-1— 
MACH 4] MACH 5| 

i 
MACH Ij MACH 3! 

_1_ 

J3 J4 

Figure 16 

Clearly, no priority rule need be applied in the cases of 

machines 4 and 5, since only one job is waiting to be pro¬ 

cessed in each instance. (Priority rules are never applied 

when the queue length is either 1 or 0.) However, machines 

1 and 3 both have queues of length 2. 
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If the earliest arrival rule is applied to machines 1 

and 3, a stalemate results in each case, since all jobs are 

presumed to have arrived at precisely the same time (t=0). 

As frequently happens, the stalemate must be broken by tem¬ 

porarily employing some other rule. In this case, we have 

chosen to dispatch jobs in a way that minimizes the genera- 

3 
tion of idle time at each decision point. (J4M1 and J6M3 

are processed first.) 

Step 2. Having permanently scheduled the first opera¬ 

tion of each job, repeat the inspection of job rows. Re¬ 

solve conflicts on those machines having queues of length 2 

or longer by assigning priority on the basis of earliest 

arrival. Repeat the procedure until there are no further 

conflicts on any machines. 

The next scanning of job rows indicates that a queue 

of length 2 will form in front of machine 5, first during 

the processing of job 2 (tableau 3), and again during the 

processing of job 6 (tableau 6). In the first instance, 

J6 arrives first, so it is scheduled next on machine 5; in 

the second instance, J1 arrives first, so it is scheduled 

next, also on machine 5. 

The next pass reveals two more conflicts at machine 5. 

(Tableaus 7 and 8). These are handled by scheduling job 4 

first in the former instance, and job 5 first in the latter. 

Step 3. Once it has been determined that no further 

jobs await immediate processing on any facility (Q=0 for all 
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jobs), proceed to schedule the remaining operations around 

those already scheduled. If, in this process, new queuing 

problems arise, resolve them in the manner previously de¬ 

scribed. 

Tableau 10 shows the final schedule. Jobs have been 

scheduled from left to right, taking careful note of ma¬ 

chine-sequence requirements. In no instance were waiting¬ 

lines greater than length 1; at no time, therefore, was it 

necessary to invoke the priority rule. 

In this example, machine 5 exhibits the characteristics 

of a bottleneck facility, since it generates queues on a 

large number of occasions. The analysis of bottleneck fa¬ 

cilities is generally very important, since they tend to 

establish the configuration of the entire schedule. In some 

cases, it is desirable to predict the existence of bottle¬ 

necks, prior to the laying out of schedules; in order to 

determine this contour. As will be seen, this is accom¬ 

plished by calculating, in advance, total utilization for 

each facility. 

The basic drawback of the earliest arrival method is 

that it is not based on a meaningful job-shop criterion. In 

the case of human queues, where waiting time is the crucial 

issue, the servicing of patrons according to the earliest 

arrival criterion is dictated by the precepts of fairness. 

The situation is quite different in the case of jobs, how¬ 

ever, which are not nearly so apt to become impatient! 



60 

In job-shops, it is the customers who must be kept 

satisfied, and not the jobs themselves. To this end, man¬ 

agers are primarily interested in finishing jobs as soon as 

possible and are only secondarily concerned with the order 

in which they are started. 

In the sections that follow, we discuss three rules 

that are much more consistent with the logical goals of 

shop managers. 

Priority rules for compact schedules. By our defini¬ 

tion, a compact schedule is one that exhibits a small amount 

of idle time and/or a short makespan. Schedules of this 

type are likely to permit the processing of jobs within ac¬ 

ceptable time periods. 

Shortest imminent operation rule. The shortest 

imminent operation rule dictates that queuing conflicts be 

resolved by giving first priority to the job with the short¬ 

est impending operation. This is tantamount to scheduling 

operations in a manner that minimizes the generation of idle 

time. 

Application of the rule proceeds as follows: 

Step 1. Construct a temporary, though infeasible, 

schedule by left-justifying all operations on all jobs as 

much as possible. For the problem at hand, this results in 

the schedule of figure 18, tableau 1. 

Step 2. Permanently schedule the first operation of 

each job by considering the job rows in sequence. Resolve 
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conflicts on those machines having queues of length 2 or 

longer by assigning priority on the basis of shortest oper¬ 

ation. 

In tableau 1, queues of length 2 are seen to have formed 

in front of machines 1 and 3 at t=0. These conflicts are 

resolved by dispatching the shortest operation in each case, 

namely J4M1 and J6M3. 

Step 3. Continue the sequential examination of job 

rows, resolving conflicts as they occur, until no further 

conflicts are seen to exist on any machines. Then, schedule 

the remaining operations around those already scheduled. If 

new queuing problems arise, resolve them in the manner pre¬ 

viously described. 

In tableaus 3 and 6, queuing problems arise with re¬ 

spect to machine 5. Attempts at applying the shortest immi¬ 

nent operation rule fail because both imminent operations 

are of the same length. Hence, it is necessary to invoke 

an alternate rule. (The earliest arrival rule is applied 

in tableaus 4 and 7.) 

Conflicts arising in tableaus 8 and 10 are handled 

routinely, the shortest imminent operation rule being readi¬ 

ly applicable in each case. Since all conflicts are ex¬ 

hausted at tableau 10, scheduling of remaining operations 

begins in tableau 11. Further queuing difficulties are en¬ 

countered in the scheduling of M4 (tableau 13) and later in 

the scheduling of M6 (tableau 15). Both of these are re- 
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solved routinely (tableaus 14 and 16). The final schedule 

is exhibited in tableau 17. 

Since idle time was of implicit concern throughout 

the scheduling process, the ultimate schedule would be ex¬ 

pected to rank high in terms of "compactness." Since com¬ 

pactness was of no concern in the generation of the "first- 

come, first-served" schedule (figure 17, tableau 10), a com¬ 

parison of the two would be in order: 

FC/FS S10 

JOB 1 51 61 

JOB 2 29 28 

JOB 3 51 41 

JOB 4 45 38 

JOB 5 40 35 

JOB 6 30 30 

TOTAL 246 233 

Figure 19 

JOB PROCESSING TIMES UNDER EARLIEST ARRIVAL 
AND SHORTEST IMMINENT OPERATION RULES (SAMPLE 
PROBLEM). 

On the basis of figure 19, we observe that the shortest 

imminent operation rule produced shorter processing times 

than the earliest arrival rule for four out of six jobs. 

(In the case of job 6, the processing times were the same.) 

Also, the total non-elapsed time required for the processing 

of all jobs on all machines was considerably shorter when 
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the earliest arrival rule was employed. 

Recognizing the futility in attempting to draw elabor¬ 

ate inferences from a sample of one, we proceed to the next 

rule. 

Bottlenecks-first rule. In scheduling problems, 

inspection of machine utilization data will reveal the ex¬ 

tent to which demands are placed on any given facility. A 

very persuasive line of reasoning suggests that first prior¬ 

ity in scheduling should be given to those facilities on 

which jobs require processing for comparatively long periods 

of time (i.e. potential bottleneck facilities). 

The bottlenecks-first rule is based on the premise that 

total utilization of the longest-utilized facility repre- 

4 
sents a lower limit on makespan for any given set of jobs. 

To illustrate this fundamental point, consider total utili¬ 

zation for each machine in the sample problem: 

Ml 25 

M2 28 

M3 28 

M4 26 

M5 32 

M6 29 

Figure 20 

Without examining the situation further, it is clear that 

under no circumstances could makespan be less than 32 time 

units, the Siam of all operational times on machine 5. When 
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all other problem parameters (lengths of individual opera¬ 

tions, machine sequences) have been considered, a makespan 

of 32 will probably not be achievable; nevertheless, it is 

a valid measure of the length of the best possible schedule, 

in terms of makespan, under the best possible circumstances. 

The bottlenecks-first rule dictates that facilities be 

scheduled in order of their total utilization. The first 

stage of the procedure involves construction of a prelimin¬ 

ary schedule, containing only operations on the most util¬ 

ized facility. Following this, the second-most utilized 

facility is scheduled, consistent both with prior scheduling 

and with the machine-sequence requirements of jobs. Sched¬ 

uling continues in this fashion until all facilities are 

exhausted. 

A summary of procedural rules, with application to the 

sample problem, is now given. 

Step 1. Determine total utilization for each machine, 

and establish a utilization ranking. For the problem at 

hand (see figure 20), the utilization ranking (most utilized 

first) is either 562341 or 563241. 

Step 2. Rearrange the data of the facility-ordering 

matrix to show the approximate sequence in which jobs require 

the use of any given machine. For the problem under con¬ 

sideration, this would be done as follows: 
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OPN OPN OPN OPN OPN OPN 
1 2 3 4 5 6 

MACH 1 3 4 1 5 — 2,6 

MACH 2 4 — 2,5 6 1 3 

MACH 3 5,6 2,3 — — • 4 1 

MACH 4 1 — 6 2,4 3 5 

MACH 5 2 1,6 3,4 — 5 — 

MACH 6 — 5 — 1,3 2,6 4 

Figure 21 

JOB 
NUMBERS 

As an illustration, the data in the machine 1 row is 

obtained as follows: Successive examination of the columns 

of the facility-ordering matrix reveals that machine 1 is 

used for job 3's first operation, job 4's second operation, 

job l's third operation, job 5's fourth operation, job 2's 

sixth operation and job 6's sixth operation. The data in 

other rows is obtained in an analogous manner. 

Step 3. Construct m schedules (one for each facility) 

using the m rows of data in the table described in step 2. 

For each schedule, left-justify all operations as much as 

possible, consistent with no overlap. In instances where 

two or more jobs vie for the same sequence position, order 

them arbitrarily. 

For the problem at hand, the resulting schedules are 

shown in figure 22. 

Step 4. Construct a final schedule by transferring in¬ 

formation from the m schedules, one at a time, according to 
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the order prescribed by the machine-utilization ranking. 

To illustrate, we arbitrarily select the machine util¬ 

ization ranking 563241 for consideration. The schedule 

for machine 5 (figure 22, tableau 5) is therefore considered 

first, and the information is transferred directly to tab¬ 

leau 1 of figure 23. Next, the schedule for machine 6 is 

considered. 

In scheduling the operations of machine 6 "around" 

those of 5, care must be taken to ascertain that the machine- 

sequence requirements of each job are not violated. Also, 

wherever possible, provisions must be made for "insertion" of 

operations on machines yet to be considered. 

These highly important points warrant illustration. 

Using figure 22 as a reference, it is obvious that under no 

circumstances should J5M6 be scheduled to start earlier than 

t=6, since J5M3, requiring 6 time units, must precede it. 

J5M6 is therefore scheduled accordingly in figure 23, tableau 

2. 
The next operation to be considered is J1M6. (Opera¬ 

tions on any given machine are always considered from left 

to right.) If there were no machine sequencing requirements, 

J1M6 would be scheduled to begin at t=13. However, J1M1 must 

directly follow J1M5, and a gap of 8 units must therefore be 

provided for its insertion at a later time. Thus, J1M6 is 

scheduled to begin at t=20. 
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As schedule construction proceeds, conflicts may be en¬ 

countered, due to insufficient space having been left for 

the insertion of operations. Normally, these conflicts can 

be resolved (with little detriment to schedule efficiency) by 

a simple right-shifting of operations, sufficient to accommo¬ 

date the required insertions. 

The following examples are deemed typical: 

(1) In the scheduling of M2 (figure 23, tableau 4) a 

conflict occurs between J1M2 and previously scheduled J1M3. 

The most obvious way to resolve this conflict is to move 

J1M3 to the right by 7 units. 

(2) In the scheduling of M4 (figure 23, tableau 6), a 

conflict occurs between J4M4 and previously scheduled J4M3. 

This is most easily resolved by moving J4M3 to the right by 

2 units. 

(3) In the scheduling of Ml, the conflict between J1M1 

and J1M6 is most efficiently resolved by shifting J1M6, 

J3M6, J2M6, J6M6, and J4M6 to the right by 3 units; by 

shifting J3M4 and J5M4 to the right by 1 unit; and by shift¬ 

ing J2M1 to the right by 3 units. 

The ultimate schedule (figure 23, tableau 9) has make- 

span of 50. Not surprisingly, this figure is marginally 

less than that of the "first-come, first served" schedule 

(51), and considerably less than that of the shortest immi¬ 

nent operation configuration (61). 
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Although makespan is relatively short in comparison to 

other schedules, it is still considerably greater than the 

lower limit of 32. This is because total machine utiliza¬ 

tion is approximately the same for all machines. (There is 

only a 7 point difference between machine 5, the most util¬ 

ized machine, and machine 1, the least utilized.) 

Clearly, the concept of scheduling the most utilized 

machines first has greatest appeal in situations where all 

machine loadings are not uniformly heavy. In many instances, 

there will be one or two machines with very high total util¬ 

izations, while the remaining machines will be used much 

less extensively. Such conditions greatly increase the 

likelihood that makespan can be made to approach its lower 

limit. 

To illustrate this point, consider an extreme case in 

which the processing time matrix of the sample problem is 

modified as follows: 

P 

5 12 7 4 

5 2 5 1 4 

113 4 2 

12 13 1 

3 7 4 5 1 

4 12 2 3 

Figure 24 

2 

3 

1 

4 

2 

2 

If the facility-ordering matrix remains unchanged, the 
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application of step 3 results in the schedules shown in 

figure 25. Note that the problem has been designed to give 

machine 6 a total utilization approximately twice as great 

as th%t of any other. 

The machine utilization ranking is now 621435. 

Based on this, construction of the ultimate schedule is de¬ 

picted in figure 26. The ultimate schedule (tableau 4) has 

a makespan of 32, only three greater than the lower limit 

of 29. 

To sum up, the likelihood that makespan can be made to 

approach its lower limit varies with the range of the total 

machine utilization figures. In instances where this range 

is very wide, the foregoing method would be expected to 

yield especially good results. 

In practice, utilization of the "bottlenecks-first" 

rule is very common, because of the frequency with which 

large, diverse shop operations are encountered. Since large 

numbers of jobs and machines contribute to a very wide range 

of machine utilization figures, the likelihood that makespan 

can be made to approach its lower limit is markedly in¬ 

creased. Thus, the "bottlenecks first" rule is recognized 

as yielding especially good results. 
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Footnotes 

1. The random priority rule, while seldom used in job 
shops, is sometimes invoked by the phone company. When many 
calls compete for the use of limited facilities and are 
therefore delayed, the technique is to pick at random from 
the "queue," thus equalizing the average waiting time. 
Callers "at the head" of the queue experience longer waits 
than if a "first-come, first-served" rule were invoked; on 
the other hand, however, those last "in line" experience 
shorter waiting times. The net effect is to reduce the like¬ 
lihood that any customer will become displeased to the point 
of outrage. (Note that the system works only because cus¬ 
tomers are not aware of their positions "in line" and there¬ 
fore cannot feel cheated by anything short of a first-come, 
first-served approach.) 

• * 

2. This is generally the first step in applying any of; 
the rules. Its purpose is simply to display all the data in, 
a form that can be readily assimilated. 

3. It is important to recognize that basic priority 
rules, used independently of heuristics, do not have "look- 
ahead" features. Thus, for the time being, interest is con¬ 
fined only to the immediate generation of idle time. 

4. The reader is reminded that makespan is total elapsed 
time to completion of the job set. 

5. Scheduling according to the alternative utilization 
ranking 562341 yields identical results. 



CHAPTER IV 

DUE-DATE SCHEDULING 

Introduction 

In the preceding sections, we devoted our attention to 

the formulation of certain priority rules, the application 

of which was deemed likely to result in the generation of 

"compact" schedules. Compactness was defined in terms of 

either idle time or makespan, such measures being used to 

assess the efficiency of schedules, with no specific con¬ 

straints being applied to individual jobs. 

In practice, it is frequently necessary to consider 

due-dates in the scheduling process. A schedule which is 

judged exemplary on the basis of the criteria of the fore¬ 

going sections may be wholly inadequate when due-dates are 

brought into the picture. The violation of deadlines may 

turn out to be extremely costly in terms of specific mone¬ 

tary penalties, cancelled orders, lost future sales, and 

general ill will. 

Td illustrate these concepts, consider once again the 

schedule of figure 23, tableau 9, now modified to include 

due dates (figure 27). The schedule has now become con¬ 

siderably less attractive, since five of the six jobs are 

completed past their due-dates. 
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/ m MS M / M6  ME M3 
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Figure 27 

While five of the six jobs are completed late, the last 

one is completed early. Thus, there exists the possibility 

of an adjustment that will "stretch out" the early job and 

"compress" the late ones in such a way that all deadlines are 

met. This equalizing procedure may not always be totally 

successful, but improvements can generally be achieved. 

Barring the meeting of all deadlines, schedules may be 

judged on the basis of "minimum total lateness" or some sim¬ 

ilar compromise measure. 

If deadlines exist, jobs are not normally accepted un¬ 

less prospects for on-time completion appear favorable. 

Risk-oriented managers sometimes accept jobs even if pre¬ 

liminary analysis shows that lateness will occur, but, in 

general, this is bad practice. The possibility that favor¬ 

able happenstance will permit perfect accommodation of an 

otherwise troublesome set of jobs is likely to be far out¬ 

weighed by the possibility of machine breakdowns, work 

stoppages and the like. 
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In scheduling to meet due dates, dispatching decisions 

are made on the basis of certain rules that explicitly con¬ 

sider impending deadlines. Several of these will now be ex¬ 

amined with reference to the sample problem. 

Job Slack Rule 

The fundamental job slack rule asserts that priority 

during dispatching should always be given to those jobs which 

have the nearest deadlines, hence the greatest likelihood of 

coming in late. To illustrate, consider the sample problem, 

with due dates as shown below: 

JOB DUE DATE 

1 rt
 

II cr>
 

o
 

2 t=37 

3 t=4 5 

4 t=39 

5 t=39 

6 rt
 

II u>
 

00
 

Figure 28 

The application of the rule proceeds as follows: 

Step 1. Construct an initial, though infeasible, sched¬ 

ule, by left-justifying all operations on all jobs as much as 

possible. Insert deadlines, and measure slack. (See figure 

29, tableau 1.) 

Step 2. Resolve conflicts on those machines having 
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queues of 2 or longer by giving first priority to the jobs 

with the smallest slack. At t=0 (figure 29, tableau 1), ma¬ 

chines 1 and 3 each have queues of length 2. Of those jobs 

waiting to be processed on machine 1, job 4 has the smaller 

slack (14), so it is scheduled first. Of those jobs waiting 

to be processed on machine 3, job 6 has the smaller slack 

(10), so it is also scheduled first. (See figure 29, tableau 

2) . 
Step 3. Having scheduled the first operation of each 

job, consider each of these operations to determine whether, 

at completion, a queue of 2 or more jobs will have formed at 

the facility. If conflicts occur, resolve them as. in step 2. 

To illustrate, at completion of J1M4 (figure 29, tab¬ 

leau 2), the queue length at machine 4 will be zero, since 

all M4 operations on other jobs must occur much later. Con¬ 

cern therefore passes to J2M5. 

At completion of J2M5 (figure 29, tableau 3), the queue 

length at machine 5 will be 2. Specifically, the prior oper¬ 

ations on jobs 1 and 6 have been completed prior to comple¬ 

tion of J2M5; both jobs therefore await processing on machine 

5. 

In figure 29, tableau 4, the dispatching decision is 

made by examining slack for each of the competing jobs. Job 

6 is found to have the smallest slack, so it is scheduled 

next on machine 5. 
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At completion of J5M3 (figure 29, tableau 6), the queue 

length at machine 3 will be 1. Since only job 2 awaits pro¬ 

cessing at this time, J2M3 is scheduled with no need to in¬ 

voke the priority rule. 

Sequential consideration of each of the job rows un¬ 

covers further conflicts that must be resolved. In particu¬ 

lar, machine 5 exhibits a waiting line at the end of J6M5 

(figure 29, tableau 7), J4M5 (tableau 9) and J1M5 (tableau 

11). Dispatching decisions are made on the basis of tableaus 

8, 10 and 12. 

Step 4. Continue to examine job rows until it is de¬ 

termined that no further jobs await immediate processing on 

any facility (Q=0 for all jobs). Then, proceed to schedule 

the remaining operations around those already scheduled. If, 

in this process, new queuing problems arise, handle them in 

the manner previously described. 

Figure 29, tableau 14 shows the completed schedule for 

the sample problem. Application of step 4 did not require 

the exercise of priority rules since in no instance did more 

than one job await processing at the end of any operation. 

(Q was always either 0 or 1.) 

Tableau 14 indicates the relative successfulness of the 

job slack rule. While it was not possible to complete all 

jobs on time (jobs 1, 3 and 5 were late), the total lateness 

was quite small. The figure was 4 time units, as compared 

with 20 using the bottlenecks-first rule. 

A 
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A logical criticism of the job slack rule is that it 

does not take into account the number of operations that 

remain to be processed beyond each decision point. There 

is assuredly a good deal of persuasion to the argument that 

large numbers of operations increase the likelihood of queue 

formation hence total waiting time for any given job. It 

therefore appears reasonable that number of remaining oper¬ 

ations should be a factor in the determination of priorities. 

Job Slack-Operation Quantity Rule 

The job slack-operation quantity rule establishes pri¬ 

ority on the basis of the ratio S/N, where S = slack and 

N = the number of operations remaining beyond the decision 

point. If N is held constant, jobs are afforded greater 

priority as S becomes smaller. On the other hand, if S is 

held constant, jobs receive higher priority as N increases. 

Therefore, in sum, the smaller the ratio of S to N, the 

higher the priority. 

Application of the job slack-operation quantity rule 

proceeds in much the same fashion as that described for the 

job slack rule. The only difference is that conflicts are 

resolved by giving first priority to the jobs with the 

smallest slack per operation. 

Resolution of the sample problem is shown in figure 30. 

In tableau 1, jobs 3 and 4 initially compete for machine 1. 

Since job 3 has the smallest slack per operation (2.66), it 
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is processed first. Jobs 5 and 6 initially compete for 

machine 3, but slack per operation is the same (2) for both. 

Discrimination is therefore arbitrarily made on the basis 

of slack alone, and job 6, having a slack of 10, receives 

first priority. 

Tableaus 3, 8 and 12 show instances in which queues of 

two or more jobs have formed in front of machines. In each 

of these instances, dispatching is accomplished via the job 

slack-operation quantity rule. (See tableaus 4, 9 and 13.) 

Tableau 15 illustrates application of the latter part 

of step 4 (see page 86). A queuing problem arises at the 

end of J1M6, but resolution is easily accomplished (tableau 

16). The ultimate schedule is shown in tableau 17. 

For the problem under consideration, the job slack- 

operation quantity rule did not perform as well as the less- 

sophisticated job slack rule. Again, three jobs came in 

late, but the total lateness was 13, compared to only 4 for 

the job slack rule. While generalization would evidently 

be preposterous, this example clearly illustrates the basic 

nature of priority rules. A rule that may produce exemplary 

results in one instance may not work nearly as well in an¬ 

other. 
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Job Slack-Total Remaining Time Rule 

This rule asserts that the priority of jobs ought to be 

judged on the basis of slack in relation to total remaining 

pre-deadline time. Specifically, the measure is S/T, so that 

what emerges is merely slack as a percentage rather than an 

absolute value. The smaller this percentage, the higher the 

priority. 

Resolution of the sample problem, using the job slack- 

total remaining time rule, is shown in figure 31. In tableau 

1, percentages are taken for each of the conflicting jobs. 

Job 3, for example, has 45 remaining minutes, measured from 

t=0, in which to be accomplished. Of this total time, 16 

minutes is slack. Therefore, slack is 16/45 or 35.5% of 

total remaining pre-deadline time. Similar computations, 

performed for the other conflicting jobs, lead to the con¬ 

clusion that jobs 3 and 6 should receive first priority on 

machines 1 and 3, respectively. 

The remaining resolution stages are substantially iden¬ 

tical to those of figure 30. Applications of the job slack- 

total remaining time rule (tableaus 4, 9, 13) result in dis¬ 

patching decisions that are identical to those resulting from 

application of the job slack-operation quantity rule. Also, 

the ultimate schedules are precisely the same. 
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CHAPTER V 

THE APPLICATION OF SUPPLEMENTAL HEURISTICS 

Introduction 

Thus far, we have considered three priority rules whose 

purpose was to cause the completion of jobs on or before 

their due dates. Evidently, we have not exhausted all possi¬ 

bilities; indeed, an endless number of sophisticated rules 

might be concocted, each supported by no small amount of com¬ 

pelling logic. 

On an intuitive basis, however, one can sense the fu- . 

tility of any venture bent on discovery of the "perfect" de¬ 

cision rule. Any rule, whether simple of compound, simple- 

minded or sophisticated, cannot, by nature, be the best 

rule in all cases. This is because priority rules are used, 

by admission, as imperfect substitutes for a yet unknown pre¬ 

cise methodology. Given that all priority rules are of an 

imperfect gendre, the quest for a perfect one seems pointless. 

The general effectiveness of priority rules is limited 

by their localized nature, that is, they permit decisions to 

be made at any given problem stage on the basis of local in¬ 

formation only. No account is taken of future obstacles that 

may arise directly from the decision itself. In some in¬ 

stances, therefore, blind application of a certain priority 

rule will ultimately be revealed as having done more harm 

than good. 
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In light of the foregoing, a reasonable course of action 

would seem to be to use the simplest priority rules as guide¬ 

lines for scheduling, but to temper these rules according to 

the parameters of each individual problem. Such a procedure' 

would recognize "customization" as being superior to the use 

of very complicated decision rules. 

Clearly, not all problems would require the same degrees 

of divergence from "blind" priority rule application. There 

are, however, comparatively few instances in which the sched¬ 

uling process would not be expected to benefit, at least mar¬ 

ginally, from the judicious application of certain supple¬ 

mentary heuristics. 

The extent to which the schedule is able to efficiently 

"customize" will depend largely on his skill at spotting 

trouble before it occurs. This ability varies from scheduler 

to scheduler, but tends to decline as the size of the sched¬ 

ule increases. Even the most adroit trouble-shooters are 

likely to miss certain opportunities for improvement as 

schedules grow very large. 

We shall now examine several customization techniques 

in the context of the sample problem. It will be recalled 

that no previously tested priority rule was successful, by 

itself, in generating a schedule that would permit all jobs 

to be completed on time. In each instance, several jobs 

came in late, although the total lateness was appreciably 

less when the job slack rule was used. 
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Using the job slack rule as a primary rule, we now at¬ 

tempt to "rebuild" the final schedule such that all jobs are 

completed on or before their due-dates. Several supplemental 

rules are considered. 

Alternative Assignment Rule 

If dispatching according to the primary rule necessarily 

causes any job, whether in queue or not, to become late, con¬ 

sider the reassignment of priorities. 

A specific application procedure for the alternative 

assignment rule is as follows: 

(1) Tentatively dispatch job j to facility f by invoking 

job slack or some other primary dispatching rule. 

(2) Check to see if such decision, in and of itself, 

occasions the lateness of any job. 

(3) If a lateness occurs, temporarily revoke the origi¬ 

nal decision and examine the consequences of alternative 

assignments to the facility in question. 

(4) If an alternative assignment produces superior re¬ 

sults (i.e. no latenesses or smaller latenesses), abandon 

the original rule and maintain the alternative assignment. 

Otherwise, restore the original assignment based on the or¬ 

iginal rule. 

Jobs in queue. To illustrate application of the alter¬ 

native assignment rule, consider figure 32, in which tableau 

1 is a repeat of figure 29, tableau 10. In the original an- 
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alysis, the job slack rule was blindly applied with no at¬ 

tempt being made to determine the long-run consequences of 

such application. On this basis, a decision was made to 

schedule J1M5. 

Tableaus 2 and 3 of figure 32 examine the ultimate con¬ 

sequences of the decision to schedule J1M5. If J1M5 is 

scheduled as shown, job 5 must necessarily be late by either 

1 or 2 time units, depending on subsequent sequencing of 

J3M5 and J5M5. This finding causes the immediate invocation 

of the alternate assignment rule. 

In tableau 4, it is determined that an alternative to 

the original priority assignment produces a superior sched¬ 

ule. Specifically, if J5M5 is scheduled in place of J1M5, 

with J1M5 and J3M5 directly following in that order, no 

latenesses are generated. The primary rule is thus subor¬ 

dinated to the secondary rule, and the alternative configur¬ 

ation is accepted. 

Tableau 5 shows figure 29, tableau 14, modified to show 

the reassignment of priorities. All jobs are now completed 

on or before their due-dates. 

Some weaknesses in our methodology should be noted. 

First, the process of "looking ahead" is a highly selective 

one: we examine some things, and deliberately ignore others. 

Clearly, this approach is based on the recognition that we 

cannot possibly hope to anticipate all of the ramifications 

of a given dispatching decision. To do so would require 



101 

enumeration of all feasible schedules, a task which has been 

dismissed as impossible. 

To cite one example of this "selectivity" we note that, 

in the problem at hand, no attempt has been made to assess 

increases in lateness that result from elimination of con¬ 

flicts on machines not presently under consideration. Tab¬ 

leaus 2 and 3, for example, reveal that attention has been 

confined to latenesses occasioned by certain dispatching de¬ 

cisions involving machine 5 only, even though it is fully 

recognized that subsequent elimination of conflicts on other 

machines (e.g. M4) will create additional latenesses. (The 

assumption is, of course, that M4 may eventually be treated 

in isolation, in the same manner that M5 was, but there is 

evidently a logical weakness to such "piecemeal" analysis.) 

A second major difficulty involves the ability of the 

scheduler to apply the alternative assignment rule in prob¬ 

lems of very large scale. Once the primary rule has been 

invoked, the scheduler must then test for latenesses of all 

jobs remaining to be scheduled on the machine in question. 

If there are even 4 such jobs, the scheduler would legiti¬ 

mately like to examine as many as 41 ■ 24 different coniigu- 

rations in order to determine the applicability of secondary 

rule invocation. Furthermore, if the 24th trial fails to 

generate a schedule with no latenesses, tho scheduler must 

then test each of tho 4 alternative dispatching decisions. 

In each case, the scheduler may revert to the primary rule 
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(e.g. job slack), thus avoiding the need to evaluate (in 

. this case) 24 different configurations for each of the 4 

alternative dispatching decisions. (Reversion to the pri¬ 

mary rule is frequently a satisfactory substitute for enum¬ 

eration. See, for example, the schedule of figure 32, 

tableau 4, in which the primary rule was invoked directly.) 

If successive reversions to the primary rule seem un¬ 

appealing, an alternative approach is to informally "sample" 

from among all possible schedules. Suppose, for example, 

that the scheduler is at stage 2 of the application proce¬ 

dure for the alternative assignment rule. Suppose, further¬ 

more, that 4 jobs remain to be scheduled on the machine in 

question, thus suggesting the need to enumerate 4! schedules 

of the type in tableaus 2 and 3, figure 32, in order to de¬ 

termine the applicability of the secondary rule. The sched¬ 

uler might circumvent this apparent difficulty by trying at 

random, say, 4 or 5 of the 41 possible schedules. If, with¬ 

in this sample, he encounters a lateness-free schedule, he 

need go no further. If, on the other hand, each selection 

produces a lateness, he might infer that the population con¬ 

tains no lateness-free schedules and proceed to invoke the 

secondary rule. 

If his inference is incorrect, that is, if the secondary 

rule did not need to be invoked when indeed it was, the pen¬ 

alties are not usually severe. There is still a good chance 

of coming up with a "good" solution, even though a better one 
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might have been passed up as a direct consequence of the 

sampling. 

Jobs not in queue. We have dealt with an example in¬ 

volving the reassignment of priorities for jobs currently 

in queue at a given machine. On occasion, we will wish to 

consider another possibility, namely, that some job, not 

currently in queue at that machine, should, nevertheless, 

deserve first priority. 

To illustrate this possibility, consider the schedule 

of figure 33 with due-dates as shown. (This schedule is 

unrelated to the previous sample problem.) At the present 

time t , three jobs are in queue at Mc, namely, Jc, JD and 

JE. If job slack is invoked as the primary rule, JqMc is 

scheduled first. 

The scheduling of JCMC immediately precludes the com¬ 

pletion of job B on or before its deadline. Specifically, 

the scheduling of JCMC causes job B to be completed, at 

minimum, 4 days beyond its due date. 

Although JB is not in queue at machine C, there is 

every reason, on the basis of a localized analysis, to 

schedule this job in place of Jc, even though machine C 

must be kept idle between t and t^. (JgMc is "locked in" 

by previously scheduled operations, and cannot begin prior 

to tf.) If we find that no conflicts occur among operations 

subsequent to JCMC, Jand JEMC/ and that further "length¬ 

ening" of the schedule is therefore not required, it is 
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clear that we have not had to "rob Peter to pay Paul," that 

is, giving first priority to JBMC has not caused any other 

job to come in late. (A schedule which exhibits no late¬ 

nesses at all is shown in figure 34.) On the other hand, 

if looking ahead a short distance reveals serious conflicts, 

a reversion to the original rule may be in order. 

Idle Time Reduction Rule 

In the example at hand, the immediate scheduling of job 

B on machine C creates an idle time "gap" (t^-t ) that can¬ 

not be filled by any other waiting job. (Operations 

and are all too long.) However, this unfortunate 

situation is not necessarily typical. Suppose, for example, 

that JeMc were of slightly different dimensions (see figure 

35)• Now JeMc could be "inserted" prior to commencement of 

JgM^, with a corresponding reduction in idle time, as well 

as a much earlier completion time for job E. (See figure 36.) 

The idle time reduction rule might be formalized as 

follows: Wherever idle time "gaps" are found to exist in 

any schedule, try to fill these "gaps" with the longest oper¬ 

ations available, but do not reschedule unless such modifica¬ 

tion permits operations to begin sooner rather than later. 

Several important implications arise from the basic 

statement of the rule: 

(1) If several different operations are in contention 

for filling a particular gap, the one that fills the gap most 
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completely should be chosen. 

(2) Rescheduling of operations for the purpose of re¬ 

ducing idle time should only be undertaken in the event that 

the rescheduling permits the operations to begin sooner 

rather than later. If the reverse is true, the net effect 

will be to delay completion of the rescheduled job. 

(3) Care must be taken not to disturb the ordering of 

operations. In general, the decision must be examined with¬ 

in the context of its relationship to every other immediate 

and future (as far as is practicable) aspect of the problem. 

It is extremely important to note that application of • 

the idle time reduction heuristic generally supposes prior 

application of the alternative assignment heuristic. A 

fundamental aspect of the alternative assignment heuristic 

is that it requires the scheduler to peer into the future, 

at least a short distance, in order to assess the conse¬ 

quences of giving first priority to some job not currently 

in queue. If these consequences are held to be desirable, 

the job is scheduled, and an idle time gap immediately ap¬ 

pears. (This gap would not have been generated if the job 

had been selected from queue.) Clearly, it is then desir¬ 

able to invoke the idle time reduction rule in the hopes of 

filling or partially filling the vacancy. 

The interrelationship between the alternative assign¬ 

ment and idle time reduction heuristics can easily be under¬ 

stood if there is some prior understanding of the difference 
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between basic priority rules (such as "shortest imminent op¬ 

eration") and the alternative assignment rule. Common to 

all basic priority rules is a modus operandi which requires 

the scheduler to make decisions on the basis of immediate 

local information only. At any decision point, the only 

possible choices for scheduling are those jobs presently in 

queue; no attempt is made to investigate the desirability of 

scheduling jobs outside this set. Furthermore, in the course 

of applying the primary rule, the scheduler never looks 

ahead. He blindly continues to apply the rule until all 

jobs have been fully, scheduled. 

In contrast to all basic priority rules, the alterna¬ 

tive assignment rule has a "look-ahead" feature. Rather than 

confining interest only to jobs in queue, the scheduler in¬ 

vestigates beyond the immediate "area" in the hopes of de¬ 

tecting troubles (latenesses, serious conflicts, etc.) be¬ 

fore they occur. 

If concern is for the future rather than the present, 

there naturally tends to be an oversight of things in be¬ 

tween. Having looked to the future, it is thus necessary 

for the scheduler to go back and examine the interim. It 

is in the course of this examination that the idle time re¬ 

duction heuristic will be utilized. 

In summary, then, the alternative assignment rule has 

certain features which dictate subsequent invocation of the 

idle time reduction heuristic. These features are not 
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shared by any of the basic priority rules. 

The alternative assignment and idle time reduction 

heuristics together constitute a very powerful device for 

improving schedules. Under certain conditions, however,, it 

may be desirable to consider other possibilities. 

The imposing of artificial constraints or the temporary 

relaxing of real ones are two devices which are commonly 

used to "force" schedules into conformity with requirements. 

Rules illustrating each of these approaches are discussed 

next. 

Time Constraint Relaxation Rule 

In the original statement of the general job-shop sched¬ 

uling problem, it was assumed that all processing times were 

of fixed length, and that these exact time requirements 

would have to be rigidly acknowledged in the scheduling of 

jobs. Having made this assumption, the "compression" of op¬ 

eration lengths was held to be impossible; if an operation 

was too long to fit a given "gap," it would simply have to 

be delayed until an adequate opening became available. 

In practice, the fixed-processing-time restriction is 

frequently violated. Under normal conditions (i.e. in the 

absence of improperly running machines or outright break¬ 

downs), some variability of processing times would be ex- 
v 

pected to be encountered, largely due to performance vari¬ 

ances among machine operators. The "fixed" processing times 
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of any example are assumed to be based on averages or stan¬ 

dards; depending on the rate of output of the individual 

workers, actual processing times might be expected to fall 

above or below the norm. 

It is not our intention to engage in a discussion re¬ 

garding the likelihood of encountering favorable or unfavor¬ 

able variances, but merely to point out that it is generally 

possible to influence the extent of such variances through 

the exertion of managerial control. To be specific, it is 

probably quite possible to decrease processing times slight¬ 

ly, especially if the need for improvement is only temporary. 

Temporary improvements in productive efficiency can be effec¬ 

ted in many ways; however, if economies are to be confined 

to selected areas for limited periods of time, the best ap¬ 

proach is probably to juggle personnel assignments in such a 

way that the fastest workers are always assigned to those 

jobs (or operations) which management deems "critical." 

If we assume that it is at least occasionally possible 

to complete operations in less than the specified times, we 

are led to the conclusion that it is also possible, on oc¬ 

casion, to "squeeze" an operation into an idle time gap that 

is slightly too short. Under these circumstances, the effi¬ 

ciency of a given schedule is subject to radical improvement. 

The time-constraint-relaxation rule may be formally 

stated as follows: If an operation might profitably be in¬ 

serted between two others, but if its length is slightly too 
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long, reduce the length appropriately, and insert the oper¬ 

ation. 

Two important questions logically develop from this 

statement: (1) What is implied by the adjective "slightly"? 

and (2) Is there a practical limit on the number of times 

the rule can be applied in any one problem? 

In answer to the first question, there are evidently 

restrictions on the extent to which a given operation may 

be presumed "flexible." It would be difficult, for example, 

to envision a 60 minute operation being completed in 5 min¬ 

utes, even under the best possible circumstances. In this 

instance, it is rather clear that such gross "compression" 

should not be attempted; yet there are many other cases in 

which the answer is not so clear cut. In these cases, some 

criterion must be developed to permit the making of deci¬ 

sions . 

It would be highly presumptious to assume that such a 

criterion could be established without some intimate know¬ 

ledge of each specific work environment. Depending on worker 

attitudes and abilities (and, of course, to a degree on ma¬ 

chine efficiency), one would expect minimum processing times 

to vary widely. In some cases, a 20 or 30% reduction over 

standard might not be at all unreasonable; in other cases, 

it would clearly be excessive. 

The meaning of the word "slightly," therefore, can only 

be determined in a specific context. Successful application 
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of the time constraint relaxation rule must therefore engen¬ 

der a thorough study of the work situation, in order to de¬ 

termine maximum possible percentage reduction in procsssing 

times. 

In answer to the second question, it is clear that the 

more often the time constraint relaxation rule is applied in 

any given problem, the greater the demands placed on manage¬ 

ment's ability to effect reductions in processing times. Re¬ 

ductions on one or two operations may be easy to achieve in 

the manner previously described; on the other hand, any shop 

has a limited number of "best" personnel. If processing 

times on a great many operations must be simultaneously re¬ 

duced, the allocation problem is compounded immensely. It 

may turn out that there is simply not enough "talent" to go 

around. 

Again, the permissibility of repeated applications of 

the time constraint relaxation rule can only be determined 

after intensive study of the specific situation in which the 

rule is to be employed. In some shops, only one or two ap¬ 

plications may be allowable; in others, it may be possible 

to slightly reduce processing times of many operations with¬ 

out placing unacceptable demands on personnel and/or machines. 

The utilization of the time-constraint-relaxation rule 

can easily be illustrated with reference to the most recent¬ 

ly discussed example. In figure 33, looking ahead suggests 

the advisability of scheduling J^M^, next. However, if JgM^, 
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is so scheduled, a vacancy of length (t -tJ develops which, 
P • 

as the problem stands, cannot be filled. 

In figures 35 and 36, we assumed a different problem, 

that is, we assumed was given as 5 time units in length 

rather than 6. This new assumption made it possible to "in¬ 

sert" J^M^, prior to JgMc, thus illustrating the idle time 

reduction heuristic. 

Suppose now, however, that we assume a "compressability 

feature, that is, we now assume that it is possible (through 

reassigning of personnel, special controls, etc.) to process 

an operation that would normally take 6 time units in only 5 

This would amount to a temporary processing-time reduction 

requirement of only about 17%, a figure which, on the aver¬ 

age, would not be deemed excessive. Thus, the operation 

would be scheduled as if it consumed only 5 minutes instead 

of 6, in the manner suggested in figure 36. 

Occasionally, the actual performance of operations may 

reveal that the "compressability" assumptions were not war¬ 

ranted. (Plans may have gone awry; perhaps it was not pos¬ 

sible to achieve the desired allocation of workers.) In any 

event, the consequences will probably not be disastrous, es¬ 

pecially if the failure is not on any grand scale. (If the 

compressability assumption is found to be unjustifiable in 

only one or two cases out of many, and if the assumption was 

not an extravagant one to begin with, difficulties will gen¬ 

erally be slight.) 



113 

To illustrate, suppose the 17% reduction of the immedi¬ 

ate example turned out to be a figment. Under those cir¬ 

cumstances, the start of J0MC would simply have to be ad¬ 

vanced by 1 time unit, thus engendering 1 unit's lateness in 

completion of the job. Furthermore, all subsequent opera¬ 

tions on other jobs would have to be advanced by as much as 

one day, in order to accommodate the unforeseen lengthening 

of JEMC* 

In this example, it is clear that such modifications are 

only slightly disruptive. Job B is now completed 1 day past 

its due date, but all other jobs are still finished on time. 

Additionally, job E is still completed some 30 days early, 

conceivably a matter of some positive importance. Comparison 

between figures 34 and 35 indicates that this earliness would 

not have occurred without the assumption of compressability. 

In closing, it should be noted that the time constraint 

relaxation heuristic is directly supplementary to the idle 

time reduction heuristic. In instances where stated proces¬ 

sing times appear to prohibit "insertion" of operations, in¬ 

vocation of the time constraint relaxation heuristic follows 

as a logical consequence. 

Artificial Deadline Rule 

If repeated application of the previously-discussed 

heuristics fails to bring about a satisfactory schedule in 

terms of the meeting of due dates, it is frequently useful 
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to impose artificial due-dates of a more restrictive nature, 

and then reschedule. The imposition of these pseudo-dead- 

lines, which are used as a basis for recomputing slack, has 

the effect of contracting the schedule such that the likeli¬ 

hood of meeting real deadlines is increased. 

A formal statement of the steps involved in application 

of the rule is as follows: 

(1) If the original schedule fails to complete all jobs 

on or before their due dates, establish a pseudo-deadline for 

each offending job at a point in time equal to the real (or¬ 

iginal) deadline, minus the amount of the lateness. (For ex¬ 

ample, if a job has an original deadline at T, and if the job 

is originally completed t days late, establish the pseudo¬ 

deadline at T-t.) 

(2) Reschedule all jobs, using the pseudo-deadlines as 

a basis for application of the job slack or similar rule. 

(3) Evaluate the new schedule on the basis of the orig¬ 

inal deadlines. 

(4) Repeat the procedure as desired. 

The artificial deadline procedure has the effect of 

forcing the latest jobs into positions of highest priority 

each time the scheduling process is repeated. To illustrate 

this and other points, we return to the example that was de¬ 

veloped extensively in chapter four. It will be recalled 

that application of the job slack rule without invocation of 

supplemental heuristics originally led to the schedule of 
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figure 37, tableau 1 (figure 29, tableau 14 repeated). In 

this schedule, jobs 1, 3 and 5 are all completed past their 

due dates. 

In tableau 2 of figure 37, the first set of pseudo-dead¬ 

lines is imposed, according to step 1 of the artificial dead¬ 

line rule. Job 1 was originally one day late, so its due 

date is moved back by one day. Similarly, the due-dates of 

jobs 3 and 5 are moved back by two and one days respectively. 

Tableaus 3, 4, 5 and 6 depict the critical stages in the 

development of the potentially improved schedule (tableau 7). 

It is clear, however, that the "tightening" of deadlines for 

the first "run" has not been sufficient to effect changes in 

job priorities at any of the critical stages. Thus, compari¬ 

son with figure 29 reveals identical decisions throughout, 

with no change whatsoever in the resulting schedule. 

At the start of the second run (figure 37, tableau 8), 

the deadlines on the late jobs are tightened further, and 

the job slack rule is applied once again. Again, no change 

in priorities is effected (tableaus 9, 10, 11, 12.). 

For the third run, deadlines are again tightened (tab¬ 

leau 14). This time, the result is to reverse the ordering 

of jobs at the second decision point (tableau 16). This 

change in and of itself leads to a new schedule, shown in 

tableau 21. 

With original deadlines reimposed, all original late¬ 

nesses (jobs 1, 3, and 5) are seen to have been eliminated. 
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However, a new lateness of 4 time units now appears on job 4. 

(The amount of this lateness is exactly equal to the sum of 

the original latenesses.) 

In order to effect any change in the original schedule, 

the artificial deadline rule had to be applied three times. 

In some problems, a change might have occurred on the first 

run, but it is not at all uncommon for a problem to require 

repeated applications. In any case, the need for reapplica¬ 

tion is solely a function of problem parameters. 

In the problem at hand, the new schedule represents, at 

best, a marginal improvement over the original one. Some 

additional improvement might be effected by repeating the 

procedure a fourth time, in which case only the deadline of 

job 4 would be tightened. 

The artificial deadline rule is generally used as a 

substitute for the alternative assignment-idle time reduc¬ 

tion rule-pair, although there is nothing that prevents both 

procedures from being tried in succession. Since the former 

method is apt to be operationally simpler, it should normal¬ 

ly be tried first. 

Conclusion 

In this section, we have presented several heuristics 

which, when used in combination with basic priority rules, 

are likely to ameliorate the idle time and/or makespan char¬ 

acteristics of schedules. The intention was not to exhaust 
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the list of possibilities; indeed, there exists a very large 

body of useful heuristics, of which the presently discussed 

set is only typical. 

To establish some feeling for the enormity of this "body, 

it is only necessary to reflect on the tremendous range of 

logical thought processes that are used in solving problems 

of even moderate complexity. A motorist, for example, enter¬ 

ing a rotary is, within a few brief seconds of time, forced 

to judge matters of velocity, acceleration, direction, loca¬ 

tion and distance. This calls for an extremely selective 

gathering of information, which is then processed according 

to such rules as "bear left to avoid running off the road" 

or"look in all directions to avoid getting hit." Adherence 

to these rules, as well as many others, makes it possible 

for the driver to successfully negotiate the rotary, even 

though such negotiation may not necessarily be of prototypic 

quality. 

Each time a motorist enters a rotary, the parameters 

are quite different, yet he recognizes the nature of the de¬ 

cision-making process and applies logic accordingly. In the 

heuristic approach to scheduling, the procedure is very much 

the same. The parameters of every schedule are different, 

yet this does not prohibit the application of a host of logi¬ 

cal rules which are used to successfully simplify, classify, 

and otherwise process the information. 
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A suitable heuristic rule is any which permits a satis¬ 

factory solution to a problem in which full assimilation of 

all information is either difficult or impossible. Much as 

the motorist is satisfied with his less-than-perfect negoti¬ 

ation of the rotary, so may the scheduler be satisfied with 

his less-than-perfect solution to the scheduling problem. 



CHAPTER VI 

SCHEDULING IN THE DYNAMIC ENVIRONMENT 

Introduction 

In previous chapters, a somewhat restrictive condition 

was placed on the scheduling problem, namely, that the set 

of jobs to be scheduled was completely known at the time the 

original schedule was devised and would not in any way be 

altered during the "life" of the schedule. Thus, once the 

schedule was generated, it was assumed that no orders would 

be cancelled, and that no new jobs would require scheduling 

until the original job set had been completed. 

In practice, job sets rarely remain constant for fixed, 

predeterminate periods. More commonly, additions and dele¬ 

tions occur at random, thus invalidating the assumption that 

a carefully designed schedule need not be changed over a 

particular planning horizon. 

Various factors dictate the need to remove uncompleted 

jobs from the job set. If a production contract is cancelled 

for any reason, the associated job (or jobs) are immediately 

taken ou- of production, in order to minimize losses. Since 

the elimination of such jobs opens up new capacity (i.e. 

creates idle time on facilities), it is generally possible 

to "compress" (and therefore improve) the original schedule 

by leftward shifting of operations. A general rescheduling 

of all jobs will probably not be required, although the mer- 
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it3 of this conclusions should be evaluated within the con¬ 

text of each specific situation. 

When new orders are received, the natter of scheduling 

may be approached in two ways. As a first possibility, the 

new orders may be ignored until the original set of orders 

is processed in its entirety. (This is consistent with 

"first-cone, first served," the customer being informed that 

a back-log of orders av/aits processing.) As a second possi¬ 

bility, however, it may be desirable to process a new order 

immediately, especially if the customer's business is held 

to be important and, additionally, he is unwilling to abide' 

by the "first-come, first-3erved" rule. 

The immediate (or near-immediate) processing of new 

orders nay be achieved by pre-empting some currently-exist¬ 

ing order of low priority. Another approach is simply to 

undertake a general rescheduling of all remaining operations, 

including those of the new job, and consistent with the 

guidelines suggested earlier in this paper. The first of 

these approaches is operationally simpler, but it tends to 

seriously delay the completion of the pre-empted job, since 

all its operations must now be scheduled last. In general, 

the latter approach is held to be superior because it re¬ 

sults in a better "balancing" of priorities. 



125 

Deletion of Jobs 

To illustrate job deletion, we refer back to the problem 

that was developed extensively in chapter three. It will be 

recalled that application of the shortest imminent operation 

rule led to the schedule of figure 18, tableau 17, repeated 

in figure 38, tableau 1. (There is nothing hallowed about 

this schedule; evidently, it is one of several that might 

have been chosen.) 

Suppose now that at t=20, job 3 is suddenly cancelled. 

The schedule is therefore reduced to the configuration of 

figure 38, tableau 2. Since job 3 originally consumed some 

machine capacity, its omission permits the advancement of 

certain other jobs. The remaining operations of job 1, for 

example, may now be commenced one time unit earlier, and 

similar accommodations may be made for the operations of 

jobs 4 and 5, as illustrated in tableau 3. 

The method illustrated is obviously intuitive, and can 

easily be applied for any number of deletions. 

Addition of Jobs 

When new jobs are added to the job set, a decision must 

be made regarding priorities. If it is determined that pre¬ 

empting should not occur, the original schedule remains un¬ 

disturbed until the original job set has been completed, 

whereupon the scheduling cycle begins afresh. On the other 
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hand, if the new order, cannot wait, a rescheduling of the or¬ 

iginal jobs may be undertaken. To illustrate, again consider 
% 

figure 38, tableau 1, and assume that a new job, bearing the 

following properties, is to be commenced at t=20: 

D- 

D- 

76 74 71 73 72 75~J 

Figure 39 

5 2 8 3 9 

Figure 40 
D 

That is, job 7 is to be processed for 5 time units on machine 

6, for 2 time units on machine 4, for 8 time units on machine 

1, and so on. 

The inclusion of this new order is probably best accom¬ 

plished by laying out an entirely new schedule from t=20 on, 

assuming a new job set consisting of remaining operations of 

old jobs, plus the new job. This procedure is carried out 

in figure 41. 

In figure 41, tableau 2, the part of the original sched¬ 

ule to the left of t=20 has been truncated. Additionally, 

all operations to the right of t=20, including those of the 

newly added job, have been left-justified as far as possible. 

In figure 41, tableaus 3-12, the non-feasible schedule 

of tableau 2 is made feasible through application of the 

shortest imminent operation rule. The procedure used is pre¬ 

cisely identical to the one developed in chapter three. 
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(Note that any operations which are in process at the start 

of the new schedule cannot be interrupted, according to the 

non-pre-emptive priority constraint.) 

The example illustrates job addition, consistent with 

application of the shortest imminent operation rule. Any 

other rule might equally well have been applied, with or 

without the use of supplementary heuristics. 

I 



CHAPTER VII 

THE FLOWSHOP PROBLEM 

Introduction 

In the previous chapters, we considered procedures for 

obtaining satisfactory solutions to the general job shop 

problem. The problem, it will be recalled, could not be 

treated by purely formulary means, and the alternative was 

to apply basic priority rules in conjunction with certain 

supplemental heuristics. 

Let us once again examine the combinatorial aspects of' 

the general job shop case. If each of n jobs require pro¬ 

cessing once and only once on each of m machines, the total 

number of feasible schedules is (n!)m. For example, in the 

case of two jobs and three machines, jobs can be dispatched 

to each machine in two possible sequences, namely, job 1 

first and job 2 second, or job 2 first and job 1 second. 

Since there are three machines, and each job requires pro¬ 

cessing on each machine, this results in a total of (2) (2) (2) 

3 
=(2I) =8 possible ways in which jobs can be dispatched to 

machines, that is, in a total of eight distinct feasible 

schedules. 

Suppose now, however, that we introduce an additional 

constraint, namely that the ordering of operations is the 

same for all jobs. Under these conditions, the once-formid- 

able job-shop problem degenerates into a relatively simple 
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special case known as the flowshop problem. 

In a paper dealing primarily with general solutions, 

there is considerable justification for devoting attention 

to the flowshop problem. Flowshop situations (or approxi¬ 

mations) occur very frequently in practice, since operation¬ 

al orderings tend to be dictated by technological consider¬ 

ations rather than by the peculiar characteristics of indi¬ 

vidual jobs. For example, the manufacture of a precision 

machine part might begin with the production of a rough 

casting, subsequently to be ground, polished, drilled and 

tapped, in that order. Other job orders might call for ma¬ 

chine parts of various sizes, shapes and tolerances, but, in 

general, one would expect operations ordering to be reason¬ 

ably consistent. (In certain instances, there is simply 

no choice. Drilling could occur prior to grinding or pol¬ 

ishing, but tapping could not possibly occur prior to drill¬ 

ing! ) 

An "approximation" to a flowshop problem is defined as 

one whose jobs share a common operational sequencing with 

one or two exceptions. Under such circumstances, it is quite 

appropriate to treat the situation as a "pure" flowshop, ac¬ 

commodating deviant operations consistent with the rules de¬ 

veloped in the earlier sections of this paper. 

To illustrate the way in which the flowshop assumption 

simplifies a given problem, consider the sample problem of 

chapter two, but modify it so that 
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13 11 12 

23 21 22 

Figure 42 

That is, two jobs, each with three operations, both require 

processing, first on machine 3, second on machine 1 and 

third on machine 2. (Recall that previously, the order of 

operations was different for each job. 

As before. 

P = 

5 2 3 

14 3 

Figure 43 

Thus, job 1 is processed for 5 minutes on machine 3, followed 

by 2 minutes on machine 1, and, finally, for 3 minutes on 

machine 2. In job 2, the order of operations is now identi¬ 

cal to job 1, but the processing times involved are 1, 4 and 

3 minutes, respectively. 

Under these conditions, all feasible schedules are enum¬ 

erated in figure 44, tableaus la to 8a. Clearly there are 

still eight distinct schedules, corresponding to the eight 

possible ways in which jobs can be dispatched to machines. 

At this point one might justifiably question the value 

of imposing a uniform operations-ordering restriction, since 

no particular benefits, in terms of problem simplification, 

seem to accrue. Closer inspection, however, reveals a pe¬ 

culiar characteristic of the more desirable schedules (i.e. 
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those with the shorter makespans) that has potential useful¬ 

ness as a basis for the formulation of a general dispatching 

rule. 

Figure 44a lists schedule makespans in descending order 

of magnitude. Referral to figure 44 immediately reveals that 

SCHEDULE MAKESPAN 

3a 18 

6a 18 

5a 17 

7a 16 

2a 15 

4a 14 

la 14 

8a 11 
. 

Figure 44a 

the schedules with the shortest makespans (i.e. la and 8a) 

are those in which all jobs have processing priorities that 

remain fixed from operation to operation. On the other hand, 

the schedules with the longer makespans are those in which 

the priorities of jobs vary. To illustrate the former point, 

notice that schedule la gives first priority to job 1 at 

every operation, while schedule 8a consistently gives first 

priority to job 2. (In the first case, J1M3 precedes J2M3, 

J1M1 precedes J2M1, and J1K2 precedes J2M2; in the second, 

J2M3 precedes J1M3, J2M1 precedes J1M1, and J2M2 precedes 
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J1M2.) In support of the latter, note the mixed processing 

priorities of schedules 2a-7a. (In 6a, for example, J2M3 

precedes J1M3, and J2M2 precedes J1M2; however, J1M1 pre¬ 

cedes J2M1.) 

If it is, in fact, appropriate to generalize, we con¬ 

clude that an optimal (or near optimal) flowshop schedule 

results from the judicious sequencing of jobs rather than 

operations within jobs. According to this line of reason¬ 

ing, the following rules would seem appropriate: To obtain 

an optimal schedule, 

(1) Determine an optimal set of scheduling priori¬ 
ties for jobs (i.e. determine which job should 
be scheduled first, which should be scheduled 
second, and so on.) 

(2) Schedule each machine according to the priori¬ 
ties established in (1). (Consider machines 
in the order specified by the facility-ordering 
matrix.) 

Clearly, all that remains is to determine an efficient 

means for generating an optimal (or near optimal) set of 

job priorities. In the problem heretofore considered, sim¬ 

ple enumeration could be used to determine this set, since 

only two jobs were involved. (Comparison between the make- 

spans of schedules la and 8a leads to the conclusion that 

job 2 should be afforded first priority.) On the other hand, 

enumeration would be impractical in problems of any reason¬ 

able size. (The reader should verify that an n-job flowshop 

problem has n! feasible solutions remaining even after the 

elimination of schedules involving mixed job-processing pri- 
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orities!) 

While somewhat less staggering than that of the general 

job shop case, the simplified flowshop problem still pre¬ 

sents an extremely difficult combinatorial exercise. For¬ 

tunately, however, the solution can be approached somewhat 

more directly than in the job-shop case. Two relatively 

simple heuristic techniques have been devised which, on the 

basis of the empirical evidence, appear to have very high 

likelihoods of generating optimal or very-near optimal solu¬ 

tions to the flowshop problem. As will be shown, both tech¬ 

niques make a common assumption, namely, that the efficiency 

of schedules depends on the extent to which shortest opera¬ 

tions are scheduled first. 

To expand on this latter point, consider the fixed- 

processing-priority schedules la and 8a, but modify them so 

that machines are now designated along the vertical axis, 

and blocks contain job information. (To avoid confusion, 

the machine designations should always be sequenced in an 

order consistent with the facility-ordering matrix.) Sched¬ 

ules la and 8a would be modified thus: 

Figure 45 
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! • /o 

Figure 46 

The distinguishing features of the optimal schedule 

are now abundantly clear. Job 1 has a very long beginning 

operation (J1M3), which, in figure 45, prevents the start 

of job 2 for a very long time. Hence the optimal schedule 

(figure 46) is the one in which job 1 is scheduled last. 

The results of the example can be generalized: Over- 

all total processing time (makespan) tends to be reduced if 

jobs with early short operations are scheduled first. This 

procedure tends to aggregate all short operations near the 

beginning of the schedule, thus reducing the likelihood of 

lengthy bottlenecks at early stages. The validity of the 

procedure improves to the extent that operational times 

within jobs tend to increase or decrease in monotonic fash¬ 

ion (i.e. any job can be characterized as having "the bulk" 

of its short operations either "near the beginning" or "near 

the end" as opposed to having short and long operations 

mixed throughout in no discernable pattern.) 

In a problem involving many jobs, simple inspection is 

frequently not sufficient to discriminate the best schedule. 

The difficulty is traceable to the absence of any specific 
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criteria which might be used to govern the ranking of jobs. 

On the basis of the discussion thus far, it would be im¬ 

possible, for example, to determine which of two jobs should 

be given higher priority: one with many moderately short op 

erations at the beginning, or one with a single very short 

operation followed be several moderately long ones. 

Palmer Slope Method^ 

As a means toward resolving issues of this type. Palmer 

suggests the computation of a numerical "slope index," which 

assigns weighting factors to operational times for each job. 

These weighting factors are arranged in a continuum such 

that early operations receive heavy negative weightings, 

central operations receive small negative or positive or 

zero weightings, and terminal operations receive heavy posi¬ 

tive weightings. The suggested slope index is given as: 

o _ m-1^ m-3^ ,m-3^ ^m-l^ 
j 2 jl 2 j2 2 j (m-1) 2 jm. 

where j refers to the job in question, m is the number of 

machines in the problem, and t_.^ is the processing (opera¬ 

tional) time required by the jth job on the ith machine. 

The logic behind the "slope index" approach is not dif¬ 

ficult to discern. Jobs with operational times that are 

monotonic decreasing (or nearly so) throughout will have 

negative slope indices, since the longer operations at the 

start are assigned heavy negative weightings. On the other 
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hand, jobs with operational times that are monotonic in¬ 

creasing (or nearly so) throughout will have positive slope 

indices, since the longer operations near the end are 

assigned heavy positive weightings. The greater the ten¬ 

dency to cluster very long jobs at the beginning, the more 

negative the slope index; the greater the tendency to clus¬ 

ter very short jobs at the beginning, the more positive the 

slope index. 

If scheduling of short operations first is held to be 

a desirable condition (see p.139), then jobs should be 

scheduled according to slope index positivity. Specifical¬ 

ly, the job having the most positive slope index should be 

scheduled first, the job having the second most positive 

index should be scheduled second, and so on. This proce¬ 

dure should result in the clustering of all short operations 

at the beginning of the schedule. 

It should be emphasized, partly in the way of reitera¬ 

tion, that precision of results depends largely on the ex¬ 

tent to which jobs can be characterized as having operations 

whose times increase or decrease in approximately monotonic 

fashion. In most problems, there are generally at least a 

few jobs with reasonable operational configurations, and 

these tend to represent extremes, in terms of ranking. The 

remaining jobs tend to be assigned central rankings, and it 

is here that inaccuracies are most likely to occur. How¬ 

ever, in many cases, it will turn out that only one or two 
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priority designations are open to serious question. Under 

these conditions, the Palmer method would still be expected 

to produce a nearly-optimal solution to the flowshop problem. 

Examples. The Palmer method is now applied to two sam¬ 

ple problems. The first is the problem at hand in which: 

.F 
13 11 12 

23 21 22 

P 

Figure 47 

and 

5 2 3 

14 3 

Figure 48 

Applying the formulas, we obtain: 

51 = -^i(5) + ^(2) + ip(3) 

52 = ~^(1) + -^(4) + ip(3) 

Sx = -5+3 = -2 

S2 = -1+3 = +2 

S9 is the most positive, so jobs are processed in the order 

(2 1). The resulting schedule is evidently the same as the 

one in figure 44, tableau 8a. 

It is instructive to note that the facility-ordering 

matrix does not enter into the solution at all. This is be 

cause it is the sequence of operational times that is impor 

tant here; the sequence of machines on which processing is to 
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occur is of no consequence. 

The second example involves the job-shop problem dealt 

with earlier in the dissertation. Recall that 

14 15 11 16 12 13 

25 23 22 24 26 21 

31 33 35 36 34 32 

42 41 45 44 43 46 

53 56 52 51 55 54 

63 65 64 62 66 61 

Figure 49 

and 

3 8 8 7 8 6 

4 1 5 4 4 1 

9 8 1 4 1 6 

0 6 8 2 5 4 

6 7 1 1 3 9 

2 8 7 8 3 0 

Figure 50 

To transform the job-shop problem into a flow-shop case, 

we arbitrarily pick any facility-ordering sequence and apply 

it to all jobs. Selecting (135642), the facility-order¬ 

ing matrix becomes: 
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The 

11 13 

21 23 

31 33 

41 43 

51 53 

61 63 

processing-time 

8 6 

1 1 

9 8 
P = 

6 5 

1 6 

0 2 

15 16 14 

25 26 24 

35 36 34 

45 46 44 

55 56 54 

65 66 64 

Figure 51 

matrix is thus 

8 7 3 

4 4 4 

1 4 1 

8 4 2 

3 7 9 

8 3 7 

12 

22 

32 

42 

52 

62 

modified to: 

8 

5 

6 

0 

1 

8 

Figure 52 

Applying the slope index formulas, we obtain: 

si = 
■625 (7)4 623(3)4 

o
 • I II 00 

r—1 1 
CM 

MO 

S2 = -625<4> + 623 (4)4 ■^i(5)=+14.5 

S3 = 
-^(9)-^-(8)--^(1)4 ■625 (4)f 623(1)4 —-^-(6 ) =-16.5 

S4 = -^i(6)-^(5)-^(8) + 
V(4) + 623 (2)4 •^L(0)=-21.5 

S5 * 
-^(l)-^!(6)-^(3) + ~^-rn + ̂ (9)4 —(1)=+6.5 

S6 = V(3) + 
623(7) + —T~(8)=425.0 
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Jobs are therefore processed in the order (625134) 

The resultant schedule is shown below: 

/ m: 01 03 r^~r 
-:- — L;. 

... -r — 
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Figure 53 

As noted earlier, jobs whose operational lengths are in 

no particular order tend to end up near the middle of the 

ranking group. (This is because their slope indices tend to 

approach zero.) Since the slope method is notoriously in¬ 

effective in generating meaningful rankings for such jobs, 

it is sometimes useful to arbitrarily juxtapose the middle¬ 

most rankings of the ranking group, and test the resulting 

schedule. 

In the problem at hand, the middlemost rankings are 5 

and 1. When these are juxtaposed, the ranking group becomes 

(621534). The alternative schedule is: 

/ 

2 
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Figure 54 
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Since this schedule is two time units longer than the origin¬ 

al one, it is rejected, and the original ranking set is re¬ 

stored. 

There is nothing that prevents the scheduler from exam¬ 

ining other permutations of the central elements of the rank¬ 

ing set. He might, for example, being of a highly suspicious 

nature, wish to examine permutations of the middlemost four 

elements, rather than just the two. This approach would only 

be limited by the difficulties involved in enumerating large 

numbers of schedules - the very same difficulties that led to 

utilization of the slope method in the first place! 

In conclusion, the Palmer slope method represents a 

logical and straight-forward way to obtain a near-optimal 

solution to the flowshop problem. An alternative to the 

slope method will now be considered. 

2 
Campbell-Dudek-Smith Algorithm 

This method involves the decomposition of a problem in¬ 

volving several machines into multiple two-machine problems, 

each of which can be solved exactly. A limited number of 

job sequences are generated, and the sequence that results 

in shortest makespan is found by direct evaluation. 

The Campbell-Dudek-Smith method utilizes, as its basis, 

the two-machine procedure of S.M. Johnson. The two-machine 

case is trivial and has an exact solution because the two- 

machine restriction forces a precisely monotonic pattern on 
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processing times. Thus, jobs can be unambiguously ranked 

with respect to their tendencies to have short first oper¬ 

ations and long second ones, or vice versa.' Specifically, 

these "tendencies" can be determined by computing the ratio 

of first* operation length to second operation length for 

each job. If the scheduling of short operations first is 

held to be a desirable condition, the job with the smallest 

ratio (i.e. shortest first operation relative to second) 

should be scheduled first, the job with the second smallest 

ratio should be scheduled second, and so on. 

The original statement of the Johnson procedure tends 

to obscure its underlying logic. The steps are best re¬ 

stated as follows: 

(1) For each machine-pair (job) in the processing-time 

matrix, compute the ratio of the first operation time to 

the second. 

(2) Establish job rankings based on the ratios. Sched¬ 

ule the job with the smallest ratio first, the job with the 

second smallest ratio second, and so on. 

To illustrate the procedure, consider a two-machine 

problem in which 

6 3 

1 4 

8 1 

P “ 5 2 

6 9 

JL 1 

Figure 55 
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The ratios for each job are computed as follows: 

Jl: 6/3 = 2 

J2: 1/4 = .25 

J3: 8/1 = 8 

J4 : 5/2 = 2.5 

J5: 6/9 = .667 

J6 : 2/7 = .25 

The ranking which assigns highest priorities to the jobs 

with the smallest ratios is (265143). The associated 

Gantt Chart, with a makespan of 29 time units, is shown in 

figure 56. 

Figure 56 

Having discussed the procedure for exact solution of 

two-machine problems, we are now ready to discuss the 

Campbell-Dudek-Smith method in detail. For a problem in¬ 

volving n jobs and m machines, the algorithm is as follows: 

(1) Construct the first two-machine problem from the 

1st and mth columns of the processing time matrix P. Solve 

this problem using the suggested procedure. 
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(2) Construct the second two-machine problem using the 

sum of columns 1 through 2 and the sum of columns m-1 through 

m. Solve this problem as in (1). 

(3) Construct the (m-l)st two-machine problem using the 

sum of columns 1 through m-1 and the sum of columns m-(m-l) 

through m. Solve as previously. 

(4) Having solved m-1 two-machine problems, and having 

generated m-1 feasible ranking sets, select the most effi¬ 

cient job sequence by direct evaluation. 

Examples. To facilitate examination of the logic behind 

the foregoing procedure, we revert to the previously con¬ 

sidered example wherein 

2 . iri-1 

8 6 8 7 3 8 

1 1 4 4 4 5 

P * 9 8 1 4 1 6 

0 5 8 4 2 0 

1 6 3 7 9 1 

0 2 8 3 7 8 

j < v/o ">>chine problem# to be ttoJved a/e <-vi d« nt ly 
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/14/11 

2/9 

< 
17/7 

11/2 

7/10 

2/15 

1.27 

.22 

2.43 

5.5 

.70 

.13 

132/32 

14/18 

2 3/20 

25/19 

26/26 

\20/28 

1 

.78 

1.15 

1.32 

1 

.71 

/ 22/18 = 1.22 

6/13 = .46 

J 18/11 = 1.64 

P3 = < 
\ 19/6 = 3.17 

10/17 = .59 

ylO/18 = .56 

The rankings for each problem are 

P1: ( 6 2 5_1 3 4) 

P2: (62513 4) 

P3: (26513 4) 

P4 : (6 2 5 1 4 3) 

P5: (6 2 5_1 3 4) 

A graphical depiction of each unique sequence is shown in 

figure 58. Clearly, the optimal ordering is (265134), 

yielding a makespan of 50. 

The logic behind the Campbell-Dudek-Smith algorithm can 

be explained by examining certain features of the two-machine 

sub-problems. The first two-machine sub-problem is funda¬ 

mentally important because it contains only the most critical 
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elements of the original problem, namely, the first and last 

operations. (Recall that the slope method recognizes the 

importance of these operations by weighting them most heavi¬ 

ly.) As a first approximation, the Campbell-Dudek-Smith pro¬ 

cedure suggests that such a sub-problem, composed of only the 

most critical elements, represents a reasonably satisfactory 

abstraction of the original problem. Accordingly, a "good" 

solution to the original problem might be obtained by solving 

the first two-machine sub-problem by means of the Johnson 

method. 

Whereas it is intuitive that a "good" solution is ob¬ 

tained following the above procedure, it is also intuitive 

that a better one might be generated by also considering 

those operations which adjoin the most critical, namely, the 

second and next-to-last. The second two-machine sub-problem 

acknowledges this possibility by incorporating these secon¬ 

darily important operations into the analysis. 

In each successive two-machine sub-problem, operation- 

pairs of progressively lesser importance are introduced. 

The final two-machine sub-problems integrate all operations 

of the original problem within the analysis. 

Whereas the Palmer slope method uses explicit weighting 

factors to express the relative importance of operations, the 

Campbell-Dudek-Smith method achieves the same effect by re¬ 

lying on an interesting property of fractions. Recall that 

the Johnson method (modified) suggests computation of the 
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ratios of first and last operations lengths in order to de¬ 

termine job processing sequence. Following the Johnson- 

Campbell-Dudek method, analysis of the m-machine problem be 

gins with the computation of such ratios for the first two- 

machine sub-problem. 

Heaviest "weighting" of the first and last operations 

is achieved by virtue of the fact that the first ratio set 

forms the basis for all successive sub-problems. As the 

original ratios are modified by successive additions to 

numerator and denominator, the effect on the ratio values 

becomes progressively smaller. To put it another way, as 

newly-considered operations become less and less critical 

(i.e. nearer the center of the "P" matrix), the capacity of 

such operations to cause any significant changes in the 

original ratios is progressively reduced. Hence, the job 

sequence established by the solution of the first two-ma¬ 

chine sub-problem tends, in most instances, to undergo only 

minor modification. 

To illustrate these important points, consider first 

the processing-time matrix of the first two-machine sub¬ 

problem 

P 
1 

8 8 

1 5 

9 6 

6 0 

1 1 

0 8_ 

Figure 59 



155 

for which the ratios are computed as 

The first job sequence is thus (625134). 

For the second two-machine sub-problem, the second and 

next-to-last operations are also included: 

8+6 3+8 

1+1 4+5 

9 + 8 1+6 

6+5 2+0 

1+6 9+1 

0+2 7+8 

Figure 60 

and the original ratios are thus modified to 

/ 8+6 

- 

8+3 

1+1 
5+4 

9 + 8 
6+1 

6+5 
0+2 

1.27 

.22 

2.43 

5.5 

1+6 
1+9 

. 70 

.13 
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Note that the inclusion of the second and next-to-last 

operations does not change the values of the ratios very 

much, and, most important, the rankings are not altered at 

all. 

With each successive addition of operation-pairs, the 

numerator and denominator of each ratio grow by an amount 

equal to the length of the newly-included operations. Thus, 

the effect of each new inclusion on the previous ratio be¬ 

comes progressively smaller, according to the principle that 

the ratio ^2 approaches | as | and 2. approach zero. (As an 

extreme example, consider the difference between, say, 1/2 

and versus, say, and in the first case, 

the base ratio is altered considerably by the addition of 

values to numerator and denominator; in the second case, 

however, the alteration is essentially insignificant.) 

Evidently, there are cases in which the addition of 

operation-pairs results in some modification of job rank¬ 

ings. This generally occurs when added operations are 

grossly dissimilar in length, as in the case of the transi¬ 

tion between P2 and P^. Clearly, however, the effect of 

such dissimilarity tends to be mitigated to the extent that 

operations fall near the center of P. 

In conclusion, the Campbell-Dudek-Smith method pro¬ 

duces schedules of satisfactory efficiency. An empirical 

comparison indicates marginal superiority over the Palmer 

slope method;^ however, this advantage appears to be bal- 
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anced by the disadvantage of slightly less computational 

ease. (The Campbell-Dudek-Smith method requires direct 

evaluation of several schedules.) 

Conclusion 

This chapter of the dissertation has outlined two meth¬ 

ods for obtaining near-optimal solutions to the m-machine, 

n-job flowshop problem. Other methods exist, but, in gen¬ 

eral, they do not appear to be sufficiently unique to warrant 

inclusion. Also, many of them cannot be applied to problems 

of any reasonable size without recourse to computing devices. 

It should be noted that the approach suggested for ap¬ 

plication to the general job-shop case (see prior chapters) 

can be applied equally well to the flowshop problem. We 

have chosen to recommend more direct methods, however, be¬ 

cause such methods promise equally good or better results 

with far less computational tedium. The flowshop problem is 

clearly far less complicated than the job shop case; it 

therefore makes good sense to attack it in a manner befit¬ 

ting its simplicity. 

In this dissertation, we have chosen to devote atten¬ 

tion to only one of the many special cases of the job-shop 

problem. Other restrictive situations, say, m<3 and/or n_<3, 

were not considered simply because such cases are rarely en¬ 

countered in the real world. A wide variety of analytic 

approaches has been developed to handle all of the most ob- 
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vious abstractions of the mxn job shop case, but, for the 

most part, we believe these developments to be of little or 

no general interest. 



159 

Footnotes 

1. D.S. Palmer, "Sequencing Jobs through a Multi-Stage 
Process in the Minimum Total Time - A Quick Method of Obtain¬ 
ing a Near Optimum," Operational Research Quarterly, 16 
(March, 1965), 101-107. 

2. H.G. Campbell, et. al., "A Heuristic Algorithm for 
the n Job, m Machine Sequencing Problem," Management Science, 
16 (June, 1970), B630-B637. 

3. Johnson, "Optimal Two and Three Stage Production 
Schedules with Set-Up Times Included," Naval Research Logis¬ 
tics Quarterly, 1 (March, 1954) , 61-68. 

4. Palmer, "Sequencing Jobs through a Multi-Stage Pro¬ 

cess . " 



CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

Summary 

The purpose of this dissertation was to describe and 

justify a heuristic scheduling methodology that could easi¬ 

ly be applied in situations where extensive computational 

facilities were unavailable. Chapter one introduced the 

reader to the problems inherent in analyzing the scheduling 

problem, and cited numerous studies in which the scheduling 

problem was approached in several different ways. Chapter 

two presented some fundamental concepts and definitions 

that were deemed necessary as a basis for understanding the 

problem and its attendant specialized features and varia¬ 

tions. In Chapter three, some attention was devoted to 

dispatching and the nature of a queue, but the major focus 

was on the identification and understanding of basic pri¬ 

ority rules, as well as on their application in a typical 

problem setting. Chapter four was an extension of Chapter 

three in which rules were developed, not merely with the 

purpose of generating "compact" schedules, but with the in¬ 

tention of accommodating specific due-date restrictions as 

well. In Chapter five, the focus was on heuristic rules 

("rules of thumb") that might be used to supplement, and 

thereby enhance the effectiveness of, the previously de¬ 

veloped priority rules. Chapter six dealt with the dynamic 
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job shop case, a logical extension of the static case in 

which jobs could be added to or deleted from the original 

job set at any point in time. And, finally, the purpose 

of chapter seven was to describe and illustrate some highly 

specialized techniques that could be used to expeditiously 

handle a commonly-encountered variation of the job-shop 

problem - the flowshop problem. 

Conclusion 

The heuristic argument revisited. The heuristic sched¬ 

uling methods described in this paper constitute a repertory 

from which the scheduler may draw when he sets out to de¬ 

termine a schedule. Knowledge of the strengths and weakness¬ 

es of each method, combined with the scheduler's understand¬ 

ing of the nature of the specific problem being analyzed, 

should permit an expeditious selection of priority rules and 

supplementary heuristics, the end result being a sub-optimal 

schedule of very good quality. Thus, the scheduler may suc¬ 

cessfully use this dissertation as a guide to effective 

scheduling in the small job shop, or any other shop that, 

for one reason or another, is constrained to rely on manual 

scheduling means. 

The lingering objection of the purist will evidently 

focus on the lack of precision inherent in both the method¬ 

ology and the results. The philosophical argument of March 

and Simon (that sub-optimizing or "satisficing" is the only 
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suitable approach in most real-world problem-solving situa¬ 

tions) may not be sufficiently compelling and may therefore 

require some statistical reinforcement. 

Hare'*' and others, recognizing the futility of a "brute- 

force" search for optimality when very large numbers of feas 

ible schedules are involved, have attempted to justify the 

use of sampling (inspection of only a small fraction of the 

total number) on the basis of a non-parametric statistical 

argument. Specifically, it can be shown that (a) a relative 

ly small sample, chosen at random, has an astonishingly high 

probability of containing an optimal schedule, and (b) that 

this probability is only indirectly related to the size of 

the entire "population" of feasible schedules. 

Let us begin with the assumption that the sample is 

chosen completely at random, that is, that no attempt has 

been made to enhance the qualities of the selected schedules 

through application of priority rules and/or supplementary 

heuristics. Under these conditions, it can be shown that 

the probability of picking at least one number of some spe¬ 

cified "top" fraction p is l-(l-P) , where n is the size of 

the sample. 

To illustrate, suppose that ten schedules are generated 

at random (n=10) and that it is desired to ascertain the 

probability that this sample will contain one or more sched¬ 

ules of the best 10% (P=.10). We calculate: 
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P = l-(l-.lO)10 

= 1-(.9)10 

= 1-.3486 = .6514 

In other words, there is approximately a 65% probability that 

the sample of ten schedules will contain one or more schedules 

of the best 10%. 

Suppose the sample size is increased to 20. 

tion is them: 

P = l-(l-.lO) 

= 1- (.9)20 

20 

= 1-(.9)10 (.9) 10 

= 1- (.3486) (. 3486) 

= 1-.1215 = .8785 

The calcula- 

By slightly increasing the sample size (i.e. from 10 to 20) 

it is possible to get greatly improved results. Since the 

sample size is quite small to begin with, such increase is 

normally quite workable. 

As an alternative to increasing sample size, a similar 

improvement in probability of success might be obtained by 

weakening the restrictions on the "top" fraction. As an ex¬ 

ample, one might desire the probability of picking at least 

one member of the "top" 20%, instead of 10%, for a given 

sample size. If the sample size were restored to 10, the 

computation would be: 
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P = 1-(1-.20)10 

= 1-(.8)10 

= 1-.1074 

= .8926 

The results obtained here (Pl89%) are quite similar to those 

which occurred when the sample size was doubled. (Pl89%) 

It should be noted, however, that the benefits in the present 

case are somewhat illusory, since an improvement in the prob¬ 

ability of success was secured only by permitting the "top" 

fraction to encompass more schedules. Thus, while the prob¬ 

ability of encountering a "good'1 schedule is increased, the' 

word "good" is now defined with considerably greater toler¬ 

ance. 

The foregoing discussion clearly illustrates a vital 

point, namely, that a relatively small sample, selected at 

random, has a rather high likelihood of yielding at least 

one good schedule. Thus, the implied technique would be to 

generate, say, ten or twelve schedules at random, evaluate 

them, and choose the one adjudged "best" on the basis of 

some criterion. 

Assuming schedules are picked completely at random, 

there is approximately a 65% chance that a sample of 10 will 

contain at least one schedule of the top 10%. Suppose now, 

however, that schedules are not picked totally at random, 

that is, that they are instead carefully constructed (us¬ 

ing priority rules and supplementary heuristics) in a manner 
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that is likely to enhance certain important characteristics 

(such as makespan or idle time). Under these circumstances, 

what improvement in the probability of success might be ex¬ 

pected? 

It would be somewhat difficult to determine an exact 

quantitative answer to this question, since we do not know 

any precise statistics relating to the reliability of load¬ 

ing rules. Nevertheless, we can, with a fair amount of cer¬ 

tainty, state that dispatching according to well-conceived 

rules (such as the ones discussed at length earlier in this 

paper) generally produces results that are superior to those 

obtained under conditions of random dispatching. 

To summarize, we might use a heuristic argument as 

follows: A random selection process produced results that 

are reasonably good, sufficiently good, in fact, that we 

might, under certain conditions, be willing to accept the 

schedules thus produced as being at least marginally satis¬ 

factory. On the other hand, the use of carefully conceived 

heuristics is likely to produce even better results, thus 

enhancing the attractiveness of accepting such rules as part 

of a viable, "satisficing" approach to scheduling. 

Computer programming of rules. Throughout this paper, 

we have proceeded under the assumption that electronic com¬ 

putational facilities were not available to the scheduler. 

Under such conditions, it would have been presumptuous to 

propose as "workable" any method which required the drawing- 
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up of more than fifteen or twenty schedules (perhaps one for 

each priority rule-heuristic combination). It should, how¬ 

ever, be carefully noted that there is nothing about the 

suggested method which explicitly prohibits computerization, 

and, consequently, the efficient generation of vastly larger 

numbers of schedules. 

In the event that it becomes practicable to generate 

large numbers of schedules (i.e. in the event that computers 

are available), the argument in favor of the proposed ap¬ 

proach takes on dramatic new significance. Even assuming 

random sampling, an increase in the sample size to 100 (an 

entirely workable figure) results in the following P: 

P = l-(l-.lO) 
100 

= 1”(•9) 
100 

= l-[(.9)20]5 

= 1-I.1215]5 

= 1-.0000264 

= .9999 

Thus, the probability that a sample of size 100 will contain 

one or more schedules of the top 10% is now very close to 

100%. 

To get even greater accuracy, the top fraction might be 

reduced to, say, 1%, and the sample size increased to, say, 

1000 (still a reasonable figure for computer enumeration). 

The resulting P would then be: 



167 

P = l-(l-.Ol)1000 

= 1- (.99) 1000 

= 1- (. 3665)10 

= 1-.0000000433 

= .9999 

Now, the probability that a sample of size 1000 will contain 

one or more schedules of the top 1_% is approximately 100%. 

This example clearly indicates why sampling, using high¬ 

speed digital computers, has been frequently suggested as a 

means for solving the scheduling problem. Implicit also is 

the suggestion that priority rules and heuristics might be 

programmed to yield equally precise results, though without 

the need to generate and inspect nearly as many schedules. 

Mechanical scheduling devices. The vehicle for commun¬ 

ication of most academic thought is, sometimes unfortunately, 

paper and ink. The illustration and discussion of Gantt 

Chart manipulation has, in this dissertation for example, been 

seriously hampered by the media. In practice, the scheduler 

evidently need not draw up numerous successive stages in the 

generation of a final schedule, as was done throughout this 

paper. 

The scheduling process is greatly facilitated through 

the use of magnetic boards or panels, on which blocks, bear¬ 

ing either job or machine designations, are positioned. 

Each block represents one unit of time, and single blocks or 

groups of blocks may easily be shifted to create an infinite 
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number of different schedules. Other formats include boards 

and blocks with Velcro fasteners or adhesive, but the prin¬ 

ciples of operation are generally uniform. 

A typical board-and-block device is depicted below: 

Figure 61 

Comparison of heuristlcally generated schedules with 

known optima. Appendix A contains the heuristic solution 

of a scheduling problem with a knov/n optimum. 
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APPENDIX A 

The following example, consisting of three jobs and 

four machines, is taken from Thompson:'*’ 

11 12 13 14 

23 21 24 22 

24 21 — — 

5 2 8 7 

8 4 5 3 

6 7 — — 

Jobs 1 and 2 are processed by each of the four machines; job 

3 is processed by machines 4 and 1 only. The known optimal 

makespan of the problem is 24. 

Figure 62 illustrates application of the shortest immi¬ 

nent operation rule. Using this rule, without recourse to 

any secondary rule, the final schedule has a makespan of 

30, indicating an error of approximately 20%. The reason for 

the error is not difficult to discern. At t = 5, Ml becomes 

idle, and J3M1 is ready to begin processing at t = 6. Since 

J2M1 is not available for processing until two time periods 

hence, J3M1 is scheduled. The decision is indeed optimal at 

this point, but unfortunately causes future complications. 

(J2M4 is delayed excessively.) 
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While a 20% error is not deemed excessive, the appli¬ 

cation of heuristics might have resulted in a better sched¬ 

ule. For example, the "alternative assignment" heuristic 

might have warned of difficulties at early stages, thus per¬ 

mitting the juxtaposition of J2M1 and J3M1. At this point, 

some back-tracking, coupled with the "idle time reduction" 

heuristic would be in order. 

Admittedly, the problem is a simple one, but it illus¬ 

trates the essential point: the methodology which has been 

suggested in this paper is capable of producing satisfactory 

solutions to problems involving job shop scheduling. 



178 

Footnote 

9 

G.L. Thompson, "Recent Developments in the Job-Shop 
Scheduling Problem," in Industrial Scheduling, ed. by J.F. 
Muth and G.L. Thompson (Englewood Cliffs, New Jersey: 
Prentice-Hall, 1963). 

♦ 
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