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INTRODUCTION 

The rapid advancement in weed technology over the past 

two decades has led to the development of several new and 

effective herbicides which were required to meet the expand¬ 

ing agricultural demands of an ever-increasing world popula¬ 

tion. Environmental concern has led people to question the 

practice of applying chemicals to crops and soil so it is 

necessary to study the metabolism and breakdown of each 

chemical and determine if it is a potential hazard to the 

environment. In response to these needs a number of investi¬ 

gations have been undertaken to determine the decomposition 

and metabolism of herbicidal compounds. These investiga¬ 

tions have not only given.us new insights into the complex 

biochemistry of plants, animals and microbial systems, but 

have also provided us with more useful scientific rationale 

for the synthesis of more effective herbicides. 

The high biological activity of atrazine (2-chloro-4- 

ethylamino-6-isopropylamino-s-triazine) and simazine 

(2-chloro-4,6-bis(ethylamino)-s-triazine) for control of a 

wide spectrum of plants has made them extremely useful as 

selective herbicides. These substituted chlorotriazines are 

two of the most widely used herbicides for the control of 

annual weeds in field corn. 
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Witchgrass (Panicum capillare L.) is a common weed in 

the Northeastern United States, but is not a serious problem 

as it appears to be susceptible to both simazine and atra- 

zine at recommended rates (70). On the other hand, reports 

on the success of large crabgrass (Digitaria sanguinalis (L.) 

Scop.) control by simazine and atrazine are inconclusive 

(4,50,57,74,77,103) indicating great variability in experi¬ 

mental conditions (especially soil type) and/or the possi¬ 

bility that different strains exhibit varying tolerances to 

the chloro-s-triazines (99). However, it appears that large 

crabgrass is more tolerant to the chloro-s-triazine herbi¬ 

cides than other annual weeds commonly found in corn. 

Witchgrass on the other hand appears to be susceptible to 

both simazine and atrazine at recommended rates (70). 

Preliminary work in this investigation revealed two 

important findings: (1) Simazine was more toxic than atra¬ 

zine to both witchgrass and crabgrass and (2) witchgrass was 

more susceptible than crabgrass to both chloro-s-triazines. 

This investigation was undertaken to determine the factors 

underlying the differential toxicity of simazine and atrazine 

to crabgrass and witchgrass, and the greater susceptibility 

of witchgrass as compared to crabgrass to both chloro-s- 

triazines . 
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REVIEW OF LITERATURE 

Chemical nature of the s-triazine Herbicides: Simazine and 

atrazine belong to a group of heterocyclic compounds known 

as the substituted triazines. The ring structure of the 

s-triazine molecule is 6-membered, and contains 3 nitrogen 

atoms. The selectivity of these, herbicides is markedly 

influenced by the substituent groups attached to the 

s-triazine nucleus (39). Most of the s-triazines showing 

herbicidal activity have alkyl-substituted amino groups 

in the four and six positions of the ring. In the simazine 

molecule, both of these positions are occupied by ethyl 

amino groups and accordingly the organic nOiuenclature of 

simazine is 2-chloro-4,6-bis(ethylamino)s-triazine. 

W H 

SIMAZINE 



Atrazine (2-chloro-4-ethylamino-*6-isopropylainino-s- 

triazine) structurally differs from simazine only in the 

substitution of an isopropylamino group for an ethylamino 

group at the six position. 

ATRAZINE 

The mode of action of both of these herbicides is the 

same. They do not prevent germination of weed seeds, but 

destroy weed seedlings shortly after emergence. These com¬ 

pounds have been shown to be effective inhibitors of the 

Hill reaction in photosynthesis (34, 65), and are known to 

reduce the rate of CO2 fixation in plants (7, 102, 109). 

Cast (35) showed that in Coleus Blumei simazine blocked 

starch production in the light and that this effect was 

overcome by the addition of sucrose to starch-free leaves. 
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Other studies by Singh and West (83) demonstrated an 

alteration of chloroplast protein of oat plants by simazine. 

They also noted marked differences in the amino acid incorpo¬ 

ration ability of the chloroplasts. 

Cuticular penetration of simazine is limited (51). 

Simazine is most effective when applied to the soil before 

weeds emerge. It enters plants primarily through the roots 

and its effect is dependent upon irrigation, rainfall or cul¬ 

tivation to move it to the root zone. The herbicide is 

translocated through the xylem in the transpiration stream 

and tends to accumulate around the margins of dicoteledonous 

leaves and in the tips of monocoteledonous leaves. Because 

of the small amount taken up by the foliage, simazine is not 

used as a post-emergence spray (51). 

f 

Atrazine produces similar pre-emergence effects on 

plants. However, it differs from simazine in one important 

respect. Atrazine is absorbed through the foliage of plants 

more readily than simazine. Atrazine is therefore also used 

as an early post-emergence herbicide. 

The s-triazine molecule exhibits few characteristics 

of an aromatic nucleus. This is due to the presence of the 

strong electronegative N atoms in the ring. Much of the 

chemistry of the s-triazine compounds is simply the chemistry 
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of the substituent groups attached to the ring which is very 

often not involved in the reaction (105). 

Non-biological Detoxication of s-triazine Herbicides 
I 

Research on non-biological detoxication has been for the 

most part centered on volatilization, soil adsorption, photo¬ 

decomposition, hydroxylation and dealkylation. 

Volatilization 

Volatilization has been implicated in the loss of herbi- 

cidal s-triazine from the soil. The rate of loss by this 

process is related to soil temperature, moisture and the 

chemical nature of the s-triazine. Davis et (20) noted a 

50 percent loss of simazine by volatilization from a metal 

surface at 160° to 165°F. They reported less volatilization 

at lower temperatures. Other workers have reported the loss 

of s-triazines by volatilization (23, 28, 48). 

Kearney ^ (49) compared the rate of volatility of 

s-triazine herbicides from moist and dry soils. They 

reported that simazine appeared to be more volatile from dry 

soil whereas atrazine volatility was greater from wet soil. 

They noted that soil type influenced vapor loss of the s- 

triazine herbicides but had less effect on simazine than on 

atrazine. They also found that volatility from nickel plated 

planchets of the seven compounds investigated varied directly 

with the vapor pressure of the herbicides. 
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Soil Adsorption 

The adsorption - desorption of pesticides by soil systems 

is directly influenced by soil reaction, colloid or soil type, 

physical-chemical nature of the pesticide, temperature, and 

the formulation of the pesticide (8). 

The adsorption of herbicides (of widely different mole¬ 

cular structures) was found by Frissel and Bolt (19) to 

increase as the pH of the soil solution decreased. Bailey 

et al. (10) noted that adsorption occurred to a much greater 

extent (regardless of the chemical nature of the adsorbate) 

on the highly acid-hydrogen-montmorillonite (pH 3.35) than 

on the near neutral sodium-montmorillonite (pH 6.8). In an 

adsorption study of 13 s-triazines by montmorillonite, Weber 

(104) reported that maximum adsorption of all the compounds 

occurred at a pH close to the dissociation constant of each 

compound. Some desorption of the adsorbed triazines occurred 

when the pH was lowered further. This work is not in agree¬ 

ment with earlier investigations by Frissel and Bolt (32), 

who found an increase in adsorption as the pH was decreased 

from about three to four pH units above the dissociation 

constant down to a pH of one. 

The nature of the colloid also influences the adsorption- 

desorption phenomenon of the s-triazines. The extent to which 

these processes occur are directly related to the configura- 
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tion and the area of the surface, and to the magnitude, dis¬ 

tribution and intensity of the electrical field at the surface 

(9), The 1:1 clay minerals, primarily those of the kaolinite 

group, because of their low cation exchange capacity and low 

surface area, have very limited adsorption capacities. The 

2:1 minerals such as montmorillonite and vermiculite on the 

other hand, have considerably higher adsorptive capacities. 

The physical-chemical nature of the adsorbate reflects 

its adsorptive properties. Of major importance are the 

chemical character, shape and configuration, water solubility, 

acidity or basicity of the molecule, molecular size and 

polarity. Little work has been done to date to determine 

the relative importance of each of these factors. Bailey 

and White (10) studied the effect of the functional group and 

the nature and position of ring substitution on the magni¬ 

tude of adsorption of a variety of compounds. They concluded 

that the chemical nature of the molecule influenced adsorp¬ 

tion on to a colloidal system in different ways: (1) affects 

the water solubility of the molecule and (2) determines if 

the molecule is fundamentally acidic or basic. 

Within a family of compounds there appears to be a rela¬ 

tionship between water solubility and the extent of adsorp¬ 

tion. Bailey (9) compared the extent of adsorption 

of a number of herbicides on to sodium and hydrogen mont- 
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morillonite. They discovered that a direct relationship 

existed between the water solubility and adsorbability for 

the s-triazines on Na-montmori1Ionite. This relationship 

between water solubility and adsorbability was confirmed by 

Talbert and Fletchall (96) who noted that there was greater 

adsorption of methoxy- and methylmercapto-derivatives than 

there was of the chloro-s-triazines. 

Exchange reactions tend to be temperature dependent. 

Adsorption processes are exothermic and desorption pro¬ 

cesses are endothermic. An increase in temperature tends to 

reduce adsorption and increase the desorption process. 

However, Harris and Warren (45) noted that the adsorption of 

S ^ ^ 11 ^ f ^ L* d d cl PI Ci iLlt^ 1 i JL Ol ^ ^ A1 Vp* W a a w w V* O ^ C4 ^ ^ ^ C* w 

0® than at 50°C. 

An indirect influence of temperature on adsorption is 

through its effects on vapor pressure and solubility. In 

general increased temperature leads to decreased adsorption. 

However, Freed ^ (31) noted increased adsorption of 

EPTC at higher temperatures, which very likely was a reflec¬ 

tion of the effect of temperature on solubility. 

Photodecomposition 

Little critical research has been done to determine 

actual loss from photodecomposition of the s-triazines. 

However, sufficient research has been carried out to demon- 
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strate that some loss due to photodecomposition of these 

herbicides does occur. 

Dewey (25) reported a decrease in simazine activity 

after the compound was irradiated with a mercury-vapor high- 

pressure lamp. Inactivation of simazine by sunlight was 

demonstrated by Sheets and Danielson (79). Mitchell (60) 

irradiated simazine on filter paper with U V light, but his 

results were inconclusive. Comes and Timmons (19) demon¬ 

strated that atrazine and simazine on the soil surface may 

be detoxified by sunlight. Atrazine loss in the spring from 

irradiation, as determined by oat bioassay, was 47 percent 

in 25 days and 73 percent in 60 days, while loss in dark 

culLures was negligible. In the summer, 65 to 90 percent of 

the atrazine applied to the soil surface was detoxified. In 

the latter experiment, summer soil temperatures ranged from 

150° to 180°F, and volatilization of the herbicides may have 

occurred, making it difficult to measure the extent of photo¬ 

decomposition. The simazine loss reported in this experiment, 

was in the order of 25 percent in the spring over a 25 day 

period. 

Hydroxylation Reactions 

The hydrolysis of s-triazines in soil to non-phytotoxic 

hydroxy analogs has been reported (1,5,6,43,84). A number 

of factors affect the rate of hydroxylation of s-triazines 
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in soils. Armstrong (6) showed that soil pH and 

I organic matter content largely control the rate of atrazine 
I* 

hydroxylation. Atrazine hydroxylation rates were greatest 

i in soils high in organic matter and low pH. Only a very 

I 

; slight effect on degradation rate was obtained by increasing 
I 

the clay content of soils used in the study. Working with 
I 

soils of high organic matter content and high clay content, 

I Harris (43) noted that montmorillonite protected simazine 
t 
J from hydrolysis through adsorption, while organic matter in¬ 

creased the degradation rate by acting as a catalytic agent. 

Armstrong (6) demonstrated that chemical hydroly¬ 

sis of atrazine occurred in strongly basic or acid solutions. 

These workers postulated that acid hydrolysis results from 

protonation of a ring or chain nitrogen atom followed by 

cleavage of the C-Cl bond by water. The ring C-atom bonded 

to the Cl group, surrounded by electronegative Cl and N atoms, 

' is electron deficient and therefore susceptible to displace- 

’ ment by strong nucleophilic agents such as OH ions and hence 

its susceptibility to alkaline hydrolysis. 

Dealkylation Reactions 

Plimmer aj^, (68) carried out extensive studies on the 

N-dealkylation of s-triazines by soil fungi, higher plants 

and soil. They reported that free radical reactions caused 

> 

) • 
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N-dealkylation of s-triazines and suggested that a similar 

mechanism occurred in plants and soil fungi. 

Persistence of Triazine Herbicides in Soil 

The s-triazines exhibit varying degrees of persistence 

in soils. In general persistence is related to chemical 

structure (81). Triazine herbicides containing methoxy sub¬ 

stituents on the two position of* the ring are generally more 

persistent than those containing methylthio- or chloro- 

substituents (14,80,82,94). Differences in persistence have 

been reported among the 2-chloro-s-triazines. Horowitz (47) 

in field experiments in Israel noted that the relative order 

of persistence was simazine;>atrazine>propazine(2-chloro- 

4,6-bis(isopropylamino)-s-triazine). Fink and Fletchall 

(27) working with several forage species observed that more 

severe injury was caused by atrazine than by simazine when 

the species were planted immediately after treatment. 

However, in plots seeded one year after application, simazine 

caused greater injury. 

A number of researchers have reported differences in 

persistence of s-triazine herbicides among different soils 

(2,15,75,76). Scudder (76) found greater residual toxicity 

in a sandy soil than in a peat soil. This finding was con¬ 

firmed by other workers (3) who found greater simazine 

residues in sandy soil than in a peat or clay soil up to 11 
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months after application. 

Persistence of the chloro-s-triazines is modified by 

weather and climate through their effects on degradation. 

Both microbial and non-microbial decomposition is dependent 

on moisture and temperature. Warm, moist conditions have 

been shown to reduce persistence of s-triazines in soils 

(26,43), while in cold, dry climates these herbicides dis¬ 

appear more slowly (25,27,31). Burschel (16) showed that the 

half-life of simazine in soil at 8.5°C was 140 days, while at 

25°C it was only 20 days. 

Weather conditions within an area modify persistence 

patterns. Simazine and atrazine persist longer during dry 

summers than during summers with high rainfall (13,44,94). 

Rainfall and irrigation patterns also alter s-chloro-triazine 

persistence in soils. Working with three irrigation schemes, 

Wilson and Cole (106) demonstrated least atrazine persistence 

in soil that was watered daily to field capacity and greatest 

persistence in soil watered to field capacity once each week. 

Formulation of the chloro-s-triazine herbicides appears 

to be related to persistence. Reports show that granular 

atrazine persisted longer than wettable powder formulations 

I 
applied in aqueous suspension (59,107). Kuratle and Cole 

(54) also demonstrated that when atrazine was formulated as a 

water-soluble ammonium sulfate granule, it was considerably 
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more persistent than when it was formulated on insoluble 

Attaclay. 

Atrazine is often applied in oil-water emulsion carriers 

when applied post-emergence (56,95,108). The effects of such 
I 

carrier emulsions on persistence has not been fully investi¬ 

gated but Slife (85) suggests that residual problems may be 

greater when atrazine is applied with water as the carrier 

than when applied in an oil-water mixture. 

Triazine Metabolism 

A number of investigators have demonstrated a close 

correlation between the degree of plant resistance to the 

triazines and the extent of metabolism of these compounds 

(21,22,39,72,78). Roth was the first to observe that sima- 

zine was being extensively degraded by corn (72). He in¬ 

cubated simazine with expressed corn sap and noted that after 

100 hours only a small percentage of the parent simazine 

could be detected in the mixture. On the other hand, over 

90 percent of the simazine added to wheat sap was recovered 

in a similar experiment. This observation was highly signi¬ 

ficant inasmuch as wheat is sensitive to simazine. 

Montgomery and Freed (61) reported a rapid conversion of 

atrazine to a new compound, which on the basis of chromato¬ 

graphic behavior was suggested to be the hydroxy analog of 

atrazine. Castelfranco et al. (17) confirmed this, and 
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characterized the active constituent responsible for the con¬ 

version. The properties of this constituent suggest that it 

was not an enzyme or protein. 

The constituent was later isolated and identified in¬ 

dependently by two groups of researchers (42,73). It was 

found to be the cyclic hydroxamate, 2,4-dihydroxy -3-keto- 

7-methoxy-l, 4-benzoxazine. 

2,4-dihydroxy-3-keto-7-methoxy-l,4-benzoxazine 

Roth and Knusli (73) showed that simazine is detoxified 

in vitro in the presence of the cyclic hydroxamate, its glu- 

coside and related cyclic hydroxamic acids. The in vivo 

(42) and in vitro (101) conversion of simazine to its hy¬ 

droxy analog was also demonstrated. This conversion was 

thought to be common to all the chloro triazines, since 

propazine undergoes the same conversion when incubated in 

corn juice. The primary factor in the high tolerance of 
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corn to the s-triazine herbicides was at this time thought 

to be their rapid conversion to the hydroxy analogs. The 

hydroxy s-triazines are biologically inactive, even to 

species which are very susceptible to the chloro-s-triazines 

(30). 

Metabolic studies have shown that susceptible plants 

have a limited capacity for degrading the chloro-triazines. 

Davis a^. (21), using ^^C-labeled simazine, showed that 

the amount of herbicide taken up by corn, cotton and cucum¬ 

ber plants did not vary significantly. However, after 

chloroform extraction (which removes unaltered simazine 

as well as certain metabolites) they discovered that only 

5 percent of the radioactivity was chloroform-soluble where¬ 

as in cotton and cucumber plants the values were 25 percent 

and 50 percent respectively. The extent of simazine meta¬ 

bolism was in close agreement with the relative tolerances 

of these plants to the herbicide. Corn is very tolerant to 

simazine, cotton is moderately sensitive and cucumber is 

extremely susceptible. 

The ability of corn plants to rapidly degrade simazine 

and atrazine was also demonstrated by Montgomery (64). 

They grew plants in soil treated with herbicide and 

reported that the amount of chloroform-soluble as well as 

total radioactivity at each harvest (ranging from 2 weeks 
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to 3 months) was appreciable. However, the radioactivity 

in the chloroform-soluble fraction declined at each time 

of harvest, indicating that the triazines were metabolized. 

Analysis of the chloroform extracts by paper chromatography 

showed that very little, if any radioactivity, was still 

in the form of the original parent triazines. 

The metabolism of ring and side-chain labeled simazine 

by corn plants was studied by Funderburk and Davis (33). 

Paper chromatography of the extract of treated plants re¬ 

vealed that hydroxy simazine and an unidentified product 

are formed with either type of labeled herbicide. Also 

labeled carbon dioxide was given off by plants treated with 

either compound. This indicated that all portions of the 

triazine molecule are subject to complete oxidation by corn, 

cotton and soybean plants. 

Some doubt was raised however as to the relationship 

between degradation and tolerance in several species (40). 

Hamilton contended that although benzoxazinone derivatives 

may play a part in the resistance of corn and Jobs-Tears 

[Coix lacryma-jobi (L.)] to 2-chloro-4,6-dialkylamino-s- 

triazine herbicides, other factors appeared to be impor¬ 

tant. Kafer-60 Sorghum, which shows considerable resis¬ 

tance, does not contain benzoxazinone in detectable amounts, 

and did not appear to convert simazine to hydroxysimazine. 
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On the other hand, other susceptible species such as wheat 

and rye, contain benzoxazinone, and were capable of effec¬ 

ting the conversion (40). Pea plants, which show interme¬ 

diate tolerance to atrazine was also found to be devoid of 

benzoxazinone (92) . The presence of water-soluble meta¬ 

bolites other than hydroxy-simazine in the root extracts of 

barley, oats and sorghum indicated the possibility of other 

degradation mechanisms (40). 

Contrary to the postulation that the first step in the 

degradation of atrazine involved hydroxylation at the 2- 

position (17,42,72), it was later shown that the moderately 

susceptible pea plant though incapable of converting atra¬ 

zine to hydroxyatrazine, .possessed an active system capable 

of converting the parent atrazine molecule into the dealky- 

lated product, 2-chloro-4-amino-6-isopropylamino-s-triazine 

(compound 1). The results indicated that in the mature pea 

plant the principal degradation reaction of atrazine was the 

dealkylation of the ethyl group at the 4-position of the 

triazine molecule. The other possible metabolite, 2-chloro- 

4 amino-6-ethylamino-s-triazine, was not evident. 

Shimabukuro (86) showed that the shoots of mature pea 

plants had a higher capacity to degrade atrazine than did 

the roots and that compound 1 was definitely less phyto¬ 

toxic than atrazine to pea plants. The intermediate tole- 



19 

ranee of pea plants to atrazine was therefore apparently due 

to their ability to convert the highly toxic atrazine 

rapidly to a less toxic metabolite, compound 1. The author 

suggested that in pea plants the accumulation or failure to 

metabolize atrazine to a completely non-toxic compound may 

keep the plants from being completely resistant to atrazine. 

In a subsequent investigation it was found that dealky¬ 

lation occurred not only in pea plants, but also in corn, 

wheat and sorghum (87) . Both qualitative and quantitative 

differences in dealkylation of atrazine between the species 

were observed. All the species studied were able to meta¬ 

bolize atrazine initially by N-dealkylation of either of the 

2-substituT:ed alkyl-amine groups. N-uealkylarion au the 

ethyl-amine side chain produced the isopropylamino deriva¬ 

tive (compound 1), and N-dealkylation at the isopropylamine 

side chain resulted in the ethyl derivative (compound 2). 

Sorghum appeared to readily dealkylate either N-alkyl side 

chain, peas and wheat predominantly dealkylated the ethyl 

alkyl side chain. 

Later work (89) confirmed the earlier suggestion that 

sorghum degraded atrazine via the N-dealkylation route, while 

in corn both the hydroxylation and N-dealkylation pathways 

existed. This researcher further showed that in corn, atra¬ 

zine degradation led to three hydroxylated metabolites. 
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2-hydroxy-4-ethylamino-6-isopropylamino-s~triazine 

(hydroxyatrazine), 2-hydroxy-4-amino-6-isopropylamino-s- 

triazine (hydroxycompound 1) and 2-hydroxy-4-amino-6- 

ethylamino-s-triazine (hydroxycompound 2). Hydroxycompounds 

1 and 2 were formed in two ways in corn (1) by N-dealkylation 

of hydroxyatrazine and (2) by benzoxazinone- catalized 

hydrolysis of compound 1 and compound 2. Like hydroxyatra¬ 

zine, hydroxycompounds 1 and 2 are non-phytotoxic. 

Up to this point, the non-enzymatic hydrolysis of atra- 

zine to hydroxyatrazine was accepted as the major factor 

responsible for the tolerance of corn to atrazine (17,39,42, 

72). However, some researchers questioned this on the basis 

^ ^ ^ 4 ^ ^ ^ T ^ 4 ^ 4 ^ ^ ^ 4— w w ^ ^ v> ^ ^ ^ 

concentration and tolerance to atrazine and simazine in 

selected corn lines (41,66). 

Shimabukuro and Swanson (93) working with sorghum, 

demonstrated a rapid conversion of atrazine to a water-soluble 

compound (metabolite B) resulting in a rapid recovery of 

photosynthetic activity. The subsequent isolation and iden¬ 

tification of the water-soluble metabolite B as a mixture 

of S-(4-ethylamino-6-isopropylamino-2-s-triazino) glutathione 

and Y“glutamyl-s-(4-ethylamino-isopropylamino-2-s-triazino) 

cysteine, revealed the presence of a third detoxification 

pathway in higher plants (55). The discovery of this path- 



way as an active detoxification mechanism found in highly 

tolerant corn and sorghum (55,91,93) appears to solve the in 

consistencies observed between benzoxazinone content and 

tolerance to atrazine. 

Further investigation (90) established that the main 

factor responsible for tolerance in corn was the activity 

of a soluble enzyme, glutathione.-S-transferase. They 

demonstrated the accumulation of significant amounts of 

unchanged atrazine in the susceptible corn line, GT112 

which showed a low rate of glutathione conjugation because 

of low glutathione-S-transferase activity. An assay of 

glutathione-S-transferase in leaf tissue and results of 

atrazine degradation indicated that most corn plants may be 

totally tolerant to atrazine even if the tissues are devoid 

of benzoxazinone. They also noted that the enzymatic 

glutathione conjugation reaction occurs primarily in the 

shoots, while the non-enzymatic hydroxylation reaction 

occurs primarily in the roots of corn plants. Significant 

amounts of hydroxyatrazine was formed only when atrazine 

was initially absorbed through the root where the enzymatic 

reaction does not compete for the atrazine substrate. 

Frear and Swanson (29) had earlier detected little or no 

glutathione-S-transferase activity in corn root tissue. 

Glutathione conjugation is recognised as the initial 



reaction leading to the biosynthesis of mercapturic acid, 

and this pathway is known to be a means for detoxication 

and excretion of foreign compounds in animals (12), 



Materials and Methods 

Uptake/ translocation and metabolism of s-triazines by 

witchgrass and crabgrass. 

Plant Material 

Witchgrass and crabgrass seeds were germinated on 

blotting paper (moistened in 0.2 percent KNO3 to break 

seed dormancy) in an alternating dark (15°C)/light (30°C) 

environment. The seedlings were then transplanted and 

grown to the 2nd and 4th leaf stages in sand - nutrient 

solution culture in a growth chamber at 30°C day and 27°C 

night temperatures and a photoperiod of 14 hours. 

Incubation and Extraction 

On reaching the desired stages the plant roots were 

carefully washed free of sand and the plants incubated in 
/ 

250 ml. of 1.1 X 10”^ M solutions of uniformly ring- 

labeled ^^C-simazine and ^^C-atrazine (specific activity 

lO.lACi/mg and 12.5ACi/mg respectively) made up in one- 

half strength Hoagland's solution. Plants were incubated 

for periods of 2 to 24 hours (continuous light) in a con- 
* 

trolled environment room maintained at 28 - 2®C and a 50- 

5 percent relative humidity. The light intensity was 650 

foot candles at the level of the shoot apex during the 



treatment period. Each treatment was replicated ten times. 

There were five plants in each replication. 

At the end of the treatment period, the plants were 

14 
removed from the C-s-triazine-nutrient solution, rinsed 

briefly in running water, separated into shoots and roots 

and weighed. The plant parts were homogenized in 100 ml. 

of 90 percent methanol and filtered. The residue was re- 

extracted twice by resuspending in 90 percent methanol. 

Methanol was removed under vacuum at 30°C and the remaining 

aqueous solution centrifuged at 13,300 G for 15 minutes 

at 0°C to remove plant debris. The aqueous supernatant was 

concentrated to 10 ml. A 0.5 ml. aliquot was removed, added 

to 20 ml. of scintillation liquid (5g/l FEC, lOCg/1 

naphthalene, dioxane - balance of liter) and assayed for 

14 C activity by liquid scintillation counting, using a 

Beckman Model LS-lOO system. All samples were corrected 

for quenching and the amount of s-triazine was determined 

from the total activity present and the specific activity 

of the ^^C-s-triazine. 

The remaining aqueous extract was partitioned four 

times between water and chloroform to remove unchanged s- 

triazine and chloroform-soluble metabolites. Aliquots of 

the aqueous and chloroform fractions were assayed for 14, 



activity by liquid scintillation counting as previously 

described. 

Qualitative Determinations 

The aqueous fraction was further purified by re- 

tention on a Dowex 50W - X8 (H ), water-jacketed column 

(40 ml. capacity) and the column was washed with water (92). 

The radioactivity was eluted with 30 ml. of ION NH4OH. 

Ammonia was removed under vacuum at 30°C and the purified 

water-soluble fraction was spotted together with reference 

compounds on silica gel HF thin-layer plates (50/^) and the 

plates developed in solvent A (isopropanol;30% ammonium 

hydroxide:water (8:1:1) ) and solvent B (N-butanol:acetic 

acid:water (12:3:5) ). The chloroform fraction was also 

spotted on 50A silica gel thin-layer plates and developed 

in solvents A and B. 

Preparation of Metabolite Standards 

Radioactive hydroxyatrazine and hydroxysimazine used 

as chromatographic reference compounds were prepared by 

hydrolysis of atrazine and simazine in equal amounts of 

6N HCl and 95 percent ethanol at 50°C for eight hours (40). 

Radioactive peptide conjugates used in the study were 

prepared after the method of Shimabukuro e^ al. (88,91). 



The fourth leaf (30 - 40 cm.) of 24-day-old corn plants 

was excised under water. The leaves were treated for 

24 hours by immersing the cut ends into test tubes each 

14 14 
containing 4 ml. of C-atrazine or C-simazine solution 

(approxmately 400,000 dpm). The level in the test tubes 

were maintained by adding distilled water intermittently 

to compensate for water loss due' to uptake and transpira¬ 

tion. The metabolites were extracted and purified by thin- 

layer chromatography as previously described. The chroma¬ 

togram was developed in n-butanol;acetic acidrwater 

(12;3:5) and the radioactivity in the region corresponding 

to the peptide conjugates were scraped off and purified as 

earlier described. 

Relative Toxicity Studies - 

a. Growing Media - Soil 

Witchgrass and crabgrass seeds were germinated in petri 

dishes on KNO3 - moistened blotting paper as previously 

described. The seedlings were transplanted into 4 inch 

plastic pots containing 500g (on an oven dried basis) of 

Woodbridge soil (58.8%sand, 8.8% clay, 3.7% organic matter). 

The plants were grown in a growth chamber under the condi¬ 

tions previously described, and treated with 100 ml. of 

0-8 ppm solutions of simazine and atrazine (made up in one' 



27 

half strength Hoagland's solution) applied as a root drench 

at the 2-leaf and 4-leaf stages, A randomized block design 

was used with five replications per treatment and five plants 

per replication. Each pot was watered with 50 ml. of one- 

half strength Hoagland's solution every other day. 
A 

• Above ground parts of the plants were harvested after 

14 days of treatment and the dry weights determined. The 

results were expressed as percent of the control and plotted 

on graph paper as a function of the concentration. The 

‘ ED^qCD.W.) values (the concentration of herbicide which re- 

duced dry weight 50 percent) were estimated (97) . 
i 

\ b. Growing Media - Sand 

I 
i A procedure similar to that outlined above was followed, 

I except seedlings were transplanted into pots containing 

!500g. of washed river sand. Plants were treated at the same 

growth stages with 50 ml. of 0 - 16 ppm of simazine and atra- 

zine made up in one-half strength Hoagland's solution. 

(Growing conditions during the experiment and dry weight 

determinations were as reported for the soil grown study. I Assay of Glutathione-S-Transferase 

a. Enzyme Preparation 

5g excised leaf tissue was rinsed with water, blotted 

I dry and pulverized in liquid N2_ The frozen powder was 

r 

I 
f • 
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slurred with 2.5g of Polyclar A T (insoluble 

polyvinylpyrolidione) in 25 ml. of 0.1 M phosphate buffer, 

pH 6.8. Sodium metabisulfite was added to the buffer to 

give a 1.0 mM final concentration. The slurry was allowed 

to stand for 15 minutes, squeezed through four layers of 

cheese cloth and centrifuged at 17,500G for 30 minutes. 

The supernatant was then fractionated between 30-60 percent 

saturation with ammonium sulfate. 

The precipitate was suspended in 1.0 ml. of O.IM 

phosphate buffer, pH 6.8, dialysed against the same buffer 

for two hours, lyophilized in test tubes, and stored dry 

at -12°C. 

b. - 

The enzyme assay was based on the rate of glutathione 

conjugate formation. The■standard reaction mixture was 

made up as follows: 

0.1 ml. of enzyme (0.68-0.83mg of protein). 

14 
30.5 n moles of C-atrazine. 

0.1 ml. of 1.0 M phosphate buffer, pH 6.8. 

0.1 ml. of glutathione (10/cmoles) reduced form. 

H2O to give a final volume of 1.0 ml. 

The reaction was initiated by the addition of substrates 

cind incubated at 25° for 30 minutes. Controls were heated in 

a boiling water bath for 15 minutes and cooled to room 
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temperature prior to the addition of substrates. The 

reaction was terminated by rapid freezing in a dry-ice- 

acetone bath followed by lyophilization. 

The lyophilized reaction mixture was extracted with 

0.6 ml. of MeOH and the ^^C-labeled glutathione conjugate 

was separated from the remaining ^^C-labeled substrate 

by spotting a 150^1 aliquot of the MeOH extract on Si02 

HF plates (50/i) . The plates were developed to a height of 

15 cm with two ascending solvent systems (1) benzene:acetic 

acidrwater (60:40:3) and (2) n-butanol:acetic acid:water 

(12:3:5). 

Radioactive 2-hydroxy-4-ethylamino-6-isopropylamino-s- 

triazine (lO^g; was also spotted on each plate as a reference 

compound. The area between the reference marker and the 

origin was scraped off the chromatogram (Rf 0 - 0.64), and 

the ^^C-labeled glutathione conjugate quantitatively 

determined by liquid scintillation counting. 

The enzyme unit (U) was defined as the amount of 

enzyme required for the biosynthesis of 1 Mu mole of 

glutathione conjugate per 30 minutes under standard assay 

conditions. 

Protein was determined by the method of Lowry et al. 

(58) with crystalline bovine serum albumin used as the 

standard. 
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RESULTS 

Susceptibility Studies 

Dosage response curves of soil-grown crabgrass and 

witchgrass to simazine and atrazine (figures 1 and 2) show 

that both species are less susceptible with advanced 

development. The ED5Q value for. atrazine to 4-leaf crab- 

grass is 8.0 ppm while to the 2-leaf stage, the value is 

6.9 ppm. Witchgrass followed a similar trend with ED5Q 

values of 4.4 ppm and 3.8 ppm for the 4-leaf and 2-leaf 

stages respectively. 

Crabgrass at both stages of development is more 

I'esistant to the s-triazine herbicides rhan is witchgrass, 

since the ED5Q for both stages is always reached at a 

lower concentration. Simazine is more effective than atra¬ 

zine in reducing dry weight (figures 1 and 2). The ED5Q 

value for 4-leaf crabgrass to atrazine is 8.0 ppm, while 

that for simazine is only 1.5 ppm. This pattern is similar 

for the 2-leaf crabgrass stage as well as for the two witch¬ 

grass stages. 

The results of toxicity studies for sand-grown plants 

(figures 3 and 4) are in relative agreement with those for 

the soil-grown plants. (1) Both species show decreased 

susceptibility with development. (2) Crabgrass is more 
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tolerant than witchgrass to the s-triazine herbicides. 

(3) Simazine shows greater toxicity than atrazine to both 

species. However, as expected, the ED^q values for sand- 

grown plants.of both species are lower than those for soil- 

grown plants. 

Uptake Studies 

14 14 
Table 1 shows the uptake of C-simazine and C- 

atrazine over a 24 hour incubation period. The data shows 

that simazine and atrazine are absorbed in similar quanti¬ 

ties by both plants. Also, the amounts of activity 

found in the two plant species is not appreciably different. 

The pattern of uptake of simazine and atrazine by 

crabgrass and witchgrass are also similar (figure 5), the 

uptake of the s-triazine herbicides after 2,4,12 and 24 

hours not differing signigicantly. 

Metabolism of s-triazines 

Both witchgrass and crabgrass metabolized simazine 

and atrazine to water-soluble derivatives (Table 2). 

Hov/ever, neither plant appeared to convert simazine ex¬ 

tensively to hydrophilic metabolite(s). Approximately 

14 
40 percent of the total C-atrazine absorbed by crabgrass 

in 24 hr was converted to hydrophilic metabolite(s), where- 



Table 1. Uptake of C-simazine and C-atrazine by crabgrass and 
witchgrass over a 24 hour period from 1.1 x IQ-^m 
solutions. 

Moles per g of fresh weight 

Herbicide 
Crabgrass Witchgrass 

Simazine 125.5a 129.8a 

Atrazine 127.1a 124.1a 

Means within a column followed by a different letter are 
significantly different at the 5% level. 
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as the value for witchgrass was about 24 percent. It is 

apparent that (1) the two plant species were less able to 

degrade simazine than atrazine and (2) crabgrass converted 

1 

fat greater amounts of atrazine to hydrophilic metabolite(s) 

than did witchgrass. 

Figures 6 and 7 show the time course uptake and metab¬ 

olism of ^^C-simazine and ^^C-atTazine by crabgrass and 

witchgrass. No differences in the s-triazine concentration 

in atrazine and simazine-treated plants were found after 

2,4,12 or 24 hour incubation periods. No hydrophilic 

metabolite (s) of simazine could be detected after a 4 hr 

incubation period in witchgrass, while after the same period 

only trace amounts were detected in crabgrass. At no time 

period were there significant differences in the quantities 

of hydrophilic metabolite(s) of simazine in the two plant 

species. 

Atrazine metabolism on the other hand was apparent in 

both plant species as early as the 2 hr period, Atrazine 

metabolism occurred at a faster rate in crabgrass plants 

than in witchgrass, and there were significantly more 

hydrophilic metabolite(s) in crabgrass than in witchgrass 

after 4,12 and 24 hour incubation periods. 
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Translocation 

Simazine and atrazine are translocated similarly in 

crabgrass and witchgrass (Table 3). However, there was 

14 
consistently larger quantities of C activity in the 

shoots of witchgrass than in the shoots of crabgrass, and 

14 
correspondingly, more C activity in crabgrass roots 

than in the same tissue of witchgrass. 

Identification of Metabolites 

The Rf values of standards and metabolites are shown 

in Table 4. Practically all the radioactivity in the 

roots of both species chromatographed as unchanged s- 

triazine (Figu.'*"e? 9, 11/ 13, 15) . Th'^ chloroform—solub].^ 

fractions from both plants have Rfs corresponding to 

atrazine and simazine. The major hydrophilic metabolite 

from crabgrass and witchgrass is identical, with Rfs of 

0.20-0.23 in solvent A and 0.41-0.44 in solvent B. 

Further investigation revealed that the major metabolite 

from atrazine treated plants (Figures 10, 14) are similar 

to the hydrophilic metabolite recently isolated from corn 

and-sorghum (29,55,90,91) and thought to be peptide 

conjugates, S-(ethylamino-6-isopropylamino-2-s- 

triazino) glutathione, Y-glutamyl-S-4-ethylamino-6- 

isopropylamino-2-s-triazino) cysteine, or both. The be¬ 

havior of the major hydrophilic metabolite from simazine 



Table 3. Uptake and translocation of C-simazine and 
by crabgrass and witchgrass during a 24 hour 
period from 1.1 x IO'^m-solutions. 

C-atrazine 
incubation 

Herbicide Plant Shoot 
„ , -10 - . . 
Moles of s-triazine 

of fresh weight 

Root 

per g 

Crabgrass 75.3a 50.3a 
Simazine 

Witchgrass 94.9b 35.1b 

Crabgrass 78.6a 48.7a 
Atrazine 

Witchgrass 91.3b 32.9b 

Means within a column followed by a different letter are 
significantly different at the 5% level. 
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treated crabgrass and witchgrass plants during thin-layer 

chromatography was similar to the peptide conjugate(s) of 

atrazine from corn, crabgrass and witchgrass 

(Figures 8, 12) . 

Glutathione-s-transferase activity 

The leaves of field corn (Table 5.) show con¬ 

siderably higher glutathione-s-transferase activity than 

those of the two other grass species studied. The 

activity of the enzyme is higher in crabgrass (0.63) than 

in witchgrass (0.38). 

Standard errors did not exceed 5% and have been 

omitted from preceding figures. 



Table 5. Glutathione S-transferase activity in corn 
crabgrass and witchgrass leaves. 

Plant Special Activity 

nmoles GS-atrazine 
per mg protein per hr/ 

Field Corn 3.10 

Crabgrass 0.63 

Witchgrass 0.38 
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Figure 8. Autoradiogram of thiri-layer chromatograms of 
water-soluble metabolites of simazine-14c in 
crabgrass and witchgrass after an initial 24 
hour exposure period. Thin layer plate 
developed in isopropanol:30% ammonium hydroxide 
water (8:1:1 v/v/v). No.1-hydrophilic metabo¬ 
lites extracted from corn plants treated with 
simazine, No.2-hydrophilic metabolites from 
witchgrass plants treated with simazine, No.3- 
hydrophilic metabolites from crabgrass plants 
treated with simazine,No. 4-authentic simazine, 
No. 5-authentic hydroxysimazinc. 
A-simazine. B-hydroxysimazine. C-unidentified 
simazine metabolite. D-GS-simazine. E-uniden- 
tified simazine metabolite. 0-origin. 
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Figure 9. Autoradiogram of thin-layer chromatogram of 
chloroform-soluble metabolites of simazine-^^C 
in crabgrass and v/itchgrass after an initial 
24 hour exposure period. Thin layer plate 
developed in isopropanol: 30% ammonium hydroxide: 
water (8:1:1 v/v/v). 
No. 1-authentic simazine. No.2-chloroform- 
soluble metabolite from witchgrass, No.3-chloro- 
form-soluble metabolite from crabgrass. 0-origin 
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Figure 10. Autoradiogram of thin-layer chromatogram of 
water-soluble metabolites of atrazine-l^c in 
crabgrass and witchgrass plants after an initial 
24 hour exposure period. Thin layer plate 
developed in isoproanol: 30% ammonium hydroxide: 
water (8:1:1 v/v/v). No.1-hydrophilic metabo¬ 
lites extracted from corn plants treated with 
atrazine. No.2-hydrophilic metabolites from 
witchgrass plants treated with atrazine, No.3- 
hydrophilic metabolites from crabgrass plants 
treated with atrazine. No.4-authentic atrazine. 
No.5-authentic hydroxyatrazine. 
A-atrazine. B-hydroxyatrazine. C-unidentified 
atrazine metabolite. D-GS-atrazine. E-uniden- 
tified atrazine metabolite. 0-origin. 
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Figure 11. Autoradiogram of thin-layer chromatogram of 
chloroform-soluble metabolites of atrazine- 
14c in crabgrass and witchgrass after an initial 
24 hour exposure period. Thin layer plate 
developed in isopropanol:30% ammonium hydroxide: 
water (8:1:1 v/v/v). A-authentic atrazine. 
B-chloroform soluble metabolite from witchgrass. 
C-chloroform soluble metabolite from crabgrass. 
0-origin. 





Figure 12: Autoradiogram of thin-layer chromatogram of 
water-soluble metabolites of simazine-l^c in 
crabgrass and witchgrass after an initial 24 
hour exposure period. Thin layer plate de¬ 
veloped in n-butanol: acetic acidrwater 
(12:3:5 v/v/v). No.1-hydrophilic metabolites 
extracted from corn plants treated with simazine 
No. 2-hydrophilic metabolites from witchgrass 
plants treated with simazine. No.3-hydrophilic 
metabolites from crabgrass plants treated with 

^ ^ ^ ^ ^ "A* ^ ^ •» C ^ ^ ^ ^ ^ ^ 
^ Aiiwc ^ J. A i ^ Vm> • “ “ Cl La a O a a 

tic hydroxysimazine. 
A-simazine. B-hydroxysiamzine. C-GS-simazine 
D-unidentified simazine metabolite. 0-origin. 
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Figure 13. Autoradiogram of thin-layer chromatogram of 
chloroform-soluble metabolites of simazine in 
crabgrass and witchgrass after an initial 24 hour 
exposure period. Thin layer plate developed in 
n-butanol: acetic acidrwater (12:3:5 v/v/v/). 
1-authentic simazine. 2-chloroform-soluble 
metabolite from witchgrass. 3-chloroform-soluble 
metabolite from crabgrass. 0-origin. 
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Figure 14. Autoradiogram of thin-layer chromatogram of 
water-soluble metabolites of atrazine-l^c in 
crabgrass and witchgrass after an initial 24 
hour exposure period. Thin layer plate 
developed in n-butanol: acetic acidrwater 
(12:3:5 v/v/v). No.1-hydrophilic metabolites 
extracted from corn plants treated with 
atrazine, No.2-hydrophilic metabolites from 
witchgrass plants treated with simazine, No.3- 
hydrophilic metabolites from crabgrass plants 
treated with atrazine. No.4-authentic atrazine. 
No.5-authentic hydroxyatrazine. 
A-atrazine. B-hydroxyatrazine. C-GS-atrazine 
D-unidentified atrazine metabolite. E-uniden- 
tified atrazine metabolite. 0-origin. 

1 
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Figure 15. Autoradiogram of thin-layer chromatogram of 
chloroform-soluble metabolites of atrazine- 
14c in crabgrass and witchgrass after an initial 
24 hour exposure period. Thin layer plate 
developed in n-butanol: acetic acid: water 
(12:3:5 v/v/v). 
1-authentic atrazine. 2-chloroform-soluble 
metabolite from witchgrass. 3-chloroform- 
soluble metabolite from crabgrass. 0-origin. 
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DISCUSSION 

The susceptibility studies clearly show crabgrass to 

be the more tolerant of the two grass species to the 

s-triazine herbicides. This is in agreement with field 

reports (67) in which atrazine was found to give signifi¬ 

cant control of witchgrass but essentially no control of 

crabgrass. The data also indicates that simazine is more 

toxic to bpth plants than is atrazine. This finding also 

supports earlier work which showed atrazine to be less 

toxic than simazine to wild cane in the field (100). Since 

however atrazine has been found to be more effective than 

simazine in inhibition of photosynthesis (37), it is evi¬ 

dent that some other factor is involved in the differential 

toxicities shown by the two herbicides. 

If the differences in toxicity of the two grasses to 

simazine and atrazine are due to the greater persistence 

of simazine through retention of simazine by the soil 

organic and clay fractions, then these differences should 

disappear when the plants were grown in sand media (figures 

3'and 4). Since in sand media the relative differences in 

toxicity of simazine and atrazine to the grasses remain, it 

is evident that differential soil adsorption of the two 
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herbicides is not responsible for the observed differences 

in toxicity. 

Differences in uptake have been reported to be a factor 
i 
I 

in the selectivity of certain s-triazines on a limited 

number of plants (39). This is reflected in the use of 

simazine in the selective control of weeds in certain deep 

rooted crops. Simazine because ‘of its low solubility and 

strong adsorption on to colloidal soil particles, is mostly 

restricted to the top 3 or 4 inches of the soil (16,39.63). 

Another possibility for differential uptake is that the 

resistant plant for some physiological reason, take up less 

herbicide (62). However, this phenomenon has not been noted 

with the s-triazines. 

Differences in uptake of s-triazines have been noted 

between different plant species. Roeth and Lavy (71) found 

that ^^C-atrazine concentrations were two to three times 

greater in sorghum and sudangrass than in corn throughout a 

five week period. Davis ^ (24) studied the absorption 

of atrazine by corn, cotton and soybean plants. They found 

that soybean the most susceptible of the three species 

absorbed more atrazine per gram of fresh weight than did 

corn and cotton. In similar studies Thompson al^, (99) 

reported greater uptake of atrazine by corn than by oats, 

giant foxtail, fall panicum and large crabgrass. In other 
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work where the amount of herbicide taken up by resistant 

and susceptible plants have been compared little difference 

was found between the two types of plants (21,39.40). 

Differences in uptake patterns of herbicides have also 

been found to exist in some plants (51,71). Most re¬ 

searchers however have disregarded differences in uptake or 

in uptake patterns as contributing greatly to the wide 

differences in susceptibility of different plant species 

to the s-triazines. 

In this investigation, uptake is not a factor con¬ 

tributing to differences in tolerance of crabgrass and 

witchgrass to atrazine and simazine (Table 1) as the amounts 
n M 

of ■‘■"*0 activity found in-the two plant species is not signi¬ 

ficantly different. Simazine and atrazine are taken up in 

similar quantities by crabgrass and witchgrass and differ¬ 

ential absorption of herbicide does not account for the 

greater toxicity of simazine to the two plants. The 

pattern of uptake of simazine and atrazine are also simi¬ 

lar (figure 5); the uptake of the s-triazine herbicides 

after 2,4,12 and 24 hours not differing significantly. 

The extent of s-triazine degradation has been shown 

to be in good agreement with the relative susceptibilities 

of plants (21,72,78,100). However, the metabolic pathways 

of the s-triazines vary in different plants. Regardless 
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of the pathway, metabolism of the s-triazine herbicides 

results in total or partial detoxication. 

Atrazine is metabolized at a faster rate in crabgrass 

than in witchgrass. If the chloroform-soluble metabolite 

found in the plants is unchanged s-triazine herbicide, then, 

one may account for the greater susceptibility of both 

plants to simazine on the basis of the quantities of un¬ 

changed s-triazine herbicide in the plant tissues. Also, 

smaller amounts of unchanged atrazine found in crabgrass 

could be responsible for the higher tolerance of crabgrass 

as compared to witchgrass to atrazine. However, since the 

amounts of chloroform-soluble simazine metabolite was simi- 

fcr both plant species, differential metabolisiu could 

not possibly account for observed differences in simazine 

tolerance between crabgrass and witchgrass. 

The importance of translocation on the tolerance of 

plants to the s-triazines have received only scant attention 

Roeth and Lavy (71) found that the roots of corn contained 

14 
larger percentages of total plant C-atrazine than did the 

roots of sorghum or sudangrass, and suggested that longer 

retention of atrazine by corn roots would allow more time 

for metabolism before the herbicide was translocated to the 

shoots. Thompson e^ (99) demonstrated that corn trans¬ 

located less ^^C-atrazine than did the more susceptible 
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oats, giant foxtail, fall panicum and large crabgrass. 

Although these differences were sizable, they considered 

them not large enough to contribute greatly to the wide 

differences in observed susceptibility to atrazine. 

Bearing in mind that the s-triazine herbicides inhibit 

processes in photosynthetic tissue, the greater transloca¬ 

tion of herbicides to the shoots by witchgrass cannot 

be ignored. In addition it may explain differences between 

witchgrass and crabgrass susceptibility to simazine which 

could not be explained on the basis of herbicide metabolism. 

The peptide conjugation of chloro-s-triazines by 

Digitaria species is known to occur (99,100) but has not 

been reported previously for witchgrass. Chimcbukurc e^ 

al. (91) demonstrated a recovery of photosynthetic oxygen 

evolution with the concomitant appearance of peptide con¬ 

jugation of atrazine in corn leaf discs. Metabolism of the 

chloro-s-triazines to their corresponding peptide conjugates 

is therefore thought to be a detoxication mechanism. In 

this study the ability of each plant species to metabolize 

atrazine to peptide conjugates show a direct correlation 

with their resistance to the herbicide. 

In other work (90) it was shown that the extent of 

peptide conjugate formation in corn was dependent on the 

activity of a soluble enzyme, glutathione-s-transferase. 
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They found a significant amount of unchanged atrazine ac¬ 

cumulated in the susceptible corn line GT112 which showed 

low glutathione-s-transferase activity. In tolerant corn 

lines the enzymatic reaction predominated in the leaf blades 

where both glutathione-s-transferase and high concentrations 

of benzoxazinone existed. Benzoxazinone catalyzed 

hydroxylation was significant only when atrazine was intro¬ 

duced into the root tissue where little or no glutathione- 

s-transf erase activity was found to exist. 

The activity of glutathione-s-transferase in crabgrass 

and witchgrass seems to be in agreement with the observed 

differences in the ability of the two weedy grasses to 

metabolize atrazine. in vitro, tne speciric activity of 

glutathione-s-transferase for simazine and atrazine was 

such that atrazine was conjugated 12.5 times as fast as 

simazine (29) . This low specificity of the enzyme for 

simazine accounts for the very slow metabolism of simazine 

by crabgrass and witchgrass, and for the apparent lack of 

differences observed in the amounts of hydrophilic metab¬ 

olite (s) formed in the two grass species. 
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SUMMARY 

Growth chamber studies showed crabgrass to be more 

tolerant than witchgrass to simazine and atrazine. 

Both grasses were more susceptible to simazine than to 

atrazine. Differences in toxicity of simazine and atra¬ 

zine to the two grasses were not due to differential ad¬ 

sorption of the s-triazine herbicides by colloidal soil 

particles, as differences remained when the plants were 

treated with the herbicides in sand media. 

Simazine and atrazine were taken up in similar 

v^uaiititres by Llie Lwo plant species, ciiei'eoy excxuQing 

the possibility that differential absorption of the 

herbicides accounted for the observed differences in 

susceptibility of crabgrass and witchgrass to the s- 

triazine herbicides. 

The rate of atrazine metabolism differed in the two 

plant species, crabgrass being more effective than witch¬ 

grass in metabolizing atrazine. This phenomenon likely 

explains the greater tolerance of crabgrass to atrazine. 

Simazine was more toxic than atrazine to the grasses 

because it was more slowly metabolized by the plants. 

Metabolism of the herbicides apparently did not occur 
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14 
in the roots of crabgrass and witchgrass as all the C 

activity in these organs chromatographed as unchanged 

s-triazines. 

Differences in tolerance to simazine between crab- 

grass and witchgrass are thought to be due to differences 

in their translocation rates. Witchgrass translocated 

14 
greater quantities of C s-triazines to the shoots 

(photosynthetic sites) than did crabgrass. 

Both witchgrass and crabgrass converted the herbi¬ 

cides to their corresponding non-toxic peptide conjugates. 

This conversion is dependent on the presence of the en¬ 

zyme glutathionc-c-transferase. The ability of crabgrass 

and witchgrass to convert atrazine to its corresponding 

peptide conjugate was found to be related to the activity 

of glutathione-s-transferase in these plants. 

( 
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