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CHAPTER I 

INTRODUCTION 

Background 

In recent years there has been a growing body of 

literature subjecting alternative investment strategies to 

rigorous empirical and analytical tests. While the empirical 

studies examined the performance of various methods of build¬ 

ing or adjusting portfolios by applying each strategy to a 

sample of ex post stock price data, the analytical approaches 

required the specification of a well-defined statistical 

model generating the returns. 

Whether empirical or analytical methodology is used, we 

may conveniently classify an investigation as addressing it¬ 

self to either economic or statistical hypotheses. The former 

gives explicit consideration to the costs (e.g., transactions 

costs and taxes) associated with the actual implementation of 

each strategy, while the latter ignores them. 

A strategy which has received considerable attention is 

the rebalancing policy of portfolio adjustment (RB). 

Rebalancing refers to the periodic adjustment of the port¬ 

folio so as to maintain a fixed set of weights among the 

market values of the securities in the portfolio throughout 

the investment horizon. Thus, if each security i initially 
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accounted for the fraction w. of the market value of the 
1 

portfolio, at fixed equal time intervals (e.g., weekly) the 

portfolio is adjusted so that the current market value of 

the investment in security i is the original fraction of the 

current value of the portfolio. The policy requires selling 

off some part of those securities that have had superior re¬ 

turns during the period just ended, and using the proceeds 

to purchase additional amounts of those securities that have 

not performed as well. The result is that each period is be¬ 

gun with the members of the portfolio having the original set 

of weights. 

The usual benchmark against which the outcomes of alter¬ 

native investment strategies are compared is the buy-and-hold 

strategy (BH), which is a policy of no adjustment over the 

investment horizon. 

Purpose 

Tests comparing returns to RB with returns to BH (both 

statistical and economic) indicate that the rebalancing 

strategy can sometimes outperform a buy-and-hold policy. 

Analytical results have provided some insights into the 

mechanism of the rebalancing strategy under the assumption 

that stock price changes conform to a random walk. However, 

this assumption appears tenuous. 

Consequently, the major purpose of this study is to 

examine the performance of the rebalancing policy versus a 
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policy of buy-and-hold without the imposition of the random 

walk assumption that a series of stock price changes is a 

series of independent random variables. It is an attempt to 

explain when and why RB is superior to BH. 

In order to do this, the effects of some of the statis¬ 

tical properties of and between the members of the portfolio 

on the relative performance of the two strategies is examined. 

Specifically, this work studies the joint effects of 1) port¬ 

folio size, 2) divergence of expected returns between securi¬ 

ties in the portfolio, 3) autocorrelation of returns within 

each stock price series, 4) intercorrelation of returns be¬ 

tween series, and 5) the variance of the returns to each 

security, on the distribution of returns to each strategy. 

Because of the complexity of the relationships involved, 

the orientation is not one of testing fully specified hypo¬ 

theses. Rather, its objective is to explore the relationships 

between the relative performance of the two investment poli¬ 

cies and certain controllable factors. 

The study is restricted to the special case of rebalanc¬ 

ing a portfolio whose component securities are weighted 

equally. In addition, transactions costs and taxes are not 

considered. 

Methods 

The method is one of simulating sets of security returns 

controlled as to the combinations of the levels of the five 
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factors under study. This is the data generating model. 

The alternative strategies are applied to the simulated data 

samples and the portfolio performance associated with each 

is measured. 

The relationships between the various factors and the 

relative performance of the two strategies (the response) 

are then specified in a mathematical model. This factor- 

response model is developed through the application of multi¬ 

variate analysis of variance and nonlinear regression 

techniques. 

Finally, this model is utilized as a basis for drawing 

inferences concerning the conditions under which RB might 

give performance superior to BH. 
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CHAPTER II 

LITERATURE REVIEW: REBALANCING 

This chapter will provide a suimnary and unified treatment 

of the research done with respect to portfolio returns from 

pursuing a policy of rebalancing, and place it in its proper 

perspective in the area of portfolio theory. 

Define the rate of return plus one, or the value relative, 

t h 
to the i— security in the portfolio at the end of period j as 

R. . 
ID P. . 

ID 

(2-1) 

where P^^ is the price of the i— security at the beginning 

of period j, and ^ is the dividend in period j, for 

i=l,...,m and j=l,...,n. In the case of no dividends R.. is 
13 

referred to as the price relative (PR). Let represent the 

initial proportion of funds invested in security i so that 

m 
E W.=l. Also, T is the length of the investment horizon 

consisting of n periods each of length h. Therefore, T=nh. 

Define the geometric total return as the dollar value of the 

portfolio at the end of T for each dollar invested at the 

beginning of T. Then the geometric total to a buy-and-hold 

strategy is 

(BH) 
m n 

I w. TT R. 
i=i j=i ID 

(2-2) 



Under a policy of rebalancing after each of the n periods 

the geometric total return is 

6 

n m 
G (RB) = TT I W.R. . . 

3 = li = l 
(2-3) 

In the case when all securities are weighted equally we have 

m 
(BH) = I 

i = l 

n 

and 
n 

g"(RB) = 

j=l 

- . 

1 ^ 

- I R. . 
^=1 

(2-4) 

(2-5) 

Empirical Results 

Statistical Hypotheses 

The earliest empirical evidence indicating that the 

return to RB may be superior to BH can be garnered from an 

index number problem which Macauley called "mathematical 

drift" [137], Upward drift was particularly evident in an 

index of railroad stock prices which assumed that equal dollar 

amounts of money were invested in each stock in January, and 

each succeeding January the portfolio was rearranged so that 

again there were equal holdings. This index rose from 100 in 

1857 to 1,150 in 1936, while a Dow Jones type index rose only 

to 241 and a BH type price index weighted by the total number 

of shares outstanding rose only to 195. Renshaw [178] noted 

that the mathematical drift was probably the cumulative effect 



from following a fairly optimal policy. This policy was in 

fact one of equal weight rebalancing. 

7 

A strong upward bias in the arithmetic index computed by 

Fisher [72] is also relevant. Defining the arithmetic link 

relative as the arithmetic mean of value relatives in a period 

(month), an arithmetic investment performance index was com¬ 

puted by multiplying together link relatives for investment 

horizons of various lengths from 1926 to 1960. When compared 

with "Rates of Return on Investments in Common Stocks" [75], 

this index of all NYSE securities was found to have an upward 

bias. We observe that Fisher's arithmetic index is computed 

in accordance with a rebalancing strategy, while "Rates of 

Return" assumed a policy of BH. 

Rebalancing was first introduced as an alternative 

investment strategy by Evans [57]. Based on a sample of the 

470 securities from Standard and Poor's 500 for which data 

was available from January 1, 1958 to July 1, 1967, he com¬ 

pared the geometric mean returns^ to BH with the returns to 

a strategy of semi-annual rebalancing. Calculation of these 

returns for large numbers of random portfolios consisting of 

up to forty securities weighted equally, indicated that the 

returns to rebalancing were significantly superior to the 

returns to BH. Latane and Young [128], however, pointed out 

that Evans' method of calculating the geometric mean return 

to BH was biased downward,^ invalidating his results. 

Nevertheless, they did consider the rebalancing policy 
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"intuitively appealing." They hypothesized that the relative 

performance of the RB and BH strategies is 

an evaluation of the tradeoff between (1) the bene¬ 
ficial effects of diversification of the portfolio 
across time^ given by reallocation, and (2) the ef¬ 
fects of the divergence of two or more securities 
with different geometric means (growth rates), 
given by buy-and-hold [p. 602]. 

To test their hypothesis, the alternative strategies 

were applied to portfolios selected according to four differ¬ 

ent criteria. Their data base consisted of monthly value 

relatives for 224 securities for the period January, 1953 

through December, 1960, overlapping each twelve-month period 

to increase the number of annual observations for each 

security from eight to eighty-five. 

Their results indicated that for selection criteria 

that tended to reduce the diversity of price trends, RB was 

much superior to BH, while for the other selection criteria 

(including random selection) RB did not appear significantly 

better. In addition the relative performance of RB was found 

to improve with the portfolio size. 

Despite a statistical bias due to overlapping pointed 

out by Cheng and Deets [37, 38], which limits the usefulness 

of some of their conclusions, the direction of the bias does 

strengthen the evidence that under certain conditions RB can 

outperform BH. 

A study by Evans [56] corrected for the bias in his 

earlier work and, utilizing the same data base, offers 
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further evidence that the expected return to RB can be 

greater than the expected return to BH. Calculation of the 

t statistic for differences within pairs indicated that the 

expectation of the geometric mean under rebalancing was sig¬ 

nificantly greater than the expected geometric mean under BH. 

And the significance level increased with the portfolio size. 

In addition, inclusion of the risk factor by forming 

the reward-to-variability ratio [193] for each strategy re¬ 

sulted in increased significance. The denominator, however, 

was based upon the period-to-period variability of returns 

within the investment horizon. While ex ante these fluctu¬ 

ations may be important,^ once one is committed to a particu¬ 

lar portfolio for a given investment horizon, these inter¬ 

mediate fluctuations become irrelevant. What is important 

is the variability of the return to each strategy about the 

expected return at the end of the investment horizon. As 

yet, there have been no empirical investigations of the effect 

of rebalancing on a measure of this variability. 

Cheng and Deets [39] also examined the returns obtained 

from the application of the two strategies to real stock 

price data using equal weights and assuming no taxes or trans¬ 

action costs. Weekly price relatives for the thirty stocks 

comprising the current Dow Jones Industrials were used. The 

period covered was from December 31, 1937 to February 21, 

1969, yielding 1,625 weekly price relatives for each of the 

thirty stocks. Although the nature of the study did not 
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permit statistical tests of significance, a comparison of 

the geometric total returns to the two strategies for random 

portfolios lent strong support for several observations. 

First, the expected return under RB is superior to that under 

BH. Second, the return superiority of rebalancing is an in¬ 

creasing function of the frequency of rebalancing. Third, 

there appears to be a positive relationship between the de¬ 

gree of RB superiority and the portfolio size. Fourth, the 

superiority of RB is an increasing function of the length of 

the investment horizon.*^ 

Economic Hypotheses 

The actual costs of pursuing a policy of RB are directly 

related to the fre*quency of rebalancing. Consequently, RB 

superiority in the statistical sense may not hold up when 

these costs are considered. 

The first investigation of the effect of rebalancing 

after taxes and transaction costs was undertaken by Evans in 

his second paper. To provide a base upon which the costs 

could be computed, he assumed that the initial amount invested 

in each security was $1,000, $2,500, or $5,000. He utilized 

actual "odd lot" commission charges and assumed capital tax 

rates of 10 per cent, 15 per cent, or 25 per cent. After 

adjusting his previously described results for these costs, 

the return superiority of RB was eliminated, substantially 

modifying his statistical results. As expected, BH was most 
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superior in the case of low initial investment and high tax 

rate. RB was only superior in the situation of $5,000 initial 

investment, 10 per cent capital tax rate, and the larger port¬ 

folio sizes. Computation of the reward-to-variability ratios 

as before, further demonstrated the highly situational nature 

of the determination of the better strategy. For the inves¬ 

tor having the high marginal tax rate and investing the lowest 

amount, the BH strategy was significantly superior in terms 

of this measure. But, for the situation of a low marginal 

tax rate coupled with larger investments, the RB strategy per¬ 

formed significantly better. 

In a comment concerning the economic interpretation of 

the Cheng-Deets conclusions. West and Tinic [220] attempted 

to adjust their data for the incremental transaction costs 

and the indirect costs of portfolio management associated 

with the rebalancing strategy. The result of their "rather 

crude" approximations of these costs was BH superiority. 

Additional empirical evidence concerning the relative 

performance of RB and BH after costs is available as part of 

a study of alternative portfolio revision procedures under¬ 

taken by Smith [203]. He utilized weighted annual historical 

value relatives for a sample of 132 well-known NYSE stocks to 

estimate the parameters of Sharpe's diagonal model [195] in 

each of the thirteen years beginning 1951. This model was 

then employed to generate an efficient portfolio in each year. 

Based upon a total investment of $200,000 and exact brokerage 
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fees, he calculated the internal rate of return to each 

unrevised portfolio, and for the portfolios annually rebal¬ 

anced to maintain the initial ex ante efficient (not equal) 

set of weights. All portfolios were held through 1965. The 

adjustment policy was found to perform poorly compared with 

the BH policy, especially for the shorter investment horizons. 

The conclusions drawn from these last two studies are 

by no means exhaustive. It should be noted that both samples 

consisted of large, well-known firms on the NYSE. Since 

these securities tend to be both high priced and of high 

quality, there is evidence that they also are the least vola¬ 

tile [84, 100]. RB may require more volatility to beat BH 

after costs. 

Also, we take note of the fact that the Smith study 

utilized historical parameters for determining efficient 

portfolios. These portfolios were not necessarily ex post 

efficient over the period in which the alternative revision 

procedures were applied. 

While there have not yet been any systematic studies of 

the economic performance of rebalancing when applied to fixed 

portfolios of highly volatile stocks, a recent article by 

Pinches and Simon [168] does offer some insight into this 

question. Their investigation examines two portfolio accumu¬ 

lation strategies utilizing low priced stocks. For both 

strategies, it is assumed that equal dollar amounts ($1,000) 

are invested in each of the stocks on the American Stock 
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Exchange selling at or below $5 per share. All stocks 

purchased remain in the portfolio until the end of the in¬ 

vestment horizon. At quarterly intervals, an amount equal 

to the average value per security in the existing portfolio 

is invested in each security not presently held selling at 

or below $5 per share. The difference between the two strate¬ 

gies is that in the fixed proportion accumulation strategy 

the portfolio is rebalanced each quarterly period to maintain 

equal dollar amounts, before any additions are made. In the 

buy-and-hold accumulation strategy, no such adjustment is 

made. It was expected that the $5 or less criterion provides 

a larger proportion of lower quality, and therefore, highly 

volatile stocks than would a random sample. 

The measure of performance was the geometric annual 

rate of return calculated through the use of geometric 

"linked relatives" as suggested by Levy [132]. These returns 

were computed for the two strategies after brokerage commis¬ 

sions for each of the 210 time periods of varying length 

obtained from the 21 different quarterly observations between 

January 1, 1965 and January 1, 1970. 

The results found the rebalancing type strategy to be 

generally superior to the buy-and-hold accumulation strategy. 

The authors also observed that the fixed proportion strategy 

tends to outperform the BH strategy in rising markets, while 

BH appeared superior in falling markets. Finally, the longer 

investment horizons were found to improve the relative 
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performance of the reallocation policy. These results for 

accumulation strategies have direct implications for the 

relative economic performance of RB for the "one-time" 

investments this dissertation is concerned with. 

Analytical Results 

Independence 

The major analytical conclusions regarding the relative 

performance of the two strategies required the random walk 

assumption that for any security, price changes are indepen¬ 

dent, identically distributed random variables. In addition, 

because they ignored transaction costs and taxes, the conclu¬ 

sions address themselves to statistical, rather than economic 

hypotheses. 

Under these assumptions, Cheng and Deets [39] showed 

that, for portfolios of securities weighted equally, the 

expectation of the geometric total return to BH is always at 

least as great as that under RB. And there is equality only 

when all securities in the portfolio have the same expected 

return. Their analysis also demonstrated that 

if the random walk theory holds, the superiority in 
the [expected geometric total] return of the buy- 
and-hold strategy over the rebalancing strategy is 
a decreasing function of the number of securities 
contained in the portfolio an increasing function 
of the length of the investment decision horizon, 
and an increasing function of the frequency with 
which the portfolio under the RB strategy is 

rebalanced [p. 12]. 
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Cheng [33] showed that these results also hold for the 

general case of portfolios consisting of securities weighted 

arbitrarily.® 

With the further assumption of stable covariances between 

securities, Cheng [33] examined the variance of the geometric 

totals under both policies for the general case. He found 

that if a certain condition is met,^ the variance of the 

portfolio final return under BH is greater than that under 

RB. The variance superiority of RB was also shown to be an 

increasing function of the portfolio size, the length of the 

investment horizon, and the rebalancing frequency. 

The aforementioned condition was also shown to guarantee 

that 

{V[g'^ (BH) ] ^ {V[g'^ (RB) ] (2-6) 

E [G*^ (BH) ] E [G*^ (RB) ] 

which is the reciprocal of Sharpe's [193] reward-to- 

variability ratio® except for the absence of the risk-free 

interest rate. Stating that the subtraction of the risk¬ 

free interest rate from the denominators could only make the 

inequality stronger, Cheng [33] concluded that the RB strate¬ 

gy is superior to the BH strategy in performance. 

Actually, subtraction of the risk-free interest rate 

may, in fact, reverse the inequality.® From this we conclude 

that for a portfolio with given weights, a rebalancing policy 

may not be superior to a buy-and-hold policy in terms of 
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Sharpe's measure, even if the condition is met.^° Defining 

absolute performance superiority as the situation where one 

policy has a smaller variance than another with the same 

expected return, Cheng [33, 34] does, however, demonstrate 

that equation (2-6) is an approximate test of the absolute 

performance superiority of RB. That is, if the condition 

holds, there exists a different set of weights for the re¬ 

balancing policy which will raise the RB return to equal the 

BH return, while still maintaining a lower variance. 

Since the original portfolio may be on the Markowitz 

buy-and-hold efficient frontier [146, 147], the important 

implication is that mean-variance frontiers beyond the BH 

frontier can be generated by following a strategy of rebal¬ 

ancing. In [34], Cheng derives the formal necessary and 

sufficient conditions for the superior frontier to exist, 

and shows that the superiority of the RB frontier over the 

BH frontier is maximized when the portfolio is continuously 

rebalanced. 

Once transaction costs are considered, the favorable 

effect of increasing the frequency of rebalancing must be 

balanced against the unfavorable effect of the increasing 

costs of implementation. Because of the highly situational 

nature of this tradeoff, there have not been any analytical 

conclusions regarding economic hypotheses. Cheng [33], how¬ 

ever, has suggested a model for the determination of the 

optimal rebalancing frequency in the mean-variance context 
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involving the specification of the cost-adjusted rebalancing 

frontiers. He concludes that "adaptation to real-world 

investment management would certainly signal the need of 

developing a program model of the type proposed, for example, 

by Pogue [169]." 

Without Independence 

While many studieshave lent support to the independence 

assumption of the random walk model, the previously discussed 

analytical results of Cheng-Deets, in conjunction with the 

results of their empirical investigation utilizing the Dow 

Jones Industrials, provides strong evidence by contradiction 

that the independence assumption is not satisfied. They 

hypothesized the existence of a persistent negative dependence 

which may not be statistically significant, as the explanation 

for the expected return superiority of RB over BH. 

Therefore, the important implications of Cheng's 

analytical investigations may not be applicable to real world 

stock markets which seem to be characterized by dependence in 

price changes over time. Nevertheless, the direction of the 

contradiction between the analytical results under a random 

walk and the empirical evidence is encouraging, for the ex 

post returns under RB have exceeded those which a random walk 

would suggest. In Cheng's [34] words, "... the market 

appears to be accommodating for the pursuit of the RB policy." 
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If stock price changes do not follow a random walk, it 

behooves us to examine the behavior of the RB policy under 

various assumptions with regard to dependence. Cheng and 

Deets [36] , in replying to a comment by West and Tinic [220] , 

state that it is not necessary that there be negative serial 

dependence for RB expected return superiority. They show 

that the "cross" serial correlation is also important. Let 

Pi, and be the serial correlation coefficient, expec¬ 

tation, and standard deviation of the series of returns for 

security i. Now define the cross serial correlation between 

securities i and j as 

Cov R. 
1 t+1 

a .0 . 
1 D 

(2-7) 

Then the condition for RB superiority in the special case of 

two securities, two periods, and equal weights can be written 

as 

^ (2-8) 

derived by taking the expectation of equations (2-4) and 

(2-5) expressed as the appropriate inequality. The authors 

conclude, "It is insufficient to talk about RB superiority 

in terms of negative serial correlations alone." We also 

note that in this special case the relative superiority of 

RB is a decreasing function of the divergence in the expected 

returns of the securities. 



19 

At this time, equation (2-8) offers our only analytical 

glimpse of the statistical behavior of RB without the restric 

tive assumptions of the random walk model. But its even more 

restrictive assumptions necessitate that the reader be wary 

of any attempt to generalize from it to the multi-security, 

multi-period case. 

A Perspective 

Essential to the appreciation of the rebalancing policy 

of portfolio adjustment is the realization that it is not 

inconsistent with either the Markowitz single-period port¬ 

folio selection model [146, 147], or the intertemporal 

extensions suggested by Mossin [153], and by Smith [203, 204] 

Chen, Jen, and Zionts [32] , and Pogue [169] . Cheng [33] 

makes this point quite clear: 

It should be emphasized that this paper points 
to the need of portfolio adjustment for reasons 
that are not ad hoc or arbitrary, e.g., expectation 
revisions, changes in the risk aversion of an in¬ 
vestor, etc. It has concerned itself exclusively 
with the need of periodical portfolio adjustment 
under the condition of random walk with stationary 
parameters. In addition, our investigation re¬ 
lates primarily to a single period. Nor did it 
consider the wealth effect on portfolio selections. 
Typically, during a given period in a multi-period 
investment horizon ... a policy of buy-and-hold 
prevails . . .If, however, a rebalancing policy 

. . . is pursued within each period, the mean 
and variance of final wealth will be superior to 
those generated under the intra-period BH 
alternative. 
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The portfolio composition may be determined according 

to the Markowitz model when one pursues a policy of intra¬ 

period rebalancing just as it is used for the buy-and-hold 

alternative. However, the appropriate expectational horizon 

is not the same for the two strategies. Cheng [34] has 

demonstrated analytically that the relevant parameter sets 

of the distributions of security returns for determining the 

Markowitz efficient frontier are those associated with the 

length of the investment period (T) under BH, and with the 

rebalancing interval (h) for 

If, as suggested by Chen, Jen, and Zionts [32] , the 

portfolio should be reviewed, and possibly revised, whenever 

expectations with regard to the parameter sets have changed, 

this difference in the appropriate expectational horizon has 

further significance. In the revision model, the length of 

the investment period is that portion of the investment hori¬ 

zon during which parameters are stationary, and that also is 

the relevant length of the expectational horizon for the 

determination of efficient portfolios under the BH policy. 

Unfortunately, this period of parameter stationarity is not 

known ex ante, and so neither is the appropriate expectational 

horizon. The result can be the selection of an ex post inef¬ 

ficient portfolio even when the means, variances, and corre¬ 

lations of the security returns are known with certainty. 

It is apparent that a policy of frequent rebalancing at fixed 

intervals within the investment period can mitigate this problem. 
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Since the experiment to be undertaken is restricted to 

the case of equal weight rebalancing, we conclude this chapter 

by examining the conditions necessary for a policy of equal 

weight rebalancing to be optimal. 

Drawing on the work of Mossin [153] in the multi-period 

Markowitz context, we state two conditions for the optimality 

of a rebalancing policy. First, the yield distributions of 

the securities in the portfolio must be stationary as in the 

random walk model. Second, complete myopia must be optimal.^** 

If the first condition is not met, it is clear that the 

Markowitz model would dictate a new set of weights as the 

parameters of the yield distributions changed within the in¬ 

vestment period. And unless the second were also met, the 

change in wealth due to the outcome of the previous period's 

investment and the approach of the horizon would result in a 

different optimal portfolio even if the parameters were sta¬ 

tionary. The logarithmic utility function is one that allows 

complete myopia. 

Finally, if all securities in the portfolio have the 

same mean and variance, and all pairs have the same correla¬ 

tion, the optimal mean-variance portfolio has equal weights 

[18, 144]. 

With this background, we proceed to the major task of 

this research—to explore the behavior of the rebalancing 

policy. 
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Footnotes to Chapter II 

1. The geometric mean return to a portfolio under BH 

t h 
or RB is the n— root of the geometric totals defined in 

equations (2-4) or (2-5), respectively. 

2. Evans computed the BH geometric mean for a portfolio 

as the average of the geometric means of the securities in 

the portfolio. Cheng and Deets [37] present proof of the 

bias in this method. 

3. This point, shown by Cheng [34], will be discussed 

later in this chapter. 

4. In terms of the random variables described at the 

beginning of this chapter, increasing the frequency of RB is 

equivalent to an increase in n, with h reduced so as to hold 

T constant. Increasing the length of the investment horizon 

refers to an increase in T accomplished by increasing n, 

holding h unchanged. Increasing the portfolio size is an 

increase in m. 

5. The authors qualified this result. It requires that 

each security added to the portfolio have an expected return 

sufficiently close to the geometric mean return of the port¬ 

folio under RB. For random equal weight portfolios, the 

expected return of the entering security is equal to the 

portfolio mean return, and so the result holds. 

6. The portfolio size effect depends upon the qualifi¬ 

cation in footnote 5 as well as the condition that whatever 
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weight is assigned to the entering security, the weights for 

the securities already in the portfolio are reduced propor¬ 

tionately. 

7. The condition was derived in [33] and [34] where it 

is argued that it is an easy condition to meet for actual 

portfolios. The other analytical results with regard to the 

variance also require the condition to hold. 

8. A discussion of this and other performance measures 

is included in the next chapter. 

9. We disprove Cheng's premise by presenting a single 

contradictory example. Suppose the inequality in equation 

(2-6) appears as 20/10 > 8/5. Subtracting a risk-free inter¬ 

est rate of 4 from each denominator reverses the inequality. 

10. The oversight with regard to the effect of the 

risk-free interest rate does not affect the validity of the 

statement that the relative performance of RB in terms of 

Sharpe's measure is an increasing function of the frequency 

of rebalancing. 

11. See, for example, Fama [63], Kendall [118], 

Mandelbrot [142] , and Osborne [166]. 

12. This conclusion would also appear to indicate that 

. Smith's previously described empirical results contained a 

t 

bias in favor of the RB policy by virtue of the fact that he 

utilized an expectational horizon corresponding to the rebal¬ 

ancing interval (a year). However, we also noted that his 

parameters were based upon historical returns, not the ex post 



24 

returns in the experimental period. A study by Friend and 

Vickers [82] concluded that there is no reason to assume 

that such a portfolio would be ex post efficient during the 

investment period. 

13. Except for this paragraph and the next, this paper 

is concerned with the relative performance of RB in the 

single, as opposed to multi-period context. Consequently, 

the investment period T is referred to as the investment 

horizon. In the intertemporal context of these two para¬ 

graphs, however, the investment horizon is assumed to consist 

of several investment periods of length T, where T is not 

necessarily of fixed length. In both cases, the alternative 

policies are to rebalance within T, or to buy-and-hold 

within T. 

14. A single-period decision rule is myopic when it is 

independent of the possible outcomes in the other periods in 
« 

a multi-period decision problem. 
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CHAPTER III 

EXPERIMENTAL DESIGN 

Consideration of the exploratory nature of the study 

as well as the possibility of extremely complex relationships 

resulted in the choice of a full factorial design for the 

experiment. 

Factors 

The relative performance (response) of the RB and BH 

strategies was measured at all combinations of the levels of 

the following factors: 

1. Number of securities in the portfolio 

2. Differences in the means of the distributions of returns 

between securities 

3. Autocorrelation within each series of security returns 

4. Intercorrelation between series of security returns 

5. Variance of the distribution of returns for each security. 

The levels selected for each factor are shown in Table 1. 

Note that at least three levels are examined for each so that 

quadratic effects would be observed. Because their ranges 

include both positive and negative values, additional levels 

were provided for the autocorrelation and intercorrelation 

factors. The stochastic nature of the response variates (to 
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TABLE 1 

SELECTED FACTOR LEVELS FOR FULL 
FACTORIAL DESIGN 

Factor 
Level 

Number 1 2 3 4 5 

1. Portfolio Size 3 2 3 4 - — 

2. Difference in Means 3 0 .001 .002 — — 

3. Autocorrelation 5 -.67 -.33 0 .33 .67 

4. Intercorrelation 4 -.25 0 .20^ .50 — 

5. Variance 3 .004 .005 .006 — — 

Total 540 

Although the computer program utilized for the orthogonal 
polynomial breakdown (Ch. V) required equal intervals between 
factor level, this deviation was not considered significant. 
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be defined in the next section) dictated that the 540 design 

points be replicated twice. Any additional factor levels 

would have produced an unmanageably large number of design 

points. 

The factor levels were chosen not to typify any particu¬ 

lar set of security return series, but such that the charac¬ 

teristics of many real sets may reasonably be expected to 

fall within their ranges. The parameters of the distribution 

of returns for any security, however, depend upon the length 

of the period, or differencing interval, over which the re¬ 

turns are measured. Similarly, the returns to a policy of 

RB depend upon the frequency of rebalancing. Since this 

study does not attempt to examine the effects of the RB fre¬ 

quency or the horizon length, the approach is to specify 

that the portfolio is rebalanced each simulated "period" of 

indeterminate length. The effects of the various factors 

on the relative performance of the rebalancing policy given 

that frequency, are then examined by varying the statistical 

properties of the distributions of security returns based 

upon a differencing interval corresponding to that rebalanc¬ 

ing frequency of one simulated "period." 

The generation of random variables from distributions 

whose means differ by a particular amount (factor 2) required 

the specification of an absolute level of the expected return 

of each distribution. The average expected return for each 

period was taken as 0.007.^ In this case each period may be 
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thought: of as being approxir.ately a month. ^ Then, for example, 

a four security portfolio when factor 2 is at level 1 (see 

Table 1) would consist of four securities, each with expected 

return of 1.C07. At level 2, securities 1 and 4 would have 

expected returns equal to 1.0065 and 1.0075, respectively. 

This difference of .001 will be compounded each period over 

the investment horizon. And at level 3, securities 1 and 4 

would have expected returns of 1.006 and 1.008 (a difference 

of .002, ccmpounded). Thus, the method of controlling the 

divergence in the expected returns betwoen securities holds 

the expected return of the portfolio constant at 1.007 per 

period. It will be shewn later that the major conclusions 

reached are invariant with respect to the portfolio expected 

return chosen. 

It is clear from the literature on the randomi w’alk model 

of stock price behavior that the range of the levels of the 

autocorrelation factor indicated in Table 1 includes the values 

characterizing mest actual security tim-e series [10, 45, 62, 

118, 166] . Similarly, empirical evidence indicates that the 

average intercorrelation betw’een securities is approximately 

C.5 [119, 128, 144]. Finally, a variance of the distribution 

of returns of approximately .005 is also empirically justifi¬ 

able for an expected return of 1.007 [228]. 
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Response Variables 

Distributions of Geometric Totals 

Geometric total returns were chosen to compare the two 

strategies. Since this study deals with only a single horizon 

length, the geometric mean return to each strategy would have 

been equally suitable for comparisons. The former measure 

was chosen, however, to avoid the possibility of drawing mis¬ 

leading conclusions if further work were done employing 

different horizon lengths.^ 

The stochastic nature of security rates of return results 

T T 
in the geometric totals G (BH) and G (RB) as defined in equa¬ 

tions (2-4) and (2-5) also being random variables. Consequently, 

the comparison of the two strategies requires the inspection 

of the probability distribution of the geometric total return 

associated with each. And a determination of the effects of 

the factors described in the preceding section necessitates 

that these two probability distributions be calculated and 

compared for each factor configuration. 

For a given factor configuration, the geometric total 

return to a strategy over a horizon of 50 periods constitutes 

one observation from the distribution. In view of the time 

and storage requirements of the computer program written to 

perform the simulation, it was decided that 20 such observa¬ 

tions would provide sufficient information about each 

distribution. 
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A response variable for the factorial experiment can 

then be defined as the difference between the distributions 

of the geometric totals for the two strategies in terms of 

some parameter of the distributions. Denoting the response 

variable by the particular parameter P selected, the response 

is defined as 

P = P[g'^(RB)] - P[g'^(BH)]. (3-1) 

This is consistent with the formulation in the Cheng-Deets 

study [39] in which P was the expected value of the distribu¬ 

tion of geometric totals, and also in the papers by Cheng 

[33, 34], where in addition to the expected value, the dif¬ 

ferences between the variances of the distributions were 

examined. 

The factorial experiment was undertaken to provide 

observations of the response(s) P under controlled conditions 

with respect to the five factors hypothesized to be func¬ 

tionally related to it. 

Performance Measures 

With the description of the general form of the response 

variable, it remains to specify the parameter(s) utilized for 

the comparison of the distributions of geometric totals. 

Referring to equation (3-1), five alternative definitions of 

P were chosen. The five parameters are the geometric mean 

(G), expected value (E), variance (V), skewness (S), and 

kurtosis (K). 
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The geometric mean of a distribution containing n 

observations of the variable x, x.>0, is defined as 
1 

G 

* 
n l/n 

(3-2) 

The other four measures here refer to the first four sample 

semi-invariants (cumulants) of the distribution. Defining 

th 
the r— moment and central moment of the discrete distribu¬ 

tion g(x) respectively as 

m = yx^g(x.) (3-3) 
r 1 

1 

and 

m = y(x.-m,)^g(x.), (3-4) 

1 

the first four population semi-invariants are 

K, = m 

Ko = m 

K, = m, 

Kk = m^-3m2 ^. 

(3-5) 

Then the first four sample semi-invariants are given by 

= Sj/n 

n (n-1) 

n^S,-3nS2S^+2S^ 

n(n-1)(n-2) 
(3-6) 

(n^+n^)S^-4(n^+n)S,S,-3(n^-n)s;+12nS.sf-es? 

n(n-1)(n-2)(n-3) 
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where n is the number of observations in the frequency 

n r 
distribution f(x) drawn from g(x), and S = .Ex.f(x.). 

r 1 = 1 1 1 

These sample statistics are unbiased estimators of the popu¬ 

lation semi-invariants [15, pp. 80-81]. 

For purposes of comparing the relative performance of 

RB and BH, it is assumed that the probability distributions 

of the geometric totals can be characterized either by the 

multiple response consisting of E, V, S, and K, or simply by 

the geometric mean (G) of the distributions. The use of these 

m.easures is justified in the next section. 

Justification of Performance Measures 

Multiple Response.—If (1) the members of a set of 

distributions of returns are each preferred to any distribu¬ 

tion under consideration not in that set, and (2) there is 

indifference between the members of the preferred set, then 

we shall refer to that set as "efficient." The members of 

the efficient set are said to "dominate" all inefficient port¬ 

folios. The specific criteria for efficiency depends upon 

the assumptions about the decision maker's utility function. 

Levy and Hanoch [129] , in empirically comparing the 

relative effectiveness of various efficiency criteria for 

portfolio selection, have demonstrated that an inverse rela¬ 

tionship exists between the strength of the assumptions about 

the utility function and the size of the efficient set. 

If the only restriction on the utility function is that 

it is nondecreasing with respect to returns, x, then the 



criteria for the distribution f(x) to be preferred to g(x) 

is that 

33 

F(x) ^ G(x), for all x, (3-7) 

where a capital letter denotes the cumulative distribution. 

The efficiency criteria indicated in equation (3-7) is known 

as the General Efficiency Criterion [93, 91, 129, 133, 176]. 

While this criterion certainly makes no unreasonable assump¬ 

tion regarding the utility function, it is generally ineffec¬ 

tive in limiting the size of the efficient set. 

Imposing the further restriction * that the utility 

function is concave (risk aversion) results in the General 

Concave Efficiency Criterion [97, 129, 133] which indicates 

that f(x) is preferred to g(x) if 

[G(t)-F(t)]dt ^ 0, for all x. (3-8) 

This criterion is somewhat more effective than the General 

Efficiency Criterion in reducing the size of the efficient set 

without introducing any unreasonable assumptions.® 

Markowitz' monumental contribution to portfolio theory 

was the introduction of the Mean-Variance Efficiency Criterion 

[146, 147] under which the condition for f(x) to be preferred 

to g(x) is 

E[f(x)] ^ E[g(x)] andV[f(x)] <V[g(x)]. (3-9) 
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The wide acceptance of the mean-variance criterion was 

due to the fact that it is based upon the empirically justi¬ 

fiable assumptions of a nondecreasing and concave utility 

function, as well as only requiring estimates of the first 

two moments of the distributions. This contrasts with the 

General Concave Efficiency criterion which requires that the 

distributions of returns be completely specified. 

The convenience associated with the necessity of only 

considering the mean and variance of each distribution is ob¬ 

tained, however, only at the expense of imposing some highly 

restrictive, and perhaps unrealistic, assumptions about either 

the utility function or about the shape of the distributions 

of returns. Specifically, for the mean-variance criterion 

to be optimal, one of the following conditions must hold [129]: 

(1) The utility function is quadratic. 

(2) Utility is a direct and increasing function of the 
mean and decreasing function of the variance. 

(3) The distributions of returns belong to the same 
2-parameter family. 

With regard to the form of the utility function, the 

quadratic assumption has been questioned because at some 

point the function becomes decreasing, as well as the fact 

that it is inconsistent with the empirically justifiable 

notion of decreasing absolute risk aversion.® And Arditti 

[7] has presented evidence that the third moment of the dis¬ 

tribution of returns is also considered significant by the 

investor. This argues against condition (2). 
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With regard to the shape of the distribution of returns, 

for our purposes, it appeared unlikely that the distributions 

of returns to the two strategies would belong to the same 

2-parameter family for all factor combinations under study.^ 

In spite of these shortcomings, a huge body of litera¬ 

ture, including a theory of capital markets, has been built 

around the mean-variance criterion. And even Cheng's most 

significant analytical results with regard to the Markowitz 

efficient frontier under rebalancing signify the importance 

of that criterion. Consequently, P was defined as the ex¬ 

pected value and as the variance in the responses studied to 

allow for the application of this efficiency criterion as a 

means of comparing the relative performance of the two 

strategies. 

But despite the necessity for imposing the highly tenuous 

assumptions previously described. Levy and Sarnat [131] dem¬ 

onstrated that this criterion is only slightly more effective 

in reducing the size of the efficient set than the General 

Concave Efficiency Criterion. Thus it was likely that the 

experiment would indicate that for certain factor configura¬ 

tions RB is mean-variance superior, for others BH is superior, 

and for many others neither strategy will dominate. And more 

significantly, no quantitative measure of superiority will be 

indicated for any factor configuration. We are faced here 

with the multiple response problem [173]. 
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The attempt of portfolio theorists to come to grips with 

the multiple response problem has led to several performance 

measures which replace the two parameters discussed above 

with a single quantitative measure of performance. The mea¬ 

sure most readily adapted to our needs is Sharpe's [193] 

reward to variability ratio, (E-i)//v, where i is the risk¬ 

free interest rate. This measure, however, is based upon 

the highly restrictive assumptions of the capital market 

theory due to the mean-variance efficiency criterion. In 

addition it requires the specification of the risk-free in¬ 

terest rate. It does, however, combine the E and V response 

variables into a quantitative measure of performance which 

can be used for the analysis of the results of applying the 

alternative investment strategies to portfolios with the 

statistical properties being studied. 

The empirical evidence denying the assumptions underlying 

the mean-variance criterion and the capital market theory de¬ 

rived from it® leads us to the task of examining characteris¬ 

tics of the distributions that are not described by the first 

two moments. 

Defining utility, U, as a function of wealth, W, and 

income, x, and defining r=x/W as the rate of return, we have 

U = U(x+W) = U(rW+W) . (3-10) 

Expanding U in a Taylor series about W+E(rW), taking expec¬ 

tations of both sides and assuming W and E(rW) constant. 
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Arditti [7] obtained 

2 3 

E(U) = U[W+E(rW)] + jyO"(W+Wm,)inj + + ... (3-11) 

t h 
where m denotes the r— moment of the distribution of returns 

r 

as before. Now assume that the utility function is concave 

and monotone increasing (as for the General Concave Efficiency 

Criterion), and that there is decreasing absolute risk aversion. 

Then an examination of the signs of the coefficients of the 

moments indicates that for a given expected return, performance 

is a decreasing function of the variance and an increasing 

function of the skewness of the distribution. 

The lack of a theory to indicate the sign of U"" does 

not enable us to reach any rigorous conclusions regarding the 

sign of the coefficient of the fourth moment, which would ap¬ 

pear in the next term of the Taylor expansion. However, Fama 

[63, p. 94], when describing the economic implications of a 

highly leptokurtic distribution of stock price changes, stated 

that the "large number of abrupt changes . . . means that such 

a market is inherently more risky than a Gaussian market. The 

variability of a given expected yield is higher . . . and the 

probability of large losses is greater." Thus, intuitively, 

we would expect utility, and therefore performance, to be in¬ 

versely related to the degree of kurtosis. 

Consequently, the response variables with P equal to S 

and K, reflecting the third and fourth moments, deserve con¬ 

sideration along with the E and V responses in evaluating 
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the distributions of returns associated with the two 

strategies. 

The multiple response problem becomes more acute when 

the number of response variables is increased from two to 

four, since it is unlikely that either strategy will be 

dominant with respect to the mean, variance, skewness, and 

kurtosis. Nor can they be as simply related in a single 

parameter performance measure as can the mean and variance 

alone.^ Therefore, this method cannot be employed to solve 

the multiple response problem when we specify performance 

as a function of the first four moments. 

Desirous of obtaining meaningful results regarding the 

relative performances of RB and BH, we turn to the response 

with P defined as the geometric mean of the distribution to 

evaluate the strategies. 

Geometric Mean Response.—The mean-variance criterion 

was developed as a means of explicitly considering the vari¬ 

ability of returns as a trade-off against expected returns 

in order to reflect risk aversion and explain diversification. 

Similarly, skewness and kurtosis were introduced because they 

affect expected utility in the more general case. 

Define the Geometric Mean Criterion as the preference 

of f(x) over g(x) if 

G[f(x)] > G[g(x)]. (3-12) 

Young and Trent [228] derive the following approximation to 
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the geometric mean based upon the first four moments of the 

distribution of , i=l,2,...,n; x^>0 and n large: 

4. ^^3 _ 
2mi 3mf 4mi ’ 

(3-13) 

With utility monotone increasing in G, the equation specifies 

the same type of investor attitudes toward variance and skew¬ 

ness as shown by Arditti using the principle of expected 

utility maximization (equation 3-11). And the sign of the 

coefficient of the fourth moment is also consistent with our 

beliefs as stated by Fama. Thus the geometric mean criterion 

appears to implicitly include consideration of the higher 

moments, while having the important property of being a 

single-parameter performance measure defined on a cardinal 

scale, rather than just providing an efficient set. 

The geometric mean of a distribution may be calculated 

either directly according to equation (3-2) , or accurately 

approximated by equation (3-13). If the third and fourth 

moments can be regarded as insignificant, as in the normal 

distribution, the approximation becomes 

G = m. - (3-14) 

Squaring both sides and assuming the last term is negligible 

gives 

= m? (3-15) 



Despite these favorable properties, the usefulness of 

the geometric mean criterion depends upon the validity of 
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the utility function which it induces. Since 

n 

G = 

n 

TT X • 
u=l 1 

1/n — . ^ - log X. „ ,, , 
n 1 = 1 1 E [ log Xi] 

(3-16) 

the criterion of maximizing G is induced by a logarithmic 

utility function. 

Latane [122] argued that the logarithmic function is 

appropriate for both (1) the wealth holder expected to be 

faced with repeated risks of similar types and magnitude with 

cumulative effects when the goal is maximizing wealth at the 

end of a large number of choices, and (2) the wealth holder 

to whom each risk is a unique event. 

In the first case, a logical subgoal is to choose the 

strategy that has the greatest probability of leading to as 

much or more wealth than any other strategy at the end of a 

large number of choices. Latane showed that the strategy of 

choosing the portfolio with the maximum geometric mean return 

will maximize the asymptotic return, and so the geometric mean 

is a rational criterion for that subgoal. Thus, by taking the 

goal of portfolio management as long term wealth maximization, 

the objective geometric mean performance measure is justified 

without making any assumptions regarding the utility function 

except that it be monotone increasing. 

This argument, however, is not valid for the wealth 

holder who considers each risk a unique event. 
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Nevertheless, Bernoulli [17] first proposed the geometric mean 

criterion for this type of wealth holder on the basis that it 

maximized utility if the utility resulting from a small in¬ 

crease in wealth varies inversely with the am.ount of wealth 

already possessed. Stigler [210] mentioned that the loga¬ 

rithmic utility function was accepted by Laplace and Marshall, 

and Savage [187, p. 94] said that it best approximates the 

utility function in moderate ranges. This function may also 

be defended by appealing to the Weber-Fechner Law of 

psychology. 

Several desirable properties of the logarithmic utility 

function were noted by Hakansson in his discussions about the 

growth optimal portfolio [94, 95]. First of all, in addition 

to being monotone increasing, it is strictly concave through¬ 

out, implying risk aversion and hence diversification. 

Secondly, unlike the quadratic utility function, it has the 

empirically defensible property of decreasing absolute risk \ 

aversion. Finally, because the logarithmic function exhibits 

constant relative risk aversion^^ (the quadratic does not) a 

myopic multi-period portfolio policy is consistent with it. 

As was pointed out in the previous chapter, a necessary con¬ 

dition for an equal weight rebalancing policy to be optimal 

is that complete myopia be optimal. Thus the assumption of 

a logarithmic utility function is especially consistent with 

the strategy being studied^ 
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We conclude that the response variable given by 

G = G[g'^(RB)] - G[g'^(BH)] (3-17) 

is an appropriate single-parameter performance measure to be 

used as an alternative to the multiple response measures 

defined in terms of E, V, S, and K. 

The next chapter describes the simulation methodology 

used to generate a data base consisting of two replicates of 

the five response variables at each of the 540 factor combina 

tions under study. 
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Footnotes to Chapter III 

1. All parameters of the distribution of security 

returns refer to the distribution of log price relatives. 

This point will receive further attention in the next chapter. 

2. In a sample of 233 securities from January, 1956 - 

December, 1960, Young and Trent [228] found the average return 

to be 1.007; a log return of about 0.007. 

3. Cheng and Deets [34] discuss the biases inherent in 

the use of the geometric mean return. 

4. The number of simulated security returns is equal to 

the product of the number of observations, the length of the 

investment horizon, the levels of each factor, and the number 

of replications of the distribution. This is equal to 

20 X 50 X 540 X 2 = 1,080,000. 

5. Evidence of risk aversion in the stock market is 

presented by Sharpe [194]. 

6. The measure of absolute risk aversion reflected in 

a utility function U(x) is -U"(x)/U'(x) where the prime de¬ 

notes the derivative. See Pratt [171]. 

7. Subsequent examinations of the parameters of the 

simulated distributions of geometric totals supported this 

expectation. 

8. Friend and Blume [81], for example, show that the 

one-parameter performance measures based on this theory yield 

seriously biased estimates of performance. 
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9. Progress toward extending portfolio theory to three 

or more parameters is being made. See for example [8, 107, 

108] . 

10. The Weber-Fechner Law states that equal ratios of 

physical stimulus corresponds to equal intervals of subjec¬ 

tive sensations. It is a law of proportionality stating that 

the just discriminable difference between two quantities is 

proportional to their level. See [30, 168]. 

11. For a utility function U(x), Pratt [171] defines 

a measure of relative risk aversion as -XU"(x)/U'(x). 
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CHAPTER IV 

SIMULATION: THE DATA GENERATING MODEL 

Simulation Methodology 

Simulation is a technique for experimenting with 

mathematical models describing a complex system on a digital 

computer [146] , The method allows controlled experiments 

since one or more of the values (levels) of variables 

(factors) may be changed while all others are held constant. 

This facilitates the study of the inter-relationships between 

the components. 

To study the effects of the various factors on the 

relative performance of the equal weight rebalancing strategy, 

it is necessary to control their levels. The impossibility 

of regulating combinations of these factors within reasonable 

ranges using actual stock price data makes a simulation 

methodology imperative. Even if one were able to find sets 

of stock price series displaying the desired statistical pro¬ 

perties, it would not be possible to find enough samples with 

the same combination of factor levels to obtain a distribu¬ 

tion of the geometric totals associated with applying each 

strategy to a portfolio with that factor configuration. 

The simulation methodology solves this problem of 

insufficient data by enabling the experimenter to generate 
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his own data, controlled as to the factors under study. 

In this case the data generating model need not be a "truth¬ 

ful" representation of the actual stock price generating 

mechanism, for the validity of a model should be judged with 

regard to the purposes and goals for which it is developed [11]. 

The purpose of this experiment is to exam.ine the properties 

of RB given various assumptions with regard to portfolio size, 

divergence of expected returns, autocorrelation, intercorre¬ 

lation, and variance. While the simulation requires other 

assumptions in the specification of the data generating model, 

the intent of this study is not to argue for a particular 

mechanism generating stock prices. Rather, it is an investi¬ 

gation of the behavior of the RB policy as certain factors 

are varied given a particular generating process which might 

appear reasonable. 

With this in mind, the conclusions of this study may be 

put in two different ways. One would begin by qualifying 

each statement with, "For time series generated according to 

the model specified in the simulation, then the relative per¬ 

formance of RB will be . . ." The other would draw conclu¬ 

sions regarding the application of the RB strategy to actual 

stock price series. The qualified statements cannot be de¬ 

nied, except due to technical errors. And while conclusions 

of this type are certainly of value, it is the conclusions 

of the second type which make the initial step from the realm 

of theory to that of application. It is these conclusions 
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which require that the model be a "truthful" representation 

of reality, or that, in the spirit of positive economics, the 

implications drawn from it are insensitive to the inaccuracies 

in its assumptions. 

Our intent is to reach conclusions of the latter type 

as well as the former. Consequently, the data generating 

model will be based upon assumptions which have strong empiri¬ 

cal or theoretical backing where possible, and where there is 

controversy concerning alternative assumptions the sensitivity 

of the results to the alternatives will be tested. 

Distribution of Stock Price Changes 

Gaussian vs. Long-Tailed 

The simulation of stochastic variables requires the 

specification of the general shape of the distribution from 

which they are generated. In this regard, the literature 

contains several proposed forms for the distribution of stock 

price changes.^ From the point of view of the investor, how¬ 

ever, these models may be divided into two main classes; 

the Gaussian (or normal) distribution and the long-tailed 

distributions [63, pp. 97-98]. 

The Gaussian assumption was selected for the data 

generating model because of the existence of well developed 

techniques for the generation of multivariate normal variates 

with arbitrary variance-covariance matrix, and for generating 

an autocorrelated time series of normally distributed variates. 
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The substantial body of empirical evidence favoring 

long-tailed hypotheses, however, would weaken any attempt to 

generalize the conclusions of this study to actual portfolios 

of securities without some indication that the results are 

insensitive to the form of the generating distribution. 

Consequently, a technique was developed for generating multi¬ 

variate bilateral exponential random variables while control¬ 

ling some of the factor levels under study within reasonable 

ranges.^ With the bilateral exponential representing the 

class of long-tailed distributions, the null hypothesis that 

the response is not affected by the form of the distribution, 

Gaussian versus long-tailed, was tested. 

Experiment 

This experiment tests the null hypothesis that the 

relative performances of the RB and BH policies are unaffected 

by whether the stock price data is generated from a normal or 

a long-tailed distribution. A 2® factorial design was em¬ 

ployed with two replications at each design point. Sets of 

security returns were simulated with the distribution form 

and the five factors under study controlled at all combina¬ 

tions of the following levels: 

Code Factor Level 1 Level 2 

1 Distribution Normal Bilateral Expon. 
2 Number Securities 2 3 
3 A Means 0 .002 
4 Autocorrelation -.67 0 
5 Intercorrelation 0 .50 
6 Variance .004 .006 
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In all, there were two replications of sixty-four design 

points. The five responses calculated were G, E, V, S, and 

K as defined in the preceding chapter, and the statistical 

method employed to test the null hypothesis was analysis of 

variance. 

Results 

The analysis of variance for the five responses is 

presented in Tables 2 through 6. The tables include all 

main effects and only those interactions which contain fac¬ 

tor 1, the form of the distribution. Each digit in the 

column labeled "Source of Variation" refers to one of the 

six factors as coded above. (For example, 14 refers to the 

distribution x autocorrelation interaction.) 

With F, (.05) = 3.99 and F, (.01) = 7.04 we note 

that there are no sources of variation involving factor 1 

which test significant at the 0.01 level and only the 1x2x4 

interaction for the variance response (Table 4) is signifi¬ 

cant at the 0.05 level. Thus we do not reject the null 

hypothesis. 

Hence we can proceed to describe the experiments with 

data simulated from Gaussian distributions with some confi¬ 

dence that the findings are also applicable to time series 

which demonstrate a better fit to long-tailed distributions. 
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ANALYSIS OF VARIAI^CE FOR GEOMETRIC MEAN RESPONSE 
FOR 2® FACTORIAL DESIGN WITH FACTOR 1 

THE DISTRIBUTION FORM 

GOUrCG of 
variation 

decrees of 

freedon 
SUT'.S of 
squares 

ncr.r. 
S(juares 

JT 
J, 

ju • ^ rat.\o 

1 1 .0^016 .00016 
2 1 .00057 .00057 o n 

3 1 .00052 .00002 .03 
4 1 .08031 .08931 V; 1 .7 6* * 
5 1 .00071 .00971 15.41** 
6 1 .00016 .00916 14.54** 

12 1 .00070 .00070 1.11 
13 1 .00025 .00025 .40 
14 1 .00022 .00022 . 35 
15 1 .00001 .00001 .02 
16 1 .00133 .00133 2.11 

123 1 .00070 , 00079 1 .25 
124 1 .00001 .00001 .02 
125 1 .00013 .09013 .21 
126 1 .00002 .0^'O02 .03 
134 1 .00015 .00015 .24 
135 1 .00108 .00190 1 *7 “i 

136 1 ,00008 .00003 .13 
145 1 .00002 .00002 .03 
146 1 .00035 .00035 .56 
156 1 .00002 .00032 .03 

1234 1 .00063 .00063 1.08 
1235 1 .00037 .00037 .59 
1236 1 .00057 .00057 .90 

1245 1 .00014 .00014 • y* / 

1246 1 .00003 .00003 .13 
1256 1 .00031 .00031 .49 
1345 1 .00002 .00002 .03 
134 6 1 .00037 .00037 .59 
1356 1 .00155 .00159 2.52 
1456 1 .00103 .00103 1.71 

12345 1 .00033 .09033 .52 
12346 1 .00021 .00021 .33 
12356 1 .00031 .00091 1 .44 
12456 1 .00014 .00014 .22 
13456 1 .00010 .00010 .16 

123456 1 0 0 0 
other 26 .03521 .00135 2.15 
\/itliin rep 64 .04050 .00063 
total 127 .19670 

^ * indicates 
significance 

significance at the 
at the .01 level. 

.05 level; ** indicates 
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ANALYSIS OF VARIANCE FOR EXPECTED VALUE RESPONSE 
FOR 2® FACTORIAL DESIGN WITH FACTOR 1 

THE DISTRIBUTION FORM 

source of degrees of suns of nean £ 

variation freedon s) uares squares ratio^ 

1 1 .00005 . 000 0 5 .06 
O 1 .00055 .00055 .62 
3 1 0 0 0 
4 1 .10397 .10307 118.15* 
5 1 .00753 .00753 8.56 * 
6 1 .0004 2 .000/12 9.57* 

12 1 .00017 .00017 .12 
13 1 .00 0/'. 6 . 0 0 0 /! 6 .52 
14 1 .00002 .nnp.02 -.02 
1 5 1 .00002 .00002 .02 

1 .00150 .00150 1 .00 
123 1 .00151 .00151 1 .72 
124 1 .00037 .00037 .42 
125 1 .00003 .00003 .03 
126 1 0 0 0 
134 1 ,00037 .00037 .42 
135 1 .00125 .00125 1. 42 
136 1 .00060 .00060 .60 
1 45 1 0 0 0 
146 1 .00044 . 00044 .50 
156 1 .00011 .00011 .13 

1234 1 .00025 .00025 .28 

1235 1 .00059 .00 0 59 .67 
1236 1 .00096 .00096 1 .09 
124 5 1 .00026 .00026 .30 
124 6 1 .00015 .00015 .17 
1256 1 .00027 .00027 .31 
1345 1 0 0 0 
1346 1 .00110 .00110 1 .34 
1 356 1 .00213 .00213 2.42 
1456 1 .00072 .00072 .82 

12345 1 .00021 .00021 . 2 /; 
12346 1 .00007 .O0007 .00 
12356 1 .00076 .00076 .86 
12456 1 .00000 .00000 .00 

13456 1 .00021 .00021 .24 
123456 1 .00006 .00006 .07 
other 26 .04201 .00165 1.87 
witiiin rep 64 .05615 .00088 
total 127 .23431 

indicates significance at the .05 level; ** indicates 
significance at the .01 level. 
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ANALYSIS OF VARIANCE FOR VARIANCE RESPONSE 
FOR 2® FACTORIAL DESIGN WITH FACTOR 1 

THE DISTRIBUTION FORM 

source of 
variation 

degrees of 
freedon 

suns of 
squares 

nean 
scfuares 

f 
ratin^ 

1 1 .00660 .006,60 1.99 
2 1 .00110 .00119 .36 
3 1 .00409 . 00 4 09 1 .47 
4 1 .02271 .02271 6.3 4 * 
5 1 .00146 .00146 .44 
6 1 .00023 .00023 .07 

12 1 .01322 .01322 3.9 2 
13 1 .00/106 ,00496 1 . 49 
14 1 .00071 .00971 2.92 
15 1 .00212 .00212 .64 
16 1 . 0 0 0 fl 6 .00006 .02 

123 1 .01014 .01014. 3.05 
124 1 . 01 71 /; . 01 71 /i 5.16* 
125 1 .00065 .00065 .20 
126 1 . 000 45 .00045 .14 
134 1 .00411 .00411 1 .24 
135 1 .00033 .00033 . 1 0 
136 1 .00529 .00529 1 .50 
145 1 .00037 .00037 .11 
1 46 1 . 00009 .00009 .27 
1 56 1 .00590 .00590 1.30 

1234 1 .00725 .00725 2.1 R 
1235 1 .OOOf2 .00042 .13 
1236 1 .00267 .00267 .90 
1245 1 .00146 ..00146 .44 

1246 1 . 00090 .00090 .30 
125 6 1 .00206 .00226 .36 
1345 1 .00003 .00003 .01 
1 34 6 1 .00343 .00343 1.03 
1356 1 . OOOO1 . 00001 .00 

1 456 1 .00399 .00399 1.20 
1234 5 1 .00003 .00003 .01 
1234 6 1 .00121 .00121 .36 
12356 1 .00331 .00331 1 .00 
12456 1 .00120 .00122 o n 

1 3 456 1 .00033 .00033 .10 
123456 1 .00540 .00540 1 .63 
other 26 .07039 .00271 .82 
T/itliin rep 64 .21244 .00332 
total 127 .42999 

indicates significance at the .05 level; ** indicates 
significance at the .01 level. 
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ANALYSIS OF VARIANCE FOR SKEWNESS RESPONSE 
FOR 2® FACTORIAL DESIGN WITH FACTOR 1 

THE DISTRIBUTION FORM 

source of 
variation 

degrees of 
freedom 

sums of 
scfuares 

mean 
squa3:GS 

jC 
i • a ratio 

1 1 .35556 .3.J596 3.32 
2 1 .17330 .17880 1.^7 
3 1 .27640 .27640 2.58 
4 1 .27122 .27122 2.53 
5 1 .00026 . 00896 .01 
6 1 .00')34 .00034 .00 

12 1 .36787 .36787 3.43 
13 1 .23376 .23376 2.18 
14 1 .36231 .36231 3.3 8 
1 5 1 .00370 .00370 .03 
16 1 .00336 .00336 .03 

123 1 .27770 .27770 2.5^ 
124 1 .37088 .37088 3.4 6 
125 1 .00673 .Ov.673 .or 
126 1 .00003 .00003 .00 
134 1 .20496 .20496 1.91 
135 1 .00053 .00053 .00 
136 1 .00231 .00231 .02 
145 1 .00060 .oooro .01 
146 1 .00320. .00320 .03 
1 56 1 .31146 .31146 2.0 1 

1234 1 .24763 .24763 2.3 1 
1 235 1 .00072 .00072 .01 
1236 1 . 00 0 9.^ .00099 .01 
1245 1 .01030 .01030 .10 
124 6 1 .0001 1 .00011 .00 
1256 1 .24588 .24588 2.29 
134 5 1 .00026 . 000^6 .00 
1346 1 •.00018 .00018 .00 

1356 1 .20145 . 2014 5 1 .88 
145 6 1 .27547 .27547 2.57 

12345 1 .00011 .00011 .00 

1 2346 1 .00001 .O00O1 .00 

12356 1 .30284 . 3028/^ 2.83 
124 56 1 .21995 .21995 2.08 

13456 1 .20145 .201n5 1.88 
123456 1 . _

\ 

rj
 

.31621 2.95 
other 26 3.44363 .13245 1 .24 

witliin rep 64 6.^6,027 .10719 
total 127 15.56054 

indicates significance at the .05 level; ** indicates 
significance at the .01 level. 
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ANALYSIS OF VARIANCE FOR KURTOSIS RESPONSE 
FOR 2® FACTORIAL DESIGN WITH FACTOR 1 

THE DISTRIBUTION FORM 

source of degrees of sums of riean 
variation freedom scTuares squares ratio^ 

1 
' 

1 10.66531 10.66531 2.45 
2 1 7.37232 7.372 32 1 .72 
3 1 5.20/173 9.20473 2.15 
4 1 8.23025 8.23825 1.^2 
5 1 .32516 .32516 .08 
G 1 .84675 .3/^’675 .28 

12 1 9.36525 5.36525 2.18 
13 1 8.26872 8.26872 1.53 
14 1 10.55525 10.55525 2.4 6 
15 1 .26527 .26527 .06 
16 1 .34851 .34851 .08 

123 1 8.32575 0.32575 1.5/1 
1 24 1 9.236'^/f 5,2365/'- 2.15 
125 1 .61480 .61480 .14 
126 1 .64454 .64454 .15 
134 1 8.03171 8.08171 1 .89 
135 1 .25347 .25347 .07 
136 1 .47106 .47156 .11 
145 1 .28285 .28285 .67 
146 1 .37465 .37465 .05 
1 56 1 10.32567 10.32567 2. /! 1 

1234 1 8.12555 8.12555 1 .95 
1235 1 .35627 .35627 .no 
1236 1 .7/1131 .74131 .17 
1 2 45 1 .62231 .62231 .15 
1246 1 .676/13 .67643 .16 
1 2 5 6 1 9.05624 9.0562/! 2.11 
1345 1 .25137 .25137 .07 
1346 1 .52518 .52518 .12 
1356 1 10.00219 10.00215 2.33 
1 456 1 10.155/^3 10.15 5/13 o r» 

12345 1 .34805 .34805 .08 
12346 1 .80502 .80502 .15 
12356 1 10.55160 10.55160 2.56 
1 2456 1 8.58533 8.98533 2. 10 
13456 1 9.57/12 5 5.97/125 2.33 

123456 1 11.02327 1 1 .02327 2.57 
other 26 126.77650 4.87603 1.14 
\'7ithin rep 64 274.33572 4.28656 
total 127 587.55554 

indicates significance at the .05 level; ** indicates 
significance at the .01 level. 
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Generation of Stochastic Variates 

As previously mentioned, the investigation requires the 

simulation of series of normally distributed security returns 

controlled as to the parameters of the distributions, and as 

to the autocorrelation within each series and intercorrela¬ 

tion between the series. In addition, the experiment just 

described required the generation of bilateral exponential 

variates, also controlling these factors. This section out¬ 

lines the numerical methods used in generating these variates 

on the digital computer. 

Normal Distribution 

Naylor et [158, pp. 97-99] present a method for 

generating a normal random vector from the multivariate nor¬ 

mal distribution with arbitrary mean vector and variance- 

covariance matrix. In addition they specify a technique for 

generating an autocorrelated time series of normal variates 

[pp. 118-120]. They are described below. 

Multivariate Normal Distribution.—The probability 

density for the m-dimensional normal random vector x is given 

by 

f (x) = |27tV| °*^exp [-1/2 (x-u) ' V ^ (x-u) ] , (4-1) 

where u is the m-component vector of means and V is the 

variance-covariance matrix with elements ^i=lf.*./n^r 

j—1,...,m. 
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The generation of random normal vectors with mean vector 

U and variance-covariance matrix V requires the computation 

of the unique lower triangular matrix C such that 

C • C» = V. (4-2) 

C can be obtained from V by the "square root method" which 

provides the following set of recursive formulas for comput¬ 

ing the elements c.. of C: 

c .. = a .. /a°*^, l<i<m 
11 il 11 

i~i 
c . . = (a . . - I c . M l^i^m 

11 11 ]_ ik 
(4-3) 

. . = (a. . - I c c )/c.., l<j<i<m. 
ij ij ]^-i 

After the computation of C, the vector x can then be calculated 

by 

X = Cz + u, (4-4) 

where z is a standard normal vector. 

Standard normal variates (the elements of z) may be 

generated by any one of many methods [158, pp. 90-97]. The 

method chosen for the data generating model was the Central 

Limit Approach which involves taking the sum of N uniformly 

distributed random variates subtracting the ex¬ 

pectation of the sum and dividing by its standard deviation. 

With N=12, chosen by balancing computational efficiency 
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against accuracy,^ and the drawn from the computer's 

uniform random number generator defined on the [0,1] inter¬ 

val, the standard normal variate is calculated as 

12 
Z = r.-6. (4-5) 

i = l ^ 

Autocorrelated Normal Variates.—The technique presented 

in the above reference for generating a time series of normal 

variates with a linear autocorrelation function is also based 

upon the Central Limit Approach. If a standard normal vari¬ 

ate in period t is generated as 

12 
Z = I r.-6, (4-6) 
t . T 1 

1 = 1 

then the next variate is generated as 

Z 
t+1 

12 + p 
I r^-6, p^l2 

i=p+1 
(4-7) 

where (12-p) of the r^ are common to successive sums, creat¬ 

ing the dependence in the series. 

The autocorrelation function with lag k is then 

l-kp/12 
p(k) = < 

l ° 

for k-12/p 

otherwise. ** 
(4-8) 

The generation of a negatively autocorrelated time series 

can be accomplished for a lag of one period by summing (1-r^) 
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in place of in equation (4-7) for those (12-p) uniform 

random numbers which are common to successive sums. 

Combining Autocorrelation and Intercorrelation.—The 

techniques described above enable the experimenter to control 

either the intercorrelation between series of simulated se¬ 

curity returns or the autocorrelation within a series. 

What remains is to combine these two methods so that 

the two factors can be jointly controlled. This was accom¬ 

plished satisfactorily according to the following scheme: 

Let = log where is as defined in equation (2-1). 

Suppose it is desired to generate controlled returns x^^, 

i=l,...,m, j=l,...,n, where i is the security and j is the 

time period. 

1. Let j=l. Generate a vector of m independent 

standard normal variates i=l,...,m each according to 

equation (4-5). 

2. Obtain the C matrix according to equations (4-3) 

from the variance-covariance matrix V associated with the 

desired intercorrelation and variance factors. 

3. Apply the C matrix and desired mean vector u to 

the standard normal vector according to equation (4-4) 

The result is the vector of security returns in period 

j with components i=l,...,m. 

4. Increment the time period j by 1. Generate a new 

vector Zj such that each component i=l,...,m has the 

desired autocorrelation with the corresponding component 
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in the previous period. See equations (4-7) 

and (4-8) for lag k=l. 

5. Repeat steps 3 and 4 until return vectors are 

generated for n periods. 

Bilateral Exponential Distribution 

The method developed here for controlling autocorrelation 

and intercorrelation in multivariate bilateral exponential 

series was based upon the following results demonstrated by 

Agnew [1]. 

Let V be the variance-covariance matrix of an m- 

dimensional multivariate normal distribution with mean vector 

u=0 and the elements of the main diagonal of V equal to unity. 

Now let 0 have the exponential distribution 

g(6) = exp(-a0) (4-9) 

with the parameter a=l. 

Then mixtures with respect to g of centered m-dimensional 

multivariate normal variates with variance-covariance matrices 

0V will be distributed as an m-dimensional standardized bi¬ 

lateral exponential distribution with density 

f(x) = 2”°-*exp(-2‘'-® |x|) (4-10) 

and variance-covariance matrix V. 

The inverse transformation technique provides a method 

for generating random variates from the exponential distribution 



60 

given by equation (4-9). Let r be drawn from the uniform 

distribution on the [0,1] interval. Then 0 is simulated as 

0 = -d/a) log r. (4-11) 

While independent bilateral exponential variates may 

be generated more efficiently as the convolution of the ex¬ 

ponential density with its mirrored image, that procedure 

does not furnish any means of regulating the autocorrelation 

or intercorrelation factors. Agnew's results, however, en¬ 

able us to utilize the techniques for simulating autocor- 

related and intercorrelated normal variates as a means of 

controlling these factors when generating variates from 

long-tailed bilateral exponential distributions. While 

Agnew dealt only with the standardized distribution, the 

extension to the general case is straightforward. 

The generating algorithm then required only slight 

modification to that presented above for "Combining Auto¬ 

correlation and Intercorrelation" in the Gaussian case. 

First, it required the insertion of two steps between 

steps 1 and 2. 

la. Generate a variate 0 from the exponential distri¬ 

bution with a=l according to equation (4-11). 

lb. Multiply all elements in the variance-covariance 

matrix by the scalar 0 to obtain a new V=0V. 

Second, step 5 was modified to read as follows: 
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5. Repeat steps la through 4 until return vectors 

are generated for n periods. 

Thus, multivariate normal distributions with variance- 

covariance matrices 6V are mixed by giving 0 an exponential 

distribution so as to generate bilateral exponential variates 

with the desired parameter configurations. In the special 

case where instead of being distributed exponentially, 6=1, 

the variates remain normal. 

Validation 

The problem of validation is attacked by bearing in 

mind that (1) our purpose is to obtain insight into the be¬ 

havior of rebalancing under conditions which might reason¬ 

ably be considered to include those in real world security 

markets, and (2) we have specified a data generating model, 

and an alternative to it, both of which have strong theoreti¬ 

cal and empirical documentation in the literature. 

At this point then the question is whether the methods 

previously described for the generation of stock price series 

on the computer provide satisfactory approximations to the 

theoretical distributions with the desired parameter configu¬ 

rations. Additional verification of the data generating 

model can also be inferred from later experimental results. 

Distribution Form 

Each series of security returns generated was tested 

to determine whether or not the variates were drawn from the 
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type of distribution intended. 

To test the goodness of fit of the distribution of the 

natural logarithms of simulated returns to the normal distri¬ 

bution, a test developed by Gurland and Dahiya [92] based on 

generalized minimum chi-square techniques was used. 

Let 

Q = nd'Bd (4-12) 

where 

d' = [log (S‘), s;, log (s;/3) ] (4-13) 

B 

1.5 0 -.75 

0 1/(6S^M 0 

-.75 0 .375 

(4-14) 

and is the r— central sample moment for the frequency 

distribution consisting of n observations. Then the asymp¬ 

totic distribution of Q is chi-square with two degrees of 

freedom. Thus, to carry out a test of fit for normality at 

a particular level of significance one refers to the appro¬ 

priate critical point of the X2 distribution. This test was 

chosen for its convenience as well as the fact that it is 

extremely powerful against the bilateral exponential 

alternative.^ 

The results of applying the Q test to the simulated 

data were as hoped. For the overwhelming majority of the 

time series generated according to the Gaussian model, the 

null hypothesis of normality could not be rejected at the 
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0.05 level (x^(•05)=5.991). And all of those series supposed 

to be from a bilateral exponential distribution were able to 

reject the hypothesis of normality at even the 0.005 level 

(X^(.005)=10.597).® 
2 

Because the bilateral exponential distribution was 

chosen as a representative of the class of long-tailed dis¬ 

tributions, a further test was performed to demonstrate that 

the lack of fit to the normal distribution was due to exces¬ 

sive kurtosis rather than skewness. 

Defining the second, third and fourth sample semi¬ 

invariants as in equations (3-6), the statistics 

gj = kj/kJ-" (4-15) 

and 

= k^/k^ 

may be employed to test the skewness and kurtosis respectively. 

Bennet and Franklin [15] provide a table of critical 

values for Ig^l and lower and upper confidence limits for 

when the null distribution is normal. For 1000 degrees of 

freedom (each series is twenty observations of fifty periods 

of returns) the 99% confidence intervals are |gi|<0.180 and 

-0.31<g2<0.42. An inspection of the calculated values indi¬ 

cated that the rejection of the Gaussian hypothesis was in 

fact due to leptokurtosis. 
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Controlling Factor Levels 

Normal Distribution.—The generation of normal variates 

was based upon well developed numerical methods. Therefore, 

we are quite confident in our ability to generate such re¬ 

turns from populations with desired parameters, autocorrela¬ 

tion, and intercorrelation characteristics. 

A visual examination of the variance and autocorrelation 

properties of each series, and of the intercorrelation be¬ 

tween series in a portfolio^ in all cases showed a close 

correspondence between the ex post levels of these factors 

and the population parameters of the distributions from which 

they were supposed to be generated. The slight deviations 

in each sample from the population values could easily be 

attributed to sampling variation. But the sampling variation 

did not prevent a clear resolution of the different factor 

levels. 

On the other hand, an examination of the mean of the 

ex post returns in each series did not indicate that the 

simulation was effective in generating time series that suc¬ 

cessfully differentiated between expected returns of .006, 

.0065, .007, .0075, and .008. This is illustrated in 

Table 7 which is based upon the ex post means of a random 

sample of fifteen independent time series from each of the 

five populations. Each time series is of length 1000, con¬ 

sisting of twenty observations of fifty returns. While the 

t-values in each case do not reject the null hypothesis that 
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TABLE 7 

COMPARISON OF EX POST MEANS OF SIMULATED TIME SERIES 
WITH THE RESPECTIVE POPULATION MEANS 

Sample 
Statistics^ 

Population Mean 

.006 .0065 .007 .0075 .008 

Mean .0066 .0060 .0056 .0076 .0138 

Standard Deviation .0015 .0025 .0033 .0029 .0187 

T-Value"^ 1.46 -0.75 -1.58 0.08 1.20 

Degrees of Freedom 14 14 14 14 14 

^The population means are specified in the u vector of 
equation (4-4). 

Based on the ex post means of a random sample of 15 simu¬ 
lated time series of length 1000 for each population. 

^The t-value tests the null hypothesis that the sample mean 
is equal to the population mean. The critical point for 
the two-tailed test is tm (.05)=2.145. 
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the samples were generated from populations with the desired 

expected returns, the difficulty in controlling the sample 

mean returns within reasonable limits relative to one another 

should be noted. It will require that we be especially care¬ 

ful when drawing inferences regarding the effects of both 

the divergence in means (factor 2) and the portfolio size 

(factor 1) on the performance of RB. 

Bilateral Exponential Distribution.—Experience with 

the method developed for the generation of bilateral expo¬ 

nential variates with controlled factor levels indicated 

that it satisfactorily transfers the parameters associated 

with the variance-covariance matrix of the multivariate 

normal distribution to the multivariate bilateral exponen¬ 

tial distribution. And the sampling variation in the means 

was also similar to that discussed for the Gaussian case. 

The attempt to impose a specified amount of autocorre¬ 

lation within each series, however, consistently resulted in 

a loss of auto-dependence as the Gaussian distributions were 

mixed to form the double exponential. For example, equation 

(4-8) indicates that when eight of the twelve uniform vari¬ 

ates (or their complements, common to successive 

sums (p=4), the autocorrelation coefficient within a Gaussian 

time series for a lag of one period should be ±.67. With p=4, 

the ex post autocorrelation coefficients for the simulated 

bilateral exponential time series were found to be consis¬ 

tently and significantly closer to zero than the ±.67 expected. 
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A trial and error approach found that a value of p=2 

(ten of the twelve uniform variates in common) would yield 

ex post autocorrelation coefficients which approximated ±.67, 

Along with the generation of bilateral exponential time 

series characterized by zero autocorrelation, which posed 

no problem, this approximation to an autocorrelation of -.67 

was considered suitably accurate to proceed with the previ¬ 

ously described factorial experiment on the sensitivity of 

the responses to the form of the generating distribution. 

The fact that there is as yet no theory predicting the 

population value of this characteristic for any value of p, 

nor any other method for accurately controlling the depen¬ 

dence within a series of bilateral exponential variates, 

was a major consideration in the choice of 'the Gaussian 

hypothesis for the data generating model. 

A description of the computer program written for the 

simulation appears in Appendix B. 
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Footnotes to Chapter IV 

1. Although this paper for ease of exposition often 

speaks of the distribution of stock price changes, we are 

referring to the distribution of the natural logarithm of 

the price changes. As in all the literature related to our 

study, the model is concerned with stock price changes rather 

than with the prices themselves. Kendall [118] explains that 

the previous price is the starting point for negotiations in 

a free market, and so it is the change in price, rather than 

the absolute level, which constitutes the major element in 

price negotiations. As pointed out by Roberts [180], the 

statistical behavior of price changes, which may be indepen¬ 

dent, is much simpler than that of price levels which 

certainly are not. 

This paper is also in accord with the common practice 

of defining distributions of security returns in terms of 

the logarithmic transformation, log ~ ” 

log demonstrated by Moore [151], the magnitude of 

price changes tends to be proportional to the price level. 

This is in agreement with the common economic assumption 

that the percentage price change (yield) is important, not 

the absolute price change [42, p. 82]. The assumption re¬ 

lates to the discussion of the logarithmic utility function 

in Chapter II. Moore [152] also explains his observation 

by appealing to Simon and Bonini's [198] law of proportional 
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effect of the size of business firms, and the evidence 

connecting firm size and security prices. Although other 

transformations would be satisfactory, the logarithmic 

transformation is often utilized to neutralize the insta¬ 

bility in the mean and variance due to this type of security 

return behavior. See the Appendix for a brief review of the 

various proposals offered for the form of this distribution. 

2. A description of this technique as well as the 

method for generating Gaussian variates is presented later 

in this chapter. 

3. Although this value of N truncates the distribution 

at the ±6a limits, it is quite accurate within ±3 standard 

deviations. If we must have a bias in the size of the ex¬ 

treme tails, we favor it in this direction since it accentu¬ 

ates the difference between this distribution and the long¬ 

tailed distributions represented by the bilateral exponential. 

4. The fact that p and k are integers and p^l2 limits 

the degree of autocorrelation to the thirteen levels 0, 1/12, 

2/12, ..., 11/12, 1. In order to obtain intermediate values 

of the autocorrelation coefficient the Central Limit Approach 

would require summing more than N=12 uniform random variates. 

5. Gurland and Dahiya [92] calculated the power of the 

Q test for normality against a bilateral exponential alter¬ 

native for n=100 and a .05 significance level at .879. This 

compared with a modified form of the Pearson chi-square test 

which had a power of .800. 
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6. To increase the power of the test the twenty 

observations of each of the simulated fifty period security 

return series were combined to form a series of length 1000 

for each stock. The Q test for normality was then applied 

to these distributions of 1000 returns. The verification 

of the ability to control the parameter configurations, as 

discussed in the next section, also was based upon these 

combined series so as to reduce the sampling variation. 
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CHAPTER V 

STATISTICAL ANALYSIS: THE DEVELOPMENT OF THE 

FACTOR-RESPONSE MODELS 

In the preceding chapters the factors and responses 

were defined and the data generating model for the simulation 

was described. The output of the simulation was a data base 

consisting of two observations of the five responses for each 

of the 540 portfolios (factor configurations) specified in 

the data generating model. The factor levels were controlled 

so that the observations for each of the response variables 

conformed to a 3^x4x5 factorial design replicated twice. 

The purpose of this chapter is to trace the development 

of the mathematical models which predict each response as a 

function of the factors under study. A stepwise approach to 

validating the model and evaluating the goodness of fit was 

employed to provide a reasonable degree of confidence in the 

inferences drawn from it with regard to the statistical 

properties of the rebalancing policy. 

Assumptions 

The factor-response models were developed through the 

use of multivariate analysis of variance and multiple non¬ 

linear regression analysis. The statistical inferences 

required that the observations of the responses were generated 
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according to a fixed effects regression model with a 

spherical normal vector of disturbances. The assumptions 

of the model are that the errors are (1) mutually indepen¬ 

dent, (2) normally distributed variables with expectation 

zero and (3) common variance. 

Generally, a computer simulation model will satisfy the 

assumptions required for the data analysis [158, p. 333]. 

The mutual independence condition is automatically satisfied 

by the simulation methodology which creates each factor- 

response observation from a set of security return series 

generated from a different sequence of pseudorandom numbers. 

With regard to the other conditions, Scheffe [188, pp. 331- 

369] concludes that nonnormality has little effect on in¬ 

ferences about fixed main effects or interactions, nor does 

heteroskedasticity have serious effects so long as the cell 

numbers are equal. 

Analysis of Variance 

A simple linear relationship between the response(s) 

and the independent variables (factors) was not expected. 

However, the inclusion of all possible high order main 

effects and interactions (e.g., x^x^x , where the subscript 

denotes the factor, and the superscript is the power) in the 

list of regressors was not possible. So as not to arbitra¬ 

rily exclude a significant term from the regression, an 

analysis of variance was carried out for each response 
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variable to determine which terms would significantly 

contribute to the predicting equation. 

The Biomedical Computer Program for the Analysis of 

Variance for Factorial Design [53, pp. 495-510] was employed 

to partition the total sum of squares. Tables 8 through 12 

are the analysis of variance tables for the five response 

variables G, E, V, S, and K, respectively. The coding of 

the factors in these tables and in the remainder of this 

paper is as follows: 

Code Factor Variable 

1 Number Securities 

2 A Means ^2 

3 Autocorrelation 
^3 

4 Intercorrelation 

5 Variance 
^5 

In addition to the information presented in these tables, 

the output of the analysis of variance included a breakdown 

of the sum of squares corresponding to each main effect and 

two-factor interaction into orthogonal polynomial components 

having a single degree of freedom. 

The orthogonal polynomial breakdown provides information 

as described in the following examples: Table 8 indicates 

that among the significant sources of variation at the 0.05 

level are the main effects of factors 1 and 3. The breakdown 

(not shown) showed that only the linear component (x^) was 

significant for factor 1, while factor 3 had significant 
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TABLE 8 

ANALYSIS OF VARIANCE FOR GEOMETRIC MEAN RESPONSE 
FOR 3^ x4x5 FACTORIAL DESIGN 

source of 
variation 

degrees of 
freedom 

sums of 
scTuares 

mean 
squares ratio^ 

1 2 .08559 .04280 21.29** 
2 2 .00254 .00127 .63 
3 4 10.50350 2.62588 1306.41** 
i!- 3 -.05259 .01753 8.72** 
5 9 .02730 .01365 6.79** 

1 2 4 .00915 . 0022.8 1.14 
13 8 .66366 .08296 41.27** 
14 6 .01247 .00208 1.03 
15 4 .00969 .00242 1.21 
23 8 .02233 .00279 1.39 
24 6 .01377 .00230 1.14 
25 4 .00075 .00019 .09 
34 12 1 . 1 2400 .00367 46.60** 
35 8 .39758 .04970 24.73** 
45 6 .00579 .00096 .48 

123 16 .01101 .00069 .34 
124 12 .01473 .00123 .61 

125 n O .01951 .00244 1 .21 
134 24 .08264 .00344 1.71* 
135 16 .00896 .00618 3.03** 
145 12 .01629 .00136 .68 
23 4 24 .03927 .00164 .81 

235 16 .01808 .001 1 3 .56 

24 5 12 .02186 .00182 .91 
34 5 24 . 0 6 4 2 .00268 1 .3^ 

1234 43 .06893 .00144 .71 
12 35 32 .07448 .00233 1.16 
124 5 24 .03120 .00130 .65 
134 5 48 .07221 .00150 .75 
2345 48 .11226 .00234 1.16 

12345 96 .16592 .00173 .86 
v/itJiin rep 540 1.08359 .00201 
to cal 1079 14.926u7 

indicates significance at the .05 level; ** indicates 
significance at the .01 level. 
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TABLE 9 

ANALYSIS OF VARIANCE FOR EXPECTED VALUE RESPONSE 
FOR 3^x4x5 FACTORIAL DESIGN 

source of degrees of suras of raean ■C J. 
variation freedom squares squaros ratio^ 

1 .07920 .03965 9.44** 
0 
4^ 2 .00272 .00136 .32 
3 4 16.39443 4.09061 975.86** 
4 .16487 .05496 13,08** 
5 2 .11340 .05670 13.50** 

13 4 .00627 .00157 .37 
13 8 .69039 .08630 20.55** 
1 4 6 .01351 .00225 .54 
1 5 4 .01558 .00389 .93 
23 8 .04067 .00508 1.21 
2 4 6 .03478 .0058O 1 .38 
25 .00078 .00019 .05 
3 4 12 1.61107 .13426 31.97** 
35 8 .78060 .09757 23.23** 
45 6 .01353 .00226 .54 

123 16 .^1078 .00067 .16 
1 24 12 .03030 .002 5 2 .60 
125 8 .01788 .00224 . 53 
134 24 .10658 .00444 1.06 
135 16 .12140 .00759 1.81* 
1 45 12 .02943 .00245 .58 
234 24 .11921 .00497 1.18 
23 5 1 6 .03530 .00221 .53 
24 5 12 .04995 .00416 .99 
345 24 .10498 .00437 1.04 

1234 48 .19654 .00409 .97 
1235 32 .10858 .00339 0 i • 1 

124 5 24 .07267 .00303 .72 
134 5 48 .18616 .00388 .92 
234 5 48 .25935 .00540 1.29 

1 2345 96 .36370 .00379 .90 
\7itl-iin rep 54 0 2.26917 .00420 
total 1079 24.04387 

indicates significance at the .05 level; ** indicates 

significance at the .01 level. 
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TABLE 10 

ANALYSIS OF VARIANCE FOR VARIANCE RESPONSE 
FOR 3^x4x5 FACTORIAL DESIGN 

source of 
variation 

degrees of 
f reef Ion 

suns 
SfTuares 

moan 
squares 

£ 
J 

^ ^ ratio 

1 2 .12560 .06280 .38 
2 2 .23932 .1 1^66 .72 
3 4 62.00656 15.50164 9 2.9/!* 
4 3 1 .03/121 .3/i/;74 2.07 
5 2 3.35219 1.67610 1 0.0 * 

12 4 .35120 .08780 
13 8 .57048 .07131 .43 
1/1 G .80358 .13393 .80 
15 4 .69280 .17320 1.04 
23 0 1,39740 .17467 1.05 
24 6 1.18153 .19692 1.18 
25 /^ .16360 .04090 .25 
34 12 1.72252 .14354 .86 
35 8 9.52544 1 . 1 9068 7.1 /i * 
4 5 G .410 56 .06003 ./i2 

123 16 1 ./^62 57 .0'‘'14 1 .55 
124 12 3.12194 .26016 1 . 56 
125 O 

O .43297 .05412 .32 
134 24 4.22937 .17622 1.06 
135 16 2.82381 .17649 1.06 

145 12 1.67764 .13080 .84 
23 4 24 4.96436 .20685 1.24 

235 16 .83744 .0523/1 .31 
24 5 1 2 2.63863 .21989 1.32 
34 5 24 1.19086 .0490 2 .30 

1234 48 13.46647 .20055 1.68* 

1235 32 1.82122 .05691 .3/1 

12 45 24 4.34004 . 1 8083 1 .08 

1345 48 9.00954 .18770 1.13 

2345 48 9.16822 .19100 1.15 

12345 96 19.66509 .20484 1.23 

V7it]iin 
total 

rep 540 
1079 

90,07266 
254.50882 

.16680 

indicates significance at the .05 level; ** indicates 
significance at the .01 level. 
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TABLE 11 

ANALYSIS OF VARIANCE FOR SKEWNESS RESPONSE 
FOR 3^x4x5 FACTORIAL DESIGN 

source of degrees ' of SU3 IS of raean 
variation freedori) squares squares ratio^ 

1 2 16.92676 8.46338 .66 

2 2 36.18/120 1 8.0921/1 1 .42 
J 4 1302.80922 325.70230 25.53* 
4 3 19.49678 6.4'^893 .51 
5 2 143.78494 71.8^247 5.63* 

12 4 59.59531 14.89883 1.17 
13 8 81.56125 10.19516 .8/^ 
1/1 6 87.50001 14.58334 1 . 1 /i 
15 4 32.04566 8.23641 .65 
23 8 139.27588 17.40948 1 .36 
24 G 85.91711 14.31952 1.12 
25 4 28.29435 7.07359 .55 
34 1 2 70.62830 5.8 8 5,69 .46 

35 O u 517.33369 64.66671 5.07* 

45 6 30.30766 5.05128 .40 

123 16 222.15313 13.88457 1 .09 
124 12 252.42916 21.03576 1.65 
125 8 68.06687 8.50836 .67 
134 24 368.77428 15.36559 1.20 

135 16 143.17333 8.94333 .70 
145 12 139.51 499 11.62625 .91 
23ii 24 343.^6^C9 14.31124 1.12 
235 16 140.27824 8.76739 .6^ 
24 5 12 13 3.080 4 7 11.09079 .87 
345 24 113.31743 4.72156 .37 

1234 48 1019.87654 21 .2/^743 1.67* 

1235 32 234.84406 7.33888 .58 

1245 24 365.83211 15.24300 1.19 

1345 48 598.62283 12.47131 .98 

2345 48 517.76410 10.78675 .85 
1234 5 96 1482.87369 15.44660 1.21 

v/ithin rep 540 6890.19386 12.75962 
total 1079. 15686.83503 

indicates significance at the .05 level; ** indicates 

significance at the .01 level. 
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TABLE 12 

ANALYSIS OF VARIANCE FOR KURTOSIS RESPONSE 
FOR 3^x4x5 factorial DESIGN 

source of 
variation 

degrees of sums of 
freedom scpiares 

mean 
sruia res 

f 
, . a 

ratio 

1 2 1633.54944 816.77472 .62 
2 'y 4416.23277 2208.11638 1 r r\ 

1 .00 

3 4 59527.29708 1 4881 .82f'-?7 11.31*' 
4 634.08086 21 1 . 36029 .16 
5 2 10205.53210 5102.76605 3.88* 

12 4 5853.81575 1463.45394 1.11 
13 8 7193.30844 899.16355 .63 
14 6 8681.29762 1446.88294 1.10 
15 4 3679.70002 919.92501 .70 
n o 8 17261.32692 2157.66587 1 .r/i 
24 6 6574.89477 1095.81579 .33 
25 4 5845.10386 1461.27597 1.11 
34 12 2742.63664 228.55395 .17 
35 O u 40231.27184 5028.90898 3.82* 
4 5 6 2443.52429 /^07.254 05 .31 

123 16 22880.11577 1/L30.00724 1.09 
124 12 21907.70051 1825.64171 1 .39 
125 8 6393.0296^* 799.1 2 870 .61 
134 24 35602.57963 1483.44082 1.13 
135 16 15385.46790 961.59174 .73 
145 12 1 9 3 3.0 0 4 6 0 1244.41705 . 5 
234 24 26027.56610 1 0 8 /1. 4,8 1 9 2 .82 
235 1 6 253^0.29128 1586.89320 1.21 
24 5 12 13008.76091 1084.06341 0 0 

• *) 

345 24 9525.38470 396.89103 .30 
1234 48 87233.99822 1817.37496 1 .38 
1235 32 23935.83376 747.^9480 .57 
1245 24 37160.43392 1543.35350 1.18 
134 5 48 59658.47228 1242.38484 .9 4 

234 5 48 51687.69584 1076.82700 .82 
12345 9 6 148199.40022 1543.74375 1.17 

vyithin rep 540 710623.40564 1315.96927 
total 1079 1486476.76331 

indicates significance at the .05 level; ** indicates 
significance at the .01 level. 



79 

linear (xg), quadratic (Xg), and fourth degree (Xg) 

components. Similarly, the polynomial breakdown showed that 

the significant l^S interaction of Table 8 was due to the 

significant components x^x^, x^x^, x^x^, and x^x^. Thus, 

the polynomial breakdown provides guidance as to what terms 

to include in the regression equations. 

The initial step in the sequential validation procedure 

was the verification of the data generating model as dis¬ 

cussed in chapter IV. The comparison of the ANOVA results 

with some of the analytical conclusions listed in chapter II 

constitutes the next step in the process. Verification of 

the experimental evidence at this stage also has the effect 

of reconfirming the validity of the simulation methodology. 

The approach to validation was based upon the premise 

that certain insights which may be obtained through the use 

of analytical techniques may not appear statistically signi¬ 

ficant in the simulation experiment. Although the method¬ 

ology employed here may not be sensitive enough to detect 

certain analytically determined results, there should not 

be a statistically significant contradiction of them. The 

approach then was to use the relevant analytical conclusion, 

stated as an inequality, as the null hypothesis, and deter¬ 

mine whether the results developed here reject the null hy¬ 

pothesis in favor of the inequality in the opposite direction. 

Four of the analytical observations outlined in chapter II 

were suitable for this purpose. Since the random walk 
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assumptions were needed for their development, to facilitate 

the validation the analysis of variance was recomputed only 

for those factor configurations in which the autocorrelation 

equaled zero. Under this assumption, Tables 13, 14, and 15 

present the analysis of variance for the geometric mean, 

expected value, and variance responses, respectively. 

The analytical results employed for the validation, all 

under the independence assumption, were; 

1. The expected return to RB is less than or equal to 

the expected return to BH. 

2. The expected return superiority of BH over RB is a 

decreasing function of the number of securities in the 

portfolio. 

3. The expected return superiority of BH over RB re¬ 

quires that not all the securities in the portfolio have the 

same expected return. 

4. The variance of the distribution of returns to RB 

is less than or equal to the variance of the distribution of 

returns to BH. 

1. E [G^ (RB) ] ^ E [G*^ (BH) ] 

Since we are only concerned with statistically signifi¬ 

cant contradictions of the statements, validation required 

a single-tailed test with the null and alternative hypotheses 

given by: 
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TABLE 13 

ANALYSIS OF VARIANCE FOR GEOMETRIC MEAN RESPONSE 
FOR 3^x4 FACTORIAL DESIGN WITH AUTOCORRELATION 

EQUAL TO ZERO 

source of degrees of 
variation freedom 

sums of 
squares 

mean 
squares 

. a 
rat? o 

1 2 . 000-^0 .00015 . 24 
2 2 .00074 .00007 .59 
4 .00106 . 000 2 5 .56 
5 o 

Z .00014 .00907 .11 
12 4 .00106 . . 0 0 0 •'! 0 .73 
ia 6 .00.200 .00066 1 .06 
15 4 .00107 .00027 .42 
24 6 .00187 . 0 0^.01 .40 
25 4 .002^^4 .0O0<^0 1 .01 

6 . 0022'' .00020 .60 
124 12 .00006 . 0008'5 1.22 
125 o .00022 .0000^ .05 
1 4 5 12 . 0 0 /qi 0 .00020 .58 
24 5 12 .00"'26 .0006^ 1.09 

1 24 .01274 .00052 .84 
v/ithin rep 108 .067=^2 .00060 
total 215 .11904 

indicates 
significance 

significance 
at the .01 

at the 
level. 

.05 level; ** indicates 
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TABLE 14 

ANALYSIS OF VARIANCE FOR EXPECTED VALUE RESPONSE 
FOR 3^x4 FACTORIAL DESIGN V7ITH AUTOCORRELATION 

EQUAL TO ZERO 

source of 
variation 

degrees of 
freedom 

sums of 
sauaros 

mean 
sauares 

f 

ratio 

1 9 d- .00029 .00014 . 1 i 

9 Z .00151 .00075 • o c? 
4 •w* .00199 . ooogg *7*7 • t 

5 n .00053 .OOOO'^ .34 
12 4 .001^3 .00048 .55 

14 6 .00275 . 0O045 . 5 3 
15 4 .00251 .00055 .76 
24 6 .00159 .0009r .31 
2 5 4 .003 ? .00083 .97 
4 5 5 .00141 .00023 n-t 

• « 
124 12 .01050 .00138 '1.51 
125 8 .0^098 . 0 0 1 9 .14 
145 12 .OOG^O .00057 .66 
245 12 .01177 .00008 1.14 

124 5 24 .01803 .00075 .87 
v/ithin rep 100 .09330 .OOOOG 

total 21 5 . 1 655/^ 

indicates significance at the .05 level; ** indicates 
significance at the .01 level. 
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TABLE 15 

ANALYSIS OF VARIANCE FOR VARIANCE RESPONSE FOR 
3^x4 FACTORIAL DESIGN V7ITH AUTOCORRELATION 

EQUAL TO ZERO 

source of 
variation 

degrees of 
freedom 

sums of 
sauares 

mean 
sguar'^s 

f 
rati 

1 .onr>oo .00200 1 .23 
.00420 .0221 0 

4 o .02019 .010^6 4.30* 
5 o . 0 2 1 0 .01112 4.74* 

12 4 .0'"5^'-- .00141 .65 
14 6 .00936 .00156 .67 
15 4 .00905 .50226 .07 
24 6 .00'"-20 .00155 .66 

25 4 .01525 .002^4 1 . 64 
4 5 G .00862 .00144 .61 

124 12 .02225 .0^191 .82 
1 25 8 .01171 .50146 .62 
145 12 .02107 .00259 1.11 
24 12 .02144 .00179 .76 

1 245. 24 .08121 .00340 1.45 
within rep 108 .25252 .00234 
total 215 .54125 

indicates significance at the .05 level; ** indicates 

significance at the .01 level. 
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E = E [G*^ (RB) ]-E [G*^ (BH) ] = 0 (5-1) 

H : E = E[g'^(RB)]-E[g'^(BH)] > 0. (5-2) 

The grand mean of E under the independence assumption 

was -0.00287. Referring to Table 14, we observe that there 

are no significant effects at the .05 level. We conclude 

that E=-0.00287 for all factor configurations, and we cannot 

reject the null hypothesis. 

2. {E[g'^(RB) ]-E[g'^(BH) ] } , > {E [G*^ (RB) ]-E [G*^ (BH) ] } 
m+1 m 

With m denoting the number of securities in the portfolio, 

we test the hypotheses 

H 
m+1 

E 
m 

(5-3) 

m+1 
< E . 

m 
(5-4) 

Examination of Table 14 indicates that the number of securities 

(factor 1) does not significantly effect the expected value 

response, and so the null hypothesis is not rejected. 

3. {E [g”''(RB) ]-E [g’’(BH) ] } _ > {E [g'’’(RB) ]-E [g'^ (BH) ] } 
Ui-yj y.fPj 

Let refer to the situation where all the securities 

in the portfolio have the same expected return, and 

indicate that at least one pair of securities have different 

expected returns. Then the test is the null hypothesis 

K : E, X = E, , , 
o (y . =y .) (y . T^y .) 

13 13 

(5-5) 
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against the alternative hypothesis given by 

(5-6) 

Neither the F-ratio of 0.88 for the main effect of divergent 

expected returns (factor 2), nor that for any of its inter¬ 

actions (Table 14) is sufficient to reject the null hypothe¬ 

sis in favor of the alternative chosen to contradict the 

analytical results. 

4. V[g'^(RB)] <V[g'^(BH)] 

The null and alternative hypotheses for the validation 

of our model with respect to this conclusion were specified as 

V = V [G*^ (RB) l-VEG*^ (BH) 1 = 0 (5-7) 

H ; V = V[g'^(RB) ]-V[g'^(BH) ] > 0. (5-8) 

The grandmean of the V response under the independence assump¬ 

tion was -0.01527 which does not reject the null hypothesis. 

However, the significant F-ratios of 4.30 and 4.74 associated 

v/ith the intercorrelation and variance factors (Table 15) 

point to the possibility of a significant positive value for 

the response variable at certain levels of these factors. 

The fact that the marginal means (not shown) for all 

levels of the latter factor were found to be negative allows 

us to confine our attention to the intercorrelation factor. 

Examination of the marginal means for that factor showed a 
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positive value of V equal to 0.00376 when the intercorrelation 

coefficient was 0.5 (level 4). Computation of the t-value 

for the twenty-seven observations comprising this positive 

marginal mean yielded t=0.9894, which was not significantly 

greater than zero at the .05 level. Therefore, we conclude 

that at none of the design points is the variance of the dis¬ 

tribution of returns to RB significantly greater than the 

variance under BH. 

With these encouraging results, an examination of the 

"within replicates" and total sum of squares was undertaken 

for each response (Tables 8 through 12) to determine the 

amount of variation in the response explained by the five 

factors under study. The percentages of explained variation 

were found to be 

G E V S K 

94.7% 90.6% 64.6% 56.1% 52.2%. 

These figures set an upper limit on the coefficients of 

determination of the regression equations utilizing the same 

data base. 

With the completion of this step in the validation 

procedure, the development of the regression model for each 

of the responses was continued. 
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Regression 

The purpose of the analysis of variance was to reduce 

the amount of independent variables for inclusion in each 

regression equation to a manageable number. The list of 

terms chosen was comprised of all the orthogonal polynomial 

components which were shown significant or nearly so at the 

0.05 level in any of the analyses of variance, as well as 

the linear components of significant three and four factor 

interactions (for which an orthogonal polynomial breakdown 

was not available). 

The response variables were each regressed with this 

list of forty-four independent variables. The regression 

programs used were part of the Statistical Package for the 

Social Sciences [161]. A summary of the output is presented 

in Tables 16 through 20 for the geometric mean, expected 

value, variance, skewness, and kurtosis responses, respec¬ 

tively. The low coefficients of determination (R^) for the 

em-auions predicting the variance (0.316) , skewness (0.155) , 

and kurtosis (0.103) necessitated that these three response 

variables be dropped from further consideration. Any attempt 

tc resp^cify these equations so as to bring their coefficients 

of “deueminaticn closer to their resj>ective upper limits would 

have resulted in extreme complexity with at least 35% of the 

variation still unexplained. 
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TABLE 16 

REGRESSION OF GEOMETRIC MEAN RESPONSE WITH 44 SELECTED VARIABLES 

analysis of variance 

REGRESSION 
residual 

multiple R 0 
R SQUARE 0 
STANDARD ERROR 0 

DF SUM OF 
44 

1035 

,93129 
,86731 
,04374 

SQUARES MEAN SQUARE 
12,94551 0.29422 
1,98053 0.00191 

F 
153.75337 

variable beta^ STD error B F^ 

XiXaX^ fi , 04959 0.18169 0,01335 13.79726 

Xi •0,05242 -0.56408 0,03548 2.45221 

X2 •26,05054 -0.18654 31,04272 0.71144 

Xa 0,04913 0.19503 0.09018 0.29678 
x^ •0,07653 -0.17803 0,05476 1.95263 

Xs 7,06577 0,04907 39,52070 0.03196 

Xi^ 0,00991 0,41480 0,00458 4.68434 

Xz^ -1037,07931 -0.01499 3191,62158 0.1U558 

Xa^ •0,02400 •0.03720 0,29306 0.00670 

X4^ 0,01487 0.01216 0,09409 0.02499 

Xs^ •541,53506 -0.03767 3808,03805 0.02022 

X1X2 
24,80229 0,56260 20.84562 1.41564 

XiXa -0,08146 -1.00544 0,04345 3.51535 

X1X4 0,00763 0.05572 0 , 01310 0.33909 

X1X5 
•0,56289 -0 . Ol-iOA 3,01017 ■0.01453 

XzXa -8,42445 -0.04310 I2.66053 0.44214 

X2X4 •22,13951 -0,06899 27.62538 0.64226 

XzXs •302,08589 -0.01083 1996,64292 0.02269 

XaX4 0,09759 0.11501 0,04455 4.79774 

XaXs 8,81632 0.17731 13.30178 0.45929 

X4X5 4,85231 0.05757 5,93432 0.66658 

Xa^ 0,16558 0,28927 0,00582 4.67601 

X4^ -0,07795 -0 , 03705 0,26274 0.08003 

XiXa^ -0,06041 -0,33152 0,02673 6.54085 

Xi^ Xa 0,02266 0.97537 0,00605 14.02894 

XiXa^ •0,02169 -0.10957 0.02836 0.58510 

Xa^ Xs 45,29266 0,36222 55,03117 0,6/739 

Xa^ X4 0,23792 0.16325 0,03498 46.26142 

XiXaXs •18,48170 -1,15567 4,27830 18.66127 

Xa** 0,67753 0,51402 0,94599 0.51296 

Xz^ Xa^ 7808,84652 0.02697 12841,19776 0.50980 

XaX4^ •0,22275 -0.05581 0.11318 3.67377 

X2X4^ •45,47116 . -0,05303 71,54171 0.37129 

Xi^ X4® 0,00597 0,03166 0,01156 0.26692 

Xa** Xs •356,10608 -1,58517 335,92445 1.12377 

Xz^ X4 13850,00092 0.08027 10278,54611 1.81567 

Xz^ Xa -2110,57768 -0.01994 7695,04816 0.07523 
V 2 V 2 
A2 3 -1537,81430 -0.00746 4297,70592 0.12804 

X2X4^ 87,56616 0.05649 184,18873 0.22499 

Xi^ Xz •4,60626 -0.39701 3.45050 1.77409 

XiX2XaX4 8,4t)923 0.04006 4,06637 4.33765 

Xa** Xs^' 22203,31459 0,47056 31837,44333 0.48636 

Xi^ Xa^ X4^ -0,00592 -0.01793 0,00913 0.41962 

Xi^ Xa^ Xs^ •285,17682 -0.15276 172,38145 2.73683 

Constant 0,05094 

a 
Least squares regression coefficient. 

^Normalized coefficient. This depends upon the range of factor levels selected. 

F“(B/S)^. ^ 1,1000 (♦01)*=6.66» ^1^000 (•05)“=3.85. 



TABLE 17 

REGRESSION OF EXPECTED VALUE RESPONSE WITH 44 SELECTED VARIABLES 

analysis of variance DF SUM OF SQUARES MEAN square F 
REGRESSION 44 19,94561 0.45331 ll4,4dl(il 
residual 103b 4,09826 0.00396 

multiple r 0,91080 

R square 0,62953 
STANDARD ERROR 0,06293 

VARIABLE bepa^ STD ERROR B F^ 

XiXsXh 0,04356 0.12574 0 » 01920 5.14365 
•»0,06518 •0.36670 0,04815 1.83239 

X2 ^27,19268 -0,14800 45,80573 0.35242 
X3 0,00226 0.25720 0.12772 0 t ^ 0 ? C' 6 
Xw f0 , 04900 -0.09022 0,07878 0.38692 
Xs 0,78541 0.00430 56.85050 

0,01168 
•2009,32528 

0,36541 0,00659 3 . * 4 5 * 9 
X2" -0,02269 4591,14576 0,19154 

0 . 03443 
0.19153 

Xs^ 

X^^ 
-0,07822 
0,05923 

-0.09553 
0,03815 

0,42156 
0,15534 

Xs •508,02281 -0.02705 5477,86084 
Xi X2 23,2.1461 0.41490 29,90642 0.59935 
X1X3 -0,07612 -0,74028 0.06250 1.4855? 
X1X4 -0,00597 -0,03440 0,01884 
Xi Xs 0,16609 0.00602 4,35013 0*00* 06 
X2 X3 •12,23428 -0.04960 18,22511 c. 45432 
X2X1, •67,19196 -0.16498 39,75909 ? . 0 5 A 9 0 
X2 Xs 1206,25074 0.03409 2872,16985 C . “ 7 638 
X3 X4 0,15510 0,144 02 0,06409 5.85639 
X3 Xs -0,40505 -0,00642 19.13460 C . C C 3 4 5 
X4X5 13,21072 0.12349 8,53652 2.39492 
X3' 0,14120 0,1/351 0,12345 1.30966 
X4 • 0,3l5 0 6 -0.11799 0,57795 0.69468 
XiXs^ •0,00342 -0.31851 0,03845 4,7 0 5 8 ? 
Xl X 3 0,02497 0.84728 0,00870 8.2326 : 
X1X3 -0,01273 -0.05065 0,04080 C.C 9731 
X3 X5 49,31759 0.31075 79,16232 0.33512 
X 3 X 4 0,26209 0,15249 0 , 05032 31.42542 
X1X3X5 u 

-21,20266 -1,04460 6,15^33 11.869i5 
X3 

X2^ X3’ 

0,43089 0.25756 1,36081 0.10026 
16649,54790 0.04867 18472,05660 0 . S'241 

X 3 X4^ -0,21350 - 0 . 0 4 2l5 0,16281 1.71 9 7 4 
X2 X4^ •154,14687 -0,14817 102.62502 2.25612 
xr X4’ 0,01293- • 0.05398 0,01663 0.60411 
X 3 Xs •2.48,59466 -0,76017 483,22715 0.26423 
X2 X4 . . *9 24333,53058 0.11111 14785.65343 2.70645 
X2^ X3 -4613,73316 -0.03435 11069,32299 0.17373 
X2^ X3* -1334,59396 -0,00510 6182,24783 0.04660 
X2X4^ 335,95052 0 . 19662 264,95540 2.12106 
Xl" X2 -4,26962 -0,29130 4,97476 0.74552 
X1X2X3X4 9,77902 0 , 0 364 5 5,84947 2.79530 
Xj" Xs' 6525,58170 0,10896 45798,14645 0.02030 

X3^ X4^ -0,00105 -0,00442 0.01314 0.01990 
Xl" X3" Xs" •354,98752 -0,14982 247.97063 2.04939 
Constant 0,06809 

Least squares regression coefficient, 
b, , 
Normalized coefficient. This depends upon the range of factor levels selected. 

(B/S) ^ Fi,moo (.01)=6.66, F™ (.05)=3.85. 
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REGRESSION OF VARIANCE RESPONSE WITH 44 SELECTED VARIABLES 

ANALYSIS or VARIANCE OF SUM OF SQUARES MEAN 
regression 44 80,52400 1 
residual 1035 173,98466 0 

multiple R 0,56249 
R SQUARE 0,31639 
STANDARD ERROR 0»41000- 

SQUARE 
.63009 
.16610 

F 
10,60663 

variable e" beta^ STD ERROR B F*^ ■ 
XiXjX, -0,09354 -0.00300 0.12513 0.55885 ■ 
Xi 0,07117 0,11970 0,31376 0 , 05145 
X2 470,63215 0,79158 298,45221 2.40664 
X3 0,29016 0.27897 0,84522 0.11787 
Xh 0,52803 0.10563 0,51529 0,40841 
Xs *45,33593 -0,07625 370,41559 0.01496 
Xi^ -0,00951 -0,09641 0,04291 0.04912 
Xa' •39456,19473 -0.13815 29914,10615 1.73972 

Xa^ -1,11829 -0.41075 2.74672 0.16576 
X.,^ 1,04839 0.20764 0.60165 1.41469 . 
Xs' 1903,84054 0.03206 35691,59397 0.00265 
X1X2 •239,53659 -1.31533 195,37976 1.50309 
XiXa -0 , 02746 -0,08208 0.40722 0.0 0455 
XiXh -0,10565 •0.10696 0,12274 0.74094 
XiXs 2,12232 0.02102 28,21346 0.00566 
X2X3 211,20317 0.26213 118,74767 3.16333 
XaXn *■484,05076 -0,36592 258,92433 3.50659 
X2X5 2204,18068 0.01914 18713.95292 0.01357 
X3X, 0,40247 0,11406 0,41760 0.92684 
X3X5 •27,06325 -0.13101 124,67357 0.04712 
XfcXs 60,16012 0,1/205 55,62061 1.16939 
X3' -0,56209 -0.13698 0,60436 0.20353 
xj -3,19470 -0.36772 2.46256 1,68301 
X1X3’ •0,19422 -0,22794 0,25054 0,60094 
Xi' X3 0,06322 0.65926 0,05671 1.24272 
XiXa' 0,14599 0.17858 0,26501 0.50167 
X3' Xs 157,95679 0,50592 515,79062 0.09379 
X3' Xw 0,14705 0.02457 0,32786 0.20337 
X1X3XS -55,12313 -0.83473 40,09923 1.80971 
Xs" 0,29175 0,05360 8.86651 0.00108 
X2' Xa^ 11340,41224 0 , 01P19 120356,67999 0.00668 
XaX^^ 1,05498 0.06401 1,06078 0.96910 
X2X4' -1445,76646 -0.42715 666,66438 4.67512 
Xi^ Xh* 0,03084 • 0.03958 0.10835 0.08100 
Xa'Xs 223,59092 0.21032 3148,51870 0,00504 

X2' X., 83098,92100 0.11663 96337.71777 0,74404 

X2' X3 103569,69310 -0.23702 72123,56958 2.06212 
X2' X3' •6667,36355 •0,00783 40281.10352 0.02740 
XzXu^ 3856,57614 0,6 0 367 1726,34551 4.99055 

Xi' X2 38,22311 0.79701 32,41358 1.39059 
XiXaXaXw -23,13719 -0,02650 36,11205 0.36853 

Xa" Xs' -97517,59093 -0.50049 298402.76902 0.10660 
Xj^ Xj^ Xu^ 0,06695 0.04913 0,03560 0.61165 

Xi* Xa' Xs' -1466,16296 -0.19020 1615,67942 0.82348 

Constant •0,04694 

a 
Least squares regression coefficient. 

^Normalized coefficient. This depends upon the range of factor levels selected. 

F* (3/S) ^ . ^1,1000 (•01)“6.66» F jpggj (.O5)“3.05. 
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REGRESSION OF SKEWNESS RESPONSE WITH 44 SELECTED VARIABLES 

analysis of variance df sum of squares mean square 
regression 44 2433.06474 55.29693 
residual 1035 13253;77063 12.80558 

multiple R 0,39383 
R SQUARE 0,15510 
STANDARD ERROR 3,57849 

F 
4,31819 

variable be FA^ STD ERROR 8 F^^ 

XiXjXh -1,27929 -0.14459 1.09210 1.37218 
Xi 1,00521 0.21535 2^75045 0.13474 
X2 5738,72053 1.22946 2604.80638 4.65347 
Xa 0,60604 0.07431 7.37709 0.006 77 
X4 0,03029 0,06045 4,47999 0.03501 
Xs f»460,95570 -0.09875 3232;9Gi76 0.02033 
Xi' -0,12562 -0,15963 0,37450 0.10595 
Xz^ -308462,92563 -0.13757 261089,87064 1,59531 
Xs^ -7,62658 -0,36465 23,97331 0.10121 
X42 9,99419 0,25201 7,69631 1.60606 ’ 
Xs^ 59859,26859 0,12046 311515,698C7 0,03692 
X1X2 •-2640,49736 •1,84756 1705,27158 2.39764 
X1X3 -0,35000 -0,13630 3.55421 0.01015 
X1X4 0,05440 0,01220 1,07127 0.00259 
X1X5 -3,54740 -0,00422 246,24666 0.00018 
XzXa 2013,10268 0.51025 1036,42765 3.77271 
X2X4 •3295,96001 -0,51684 2259,86771 2.12715 
X2X5 •146404,20764 -0,16197' 163334,92646 0.00343 
XaX4 5,65928 0.13229 3,64431 0.99697 
XaXs 460,57530 0.3 0 510 1088,14906 0.20160 
X4X5 87,40075 0 , 03199 485,45505 0.03241 
Xa^ 1,02708 0 . 04950 7,02063 0.02140 
X4^ •11,67133. •0.17112 21,49316 0.29408 
XiXa^ •1,77104 -0,26475 2,18673 0,65594 
Xi^ Xa 0,63905 0,04006 0.49495 1.66704 
XiXa' 1,26241 0.19670 2.31998 0.29610 
Xa^ Xs 1555,59261 0.38375 4501.01278 0.11940 
Xa" X4 0,15041 0.00276 2,86160 0.00208 
XiXaXs •563,21056 -1.12492 349,90547 2.77684 
Xa** -54,34962 -1,27109 77,30677 0,49324 
X2" Xa^ -741527,07941 -0 . 08487 1050471,30179 0.49830 
XaX4^ 15,14041 0,10156 9.25645 2.01436 
X2X4" •12815,00612 -0,40229 5836,09267 4.82223 
Xl^ X4^ -0,71627 • -0,11710 0,94570 0.57364 
Xa** Xs 25512,26140 3,05669 27480,22408 0.66190 
X2" X4 492516,41007 0.08805 840834,15903 0.34310 
X2" Xa -780570,54425 -0.22746 62949i;69C37 1.53681 
JC2" Xa" -447712,90103 -0.06699 351572.86876 1,62169 
X2X4^ 26003,61081 0.57447 15067,51701 3.65435 
Xi^ X2 431,04747 1,14813 282,90520 2.33012 
X1X2X3X4 -564,68625 -0,08239 332,64355 2.88167 
Xa" Xs^ -3130466,60596 -2.04650 2604454,90955 1,44474 
Xi^ Xj^ X4^ 0,17098 0.01598 0,74712 0.05238 
Xi^ Xa^ Xs" -13815,90761 -0,22829 14101,62582 0.95969 
Constant -1,69009 

a 
Least squares regression coefficient. 

Normalized coefficient. This depends upon the range of factor levels selected. 

F® (B/S) ^ ^ ifVXio (•®I)*‘6.66> ^1^000 (•O5)“3.05» 
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REGRESSION OF KURTOSIS RESPONSE WITH 44 SELECTED VARIABLES 

analysis of variance 

regression 
residual 

multiple R 0, 
R square 0, 
STANDARD ERROR 3S, 

or SUM OF SQUARES MEAN 
44 160706,30350 3652 

1035 1325770.46042 1280 

32680 
10811 
79019 

square 
.41599 
.93764 

F 
2,85136 

variable BE FA^ STD ERROR B FC 

X1X3X4 "9,85705 -0,11444 10,92266 0.81440 
Xi 10,58284 0.23291 27,38859 0.14930 
X2 61318,11910 1.34951 26052,72973 5.53951 
X3 *31,83553 -0.40047 73,78180 0.18618 
X4 -0,87279 -0 . 00646 44,80656 0.0 0 038 
Xs -3476,89175 -0,07652 32334,61566 0.01156 
Xi^ "1,51435 -0.20009 3,74554 0,16346 
X2^ -2247817,16302 -0.10298 2611236,18970 0,74099 
X3^ -118,88922 -0,50396 239,76867 0.24587 
X4^ 92,77494 0.24032 76,97956 1,45248 
Xs" 548181,53914 0,12085 3115619.30096 0.03096 
X1X2 -26687,00171 •1,91823 17055,24661 2.44841 

X1X3 12,90620 0,50478 35,54736 0.13182 
X1X4 4,49610 0,10411 10,71427 0,17610 

X1X5 197,58061 0.02560 2462,83206 0.00644 
X2X3 18999,93995 0,30056 10365,81666 3.35968 
X2X4 «14792,80117 -0•14600 22602,25104 0.42835 
X2X5 •*2460609,37195 -0.27965 1633591,66989 2.26881 
X3X4 30,66397 0,11451 36,45347 0.70759 
X3X5 10417,79268 0.66393 10883,10551 0.91632 
X4X5 -1145,96663 -0.04308 4855,27894 0.05571 

Xs^ 27,02075 0.13546 70,21672 0.14809 

X4^ *71,17496 
-16,91891 

-0,10720 214,'96349 0.10963 
XlX3^ -0,25982 21.87055 0.59645 
Xl"X3 4,37487 0,59697 4,95027 0.78104 

XlX3" 21,73573 0,34790 23,20322 0.87751 

Xa^ Xs 23340,98163 0.59150 45024.80894 0.26874 

X3" X4 -2,10453 
-7020,41004 

-0.00458 28.62023 0.00541 

X1X3XS -1,39l06 3500,37409 4,02250 
Xa** -491,15031 -1,10075 773,90253 0.40269 
X2"X3^ -10229733,90112 -0,12028 10506272,02222 0.94805 

X3X4" 62,26238 0,04943 92,59025 0.45211 
X2X4" -110329,60016 -0,42652 58369,50308 3.57282 
Xl^ X4^ -8,09938 -0,13601 9,45843 0.73309 
Xa^Xs 238663,29827 2,93749 274843,02419 0.75405 

X2" X4 -182656,78716 -0,00335 8409589,47168 0.00047 

X2" Xa -6931432,16968 -0.20756 6295851,13220 1.21210 

K2" Xa" -5896390,50496 -0.09067 3516250,45673 2.81389 

X2X4^ 224810,68250 0,46061 150697,53976 2.22547 

Xi" X2 4290,74429 1.17406 2829.47190 2.30619 

X1X2X3X4 -5169,33525 -0,07748 3326,97718 2.41416 

Xa" Xs" -29606671,30379 -1.96828 26048414,36572 1.29186 

Xi^ Xa" X4" -2,53104 -0,02430 7,47235 0.11473 

Xi^ X3" Xs" 
Constant 

-189920,80398 
-23,25064 

-0.32238 141037,18639 1,61333 

^Least squares regression coefficient. 

^Normalized coefficient. This depends upon the range of factor levels selected. 

^F“(B/S)^. Fj^jQQQ (.01)«=6.66, (.05)“3.85, 
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The values of the equations for the geometric mean 

response (0.867), and for the prediction of the expected 

value response (0.830) were assessed as satisfactory. 

However, due to the complexity of the response surfaces, 

simpler formulations were tested. 

The convenience of quadratic (second-order) response 

surfaces suggested that the equations be respecified to con¬ 

tain only linear and quadratic terms of the form b x , 
i i 

b x^, and b x x for . The result of regressing the 
ii i ij i j 

geometric mean response with only these variables was an 

of 0.832, only slightly less than the value of 0.867 in the 

more complex formulation. Similarly, the coefficient of 

determination was only reduced from 0.830 to 0.797 in the 

case of the expected value response. These regressions are 

summarized in Tables 21 and 22. 

To further simplify the equations, the quadratic terms 

were added to the regression in a stepwise manner only so 

long as the coefficient of the term added was significantly 

different from zero at the 0.05 level (F>3.85). Tables 23 

and 24 present the output of the stepwise regressions after 

the addition of the last significant term in each equation. 

Note the R^ values of 0.831 and 0.796. 

The final form of the models predicting the relative 

performance of the RB and BH policies in terms of the geo¬ 

metric mean and expected value responses was therefore 

described by the following equations: 
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TABLE 21 

REGRESSION OF GEOMETRIC MEAN RESPONSE WITH 
FIRST ORDER AND QUADRATIC VARIABLES 

analysis of variance DF SUM OF SQUARES MEAN SQUARE F 
regression 20 12.42427 0.62121 262,95955 
residual 1059 2.50177 0.00236 

multiple R 0 
R square 0 
standard error 0 

,91235 
,83239 
,04660 

variable 8^ beta*' STD ERROR B 

Xi -0,01138 -0.0/906 0,02205 0.26650 
X2 6,61865 0.04597 14,51001 0.20807 
X3 0,18152 0.72058 0,02322 61.12922 
X4 -0,04162 -0.09725 0,03981 1.09273 
Xs -0,60743 -0.00422 32,20902 0.00036 
Xi" 0,00377 0.15781 0.00314 1.44349 
X2^ 186,11212 0,00269 3137,40172 0.00352 
Xa^ ^0,17131 -0.26554 0,00812 445.50843 
X4^ -0,01670 -0.01365 0,02273 0.53987 
Xs" 646,65162 0.04513 3137.46724 0 . 04274 
X1X2 -2.83542 -0.06432 2,21848 1.63352 
X1X3 -0,05669 -0.69975 0.00338 213.36022 
X1X4 0,01214 0.08872 0,0 0659 3.39033 
X1X5 -4,08958 -0.16724 2.21648 3.39818 
X2X3 -4,00 463 -0.02052 3,88133 1.06454 
X2X4 10,22912 0.03188 6,59365 2.40672 
X2X5 -302,07994 -0.01083 2218.47865 0.01854 
X3X4 0,23133 0.27261 0,01154 402.11497 
X3X5 -46,62879 -0.93779 3.88133 144,32686 
X4X5 
Constant 

4,85231 
0,06119 

0.05757 6,59365 0.54156 

^Least squares regression coefficient, 
b 
Normalized coefficient. This depends upon the range of factor 
levels selected. 

F=(B/S) ^1,1000 (•01)-6.66, (.05)=3.85 2 
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TABLE 22 

REGRESSION OF EXPECTED VALUE RESPONSE WITH 
FIRST ORDER AND QUADRATIC VARIABLES 

analysis of variance uf sum of squares mean square f 
REGRESSION 20 19,17140 0.95857 20ti,33808 
RESIDUAL 1059 4,87249 0.00460 

multiple r 0,89294 
R SQUARE 0,79735 
STANDARD ERROR 0,06783 

variable beta^ STD ERROR B 
FC 

-0 , 02054 -0,11239 0,03077 0.44547 
i 

Xo -^2,59741 -0.01421 20.24975 0.01645 

X, 0,22078 0.69056 0.03240 46.43370 

Xu -0,04915 -0.09050 0.05556 0.78267 

Xs 
Xi^ 
x?^ 

5,41218 0.02962 44,94996 0.01450 
0,00575 0,18980 0,00438 1.72711 

437,50060 0.0 0498 4378.46580 0.00998 
Z 

Xo^ -0,24034 -0.29353 0,01133 450.23665 

Xu^ -0,02779 -0.01790 0,05172 0.76765 

Xs^ <^729,14538 -0.03997 4378,55724 0.02773 

X1X2 
-2,52292 -0.04509 3,09604 0.66404 

X1X3 -0,05719 -0.55612 0.00542 111.45063 

XiXu 0,00 748 0.04307 0.00920 0.66091 

X1X5 -4,45208 -0.14544 3.09604 2.06782 

X2X3 -5,88173 -0.02375 5.41667 1.1/909 

X2X4 11,85346 0.02910 9.20190 1.6‘>>934 

X2X5 
1206,25137 0.03409 3096,04372 0.15180 

X3X4 0,27635 0.25659 0.01610 294.65292 

X3X5 -64,01305 -1.01436 5.41667 139.66007 

X4X5 

Constant 
13,21072 

0,07735 

0,12349 9,20191 2.06109 

^Least squares regression coefficient. 

^Normalized coefficient. This depends upon the range of factor 
levels selected. 

^F=(B/S)2. Fi^iooo (.01) =6.66, Fi^iooo (.05) =3.85. 
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TABLE 23 

REGRESSION OF GEOMETRIC MEAN RESPONSE WITH SIGNIFICANT 
FIRST ORDER AND QUADRATIC VARIABLES 

AFTER STEPWISE REGRESSION 

analysis OF VARIANCE DF SUM OF squares MEAN square F 
REGRESSION 7 12.40087 1.77155 752.06892 
RESIDUAL 1072 2,52517 •0.00236 

multiple R 0.91149 
R SQUARE 0,83082 
STANDARD ERROR OfQ4853 

variable BEFA^ STD ERROR B F^ 

X1X3 ^0 ,05669 '0,69975 0.00388 213.97771 
X3^ ^0 ,17131 -0,26554 0.00810 446.79777 
X3X4 0 ,23133 0,27261 0,01152 403.27873 
X3X5 ■^46 ,62379 -0,9^779 3,87573 144,74455 
X3 0 ,17751 0,70469 0,02286 60.31673 
X1X5 ^2 ,29050 -0,09367 0,30848 55.13316 
XlX4 0 ,00357 0.06266 0,00173 24.67380 
Constant 0 ,04595 

^Least squares regression coefficient. 

Normalized coefficient, 
levels selected. 

2 T' 

This depends upon the range of factor 

F=(B/S) ItlOOO 
(.01)=6.66, (.05)=3.85. 
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TABLE 24 

REGRESSION OF EXPECTED VALUE PvESPONSE WITH SIGNIFICANT 
FIRST ORDER AND QUADRATIC VARIABLES 

AFTER STEPWISE REGRESSION 

analysis of variange DF SUM OF SQUARES mean square f 
REGRESSION 8 19,13201 2.39150 521.44990 
resiuual 1071 4,91188 

# 
0.00459 

MULTIPLE R 0,89203 
R SQUARE 0.79571 
STANDARD ERROR 0,06772 

variable aETA’" STD ERROR B F^ 

X3X5 »64,01305 -1.01436 5,40796 140.11006 

X3^ *•0,24034 -0.29353 0.01131 451.68954 

X3X4 0,27635 0.25659 0.01607 295.60231 
X1X3 "0,05719 ••0,55612 0,00541 111.81976 

X3 0,21490 0.67216 0.03189 45.40336 

X1X5 ^4,31594 -0.13906 0,80229 28.93907 
X1X4 0,01416 0.08153 0,00241 34.45344 
Xi^ 
Constant 

0,00171 
0,05627 

0.05639 0,00078 4.74378 

^Least squares regression coefficient. 

Normalized coefficient. This depends upon the range of factor 
levels selected. 

°F=(B/S)^. Fiiooo (.01) =6.66, Fiuj,, (.05) =3.85. 
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G = 0.04595 + 0.177 51X, - 0.17131x^ - 0.05669x,x + 0.00857x x 3 3 13 14 
(.04853) (.02286) (.00810) (.00388) (.00173) 

(5-9) 

- 2.29050x^X5 + 0.23133x3X^ - 46.62879X3X5 

(.30848) (.01152) (3.87573) 

E = 0.05627+0.21490x3+0.00171x^-0.24034x^-0.05719x^X3 

(.06772) (.03189) (.00078) (.01131) (.00541) 
(5-10) 

+ 0.01416XjXj^ - 4.31594x^X5 + 0.27635x3Xj^ - 64.01305x3X^ . 

(.00241) (.80229) (.01607) (5.40796) 

At this stage validation addresses itself to the question 

of whether or not the simplification process resulted in mod¬ 

els (equations (5-9) and (5-10)) which no longer capture the 

true nature of the response surfaces within the experimental 

region. The comparison of the implications of the factor- 

response model with the previously described analytical 

conclusions is best deferred until the next chapter. At 

this point we merely provide a summary of the simplification 

process in Table 25. The table shows the extent of the trade¬ 

off between simplicity and goodness of fit for each equation. 
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TABLE 25 

SUMMARY TABLE: THE DEVELOPMENT OF 
THE FACTOR-RESPONSE MODELS 

ANOVA 
Regression Equation 

Original Quadratic Final 

Geometric Mean Response 

Number of Terms 
Explained Variation (%) 94.7 

44 
86.7 

20 
83.2 

7 
83.1 

Expected Value Response 

Number of Terms — 44 20 8 
Explained Variation (%) 90.6 83.0 79.7 79.6 

Variance Response 

Number of Terms — 44 — — 

Explained Variation (%) 64.6 31.6 — — 

Skewness Response 

Number of Terms 
Explained Variation {%) 56.1 

44 
15.5 

— — 

Kurtosis Response 

Number of Terms — 44 — — 

Explained Variation (%) 52.2 10.8 — 

Number of terms does not include the constant term. 
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CHAPTER VI 

INFERENCES FROM THE FACTOR-RESPONSE MODELS 

Response Surface Methodology 

The mathematical models developed in the previous 

chapter furnish the means for investigating the statistical 

properties of the rebalancing policy. On the assumption 

that they reasonably depict the true relationships involved, 

they may be utilized to draw inferences concerning the joint 

effects of changes in the factors under study on the relative 

performances of RB and BH. 

The exploration of the response surfaces was based upon 

the computation of the predicted value of the response vari¬ 

ables for each factor configuration in the experimental 

design, and the evaluation of the partial derivatives of the 

responses with respect to each factor. The definition of 

the response as the difference between the geometric mean 

(or expected value) of the distribution of geometric totals 

to RB and the corresponding parameter under BH made the 

analysis of the fitted surfaces particularly amenable to 

significance testing. This is due to the fact that a zero 

response, indicating equality for the two strategies, pro¬ 

vides a meaningful null hypothesis for testing the signifi¬ 

cance of a predicted response. Similarly, the partial 
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derivatives were tested against a zero null hypothesis as a 

means of determining the significance of the inferences drawn 

from them. (For example, to conclude that there exists a 

maximum with respect to a factor, the relevant partial deri¬ 

vative must range from a statistically significant positive 

value to a significant negative value within the experimental 

region.) The t-test was used for these purposes. 

Validation 

In order to build an acceptable level of confidence in 

the new inferences drawn from the mathematical models, the 

stepwise validation procedure was continued with a comparison 

of certain analytical observations with the implications of 

the model predicting the expected value response. 

With the model predicting E defined in equation (5-10) , 

the partial derivatives of E with respect to the four signi¬ 

ficant factors are given by 

6E/6xi = 2- (0.00171)Xi-0.05719x3+0.01416x^-4.31594x5 

6E/6X3 = 0.21490-2* (0.24034)x3-0.05719x^+0.27635x^-64.01305x5(6-2) 

6E/6x^ = 0.01416x^+0.27635x3 (6-3) 

6E/6X5 =-4.31594x1-64.01305x3. (6-4) 

The standard errors of the coefficients are in parentheses in 

the predicting equation. 

Table 26 presents the values of these partial derivatives 

at each point in the experimental design along with the 
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forecasted value of E at each point. In addition, the t- 

values testing each forecast and partial derivative against 

the zero null hypotheses are shown. This information enables 

us to proceed with the explanation of the validation process 

deferred from the previous chapter. 

Again, the primary interest was to determine that the 

model does not result in statistically significant contra¬ 

dictions to analytical results. The first result to be 

considered is the expected return superiority of BH over RB 

under the assumption of independence. Here the model does 

not contradict the analytical conclusion. Inspection of the 

forecasted values and corresponding t-values in the table 

when the autocorrelation factor is equal to zero indicates 

that although many of the values are positive (implying RB 

superiority), none are statistically significant. 

A test of the conclusion that under independence the 

return superiority of BH decreases as securities are added 

to random portfolios involves an examination of the partial 

derivative with respect to the number of securities. Here 

we find that for the smaller portfolio sizes there are nega¬ 

tive values that are statistically significant at the 0.01 

level, apparently contradicting the analytical conclusion 

and making the entire model suspect. 

This troublesome result can, however, be explained. 

We first note that despite the fact that the analysis of the 

simulated data did not show the effect of the divergence in 
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security returns (factor 2) to be significant, there is 

considerable analytical and empirical evidence in support 

of the notion that the expected return superiority of BH is 

an increasing function of the size of this factor. This 

point is made relevant to this discussion by the Cheng-Deets 

statement that although the addition of securities improves 

the relative return to RB for random portfolios, "the rela¬ 

tive superiority of the BH strategy can be maintained if the 

t h 
m— security is systematically selected such that" its expec¬ 

ted return is sufficiently different from the average return 

in the portfolio [39, p. 17]. 

Now recall the relatively large sample variation in the 

simulated ex post values of the mean return of each stock 

price series. As previously noted, this caused an inability 

to satisfactorily control the differences between the mean 

returns realized by the securities in the portfolio (factor 

2). Consequently, when the membership of the simulated port¬ 

folio was expanded, the additional security did not necessarily 

have an ex post mean return equal to the average return in 

the portfolio. Rather, the large sample variation caused a 

situation where the entering security had returns which could 

easily have been drawn from a population with a mean return 

quite different from 1.007. It therefore seems quite plaus¬ 

ible that the effect of the divergence of the mean returns 

(factor 2) among the members of a simulated portfolio is 

confounded with the portfolio size effect (factor 1). 
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It can be demonstrated that this divergence due to 

sampling variation is a decreasing function of the size of 

the portfolio.^ This would lead us to expect a decline in 

the degree to which the portfolio size effect is confounded 

with the effect of divergent returns, and a consequent in¬ 

crease in the value of the partial derivative in question, 

as the portfolio size is increased. This expectation is 

borne out either by an examination of the sign of the coef¬ 

ficient of Xj in equation (6-1), or by observing in Table 26 

that the negative partial derivatives with respect to port¬ 

folio size (under independence) in the four security case 

are no longer statistically significant. 

Finally, for series of securities of a given length, 

the divergence of the ex post mean returns due to sample 

variation is directly related both to the degree of auto¬ 

correlation (factor 3) and to the variance of the returns 

(factor 5) in each series.^ If the effect of divergent 

means can be generalized beyond the random walk case,^ the 

confounding that we hypothesize would cause the partial 

derivative with respect to the number of securities to be 

a decreasing function of these two factors. The signs of 

the coefficients of X3 and Xg in equation (6-1) are con¬ 

sistent with this hypothesis. With hindsight, it is evident 

that had the three levels of factor 2 been set at wide enough 

intervals, the divergence in means would have shown itself as 

a significant determinant of relative performance beyond any 

confounding due to sample variation. 
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These results provide sufficient assurance in the 

validity of the models to continue to study their implications. 

Inferences 

The partial derivatives of equation (5-9) predicting G 

are given by 

6G/6Xj =-0.05669x3+0.00857x^-2.29050x5 (6-5) 

6G/6X3 = 0.017751-2 -(0.17131)x3-0.05669x1+0.23133x^-46.62879x5 (6-6) 

6G/6x^ = 0.00857X1 + 0.23133X3 (6-7) 

6G/6X5 =-2.29050x^-46.62879x3. (6-8) 

Table 27 presents the predicted response and partial deriva¬ 

tives for each design point as well as the t-values for each. 

A comparison of either the predicting equations them¬ 

selves, or the values in this table with those for the 

expected value response shows a strong similarity between 

the two models. In fact, a test of the difference between 

the forecasts of E and G cannot reject the null hypothesis 

that they are equal for any of the design points. The most 

significant difference occurs when the vector of factors is 

[4, 0.667, -0.250, 0.006] at which point the expected value 

response is predicted at -0.452 and the forecast of the geo¬ 

metric mean response is -0.352. With a pooled standard error 

of 0.084, this difference of 0.100 is not significant. This 

enables us to concentrate our attention on either of the two 

response equations, with the expectation that the 
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characteristics observed are applicable to the other with 

little modification. 

While an examination of the differences in the expected 

returns to the two strategies under different factor configu¬ 

rations is valuable in its ovm right, evidence of investor 

risk aversion implies that a good performance measure must 

consider at least the first two moments of return distribu¬ 

tions . Because we were unable to obtain a good equation for 

V to accompany the equation for E, we focus our attention on 

the geometric mean response as a measure of the relative per¬ 

formances of RB and BH. This choice was also influenced by 

the fact that the equation for G had a slightly better fit 

to the simulated data. 

The most striking implication of the model is the 

importance of the autocorrelation factor. Of the seven terns 

(excluding the constant) in equation (5-9), five include the 

variable Xg. And these five are the most significant factors 

in the regression, together accounting for 81.9 of the 83.1 

per cent of the variation in the response that is explained 

by the regression. 

A look at the forecasted values of G in Table 27 shows 

the autocorrelation factor to have the most powerful influ¬ 

ence in determining which strategy is superior. Note the 

overwhelming majority of positive forecasts (RB superiority) 

when the autocorrelation coefficient is negative, and the 

complete dominance of negative responses (BH superiority) 
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predicted for positive levels of that factor. The general 

conclusion that high positive autocorrelation is favorable 

to BK and high negative autocorrelation is favorable to RB 

appears unaffected by either the number of securities, the 

intercorrelation, or the variance. There are no statistically 

significant forecasts which refute this observation. 

Examining the partial derivatives with respect to this 

factor, we observe that the relative performance of RB is a 

decreasing function of the autocorrelation coefficient at all 

positive levels of autocorrelation. However, the existence 

of significant positive values of this derivative at certain 

high negative levels of autocorrelation indicates that G can 

achieve a maximum with respect to this factor. For example, 

when the factor configuration is [2, -0.667, 0.200, 0.005], 

the partial derivative of 0.106 (t=3.215) indicates that any 

further decrease in the autocorrelation of the return series, 

ceteris paribus, would reduce the superiority of RB. The 

exact value of the autocorrelation coefficient at which the 

response is maximized given levels of the other factors, may 

be estimated by setting equation (6-6) equal to zero and 

solving for Xg. For those factor configurations in which 

the number of securities is sufficiently high and the inter¬ 

correlation sufficiently low, the relative performance of RB 

will always be improved by making the autocorrelation more 

negative (within the range of the observations). 
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With regard to the effect of the portfolio size, we also 

study Table 27. The partial derivatives with respect to the 

number of securities indicate that RB performance is an in¬ 

creasing function of the portfolio size for autocorrelation 

sufficiently negative, especially for low levels of the vari¬ 

ance factor. For zero and positive autocorrelation, however, 

and especially for high levels of variance, the addition of 

securities to the portfolio is unfavorable to RB. 

The similarity between the equations predicting E and G 

makes the previous discussion of the effect of portfolio size 

from the validation section pertinent, for the explanation 

for those results also applies here. It is hypothesized that 

there is no interaction between the portfolio size alone and 

the degree of autocorrelation. Rather, ceteris paribus, in¬ 

creasing the portfolio size is probably always favorable to 

RB. However, the aforementioned sampling variation causes 

the mean return of the entering security to differ from 

the existing portfolio mean. And this sampling variation is 

magnified by high positive autocorrelation and high variance 

factors. It appears that for portfolios of two, three, and 

four securities, at higher levels of autocorrelation the 

unfavorable side effect of divergent means is sufficiently 

strong to overcome the favorable effect of expanding the 

portfolio membership. 

The equations for the partial derivatives with respect 

to the intercorrelation and the variance factors ( (6-7) and 
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(6-8)) are the simplest in form. It is apparent, either from 

the values in the table or from the equations themselves, 

that for high negative autocorrelation, G is a decreasing 

function of the intercorrelation between securities, and an 

increasing function of the variance of the returns to each 

security. And for high positive autocorrelation, the rela¬ 

tive performance of BH is improved by lower intercorrelation 

and higher variance factors. 

Solving the inequality 6G/6x^<0 we estimate that a 

decrease in the intercorrelation coefficient improves the 

relative performance of RB so long as the ratio Xg/x^ is less 

than -0.037. For the two, three, and four security cases, G 

is then a decreasing function of intercorrelation so long as 

the autocorrelation coefficient is less than -0.074, -0.111, 

and -0.148, respectively. Similarly, the relative perform¬ 

ance of RB is an increasing function of the variance factor 

so long as Xs/xj<-0.049. For the two, three, and four securi¬ 

ty cases, this requires that the autocorrelation coefficient 

be less than -0.098, -0.147, and -0.196, respectively. 

It is noteworthy that the point estimates of these 

ratios defining stationary ridges in the x^,X3 plane are 

quite similar. In fact, the size of the standard errors of 

the coefficients from which they were computed does not allow 

the rejection of the hypothesis that they are the same. 

Consequently, it appears that when low intercorrelation is 

favorable to RB, so is high variance. Or in the case when 
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a higher intercorrelation would improve the relative 

performance of RB, so would a lower variance. 

Furthermore, a comparison of the signs of the forecasted 

values with the signs of the partial derivatives with respect 

to the intercorrelation factor indicates that for either 

positive or negative autocorrelation (not zero) , a decline 

in this factor would significantly magnify the superiority of 

whichever strategy is superior at that factor configuration. 

Similarly, an increase in variance would also tend to magnify 

any difference in the geometric means of the return distribu¬ 

tions to the two strategies. Although these magnification 

effects are not displayed in the case of zero autocorrela¬ 

tion, the positive forecasts predicted there are not statis¬ 

tically significant, and so the generality of these effects 

is not refuted. 

Finally, the fact that these two partial derivatives 

are of opposite sign at every design point provides strong 

evidence that the portfolio variance does not influence the 

value of the response. Rather, the contributions to the 

portfolio variance must be looked at. For example, let us 

assume that all security series exhibit strong negative 

autocorrelations. Then RB will probably be superior to BH. 

Now if two portfolios have the same inter-period variance of 

returns, with one the result of low security variances 

(factor 5) and high intercorrelations between securities 

(factor 4), and the other having higher security variances 
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but lower intercorrelations, then the latter portfolio 

would display a greater RB superiority than the former. 

Since these results are also applicable to the predic¬ 

tion of the expected value response, they appear to be con¬ 

sistent with the Cheng-Deets condition (2-8) for RB expected 

return superiority in the two-security, two-period case. 

Under the assumption that the two securities have equal vari¬ 

ances and equal autocorrelations Pg, we rewrite the 

condition as 

{2p^^^-2p^)o^ > (6-9) 

Assuming the absolute superiority of either strategy to be 

directly related to the strength of the inequality, the con¬ 

dition indicates that E is a decreasing function of the 

autocorrelation factor and of the divergence in means. 

In the case of RB superiority, the sign of the left 

hand side (LHS) is positive, while in the case of BH superi¬ 

ority it is indeterminate. Assuming the RHS is relatively 

small, if BH is sufficiently superior the LHS will be nega¬ 

tive. Then the strength of the inequality in either direc¬ 

tion is an increasing function of the variance factor just 

as our model predicts. 

With some reflection it is clear that for strong nega¬ 

tive autocorrelation, the cross covariance is a decreasing 

function of the intercorrelation.** Since RB superiority is 

most likely in this case, a decrease in the intercorrelation 
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will tend to magnify RB superiority by increasing the cross 

covariance term in the LHS. In the situation where there is 

strong positive autocorrelation, and BH superiority is most 

likely, the cross covariance is an increasing function of 

the intercorrelation. Consequently a reduction in the level 

of this factor will reduce the cross correlation term and 

magnify the BH superiority. 

Since the implications of this inequality are consistent 

with the results of this study, an attempt to generalize this 

condition for RB superiority to the multi-period, multi¬ 

security situation appears to offer promise. This study, 

however, offers no further progress in that direction. 

Although not statistically significant, the forecast of 

positive values of E when the autocorrelation equals zero 

(Table 26) does suggest as did Cheng and Deets, that RB ex¬ 

pected return superiority does not require negative auto¬ 

correlation in stock price series. In an attempt to confirm 

this possibility, distributions of returns to the two strate¬ 

gies were simulated with a low positive autocorrelation of 

0.083.® The models indicated that with positive autocorrela¬ 

tion, both E and G are decreasing functions of the portfolio 

size and variance factors, and increasing functions of the 

intercorrelation factor. In accordance with these observa¬ 

tions, the simulated portfolios consisted of two securities 

with variances equal to 0.001, an intercorrelation of 0.90, 

and equal expected returns of 1.007. Fifteen ex post values 
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of E and G were simulated (as described in chapter IV) with 

this factor configuration. The result was a mean E response 

of -0.0003 and a mean G of -0.0004. The respective t-values 

of -1.7838 and -1.8708 (fourteen degrees of freedom) both 

were significant at the 0.05 level, rejecting the hypothesis 

of RB superiority. Although this test is not conclusive, it 

does appear that expected return superiority of RB requires 

negative autocorrelation. 

The inconsistency of this conclusion with the observation 

of positive values of E forecasted for autocorrelation equal 

to zero may be reconciled. The marginal mean of the simulated 

values of E for that autocorrelation was in fact -0.00287, 

indicating a slight upward bias in the expected value response 

model for that factor level. On the other hand, the positive 

value (0.00148) of the marginal mean of the simulated values 

of the G response does not allow one to draw the same conclu¬ 

sion for the geometric mean response. With the appropriate 

combination of the other factors, RB may in fact be geometric 

mean superior to BH for positive autocorrelations less than 

0.083. Recalling the geometric mean approximations in equa¬ 

tions (3-13) through (3-15), these results are consistent 

with Cheng's analytical conclusions with regard to the vari¬ 

ance response (V). 

This chapter is concluded by noting that the set of 

conditions under which the rebalancing strategy is most su¬ 

perior to a policy of buy-and-hold is the combination 
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of a large portfolio size, small differences between security 

expected returns, strong negative autocorrelation, strong 

negative intercorrelation, and high variance. 
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Footnotes to Chapter VI 

1. See Appendix C, part 1. 

2. See Appendix C, part 2. 

3. If we accept the Cheng-Deets [39] conclusion that 

stock price series are not a random walk, then the empirical 

results of Latane and Young [128] provide some evidence that 

the effect of divergent returns can be generalized. Equation 

(2-8) indicates that it does hold in the two security, two 

period case. 

4. To see this let a "+" refer to a return greater than 

the expected return in a series, and let a refer to a re¬ 

turn below average. For the two security situation we pre¬ 

sent four pair of time series for illustrative purposes. 

(a) 
Security Time 

1 +- + - + - 

2 +- + - + - 

(b) 
Security Time 

1 +- + - + - 

2 - + - + - + 

Security 

1 

2 

(c) 
Time 

+ + + --- 

+ + + --- 

Security 

1 

2 

(d) 
Tim>e 

+ + + --- 

--- + + + 

Observe that for the two cases (a) and (b) exhibiting negative 

autocorrelation, only case (b), which also is characterized 

by negative intercorrelation, exhibits positive cross corre¬ 

lation. And for the two cases (c) and (d) showing positive 
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autocorrelation, the positive cross correlation in (c) 

requires positive intercorrelation. 

5. With N=12 in the Central Limit Approach to generating 

random normal variates, 0.083 was the lowest level of positive 

autocorrelation that could be simulated. It is obtained by 

setting p=ll. See equation (4-8) and footnote 4 to chapter IV. 
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CHAPTER VII 

SUMMARY AND CONCLUDING COMMENTS 

We began by simulating sets of security returns 

characterized by predetermined levels of five factors thought 

to influence the relative performances of the rebalancing and 

buy-and-hold strategies. All portfolios had expected returns 

of 1,007 in each of the fifty periods over which the geomet¬ 

ric totals to the alternative strategies were computed. The 

distribution of twenty such geometric totals was obtained for 

each policy for each of the 540 factor combinations. The 

procedure was replicated twice. 

Responses were defined as the differences between 

certain parameters of the respective distributions for the 

two strategies. Multivariate analysis of variance and non¬ 

linear regression analysis were utilized to obtain models to 

predict the responses from the levels of the five factors 

under study. While satisfactory functions of the factors 

could not be found to predict the responses associated with 

the second, third, and fourth moments of the distributions, 

quadratic functions of the factors were obtained which ex¬ 

plained approximately 80% of the variation in the expected 

value and geometric mean responses. 

Taking the geometric mean of the distribution of 

geometric totals as a single-parameter performance measure. 



130 

it was found that the autocorrelation factor is the most 

important determinant of which strategy is superior. As the 

returns to the individual securities in the portfolio diverge 

from one another, whether due to differences in the first 

moment of the generating distribution or to sampling vari¬ 

ation, a greater degree of negative autocorrelation is 

necessary for RB superiority. 

It was also found that the effect of a decrease in the 

intercorrelation between securities, and/or an increase in 

1 the variance of the distribution of returns to each security 
I 

i 

I is to magnify the superiority of either strategy. 

Finally, except where the accompanying effect of increas¬ 

ing divergence in the ex post security returns is large, the 

5 relative performance of RB is an increasing function of the 

portfolio size. As the portfolio size increases, and especial- 
I 

'f 

ly with negative autocorrelation, the unfavorable side effect 

1 
becomes negligible. 

I 
These observations pointed to the conclusion that the most 

favorable set of conditions for RB is a large portfolio of un- 
1 

correlated, highly volatile securities, each having the sarnie 

expected return and exhibiting strong negative autocorrelation. 

Since there were no significant differences between the 

predicted values of the geometric mean response and the cor¬ 

responding forecasts of the expected value response, these 

conclusions are also applicable to performance defined strictly 

' in terms of the expected value. 
I 
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These returns are not peculiar to the selection of a 

mean portfolio return of 1.007 for the simulation. It can 

be demonstrated that in the fifty period case, to predict 

either the expected value or geometric mean response for an 

expected portfolio return of y, the forecasts of our model 

should be multiplied by (y/1.007)^°. The basic relationships 

between the variables, however, are undisturbed. Nor would 

these results be invalidated by the assumption of a horizon 

length of other than fifty periods. Again, the magnitudes 

of the responses would be altered (though not as simply as 

in the case of a different mean), but the general conclusions 

would still hold. 

This paper has investigated the statistical properties 

of the rebalancing policy of portfolio adjustment without 

the restrictions of a random walk. It addressed itself to 

the question of when a policy of rebalancing at a given fre¬ 

quency will result in performance superior to a BH policy 

for a particular portfolio of securities held in equal amounts. 

It did not consider taxes or transaction costs. 

In actuality, the investor who plans to hold securities 

in equal amounts must make the choice between RB and BH in 

conjunction with two other decisions—the rebalancing fre¬ 

quency and the portfolio composition—based upon the distri¬ 

butions of returns after adjustment for the implementation 

costs peculiar to his investment situation. 
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Once the random walk assumption is removed, the relevant 

factor configuration for the choice between RB and BH for a 

particular portfolio, depends upon the specific rebalancing 

frequency considered. While the random walk case implies 

that performance before costs is a monotone increasing func¬ 

tion of this frequency, in the general case this is not so. 

Reducing the rebalancing interval may now, for example, 

change the relevant autocorrelation coefficient in a series 

of returns from negative to positive. Our statistical results 

indicate that this increase in frequency would then have an 

adverse effect on RB performance even before the adjustment 

for costs. 

The implementation costs also effect the portfolio 

composition decision given a particular rebalancing frequency. 

Suppose, for example, that two portfolios are the same with 

respect to all factors except the intercorrelations between 

securities. Our statistical results indicate that at certain 

levels of the other factors, the one characterized by low in¬ 

tercorrelations will have the greater RB superiority over BH. 

However, it is apparent that rebalancing this portfolio will 

necessitate transactions of greater magnitude than will re¬ 

balancing the other. Consequently, a characteristic making 

one portfolio more suitable for rebalancing in the statistical 

sense, may at the same time reduce its suitability for rebalanc¬ 

ing when implementation costs are considered. 
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Once one allows the securities to be held in unequal 

amounts, the determination of the cost-adjusted optimal feas¬ 

ible distribution of geometric totals becomes even more 

complex. 

Given an investor's cost functions, the search for this 

optimum with respect to the portfolio composition and the 

rebalancing frequency (with BH as a limiting case) does not 

presently lend itself to either an analytical or simulated 

solution. These methods await further knowledge as to the 

nature of the mechanism generating stock price changes. Indeed, 

this research especially points to the need for further inves¬ 

tigations of the autocorrelation properties of stock price 

series. We see the need for determining the types of functions 

underlying any dependencies, as well as examining their sta¬ 

bility. In the meantime we must rely on ex post emperical in¬ 

vestigations to approximate this optimum for different types 

of investors. 
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APPENDIX A 

THE DISTRIBUTION OF STOCK PRICE CHANGES 

The literature contains several proposed forms for the 

distribution of log price relatives. The earliest assump¬ 

tion, known as the Gaussian hypothesis, states that the 

distribution of stock price changes over fixed time inter¬ 

vals is approximately normal. This hypothesis was put forth 

by Bachelier [10] and Osborne [166] who appealed to the 

Central Limit Theorem for theoretical justification. Empiri¬ 

cal evidence in support of the model was presented by Kendall 

[118] and Moore [151]. 

Observed departures from normality in the form of 

leptokurtosis, led to the stable Paretian hypothesis, first 

introduced by Mandelbrot [142]. While the Gaussian distri¬ 

bution is the limiting case of the symmetric stable Paretian 

family, Mandelbrot contends that stock price changes come 

from the non-Gaussian, long-tailed members of this family 

characterized by infinite variance. Extensive theoretical 

and empirical arguments favoring this hypothesis over the 

Gaussian model may be found in papers by Mandelbrot [139, 

142], Fama [63, 64], Mandelbrot and Taylor [143], and Fisher 

and Lorie [74]. 

The evidence indicating that the observed distributions 

have more weight in their extreme tails than do normal 
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distributions, is overwhelming. The key point in the 

controversy, however, is whether the tails are so long as 

to indicate an infinite variance and the consequent impair¬ 

ment of all statistical techniques utilizing this parameter. 

Alternative long-tailed distributions having finite 

second moment have been proposed by Press [172] , Praetz [170] , 

and Agnew [1]. All three suggest compound distributions 

obtained by mixing normal distributions. The "compound events 

model" hypothesized by Press indicates that log price rela¬ 

tives are determined as the sum of a sequence of identically 

distributed, Gaussian price-changing events occurring ran¬ 

domly in time (hence the number of such variables has the 

Poisson distribution), plus an independent Gaussian distur¬ 

bance variable with zero mean. 

Praetz also notes that the information which affects 

prices comes in "bursts of activity," and cites evidence that 

the variance of the distribution changes over time. Conse¬ 

quently, he modifies the Gaussian model by specifying that 

the variance of the normal distribution itself is distributed 

as an inverted gamma variate. The resulting long-tailed com.- 

pound distribution is a scaled t-distribution. He provides 

empirical evidence that, at least for stock price indices, 

this model gives a better fit than either the Gaussian, stable 

Paretian, or "compound events" models. 

Agnew's alternative to the stable Paretian model was 

also obtained by mixing normal distributions according to 
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a prior placed on the variance. In this case the variance 

is distributed exponentially, and the resulting distribution 

is bilateral exponential. This model is generalized to the 

multivariate case, with arbitrary intercorrelations between 

securities. Like the Gaussian and stable Paretian hypotheses, 

each of these three alternatives exhibits the important pro¬ 

perty of stability under addition. 

Finally, we take note of empirical evidence recently 

presented by Hsu, Miller, and Wichern [103] which suggests 

that stable Paretian distributions have tails which are too 

fat, and a top which is not peaked enough to adequately de¬ 

scribe daily stock price changes. They find that a Gaussian 

process with an unstable variance may be a more suitable 

explanation for the analysis of stock price changes, both 

daily and monthly. 
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APPENDIX B 

COMPUTER PROGRAM FOR THE SIMULATION 

The simulation was carried out on the UMASS time-sharing 

system which allows remote access to a CDC 3800 computer lo¬ 

cated at the Research Computing Center at the University of 

Massachusetts. The computer program was written in the UMASS 

FORTRAN language which is compatible in most respects with 

FORTRAN IV. A listing of the program is presented at the 

end of this appendix. 

The program accomplishes the following functions: 

1. Specification of the data generating model and fac¬ 

tor configuration.—An example of the input data is: 

line 

8000 

8010 

8020 

8030 

8040 

8050 

000000000 [Optional output (no=0, yes=l)] 

0 [Distribution form (0=normal, l=bilateral exponential)] 

2 8 -1 2 20 50 [See below] 

.004 .002) 

002 004 I [Variance-Covariance matrix] 

.0065 .0075 [Mean return for each security, a diver¬ 
gence of .001] 

The data on line 8020, from left to right, specifies: 

2 — the number of securities in the portfolio 

8 — p in equation (4-7) to determine the autocorrelation 
coefficient (±.67) 

-1 — the sign of the autocorrelation coefficient (-.67) 

2 — the number of times the simulation is replicated 

20 — the number of observations of the return to each strategy 
which determine the distribution (in each replication) 
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50 — the horizon length (T) or number of periods of simulated 
returns v/hich determines the return to each strategy (in 
each observation). 

2. Generation of time series of (50) log price relatives 

(and price relatives) for each security (2) in the portfolio 

according to the model specified in 1.—Optional output. 

3. Computation of geometric total returns to RB and 

BH.—This is one observation of the distribution of returns 

to each strategy. Optional output. 

4. Computation of ex post statistical characteristics 

of the simulated series of log price relatives.—This includes 

the first four sample semi-invariants, g^, Q statistics, 

and the autocorrelation coefficient for each series of log 

price relatives in the portfolio. Also calculated are the 

intercovariance and intercorrelation m.atrices and the "cross" 

covariance and correlation matrices between the sets of 

returns. Optional output. 

5. Repetition of steps 2, 3, and 4 for the number of 

observations indicated (20) in 1. 

6. Computation of geometric mean, sample semi-invariants, 

and g^, g^ and Q statistics for the distribution of geometric 

total returns to each strategy.—Also computed are the five 

relative performance measures based upon these parameters. 

Output. 

7. Computation of the statistical characteristics (as 

in 4) of the entire series (20 observations ^ 50 periods = 

1,000) of log price relatives for each security.—Output. 
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8. Repetition of steps 2 through 7 for the number of 

replications (2) specified in 1. 

9. Repetition of steps 1 through 8, inputting a new 

factor configuration (lines 8020-8050) until program out of 

data. 

An example of the output (for steps 6 and 7, not 

including the optional output) for the first replication, 

given the input data in 1, is presented in Table 28. After 

the listing of the input data, the first block of output data 

is that described in step 6. The lines GTRB and GTBH refer 

to the distributions of geometric totals to the respective 

strategies, and the line GTDF is the difference between the 

two, hence the performance measures. 

The other data blocks are the ex post characteristics 

of the simulated series as indicated in step 7. Since the 

factor levels used in the analysis are the population charac¬ 

teristics specified in the data generating model (step 1), 

these ex post measures are utilized only for purposes of 

validation. 



TABLE 28 

SAMPLE OUTPUT OF SIMULATION 
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2 0 
.00400 
.00200 
.0061)0 

■1 2 20 
.00200 
.00400 
.00760 

50 

replicate 1 

parcuueters of aistributions of geon totals 

gi.iean ar:iean variance s}:ov/ kurt gl g2 

gtrb 1. 437 1.400 .0 02 -.008 .010 -.507 2.739 4.014 
gtuh 1. 417 1.4 39 .001 -.00 0 .009 -.406 2.521 3.340 
gteif .020 .020 .001 -.002 .001 

paraiiieters of distrib of log pr by security 

graoan aiacan variance skew kurt gl 

.0074 .0041 -.0000 .0000 • -.1020 

.0002 .0040 .0000 -.0000 .0437 

g2 

.007 
-.162 

1.757 
1.469 

covariance i.iatrix of log pr between securities 

.00407 

.00215 
.00215 
.00395 

correlation natri:: of log pr between securit 

1.00000 
.53Gb8 

.53038 
1.00000 

cross covariance of log pr between securities 

-.00134 
-.00000 

-.00082 
-.00135 

cross correlations of log pr between securit 

-.32907 
-.10349 

-.20417 
-.34068 

autocorrelation of log pr by security, lag 1 

security autocovariance variance 

1 
2 

-.00134 
-.00135 

.00407 

.00395 

autocorrelation 

•.329C7 
-.34068 



LIST 
lOOOTPhGGhAM KBBH 
1 0101 CG/i/iGN /i* CGVC 5>>K/i>*MSI GM, XMLAN< 5) ^ C< 5» 5) ^ hXC 12> 5) / X( 5) / 
1020C hSU'5C5)>Ph( 5)>rnX( 5> 100) 
1 OOOtCGMMGN hSU.'lL( S> 1000)> ISU-ILC 5^ 1000) 
1 040 t CGi'IMGN N4, NB> NCj iSlDj NIj NF^ NG 
1050iCGM/iGN NGK^# HAM l( 5)/HAN2( 5) 
1 060 »Dll']LNSl GN G/iLAN( 3)^ SOMIC 3)> SLM2( 3)/ SUMSC 3)/ SUM4< 3) 
1 070t DIXLMSIGN XCGOCS^b) 
IOoOtA=TIMLF(1.) 
1090»CALL hANFSLT(A) 
1 1 001 ALAD> NA^ N N N D/ N N F/ N G> NH , NI 
1 1 lOtBEAD/ NGivl 
1120»i\AA=NA S NBb=NB $ NCC=NC $ NDD=ND 
1130tNE£=NE S NFF=NF £ iNJ6G=NG 
1 140t BG 9 0 J6= W 100 
1 150 I h t AD> i*3> KAj NSI GN j KBj KT 
1 1 60» hLAD/ < ( CGV( i > J)^ J= I = 1>M) 
1 1 TOihLAD^ (Xi-iEANC I )# I = WN) 
1 IGOt DG 10 1 = W 12 
1 190 »DG 10 J= WM 
1200110 hX( I ^ J)=hANF<-1) 
1210iIF(NGh;«l .EC. 0) GG TG 13 
1 220 t LG 12 J= WM 
1 2 30 t BAN 1 ( J ) = hANF( - 1) 
1240tl2 hAN2(J)=hANFC-1) 
12sot 13 CGNTiNUE 
12601 CALL INTCGB 
IGTOtCKIlEC 6W634) NGHN 
12d0t V.BITEC 61#d31) A Aj N SI GN# AB# N# A T 
1290tLG 14 1=1#M 
1 300tl4 Chi TE( 61#d 32) ( CG V< I # J ) # J= 1 # N ) 
1 310tCBnE( 61#d33) (XMEANCl )#l = l#i«l) 
I 320 I DG 60 A 1= 1# Ah 

1 330tl CGLE=0 
1 340tDG 16 I=l>/i 
I 350tDG 16 J= 1#N 
1 360116 XCGV( I#J) = CGV<1#J) 
1 370tCBnE( 61#d01) 
1 3dOt CBI TEC 61#d30) 
1 39 0t Chi tec 61/b 30) 
1400t ChllEC 61#d0d)Al 
1 410t Chi TEC 61# d 30) 
1 4201 ChllEC 61#d30) 
1 430t DG 5 L= 1# 3 
1440tG.«lEANCL)= 1.0 $ SLN1CL) = 0.0 £ SUN2CL)=0.0 
1450tSUN4CL)=0.0 
146015 £UM3CL)=0.0 
1 470tNA=NAA £ NLj=NBB £ NC=NCC £ ND=NDD 
1400fNE=NEE £ NF=NFF £ NG=NGG 
1490»DG 50 JD=1#N 
1 500I1FCNH .EO. 0)GG TG 15 



1 5l0»>hl Tt( 61>b30) 
1 520t'AhnL( 61>b30) 
I 530> V.hi 6WbOO)Kl/JD 
15A0I15 CONTINUt 
1 5b0 rDO 20 J= WAT 
1 560tC^LL yiAi)TLh(ACOV) 
Ib'/OtDG 20 l = l/k'i 
1 bdO«KbU/iL( W J) = hbU'i< 1 ) 
1 590120 i-hAC I , J> = rn( I ) 
leOOtCPLL 7Gl/iL(JL) 
1 61011F(NA .LL. 0)GG TG Ab 
1 6201 'Ahnt< 6 WbOl ) 
1 6301 'AhiltC 61/dOl) 
1 6A0iUhl Tt.( 6Wb02) 
1 6501 V,hl TL( 61^tt0 1 > 
1 6601 DG 30 J= l^AT 
1 670130 6 W d 0 3) C KSU/iLC I , J) > i = 1, M ) 
1 6d0t V.iil TL( 61^d01) 
1 6901 UhlTEC 61/dOA) 
1 7001 V.hl TF( 61/oOU 
1 710tL/G AU J= 1/a7 
1 7201 AO UhllLC 61/d03)(PhA( 1/J)/ I = UM) 
1 7 301 Uhl 1E( 61/dOl) 
1 7A0t UhllLC 61/dOl) 
17501A5 CGN7INUL 
1 7601 CALL SIATCICGDL/N) 
17701CALL Gh&(GThB) 
17dOtCALL Gbri(GTbri) 
1790TGTDIF=GlhB/GTBri 
ld00tIF(NH .LG. 0)GG TG 25 
Id lot Uhl TL( 61/d30) 
18 20t Uhi TL( 61/d05) GThB 
ld30t Uhl Ti(61/d06)Glbn 
IdAOf Uhll t( 61/d07) GIDI F 
IdbOt Uhl Tt( 61/dOl) 
1860125 IFCNH .ML. 0 .Gh. Ml .LG. 0) GG IG 26 
l870tIF<JD .NL. DGG TG 27 
18801 Uhl TL( 61/d 10) 
18901UhilLC 61/dOl) 
19 00127 Uhl TL( 61/d 1 1) JD/ GThB/ GTBH/ GTDI F 
1910126 CGNTIMLL 
19 201 LG 50 L=l/2 
1930ilF(L .to. l)ri=GlhB 
19A0tlF<L .LO. 2)H=GTbh 
19 501 G;'3LAN(L) = aMLA.N(L)*ri 
19 601 SU’l 1 ( L) = 5UA 1 ( L ) +ri 
19 701 50012{ L) = 50/12( L ) +ri2 
1 9d 01 5Lvl 3( L ) = 50i‘i 3( L ) 3 
19901 50 50MA(L) = 5U)1A(L)+ri**A 
2000tL 1=3 
20101 UhlTH 6 1/O30) 
2020iUhl7L(61/830) 
20301 UhlTi< 6l/d0o)hl 
20A01 UKllLC 61/80 1) 
2050iUhlTL(61/801) 
20601 UhlliC61/dOv) 
207011=1 
20801 CALL FAhA.-K GMEAN/ 5Ut*l 1/ 50)12/ 50/i3/ 50i1A/Ll/N/ 1 / 1 CGLL) 
2090 il CGLF= 1 
2 100iUhni( 61/801) 
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2 1 10 

2 120 
2 1 30 
2 1^0 
2 1 50 

2 ICO 
2 170 

2 ItiO 

2 190 
2200 
2210 
2220 
2230 
2 2^0 
2 2 50 

2 2 60 
2270 

2 2tf 0 
2 290 
2 300 
2310 
2 320 

2 330 
2 3^0 
2 350 

2 360 

2370C 
2 36 0 
2 390 
2400 

2410 
2420 
2430 

2 440 
2450 
2460 

2470 
2 46 0 
2490 

2500 

25 10 
2 520 
2 530 
2 540 
2 550 
2 560 
2570 

2 56 0 
2 59OC 
2 600 
2610 
2 620 

2 630 
2 640 

2 6 50 
2 660 
2 670 
2 660 
2 69 0 

2 700 

V.hni-( 61>b01) 
COLL S7AT(ICODE/M) 
60 COMTINLE 
'^-hilEC 61>o30) 

1 7 EC 6 1 ^ d 30) 

90 CGNllMLf 
tt 0 0 r G i'.M A '1C 1 n t 

rORMAlC Ifi ) 

EGhKAlC IH ^ 
FGhMATC Iri > 
l-Gh/iATC Ih ^ 

FGl'.MATC IH > 

FGHHATCIH , 
FGitHATC In * 
FGh/jAlClH , 

FGHXATC IH , 
FGHHAICIH > 
FGH/jATC IH > 
FGHMAIC In , 

FGivrtAlC IriO) 
FGH/jATC IH >1X>6I4), 
f GhHATC In , lA^ 5rd . 5) 
FGnt-IATC Iri ^ 1a> 5Fb.5) 

dOl 

602 

603 
604 

605 

606 
6 07 
6 06 

6 09 
6 10 
6 34 

6 1 1 
6 30 
6 31 
6 32 

633 
END 
SObHGUlIME 

lA/ »=hEFLl CAllGN-^^ I 3/6A^ «GB5EhVA7 1 GN- + / I 4) 

1A/+LGG FHICE hELAlIVEE^ HGV.= FEhlGD, CGL= EF.CUHny♦) 
IX^ 5F12.5) 

lX/*FhICF KELAIIVEE^ HG'v^= FEHI GL# CGL= 5ECLHI TY* ) 
1X> + GEGHE7HI C 7G7AL IG hb = »>F12.5) 
lX/*G£GHE7hI C TGTAL 7G bri = ♦>F12.5) 

LlFFtbENCE = *^F12.5) 
1CX>*hLFLlCATE*/I 4) 
lX/=^bAhAvlE7Eh5 GF DI EThi BUT I GN5 GF GFGK TGTALS*) 
lX>*GbEv/ 10X/*GTHB*/ 10X/*6Tbri*/ 10X/*6TLIF*) 
IX/ i 3) 
IX/ I 4/ 3F 16. 5) 

MASTEHCXCGV) 

CGMMGN X/ CGVC 5/ 5)/aA/NSI GN'/XMEANC 5)/ C( 5/ 5)/HX( 12/ 5)/X( 5)/ 
KSOMC 5)/PH( 5)/PHX( 5/ ICO)/XT 

CG/iKG.V HELXLC 5/ 1000)/ TEWLC 5/ 1000) 
CGyiHGN NA/NEt, HC/ND/ME/NF/NG 
CGMMGN NGF--!/ HAN 1(5)/ hAN2C 5) 
Dirt EM SIGN XCG0(5/5) 
DG 20 J= 1/rt 
CALL AUTGCHCJ) 
20 CGNIINUE 
IFCNGhrt .EO. 0)GG TG 35 
CALL EXPENT(EXPEN) 
DG 25 I=l/rt 
DG 2 5 J= 1/rt 
25 CGVC 1/J) = EXPErt*XCGV( 1/J) 
CALL INTCGH 
35 CGNTINDE 
CALL CGrtBINE 
DG 30 I= 1 /rt 
30 PhC 1 ) = EXPCHSUrtC I ) ) 
HETUhN 
END 
SDBhGUTINE INTCGh 
CGrtrtGN M/ CGVC 5/ 5)/KA/N5I GN/XrtEAN< 5)/ CC 5/ 5)/KXC 12/ 5)/X( 5)/ 

hSUrtC 5) / PhC 5) / PPjCC 5/ 100) / KT 
CGrtrtGN HEUrtLC 5/ 1000)/T5LrtLC 5/ 1000) 
CGrtrtGN NA/ Nb/ NC/ ND/ NEj NF/ NG 
CGrtrtGN NGhrt/ HAN 1 C 5) / hAN2C 5) 
DG 10 1= 1 /rt 
DG 10 J= 1/rt 
10 CC1/J)=0.0 
DG 20 1=1/M 
20 CC 1/ 1)=CGV( 1/ 1)/C CGVC 1/ !)♦♦. 5) 
CC2/2) = C CGVC2/2)-CCC2/ 1)**2))**.5 
DG 60 I = 3/rt 
IJ=I-1 



2 710t DO 50 J=2,IJ 

2 720tKJ=J-1 

2 730 » SUM 1=0.0 
2 7A0tD0 30 K= UAJ 

2 7 501 30 SUM 1=SUM 1+< C< I > A > + C( A ) ) 

2 760 I 50 C( I ^ J) = ( CCUC 1 , J)- SUM 1>/C( J# J) 
2 770 f SUM 1 = 0.0 

2 7S0fL0 40 A= W I J 

2 790 t 40 SUMl = SUMl + ( C< WA)*4:2) 

2800160 C(IW)=(COV<1>I)-SUMl)**.5 
28 lOti'.ETUKN 
28201LMD 

2830tSUbh0UTINL AUTOCR(J) 

28 401 COMMON Mj CO V( 5> 5) / A/»# MSI GN^ AM LAN ( 5).»C( 5/ 5)«KA( 12^ 5>«A( 5) 
2850C hSUM( 5) ^ i-h( 5)>rRX( 5/ 100)>A7 

28601 COMMON hSU>1L( 5> 1U00)> TSU-ILC 5> 1000) 

28 701 COMMON NA, NLU NC» ND/N 1:^ NF> N6 
28801 COMMON NOKM> HAN 1 (5)^ hAN2( 5) 
2890 iL=12-AA 

2900tA(J)=0.0 
29101 DO 10 I = 1^L 

2920ihA<I>J)=RA<I+AA/J) 

29301 I FCNSI GN .LT. 0 ) KX( I > J) = 1.0-RX ( I / J) 
2940110 A(J)=X(J)+hX(i,J) 
2950iL=L+ 1 

29 601 DO 20 I=L, 12 

2970ihX(J)=hANF(-1) 
2980120 X<J)=X(J)+RX(I,J) 

2990tX(J)=A(J)-6.0 
30001 RETURN 

30101 END 
3020TSUBROUTINE COMBINE 

30301C0MM0N M, COV( 5/ 5)/AA^NSI GN,XMEAN( 5)# C( 5/ 5)/RX( 12# 5)#X< 5) 
3040C hSUMC 5>#RR( 5)#F'RX< 5# 100)#AT 
30501 COMMON RSLML( 5# 1000)# TSUMLC 5# 1000) 
30601 COMMON NA# NB# NC# ND# N E# NF# N G 

3070IC0MM0N NORM# RAN 1 ( 5) # RAN2( 5) 

30801 DO 30 1=1#M 
3090tnSUM<I)=0.0 
31001 BO 10 J=1#M 
3110110 RSUMCI)=RSUM(I)+(C(I#J)*X<J)) 
3120120 R£UM(I)=RSUM(I)+XMEAN(1) 
3130130 CONTINUE 

31401 RETURN 

31501 END 
3 1601 SUBROUTINE STAT< I CODE#N) . 
31701C0MM0N M# COV< 5# 5)#AA#NSI GN#XMEAN( 5)# C( 5# 5)#RX< 12# 5)#X( 5) 

3180C RSUMC 5)#RR<5)#I'hX( 5# 100)#AT 
31901C0MM0N R£UML( 5# 1000)# ISUMLC 5# 1000) 
32001 COM MO N N A # N D# N C# N D# N E # N F# N G 

32101 COMMON NORM# RAN 1(5)# RAN2< 5) 
3220iDIMEaNSI0N G.«1EAN( D# SLMK 1)# SUM2( 1)# SUM3C D# SUM4( 1) 
32301L 1= 1 

3240iASAVE=AT 
32501 DO 20 I=1#M 
326011 F( I CODE .EG. 1)AT=AT*N 
3270iGMEAN( 1)= 1.0 S SUM1<1)=0.0 S SUM2<1) = 0.0 

32801 SUM3< 1) = 0.0 S SUM4<1) = 0.0 

32901DO 10 J=1#AT 
330011 F< I CODE .EG. 1) hSUML< I # J) = TSU'^L( I # J) 



3 3 1 0 f GMEAMC 1 ) = GMLANC 1) ♦hSL/iLC I > J) 
3320fEUi'll( l) = SLi‘ll( D + hEWLC 1/J) 
3330t SUML’C l> = i:U'i2( l) + ( hELolL( 1> 
3 3^0t SU.>13( 1) = SU.>3 3( l) + ( hEU-lL( I> J)*»3) 
33501 10 l) = SUyj^( D + ChSU/iLC 
3360fKl=K5AVL 
3 3701 20 CALL PAHAMC GMLAN^ SU'*i Ij SLi*12> SIJM3> SLMA>L1/N* 1* I CODE) 
3 360 t CALL CChl NT( i CCLE> N) 
3 39 0tCA>LL ChSCh( i CGDL> M) 
3A00tCALL CCKAUK I COLLIN) 
3A10thLTUhN 
3A20tEMD 
3A30>SU13hGLTlNL LAiLA:<3( Gi-ILAN^ EU.'-l K SUM2^ SUy3> SUMA^L 1*N>K I CGLE) 

3AA0 tCGMMGM i-L CGV( 5> 5) >KA> N5I GN^ A/iLANC 5> > C( 5^ 5) > LA< 12> 5) # A( 5) / 
3A50C hSU'i< 5)/ LKC 5)K'iiX( 5> 100>>KT 
3A60t CGM^GM hSUMLC 5^ 1000)> Ti:L;>iL( 5^ 1000) 
3A70I CGi'li'iGN NA> NB^ NC> NL> NL* Nf > NG 
3 Ad 0 » CGi-li-IGiNi NG > hAN 1 ( b) * BAN2(5) 
3A90f DINIiNSIGN GNBANC 3)> SUNK 3)/ SLN2< 3)/ SUN3( 3)^ SUNA( 3) 
3 5001 BEA.L KLB 1 /KUii2> AUB3/ KUh 
35 lot T=AT 
3520tI?(Ll .£Q. 3)T=N 
35301 IF(ICGLL .EG. 1)T=KT*N 
35A0t I F( I CGDE .EG. l)Nb=l 
3550tlF<NB .EQ. 0 .AND. LI .EG. DGG.IG 5 
3560tIF(Ll .EG. 1 .A^ND. I .EG. 1 ) l^BI TEC 61/6 I A) 
3570tIF(l .EG. 1) WBITEC 61>b01) 
35d0tlF<l .EG. 1 ) WBI TEC 6Kd 10) 
3590tIF(I .EC. 1) LBITEC eWdOl) 
3600t5 CGNTINLE 
36101DG 10 L= 1>L1 
36201IFCL .EG. 3) GG TG 35 
363011FCL1 .EG. 3) a-l EAN 1 = 6N EANC L) **( 1/T) 
3 6A0 1A.VE= SUN 1C L) /T 
3 6501 VAB.= C T*SUN2CL)-£UN1CL)**2)/C T*C 1- 1.0) ) 
3 6601 SaE V, 1 = C Tv^t'B + SUNSCL) - 3. ^T^SUNBCL) =*= SUN 1 C L) + 2. ♦ SUN 1CL) **3) 
3 670iSAEV.2=T*C T- 1.0) * C T-2.0) 
3 6d 0 1 SK EG= SKEL 1 / SB E.G2 
3 690lKUBl = C T* + 3*SUNA(L) )-A. **2* SLN 3C L) ♦ SUN KL) 
3 700 iKUB2=6. + T*SUN l(L)=i‘=t‘2*SUN2(L)-3.*SUN ICL) **A 
3 710iAUB=CAUBl+AUB2)/C SiCEW2*C T- 3. ) ) - 3. * VAh**2 

3 7201 G 1 = SBE L/ C LA.B+ » 1.5) 
3 7 301C2=BUB/C VAH*»2) 
37A0in1 = LGGC VAB) 
37501H2=SBEU 
3 760iH3=LGGC C BLB+3. * VAB*k2) /3. ) 
3 7701 01 = T+C 1.5*H 1*^2- 1.5*H3*H l + h2* + 2/C G. + VAB+^O) ) 
37d0i G2=T+C . 375=i‘n3»^2) 
3 7901 G=G'1+G2 
380011FCLl .EG. 1)GG•TG 50 
381011FCL1 .EG. 3 .AND. L .EG. 1)GG TG 20 
382011FCL .EG. 2)GG TG 30 
38 301 20 LBITEC 6K8 1 1) 6N EAN 1. AVE. VAB# SBEW.BUB# GK G2# G 
38A0I GMBB=a*lEAN 1 S AGBB=AGE 
38 501 SBEUBb=SBEU' S BBBUB=BUB 
38 60 1 VABBB= V/AB 
387C1GG TG 60 
3880) 30 '.\BI TEC 6K8 12) GNEANKAVE. VAB^ SBEW/BUB. Gl. G2> G 
389 01 G"5Bri= L'lEAN 1 S AV/BB=AV/E 
39001 SBEWBri=SBEW $ BriBUB=BUB 



39 lOt VARI5H = VAH 

39 20 » GO TO 60 

39 30135 LAN 1 = GN hB- bh 
39 AO t A VL= A Vhli- AV BH 
39 50 » S.-\Lvi= LK LV.}ib- La LUBri 

39 60 Uh= BBa Lh“ BriK Ou 

39 70 t VAh= VAhi^B- V AhBii 
396 Ot UhllLC 61^6 13) G.-! LAN 1 / AVt> VAR> MEU^KUH 
399 01 GO 10.60. 

A000150 CONTINUE 
AOlOilFCNB .LO. 0)GO TO 55 
A 0201 V.hl 1 L( 61> 6 1 5) AVL/ MAYu £KLW> AUK> Gl» G2j Q 
A030155 CONTINUE 
A0A0160 CONTINUE 

A050110 CONTINUE 

AOeOiBlO FOh/iAK IH WX^X'GC'IEAN+, IX^ + Ai-l EAN*.» 2X/♦ VAHI ANCE+/2A> 
A070C ♦ SK EW*> 2X/ ♦.A CRT*^ 6X> * G 1 * / 6a/ + G2* ^ 9a> ♦ 0* ) 
A06016 11 FORNAK IH , IX^ *Glhb*/6F6.3> 2?9.3) 
A090ibl2 FORMATC IH > 1 X.» * GTEH*/6F6.3^ 2F9.3) 
A 10016 13 FORMA! ( Iri / 1X> * GTDf6F6.3/2F9.3) 

A 11018 1 A FOhMAK IH > IX/*RARAi*l El LRS OF Di LThI B OF LOG PR BY SECUhITT*) 
A 12016 15 FOlUOATC IH > 9X, 5F8 . A> 2F9.3) 
A 130 16 01 FOR/iATC IH ) 

A 1 AO 1 RETURN 

A 1 50 1LN D 
A 1601 SUBROUTINE CORINT(ICODE/N) 
A 1 TOtCOM.MON N> COV( 5> 5)>KA^ NSI GN^XMEANC 5> ^ C( 5/ 5) > hX( 12> 5)/X( 5) 

A160C RSUMC 5)>PR( 5)>PRX( 5> 100) > AT 
A 1901 COMMON RSUML( 5> 1 000) > TSLML< 5> 1 000) 

A200 I COMMON NA> NB^ NC^ ND> NEj NFj NG 
A 2101 COMMON NOhM^RAN 1C 5)/RAN2C 5) 

A2201 DIMENSION CVC 5> 5)> CORC 5/ 5) 
A230iASAVE=KT 
A2A0tI F( I CODE .EG. 1)AT=AT+N 

A250iT=AT 
A2601I F( I CODE .LG. 1)NC=1 
A2701 IF(I CODE. .EG. 1)ND=1 

A26 01 DO 20 I=1#M 
A2901DO 20 K= 1>M 
A3001 SUM 1=0.0 S £UM2=0.0 £ SUM3= 0.0 

A 3101 DO 10 J=1^KT 
A 3201 I F( I CODE .EC. 1 ) KSUMLC A* J) = T SU’CLC A> J) 
A33011 FC I CODE .EG. 1) RSUMLC I # J ) = TSLMLC I / J ) 

A3A01SUM 1=SUM1 + C RSLMLC I > J ) *hSUMLC A.. J ) ) 

A3501 SUM2=SUM2+RSU'1L( 1/J) 

A360t 10 SUM3=SUM3+RSUMLCA^ J) 
A 3701 20 CVC I > A) = ( 1 ./C T- 1 . ) )*< SUM 1- C SUM2 + SUM3) /T) 

A36011FCNC .EG. 0) GO TO 35 
A 3901 WRIT EC 61>6 30) 

AAOOi GRl TEC 6U6 16) 
AA 10i GRI TEC 6 W 60 1) 

AA201D0 30 I=1*M 
AA301 30 GRI 1 EC 61*6 1 7) C CVC 1 >A)^ A= 1/M) 

AAA0135 CONTINUE 
AA50 1IFCND .LG. 0) GO TO A5 

AA601GRITEC 61/601) 
AA701GRI TEC 61/6 16) 

AA60tD0 AO I=l/M 

AA90t DO AO A= 1/M 
A 500 I AO CORCI/A) = CVCI/A)/C SGRTC CVC1/1) + CVCA/K))) 



^bio tuhl TL( 61>d01) 
A 520^10 SO 1=U.^ 
/45 30» SO Uhn L< 61^B 1 7) ( COh( I/K)>K= UM) 
45^(0t/j5 COMIINOE 
A550tKT=KS/AVL 

ASeOfbOl FOK-IATC IH ) 

A570tB16 FGKMAKIH ,IX#*COVAhlANCt MAlhlX OF LOG PR BETULEN SECGhlTIES*) 
A5BOtB17 FOhMAK Iri #1X#5F1A.S) 
A5‘;OtblB FOKi-lAlC Iri # IX# * COhhELATI ON NAThlX OF LOG Ph BETWEEN SECUhIT*) 
A600»B30 FOIv.'iATC IriO) 

AGlOthETLhN 

AGBOtEND 
A630» SUBROUTINE CRSC1%( I COLE# N) . 

A6A0t COMMON M# COV( 5# 5)#XA#NSI CN# XMEAN( 5) # C( 5# 5)#RX( 12# 5>#X< 5)# 
A650C RSLMC 5)# PRC S)#PnX( 5# 100>#KT 

A 660 » COMMON RSLMLC 5# 1 000) # TSLMLC 5# 1000) 
A 6 70 t COMMON NA# NB# NC# ND# N E# N F # N G 

A 60 01 COMMON NOlv>] # RAN 1(5)# RAiN2(5) 
A690 iDIMENSl ON CV( 5# 5)# COR< 5# 5)# V( 5) 

A700fl F( I COLE .EG. 1)NE=1 

A710»I F( I CODE .EG. 1)NF=1 
A720»KSAVE=XT 
A730 tl F( I CODE .EG. 1)KT=KT*N 
A7A0tT=KT S KT1=XT-1 

A 750 t DO 20 I=1#M 

A760»D0 20 K=1#M 
A 7701SLM 1 = 0.0 i SUM2=0.0 4 £U'13=0.0 
A700t SUMA=0.0 
A 79 01 DO 10 J= 1 # X T 1 

AOOOtlF(I CODE .EG. 1)RSLMLCI#J) = TSUML(I#U) 

ASlOl I F(I CODE...EQ. 1 ) RSLMLC K# J+ 1 ) = TSUMLC K# J+ 1) 
^8 201 SUM l = SLM’l + i RSL-ILC I # J) ♦RSUML(X# J+ 1 ) ) 
A030tSUM2=SLM2+RSLML(i#J) 
AO AO t SUM 3= SUM 3+ RSUML C K# J+1) 

AO sot 1 0 SLMA=SUMA+C RSLMLC 1 #U)+'t^2) 
AO 60 t SUM 1= SUM 1 + C RSUML(1# KT)♦RSLMLC K# 1)) 
A0 70t SUM2= SUM2+RSUMLCI#XT) 
AOO0 t SUM 3= SUM3+ RS U'lLCK# 1) 

A09 0t SUMA= SUMA+C RSLMLC I #KT) ♦^‘B) 
A900f CVCI#K) = C 1./C T - 1 .))*C SLM1-C SUM2*SUM3)/T) 
A9 10t20 VCI) = C1./CT-1.))*C SU«3A-C SUM2=f<*2) /T) 
A920tlFCNE .EG. 0)GO TO AS 
A9 30t WRI TEC 61# 00 1) 
A9A0tWRI T EC 61# 001) 

A9 sot WRI TEC 61#020) 

A9 60t WRI TEC 61#0U1) 
A970tL0 AO I=1#M 

A90 0t AO WRI TEC 6 1 # 0 21 ) C CVC 1 #K ) # X= 1 # M ) 

A99 0t WRITEC 61#001) 
5000tAS CONTINUE 
SOlOtlFCNF .EG. 0)GO TO 55 
5 020 I DO 50 I=1#M 

50301 DO 50 K=1#M 
5 0 AO I 50 CORC I #X) = CVC I#K)/C SGRTC VC I )*VCK) ) > 
5 0 sot WRI TEC 61# 022) 

5 0 601 W1^I TEC 61# OLD 
5 070 I DO 60 I = 1#M 
5 000160 WiM TEC 61#021)C CORC 1#A)#K=1#M) 

5090155 CONTINUE 
5100iKT=KSAVE 
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5 1 lOtdOl 
5120«b20 
5 1 'siOid'al 

FGhMATC IH 
FGK:''iA7( Ifi 

FGh.’jAK Iri 

51A0toii2 FGh.^AT( Iri 
51bOthLIUriN 

) 
^lX^*ChGSb CGVAhlANCL GF LG6 Fh BETWEEN EECUhlTIEE^) 
^ lA, 5F 14. b) 
>lA>*CivGES CGl^htBATIGNS GF LGG Fh BETWEEN SECUhIT*) 

5 1601 ENL) 
5 1 70t SU3FGUT I Nt CGriAUTC 1 CGLL^ N) 
5 IdO fCGMNGN A* CGV( 5^ 5)>aA^NS1 GN^ ANEANC 5)> C( b# b)/ riA( 12^ b)/X( b) > 
5 I'^OC hbUyiC b)^Fh< b)^FhX( b# 10U)>aT 
b200 
b210 
5 220 
b230 
b240 
b2b0 
b260 
b270 
b 2d0 
b2'J0 

b30U 
5310 
5 320 
5 330 
5 340 
5350 
5 360 
5 370 
5 3d0 
5 3^0 

5 400 
5410 
5420 
5430 
5 440 
5450 
54f0 
5470 
5 48 0 
5 4V0 
5 500 
5510 
5 520 
5 530 
5 540 
5 550 
5 560 
5 570 
5 58 0 
5 59 0 
5600 
5610 
5 620 
5 630 
5 640 
5650 
5660 
5670 
5 68 0 
5 69 0 
5 700 

hbUXLC b> 1000)/ TbL’iLC 5/ 1000) 
N A / N b/ N 0/ N 0/ N F / N F / N G 

CGNNGN NGls.-l/ ii/uV 1(5)/ hAN2( 5) 
XbAVE=XT - . 

.FO. 1)NG=1 

.FG. l)Nri=l 

. F C, • 1 )i\T=XT*N 

XTl=riT- 1 
0)GG TG 25 

CGMi’IGN 
CGXXGN 

G 
■E 

I F( I CGLE 
1 F( 1 CGDE 
I F( I CGDE 
T=XT S 
1F(NG .EG, 
WKI TEC 6 1/801) 
Whi 1E( 61/801) 
WFiI T F ( 6 1/823) 
v.hlTEC 6 1/801) 
Whi TE( 61/824) 
v,hl TEC 61/801) 
LG 20 I=l/X 
SUN 1 = 0.0 S 
LG 10 J=1/AT1 
I FCICGDE .EQ. 
IFCiCGLE .EO. 

SU/i2=0.0 SUN 3= 0.0 

DhSUNLC 1/J) = TSUNLC 1/J) 
DhSUNLC I / J+ 1 ) = TSUNL( I / J+ 1) 

SU'll=SUNl+ChSLNLC I / J) ♦hSL.'lLC i / 0+ 1)) 

SUN2=SUN2+hSUNLC1/J) 
1 0 SUN 3= S L'i 3+ C i\ S U’lL Ci/J)'p + 2) 
SUN 1 = S LN 1 + C h S U.'iL C I / A T ) ^.^ K S UNL C I / 1 ) ) 
S LN 2= SUN 2+ h SUNL ( i / X T ) 
SUN 3= SUN 3+ C SUNL ( I / X T ) *2) 
ACGU=C l./CT- l.))*C SUNl-C SUN24^*2)/T) 
AVAR=C 1 ./C T- 1 . ) )=«( SUN3-C SLN2+ + 2) /T) 

ACGh=ACGV/AVAFi 
20 V:hnEC 61/825)1/ACGV/AVAR/ACGFv 
25 CGNTINUF 
XT=KSAVE 

801 FGhNATClri ) 

823 FGhNATClri / IX/♦ AUTG CGhh ELAT IGN GF LGG Fh B7 SECURITY/ LAG U) 
624 FGhNATClri / IX/*SECUhlTC♦/4X/♦AUTGCGVAhlANCE»/8X/♦VARI ANCE*/ 

bX/^AUTGCGF'.RELATlGN*) 
8 25 FGhNATClri / IX/I 5/6X/3F 1 5. 5) 
RETURN 
END 
SUBRGUTTNE GKI^C GTRB) 
CGNNGN N/ CGVC b/ 5)/XA/ NSl GN/XNEANC b)/ CC 5/ 5)/ hXC 12/ 5)/XC 5) 

hSUNC 5)/ FhC 5)/FhXC 5/ 100) /XT 

CGNNGN hSLNLC 5/ 1000)/ TSUNLC 5/ 1000) 
CGNNGN NA/ Xb/ NC/ ND/ NF / NF/ NG 
CGNNGN NGRN/ RAN 1(5)/ RAN2C 5) 

SN=N 
FhGD= 1.0 

DG 20 J=1/XT 
SLN=0.0 

LG 10 I=l/N 
10 SL-N=SUN+FR)CC 1/J) 



5 710»SU/i = Sa»l/b.'3 
5 720*20 i-nGD=}'hCD»SU/i 
5 730* GThb=rrGD 
5 740* b.LTUhM 
5750»lLNb 

5 760* SUL’hGOlINL G&HCGTHH) 

5 770*CG>i.-:GN iA* CGOC 5/ 5)^i<A,NSI GN>XMEAN( 5)> C( 5> 5)^ KX< 12, 5)^a( 5) 
57tiCC hbb/iC 5)> W'.( 5)/bhAC 5/ IOCJ^aI 

5 7'^0*(;G/j.-1GN hbU-lLC 5^ 1000)/Ibu-iLC 5> 1000) 
56 00 * CG/i/iG.\’ NA/ Mb/ NO/ ML/ N £./ MF/ MG 

58 10* CGMMGM NGlO-l/ hAM 1 ( 5)/ hAM2( 5) 
58 20* 5M=M 

5830»5LM=0.0 
5840*DG 20 I=1/M 
5850tFhGD=1.0 

58 60* LG 10 0=1/KT 
5870* 10 FrGL=FLGL*FlYX( 1/J) 

5680*20 5UM=SUM+PhGD 
5 890* GTBH=bUM/£i-i 

5900*hElUhM 

59 10* LML 
5 920*SUbhGUTINE TG7Ai.(JD) 
5930 *CGMMGM M/ CGV( 5/ 5)/aA/MSI GM/AMLAN( 5)/ CC 5/ 5)/KA( 12/ 5)/X< 5) 
5940G hSUM( 5)/Fh( 5)/PRa< 5/ 100)/KT 
59 50*CGyiMGM hSL'MLC 5/ 1000)/15U:'iL< 5/ 1000) 
5960* CGMMGM MA/MB/MC/ND/ML/MF/MG 
5 9 70 * CG/jMGM NGlu-]/ ram 1(5)/ aA.M2( 5) 
5980*DG 10 A=1/KT 

5990*J=K+(XT*(JB-1)) 

6000*DG 10 !=!/« 
6010*10 TSUML( 1/J)=R£U'1L( I/K) 

6020* REIURM 

6030*EMD 
6040* SUERGLTIML LXPEMK LXPEM) 
6050* CGM/iGM M/ CGVC 5/ 5)/KA./MSI GM/AMEAN(5)/ C( 5/ 5)/ RX( 12/ 5)/X( 5) 

6060C RblAK 5) / PRC 5)/ PRX< 5/ 100) /XT 
6070 iCGMMGN RSUML( 5/ 1000) / TSU'-ILC 5/ 1000) 

6080*CGM:'iGM NA/MB/ MO/MD/M£/MF/MG 
6090*CGyiMGM NGRM/RAMK 5)/RAM2( 5) 
6 100*H=RA.MF< - 1) 

6 1 10*EXPiaM=-LGG( K) 
6120*RLTURM 

6130*END 
6140*ENLPhGG 
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APPENDIX C 

SAMPLING VARIATION AND DIVERGENCE IN MEANS 

1. Let 

R. = y + e. 
1 1 

(C-l) 

be the ex post arithmetic mean return of a single series of 

t h 
returns to the i— security, where y is the population mean 

and e^ is a disturbance variable causing the sampling vari¬ 

ation such that E(e^)=0. 

Then the divergence in means associated with the addition 

t ll 
of the m— security to a portfolio of m-1 securities is 

defined as 

D = R , - R , (C-2) 
m-1 m 

where is the portfolio mean prior to the entry of the 

th . . 
m— security. 

To show that the expected divergence in means due to 

sampling variation is a decreasing function of the portfolio 

size it must be shown that the expectation of the absolute 

value of D is a decreasing function of m. For mathematical 

convenience, we prove that the equivalent statement 

E(D^) = E[(R t-R )^] (C-3) 
m-1 m 

is a decreasing function of m. 
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From the definitions of R and R. we have 
1 

D = R -R 
m-1 m 

T m-1 

— y m-l>, 
1 = 1 

(y+e.)”(]i+e ) 
1 m 

1 
m-1 

f \ 

m- 1 
(C-4) 

Taking the expected value of both sides we have E(D)=0. 

Subtracting E[D] from the right hand side, squaring both 

sides and taking the expectation gives 

E [dM = E{ [D-E (D) ] M . (C-5) 

But the term on the right is the variance of D. Therefore, 

to show that E[D^] is a decreasing function of m we need to 

prove that V[D] is a decreasing function of m. The proof 

follows under the assumption that the variance of the distur¬ 

bance is the same for each security, i.e., V(e.)=V(e), i=l,m. 
1 

Under this assumption 

V[D] = V[ 
m-1 

m-1 

I e, 

i = l ^ 
-e ] 

m 

(C-6) 

m-1 
•V[e] +V[e] +2 • [sum of distinct covariances]. 

Since there are (m-2)(m-l)/2 distinct covariances of the form 

[l/(m-l)^] Cov (e.,e ) associated with the m-1 securities 
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already in the portfolio, and m-1 distinct covariances of the 

form [1/(m-1) ] Cov between the entering security m 

and the m-1 securities in the existing portfolio, we substi¬ 

tute for the last term in equation (C-6) to obtain 

(C-7) 

1 m— 0 
V Cov (e^ [average Cov (e^, e^)] . 

Differentiating with respect to m, we have 

6V[D] ^ -V[e] 
6m 

, average Cov(ei,ev) 
(C-8) 

The value of the derivative is zero when the average covari¬ 

ance between the e'® is equal to the variance of e. So long 

as the m-1 disturbances are not perfectly correlated with 

each other, the average covariance must be less than V[e]. 

And since V[e] and the denominators must be positive, we con¬ 

clude that the derivative is less than zero. 

Thus we have shown that (C-3) is a decreasing function 

of m, which implies that the divergence in means due to samp¬ 

ling variation is a decreasing function of the portfolio size 

2. To show that the divergence in means due to sampling 

variation is an increasing function of both the autocorrela¬ 

tion factor and the variance factor, we note that the dis¬ 

turbance variable as previously defined is the average of the 

disturbances a^, j=l,n associated with each of the n periods 

in the time series for a security. That is. 
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1 ^ 

e = n I a- (C-9) 
j = l 

Assuming (as in the simulation) that all securities in the 

portfolio have the same variance factor, we have V[aj]=V[a] 

for all j, and 

V[e] = ^V[a] + ^^[average Cov (a^ ,a^_^^) ] . (C-10) 

Since V[a] is the variance factor (factor 5), and the covari¬ 

ance term is recognizable as the autocovariance, V[e] is an 

increasing function of both the variance and autocorrelation 

factors. And, equation (C-7) indicates that V[D] is an in¬ 

creasing function of V[e]. Consequently the divergence in 

means due to sampling variation is an increasing function of 

the variance and the autocorrelation factors. 
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