An information system for the planning and control of a food service operation.

Albert L. Wrisley
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

Recommended Citation

Wrisley, Albert L., "An information system for the planning and control of a food service operation." (1971). Doctoral Dissertations 1896 - February 2014. 5884.
https://scholarworks.umass.edu/dissertations_1/5884

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

AN INFORMATION SYSTEM FOR THE PLANNING AND CONTROI OF í FOOD SERVICE OPERATION

A Dissertation Presented

By

ALBERT L. WRISLEY, JR.

Submitted to the Graduate Schooi of the University of Massachusetts ir
partial fulfillment of the requirements for the degiree of
DOCTOR OF PHILOSOPRY

May 1971
Major subject_Business Administration

$$
\begin{aligned}
& \text { Albert I. Wrisley, Jr. } 1971 \\
& \text { All Rights Reserved }
\end{aligned}
$$

AN INFORMATION SYSTEM FOR THE PLANNING AND CONTROL OF A FOOD SERVICE OPERATION

A Dissertation Presented

By

ALBERT L. WRISIEEY, JR.

Approved as to style and content by:

ACKNOWLEIJGMENTS

The author wishes to thank the chairman of his advisory and dissertation committee, Professor Van Court Hare, Jr., for his encouragement to undertake this particular study, and for his meny suggestions concerning the preparation of the maruscript.

Thanks must go, too, to Professor Carl Dennler and Professor Geonge Simmons, members of the dissertation committee, for their help in editing the manuscript and providing encouragement to the author.

A word of tharks must be given to the staff of the University Computer Center, University of Massachusetts, and Mr. James Hill in particular, for their assistance in develooing and running the many programs used in this stuay.

A special acknowledgment must go to Mr. George Corrade, Instructcr in Ho亡el and Restaurant Administration for providing both a willing ear and many pertinent suggestions relative to the study.

Lastly, very special thanks to my wife, Lynaa, and son, Johrs who have cheerfully given up, postponed, or substituted activities that would normally have been their due, $s c$ that this msnuscript could be compieted.

TABLE OF COITEITS

Page
ACKNOWLEDGIFMTS 17
IIST OF FIGURES ix
Chapter
I. INTRODUCTION 1
Purpose of Stuay The Systems Concept
A systems approach
Organizauion of the Paper Footnotes
II. THE CHANGITG EOOD SERVICE IUUUSTAI 7
Impect or the Chains
Changes in Kitcher Organizetion
The Use oi Management Sja
The Impact oi Eoca Eranchising Eifect on the mariret
Economics and tine Focd Service Industry Who is the competition? Other probiems
The Need for Change
Footnotes
IIT. THE NEEDS OF THE FOOD SERVICE IIDUSIEZ 21
The Nature of the Business
The Nature of the Nanasers
The Irck of Research
An incustry surver $=0$ the future
The Stmucture or tine Industry
Food cose Inforration leeds
Forecastirg lieecis
Punchasing dieeds
Production leeds
Summery
Pcotnotes

Page

IV. CURRENT INDUSTRY PRACTICES 38

The Menu
Definition
The menu and the investment decision
Menu pricing
The concept of variable margin
Difficulties in the use of variable margin
Planning the menu
The cyclical menu
Computer assisted menu planning Summary
Forecasting
Sales analysis record
Methods of forecasting Purchasing

Good food purchasing
Knowledge of the needs of the establishment
Knowledge of the marleet
Knowledge of the product
Knowledge of the procedure
Use of specirications
Knowledge of receiving and storage practices
Receiving
Storage
Summary
Computation and Use of Food Costs
Overall cost of food
Food cost as a management tool
Use of overall food cost
Breakdown of total cost
Daily food cost
The problem of standards
The pre-cost, pre-control system
Problems of the pre-cost, pre-control system
Summary
Footnotes
V. THE PLANING AND CONTROL SYSTEM I23

Specifications of the liodel
System is time-sharing
Cost specifications
Forecastirng specificatiors
Specifications for Iood cost information
Specificotions for inventory control
Overall syster specificatiors

> The Design of the Systems Model Systems files
> Systems programs Footnotes
VI. CONSTRUCTING AND TESTING THE MODEL 159

Data Collection
Menu data
Recipe data.
Ingredient data
File Construction and Updating
Intermittent file updating
Daily file updating
Other file updating
Forecasting
Testing the forecasting algorithm
Making the forecast
The food use program
Pre-costing
Calculation of Food Costs
Potential costs
—Actual costs and analysis
Surmary
Footnotes

VII. EVALUATION OF THE SYSTEMS MODEL 201

The need for further testing Potential problems
Some extensions of the system
Footnotes
BIBL IOGRA FFY 208
APPENDIX A 211
APPETDIX B 214
APPENDIX C 215
APPENDIX D 227
APPENDIX E 235
APPENDIX F 238
APPENDIX G 239Page
APPENDIX H 240
APPENDIX I 243
APPENDIX J 258
APPENDIX K 263
VITA 265

LIST OF FIGURES

Figure Page

1. A Food Planning and Control Systern of the Future, Taken from "Operation Breakthrough" 26
2. Breakeven Chart Showing Cost/Volume Rela- tionship in a Hypothetical Food Service Operation 52
3. Typical Cyclical Menu Pattern, 13 or 18 Weeks 63
4. Sample of a Daily Sales Analysis Record 74
5. The Food Purchasing System 86
6. Sample Receiving Clerk's Daily Report Form 92
7. Relationship Between Actual and Budgeted Costs 103
8. Purchase Voucher Used to Separate Food Purchases into Categories to Facilitate Cost Control 105
9. Calculation of Daily Estimated Food Cost 108
10. Sample Receiving Record Showing Source of Food Stores and Storeroom Purchase Information 110
11. Developing Pre-costs and Potential Costs for a Dinner Menu 114
12. A Daily Recapitulation of Costs, using the Pre-cost, Pre-control Systern 117
13. Ingredient File Information 134
14. Header Infomation for Lobster Recipe 135
15. Ingredient Information for Lobster Recipe 135
16. Representation of Msnu Header Fecord 133
17. Representation of Recipes Record for Menu 36 139
Figure Page
18. Sample Banquet File Data 140
19. Simple Cost File Data 142
20. Relationship Between Executive Control Program (EXECPRO) and Other Main System Programs 143
21. Scheduling, Inputs, and outputs of In- gredient File Program (INGPRO) 14.5
22. Scheduling, Inputs, and Outputs of the Recipe File Update Program (RECPRO) 146
23. Scheduling, Inputs, and Outputs of Menu File Update Program (MENPRO) 247
24. Scheduling, Inputs, and Outputs of Daily Sales Update Program (FILPPOI) 149
25. Scheduling, Inputs, and Outputs of Daily Cost Update Program (FILPROZ) 150
26. Scheduling, Inputs, and Outputs of the Potential and Pre-cost Program (PCSTPRO) 152
27. Scheduling, Inputs, and Outputs of the Cost Calculation and Displey Program (COSTPRO) 154
28. Scheduling, Inputs, and Outputs of Forecast Prograin (FORPRO) 155
29. Scheduled Inputs and Outputs of the Food Use Program (USEPRO) 156
30. Descriptive Flow Diagram of Subroutine OPENUP, a File Opening Subroutine for all Main Programs 165
31. Descriptive Flow Diagram of Program InGPRO, a File Updating Frogram 167
32. Adding and Displaying a Recipe Through the Use of Frogram RECPRO 168
33. Descriptive Flow Diagram of Subroutine SEARCH, a Search Routine Usec with fll Main Programs 170
Figure Page
34. Descriptive Flow Diagram of Program FILPRO1, the Sales Input Program 172
35. Descriptive Flow Diagram of Program FiLPRO2, the Cost Input Program 175
36. Descriptive Flow Diagram of Program FORPRO, a Program Designed to Forecast Total and Recipe Covers 182
37. Instructions Given to Run Program FORPRO and to Forecast Menus 37 and 41 for 1/11/71 and 1/12/71 184
38. Descriptive Flow Chart of Program USEPRO, the Food Use Calculation Program 185
39. Output of Food Use Program (USEPRO)--Not Rounded 187
40. Output of Food Use Program (USEPRO)-- Rounded 188
41. Descriptive FIow Diagram of Program PCSTPRO, Pre-Cost and Potential Cost Program 191
42. Descriptive Flow Diagram of Subroutine EVALREC, Recipe Price and Cost Evaluation Sub- routine for Programs PCSTPRO and USEPRO 193
43. Potential Cost Calculations from Program PCSTPRO. This is Simulated for 1/l/71 (Menu 15). Banquet and A La Carte "Other" Figures are on Foliowing Page 194
44. Descriptive Flow Diagram of Program COSTPRO-- A Cost Analysis Program 197
45. Daiiy and To-Date Costs Displayed by Program COSTPRO 199
46. Saies Check Used in the Docuinentor System 203

CHAPTERI
INTRODUCTION

The food service industry has a number of unique characteristics. Some of these have been responsible for only embryonic development of managemert systems in areas where considerable progress has been made in other industries. One of these areas is that of planning for, and controlling the use of, raw materials.

Purpose of Study

The purpose of this study is to outline the need for, and describe the development and testing of, an information system for the planning and control of food in a food service operation. Current systems that provide information in this area have a number of shortcomings. If a betier system can be made available to food service operators a significant step will have beer taken toward a more integrated and efficient totsl management system for fooc service enterprises. Systems development must of necessity involve the systems concept, the subject of the next section.

The Systems Concept

Hare points cut that the scientific method of inquiry
is systems analysis in its broadest sense. ${ }^{l}$ He also reminds
us that, although the study of systems is not new, the approach, methods, tools used, and the results obtained differ from those of the past. ${ }^{2}$ In The Theory and Management of Systems, the authors wrestle with the usefulmess of the "systems concept" as an approach to managing orgarizations and conclude that the concept does have utility. ${ }^{3}$ Gagne has related systems development and psychology. 4 Katz and Kahn used the systems approach in their study of organizational process. ${ }^{5}$ Use of the systems approach in space projects has made "systems" a household word, aibeit one that is poorly understood.

Johnson, Kast, and Rosenzweig provide this definition of the systems concept:

The systems concept is primarily a way of thinking about the job of managing. It provides a iremework for visualizing internal and external environmental factors as an integrated whole. 6

This definition points up the integrative character of systems and the use of the systems concept to fit all of the necessary elements of a problem into a useful frame of reference. These same authors also point out that:

General systems theory provides for scientists at iarge a useflil framework within which to carry out a specialized activity. It allows researchers to relate indings and compare concepts with similar findings in other disciolines.?
mris paper describos the development and testing of
a specific system-a plannirig and control system for raw
materials used in a food service establishment. The relationship of this particular problem with the systems concept is based upon the need for pulling togetiner a number of bits and pieces into a. usefui system and, through the use of computer technology, operations research techniques, accounting techniques, and food management skills to develop a useful management tool for food service operators. Both the integrative and interdisciplinary aspects of the systems concept are much in evidence in this study.

A systems approach

The investigative approach used in this paper is similar to that suggested by a number of writers in the systems area. 8 The format used is:

1. Statement of the problem.
2. Investigate environmental and systam need̃s.
3. Construct a model which involves the following variables:
a) Inputs;
b) Outpute;
c) Process;
d) Iogic;
e) Information.
4. Test the model.
5. Evaluate and extend the test results. The paver stops shori of ileld testing, the next logical step in the inventior process.

Organization of the Paper

The remainder of this paper is organized into six chapters. In Chapter II an introduction is given to the history and nature of the food service industry.

Chapter III describes the needs of the food service industry, particularly in the planning for, and control of, raw materials. Needs both external and internal to the food production and service system are considered as bases for the proposed systern.

In Chapter IV the current industry practices are analyzed. This section forms an important adjunct to the primary purpose of the paper bacause of the paucity of written material that integrates logically the interplay of menu, sales mix, forecasting, purchasing, and other factors on the raw materials cost of a food service firm.

The specifications for the desigr of the planning and controol. systems model are set forth in the first part of Chapter V. In the second part of this chapter the relationship of the various elements of the system are drawn up in the frameworl of a general systems design.

In Chapter VI the construction, and testing, by the use of simulation of the model are described and the output of the systerns model is shown. The forecasting algorithre used in the model is tested under simulated
conditions.
An evaluation of the model and recommendations for extensions, further testing, and implementation are presented in Chapter VII, the concluding section of the paper.

FOOTNOTES

$I_{\text {Van Court Hare, Jr., Systems Analysis: a Diagnostic }}$ Approach (New York: Harcourt, Brace, and World, 1967), p. 1 .
${ }^{2}$ Ibid., pp. 1-7.
$3_{\text {R. A }}$. Johnson, F. E. Mast, and J. E. Rosenzweig, The Theory and Management of Systems (ad ed.; New York: McGraw-Hill Book Company, 1967), pp. 3-20.

4 See R. M. Gagne, ed., Psychological Principles in Systems Development (New York: Holt, Rinehart and Winston, 1966).

5 Daniel Katz and Robert L. Kahn, The Social Psychology of Organizations (New York: John Wiley and Sons, Inc., 1966).
${ }^{6}$ Johnson, Mast, and Rosenzweig, p. 3 .
${ }^{7}$ Ibid., p. 10.
${ }^{8}$ See especially: Arthur D. Hall, A Methodology for Systems Engineering (Princeton, N.J.: D. Van Nostrand Company, Inc., 1962), pp. 85-222.

CHAPTERII

THE CHANGING FOOD SERVICE INDUSTRY

The food service industry is currently undergoing changes unique in its history. For almost 200 years since 1765, the time of Boulanger, the world's first restaurateur, changes had been those of form rather than content. Improved physicai plants, equipnent, sanitation, methods of transport and supply, and personnel practices had changed the appearance of the industry; but, in truth, these improvements represented repiacement or suostitution rather than innovation. Chefs no longer cooked on spits turned by hand by small children or indentured apprentices but the naw materials they used were delivered in the same form, the heat from stainless steel ranges was little abated, and their kitchen helpers were only slightly better paid than their hapless predecessors. Dishrooms were still the cauidrons of hell so aptly described in George Orwell's classic Down and Out in Paris and London. ${ }^{1}$ Cost control was entirely devendent upon the skill and personai concern of chefs and waiters, and profits were made in spite of the absence of controis rathe: thar because any conceried effort wes made to systeratize the cperation of a restaurant. Most foou semfice establishmerts were incividually owned and manaced. Unfortunateij, tris dispersion of ownership
guaranteed satisfaction for no one--guest or owner alike. Because of the lack of concentrated investment of capital, the restaurant industry had little means of bringing about and implementing those innovations necessary for the industry to match the progress being made in other areas of the business cormunity.

As modern management nethods and improved technology rapidly accelerated the productivity of manufacturing concerns, with the consequent improved working conditions and higher wages, the service industries found that not only were their skilled personnel being attracted out of the field but that they were forced to offer relatively higher and higher wages in order to attract even marginal workers. Too, new forms of food service organizations and new methods of managing then, were appearing. Suddenly the traditional laissez faire methods of operation no longer produced a profit for restaurateurs. With this development, the restaurant industry began to move into the modern age.

Impact of the Chains

Frobably the strongest push toward modern restaurant menagement occurred as a result of the fomation of the restaurant chains. Multiple operations forced ownership to devise methods of operation and control that were not dependent on the presence of the owner for the maintenance of some kind of control. Even so, the earliest chains reied
heavily on family members to insure that the prerogatives of ownership were not usurped by the employees.

The lg20's saw the formation of a number of food service chain cperations. Very few of these managed to sur∇ ive the 1930^{\prime} s and for all practical purposes the real development of these operations can be traced from the end of World War II. ${ }^{2}$ And it is from this time that some real, if not universal, changes began to become incorporated in the operation of food service firms.

The most evident need in multiple operations was that of establishing a consistent product in orcier that customers could count on such factors as quality, quantity, and price, factors so necessary for establishing a good company image in the eyes of the public. This meant standardizing recipes, portions, and method of preparation. It also meant establishing consistent sources of supply and cost controls. In effect, it meant that methods of operation had to be articulated in easily understood form and that the mystique surrounding the herətofore all-powerful reign of the chef had to be dispelled.

Certain of the changes nullified this mystique so well. that the position of chef was eliminated in many cases. The Stouffer Restaurant Corporation, for example, developed a syster of standardized, tested recipes and standard portion 3izes, and then trained relatively unskilled wornen to produce and sorve them. Nowhere in the table of organization
of this 200 million dollar chain can the position of chef be found.

Changes in Kitchen Organization

Other changes were taking place in the organization of the restaurant kitchen. Concomittant with the diminishing importance of the chef as the central figure, the traditional French-English kitchen with its highly organized departments, centering around product lines and with its rigid hierarchy, was giving way to a more fluid arrangement in which workers might more easily work at a number of different tasks. 3

One determining factor in the trend away from specialization in restaurant kitchens was the increase in union activity in the food service industry. In order to be able to use persomnel on different jobs it became necessary to steer away from descriptive titles that would tend to describe a specific function for the worker. Thus "Kitchen Helper, Grade $I^{\prime \prime}$ became a more useful title for management than "Ist, Commis to the Saucier."

One disadvantsge of the passing of the highly structured French-English kitcher was that the newer setup was, and still is, often under-organized. The result, according to Dukes and Iundberg, was "too few departments, no regular line of promotion, no understudies, too few supervisors, 1II-defined jobs and Iittle prastige for the various jobs." 4 The National Restaurant Association today is highly concerned
with the lack of a visibie "occupational ladder" for food service workers. 5 A good dishwasher (a few such individuals actually cio exist) may find himself wedded to his position indefiniteiy--a victim of his own aptitude and dependability.

The Use of Management Systems

A result of change from highly skilled specialists to semi-skilled generalists has been to increase the need for well-trained supervisory personnel and the roplacement of individual skills with systems designed to enable restaurants to produce and serve acceptable meals. Certain of these systems have been developed and used skillfully by some restaurant operators. The previously mentioned examples of the Stouffer Corporation is a case in point. These systems have been heavily slanted toward the actual production and service of food--along with the incorporation of good personnel management practices. In systems ter.. minology, considerable attention has been given by these firms to the processor.

Other developments have brought about remarkable changes in raw material inputs. Improvements in transport and delivery enable food service firms to utilize fresi products the entire year rather then seasonally as beiore. But the greatest difference in raw materials has been in methods of pre-preparation and packaging. Freezing, vacuum packaging, freeze drying, and other means of preservation of foods have
made large differences in storage, delivery, and spoilage losses. Pro-prepared or convenience foods have made it possible for the restaurant operator to substitute materials cost for labor costs. Surprisingly, few operators have turned this possibility to their advantage.

One of the most obvious uses of management systems has been in the area of food franchising, an area that deserves extended discussion.

The Impact of Food Franchising

The role of the restaurant franchise should not be ignored as a prime mover in the need for, and development of, new management systems for the food service industry. Currently the franchise restaurant represents the fastest growing segment of the industry.

The year 1919 saw the sale of the first restaurant franchise when the A \& W Root Beer Company sold a franchise in Lodi, California. ${ }^{6}$ Today A \& W is the world's largest franchisor in number of units with over 2400 of these stands in 1959. Bill Marriott, who bougnt an A \& Wranchise in 1926, is today Chairman of the Board of the Marriott Corporation, a hospitality company that, amons many endeavors, franchises Bi.f Boy hamburger units and Narriott Notels. With 25,000 employees and 196% sales of 430 millions of dollars the Marriott Corporation is one of the giants of the industry.?

The concept of permitting the small businessman to combine his personal incentive with the managerial knowhow of big business has been largely responsible for the success of the franchise. To quote Lundberg: "It is a way of business that has permitted hundreds of small businessmen to enter the hotel and restaurant business with a pre-packaged product, a format, an image, a system of operation, a market plan and a scheme of finance." 8

In order to service its franchises successfully, the franchising company must put together a successiful package that includes financing or financing advice, a markoting plan, locating development and selection, a tested product line, and, most importantly, a system of operation that can be adopted easily by the franchisee. Because the relationship betreen frarchisor and franchisee is not as close as that betiveen the home office and a unit of a wholly owned chain, this system of operation must, of necessity, be capable of being maintained with less direct supervision than is normally possible in the non-frenchise operation. This requirement lent added impetus to the development of better systems of operation.

Effect on the market

In order to place the impact of multiple-unit food service companies (both franchised and company-owned) in perspective it is necessary to investigate their place in
the food service market.
In 1969 the away-from-home feeding industry realized an estimated 25 billion dollars in sales. Institutions Magazine listed the 400 largest chains (which included both company-owned and franchised units) as contributing $I 5.7$ billion dollars of these sales. Subtracting such nonpublic feeders as the armed services and the National School Lunch program, Lundberg estimates that public restaurant chains are responsible for some 40 percent of the total. 9 Ferhaps even more important is the size of the average chain/franchise unit.

The MacDonald Hamburger chain feels that one of its units is in serious financial difficulty if its annual sales should fall below the $\$ 200,000$ mark. ${ }^{10}$ The stouffer Corporction operations at 566 Fifth Avenue in New York City enjoy annual sales of well over 6 million dollars. ${ }^{1 l}$ Most successful franchise operations fall somewhere in between these two figures. ${ }^{12}$

Large unit sizes made it possible to introduce management methods that would not otherwise have been feasible. The so-called "Ma and Pa" operations could neither afford, nor in most cases noed, many of the systems or procedures used $\mathrm{by}^{\text {the }}$ large units.

In surimary, then, the impact of restaurant cheins-Whether company managed or franchised--has been that of both creating a need for better management systeris and
providirig the resources to fill that need.

Economics and the Food Service Industry

The 40's, 50's, and 60's saw other changes in the American scene besides the development of large restaurant units. These changes were to have a considerable impact on the food service industry. Primary among these was the effect of certain oconomic changes brought about by our post-World War II economy.

As a rule of thumb a restaurant operation that can maintain direct operating costs of less than 70 percent of gross sales can expect to approximate a 5 percent profit before income taxes. ${ }^{13}$ In the lo,20's the salaries and wages account in the average restaurant ran about 15 percent of gross saies. ${ }^{14}$ By 1967, a study by the national accounting firm of Horwath \& Horwath found that payroll costs, including employee benefits, had risen to 35.1 percent. The same study found that food costs, incluãing employee meals, were 39 percent. ${ }^{15}$ Obviously, the totals of these averages would exceed the target figure of 70 percent.

Ancther interesting statistic is that wage rates in the food service industry increased 29 percent in the period 1964-10,59 against a 19 percent rise for manufacturing and a 23 percent rise fior the retail industries. 16

Employee productivity during the years 10,58-1968 rose at a 3.5 percent rate in industry while in the food business
productivity remained at a standstill. ${ }^{17}$
As a result of these factors, restaurant operators were presented with two alternatives--raise prices or increase efficiency, if they wished to maintain profit ratios. Some, of course, did both--and some did not stay in business. Unfortunately, both the raising of prices and increasing efficiency have built-in limiting factors--factors intimately connected with the competitive aspects of the industry.

Who is the competition?

The restaurant operator is concerned about his competitor down the street. The operator will keep a watchfui eye on his own price structure and the type of menu he presents to his customers. If the prices of a competitor go up he may feel quite comfortable about raising his. Up to this point we could be talking about Ford and General Motors or General Electric and Westinghouse. But the comparison Erows weaker when anctrer more serious form of competition is considered.

It can be said that, in the lorg run, the food service operator's chief competitor is the housewife and, indirectly, the retail food industry. Festaurants are in business to add velue to food. This vaiue tahes the form of convenience, service, atmosphere, and, perhaps, excitement and change. \& large portion of the awa-from-home feeding volume does not represent an absolutely necessary service; there are
alternatives. If the restaurateur prices himself above a certsin range, these alternatives will be used more readily than comparable alternatives in other industries because they are more readily available.

Other oroblems

Many food service operators suffer inefficiencies in their operations that stem directly from the use of outmoded plants and equipment. Too, lack of meaningful research into industry problems has been a negative factor in the progress of the industry. In the matter of research, the restaurant operator, particularly the smaller owner, is in much the same position as the small farmer -with a major difference: the farmer has the huge resources of the Department of Agriculture to promote research and then extend the results. As a matter of fact, it would appear from a review of available literature that most of the recent research affecting the food service industry has been done by companies outside the industry --particulariy suppliers of focd, equipment, and supplies.

The Need for Change

The need for chenges in food service manegement practices, then, is a result of pressures on many fronts. Iarge, mitiple, absentec-owner chains required standara operating systems. All operations were caught between
increasing cost pressures end their inability to pass on inefficiencjes by raising prices. And change was forthcoming.

It has been previously mentioned that change was forthcoming in the development of standard systems of operation. Other changes were evident in the creation of new types of operations. Among these the fast-fcod type of operation is particularly notable. The American Machine and Foundry Company developed an almost completely autorated drive-in. These systems, aimed primarily at cutting the direct operating costs of labor and raw materials, have been quite successful. A report by the National Restaurant Association traces costs and profits from the period 1955-1965 for all restaurant corporations showing an annual net profit. This report indicates that this profit as a percentage of gross sales has risen from 2.6 percent in 1956 to 3.3 percent in $1965 .^{18}$ This turnabout does not necessarily indicate that the problem has been solved. It does, however, indicete a movement in the right direction.

It is the thesis of this paper that restaurant operating systems are currently lacking with respect to the amount and kind of plannins and control information necessary to develoo and maintain the efficiency of the physicai processes criticsI
to the operation and to keep these processes supplied with the proper inputs. In the following section we will examine these particular needs more explicitly.

FOOTNOTES

${ }^{\text {I }}$ George Orwell, Down and Out in Peris and London (New York: Harper and Bros., 1933).
${ }^{2}$ For a complete discussion of the development of chains in this period see: Donald E. Lundberg, The Hotel and Restaurant Business (Chicago: Medalist Publications, 1970), pp. 158-162.
$3_{\text {Peter Dukas and Donald E. Lundberg, How to Operate }}$ 2. Restaurant (View York: Ahrens Publishing Co., lob 0), p. 143 .

${ }^{4}$ Io id.

${ }^{5}$ Interview with Dr. George Hall, Educational Director of the National Restaurant Association, October, 19,59.
${ }^{6}$ Information relayed by Dr. Donald E. Lundberg as the result of an interview with Edward Webber, president of A. \& W Root Beer Corp., April, 1971.

$$
\text { II The Stouffer Restaurant Corporation. }^{\text {Then }}
$$

$$
I z_{\text {Iundoerg, }} \text { p. } 2 I \theta .
$$

$$
\text { 13 Ibid., p. } 186 .
$$

$$
14_{\text {IDiá. }} \text { p. } 159 .
$$

$$
\text { 15 As reported by Lundbere, p. } 178 .
$$

ib́gureau of Labor Statistics, "Eating and Drinking Places Industry," Industry Manocrer Surveys, No. I15 (March, i9ó9).

17 Ibid.
IR" The Washington Report" (Chicago: Neticral Fiesteurant Association, April, 1959i, p. 3.

$$
\begin{aligned}
& { }^{7} \text { Lundiber } \mathrm{g} \text {, p. } 276 . \\
& { }^{8} \text { Ibid., p. } 217 . \\
& { }^{9} \text { void., p. } 158 . \\
& { }^{10} \text { void., p. } 225 .
\end{aligned}
$$

CHAPTERIII
THE NEEDS OF THE FOOD SERVICE INDUSTRY

There are a number of reasons why food service operations are deficient in terms of planning and control systems. Among these are:

1. The nature of the business.
2. The nature of the managers.
3. The lack of research in the area.

The Nature of the Business

Much goes on in a food service operation--and it taires place in a very short time. These two factors present food service operators with very special problems in the collection of information and its use for planning and control. A typical food service operation performs all of the functions usually associated with any business enterprise. These include planning, purchasing, receiving, issuing, preparation, procuction, distribution (marketing)--all the way through the post-transaction activity. The difference between a restaurant and a manufacturing company, however, is that ail of these functions may take place in a matter of hours in the restaurant. Add to the speed with which these functions take place the fact that our typical restaurant operation is engaging in many smell transections durine this short time
span and some of the difficulties in data collection and use become apparent.

Another difficulty is that most restaurants are handling many product lines; and these products, for the most part, are compound of various raw materials. The result: there are problems in the control of inventory and the compilation of information necessary to purchase efficiently.

The Nature of the Managers

Restaurant operators, as a group, are people-oriented. ${ }^{1}$ They have chosen their vocation based on this orientation. Many do not enjoy the functions of their business that are not directly releted to either their employees or their customers. Planning and control, particularly control of raw materials, do not fall within their primary orientation. ${ }^{2}$ Consequently, most small food operators do not utilize those information and control methods currentiy at hand. The small size and the involverient of management in all phases of the operation often create a situation in which cost control, and the information necessary for cost control, are neglected simply because the menager is forced to handle those aspects of his operation most imminent to the perromence vis-à-vis his customers. Too, he may not recognize the importance of control to the success of his business.

In lareer operations departmentalization creates a more
favorable situation for management regarding the specific control of various aspects of an operation. Unfortunately, the tools available to provide the necessary information to the large operator are inadequate for the task at hand.

The Lack of Research

We have already commented on the lack of research being carried out relative to the food service industry. That there is need for this research was borne out oy a unique industry study.

An industry surver ior the future

In 1958 the Anerican Hotel and Motel Association commissioned the School of Hotel Administration at Cornell University to direct a study of hotel/motel operations in the United States. This study was carried out by Booz, Allen \& Hamilicn, Inc., under the hotel school's guidance, with the stated purpose "to determine how to best prepars the lodging industry to meet the requirements of the public 10 years from now in relation to trends and developments which will influence their desires and requirements." ${ }^{3}$

The report wis named "Operation Breakthrough" and, among many recomendations, made the following reearding food plaming and control:

1) "Develop a Fcod Plamning and Control System to Minimize Food Ioss ard Ootimize Food and Beverage

Inventory Levels Within Hotels/Motels.

The food and beverage control syster will forecast individual item demand requirements by meal period for at least the seven subsequent days. These forecasted requirements will be used to plan each day's production quantity for items that are not prepared to order. The menu i.tem forecasts will be broken down to establish a forecast of the kinds and quantities of food ingredients required by day for the next week for each perishable or high dollar food item. These forecasts of food requirements will establish the proper purchase quantities by food item. This approach provides a uniform method of planning the quantity of food to be sold and of ordering food in accordance with the plan. ${ }^{14}$
2) "Use the Forecasting Subsystem to Prepare a Sales Forecast for Each Menu Item.

A menu file is maintained by the computer system with at least the following information stored in it.

- Menu item number and description.
- Price per serving
- Quantity per serving and unit of measure, such as 8 oz . of roast beef
- Other items included with the meal, such as bread, sslad
- Average number of servings demanded per meal period Each day the system will update the average demand for each
item based on the sales data taken from restaurant checks. Forecasts of future demand for each item are developed by adjusting the current moving average by the forecasted house count for each day in the forecasting period." 5

3) "Use the Food Planning System to Establish the Quantity of Food to be Prepared Each Day. 16

This section recommends that proauction planning and requisitioning be tied in with forecasting.
4) "Utilize Inventory Management Techniques in the Inventory Control System to Establish Econornjc Order Quantities, Reorder Levels, and Food Control Reports." 7

This subsystem would minimize inventory costs, estabIish and maintain an ordering policy, and prepare food control reports. Figure l is a schematic of the food planning and control system of the future as envisioned by this report.

The report's recomnendation for providing these systems revolves around the use of the computer. The logic in this is inescapable as the use of computers currently appears to be the only feasible answer to the necessity of handing the large amount of data generated in short periods of time so characteristic of the industry.

In this regard "Operation Ereakthrough" points out that the industry will benefit most directly from more effective use of curpent improvements affecting computer costs and

Figure 1.--A food planning ana control system of the future, taken from
"Operation Brealcthrough," p. 159 .
speeds and from current technology which has not been used by the industry in any significant way. 8

The report also points out that a reduction of computer costs and the utilization of on-line real-time systems will bring the possibility of computer use to the large number of relatively small operations in the industry. 9 That this is a significant fact can be seen readily if the structure of the industry is considered.

The structure of the Industry

T'able 1 indicates the nurnber of public eating establishments and institutions with food service by kind and size of business in the United States in $190^{\circ} 6$. Of the 343,749 total public eating establishments, only 47,825 or just under 14 percent enjoyed gross food sales of more than $\$ 100,000$. A system which would be economically feasible for establishments with gross sales of over $\$ 50,000$ would mean that those potentially able to benefit from such a system would be increased by 54,273 establishments.

At this point we should investigate some of the specific information needs of the food service operator relative to the planning and control of the raw materials, i.e., food lised in his operation.

Food Cost Information Needs

Most food cost information surfaces at some point in
PABIE ..--Unitod States Pubilc Eating Estabifshments and Institutions with Food Service-Numbor by Kind and Sizo of Business, 1966

TABLE 1.--Continued

time as a ratio of the cost of raw materials to sales. These ratios are compared to budgetary ratios or, as is usually the case, with the historical ratio the operation has experienced. If the operator considers the ratio to be too "high" he then takes steps to locate the source of the variation. If he can locate the cause at one of several different sources he supposedly applies corrective measures. This system has only limited effectiveness for several reasons.

In the first place, the operator's budgeted or historical ratio serves only as an upper bound. He knows he is in trouble from a profit standpoint if he exceeds his standard. He does not know, however, what the standard should be, given the menu pattern he is presenting to his customers. In other words, he has no standarà cost information that can be used as a base for caiculating meaningful variances. Price changes, changes in materials cost, and the mix of items purchased may be affecting his ratio potential without his knowledge because he lacks this information.

Secondly, the food service operatcr usually doss not know where inefficiencies may be taking place or, as pointed out above, whether factors other than inefficiencies are causing cost changes. Some operators break their ratios into food groupings: but these breakdowns suffer the same failings as does the cverail ratio.

Lastly, food cost information is seldom available in time to deal with current problems. If the food service operator receives his food cost figures from his accountant by the midcile of the following accounting period he may be from forty-two to forty-five days late in attempting to exert control on a deviant situation which may be shifting daily--or even hourly. Unfortunately, many operators either receive cost information even later than this, or do not receive it at all.

The accounting firm of Harris, Kerr, Forster takes the position that a form of standard costing should be used. In the book Profitable Food and Beverage Operation, written by three members of the firm, a standard costing scheme is proposed under the title of "Pre-Cost, PreControl System."10 Although the concept is sound they do not indicate how the system can be implemented and maintained by the small or medium-size operation. It would, indeed, be difficult for any operation, regardless of size because of the amount of data that must be handled. The probiem, of course, is that the development of a complete standard cost system given the number of different raw materials and the number of transactions involved in even a small restaurant presents a formidable challenge to hand data processing. The obrious ise of computers for this pumpose has been hampered by the lack of research and the small size of most operations.

Forecasting Needs

The success of meal forecasting has primarily been dependent upon the skill and experience of the operator. Sales histories (where maintained) are used to prepare forecasts.

Forecasting is essentially a two-step procedure. First, the total number of meals (or covers) is predicted and then the breakdown or mix of the individual menu items. Most forecasting difficulties arise in the second step as the popularity of an individual dish will vary depending on the other items presented with it (cross elasticity of demand), weather, time of year, day of the week, and some element of random selection. Too, the reputation of a particular establishment in regard to their "specialties" is another influencing factor.

The total number of covers will also depend on a number of variabies including time of the year, time of the morth, day of the week, weather, special events, national and local economic trends, pay days, and any number of "local" variables.

A literature search and the author's twenty-five years of observation have revesled no formula approach to forecasting on the part of commerial food service operators. On the other hand, some operators do a quite adequate job of forecasting through experience and utilization of their
knowledge of the variables listed above.
The importance of an adequate forecast for planning in the areas of purchasing, staffing, and production scheduling are obvious. Not so obvious is the necessity on the part of commercial food operators to forecast the potential contribution of a given menu to their operational profit. For the amount of contribution a given menu will provide depends not only on the difference between cost and selling price of the individual items but also on the number of items sold.

Purchasing Needs

The variety of food purchasing practices in the industry is almost as great as the number of establishments. Some establishments do much of their purchasing from a local grocer, practically on a daily basis. Many large chains engage in central purchasing and maintain warenouses and/or central commissaries. Other operators buy from wholesalers distributors, jobbers, farmers, and through purchasing cooperatives.

Regardless of the size of the operation, purchasing is normaliy a two-step process. Staples purchasing is inventory-based, utilizing some concept of miri-max or par stoclr orcering. Perishable goods purchasing is ivasea on foreassts and ordering is done close to the point of use.

Forecasts are translated into recipe amounts from which ingredients are calculated or estimated and the amount of food usage established. Obviously, the translation of Iorecasts to purchase amounts is a time consuming process when hand calculation is the only available technique. The preciseness of the purchasing technique described above is seldom followed. Inventory amounts are usually not known at any given time, no formal inventory parameters are established, and the translation of forecasts to amounts to be purchased are merely rough estimates. Again, the operator relies primarily on experience and instinct to carry him through, Storage and holding costs are not known and enter into his purchasing decisions only peripherally. This is also true of ordering costs. Only in a few large chains are these costs given any consideration. Some smaller operators may not need this information but at least one report indicates that 80 percent of surveyed establishments without inventory controls feel that it would be desirable that such controls be installed. 11

Production Neads

Ideally, a food service operation maintains standards that allow it to preeent to the guast a dish that represents exactly the quality the managemert wishes established for Its product. Trese stenderia involve standard specifications for ingrediente, standard recipes, standard portion sizes,
and standard presentation on merchandising. The ideal is observed more in the breach than the performance. Using standards involves first their determination and, secondiy, seaing that they are maintained.

The slow passing of the first class chef from the food service scene has provided the impetus for the establishment of these standards in many operations where they once existed only in his head. In order for less-skilled workers to produce acceptable dishes the procedure had to be committed to paper.

With the increasing use of convenience or "ready" foods trie responsibility for the setting and maintenance of standards is shifting more and more into the hands of the purchasing staff, for quality standards are hidden in the brand names of convenience items. Nuch of the maintenance of quality and standard portion size is in the hands of the outside food producer.

An importent aspect of the functions of cost control, forecasting, purchasing, and production is that al though they are extremely interdependenty many operations treat them as independent functions.

Summary

In this section we have looked at some of the needs of the food service industry in relation to the information
needed to implement planning and control. In a fast-mioving restaurant operation the short period of time between planning and sale and the large number of small transactions and products involved create a real challenge to conventional information systems. That this information is needed in the areas of food cost, forecasting, purchasing and production is well established. The problem then is how to provide necessary data in such a way that the needs of management are mat. In the next section we will look more closely at current practices in order to establish the base for a proposal for filling this information need.

FOOTNOTES

$I_{\text {Lundberg, }} \mathrm{p} .7$.
${ }^{2}$ Conclusions reported to the author by Dr. Donald E. Lundberg. Dr. Lundberg reached these conclusions as a resuit of the administration and interpretation of "several hundred" Ruder Pret'erence Records, administered to students and alumni of the Cornell University School of Hotel and Restaurant Administration in the period 1946-1949.
${ }^{3}$ Booz.Allen \& Hamilton (under the direction of the Cornell School of Hotel and Restaurant Administration), Operation Breakthrough: an Approach to Hotel/Motel OperaLions in 1978 (New York: The American Hotel and Motel Association, 1969), Foreword.

4 Ibid., p. 159.
5Ibi.d., pp. 159-160.
${ }^{6}$ Ibid., p. 160.
${ }^{7}$ Ibid., p. 161.
$8_{\text {Ibid. }}$ p. 5 I.
${ }^{9}$ Ibid., $\mathrm{pp} .51-52$.
${ }^{10}$ Joseph Brodner, Howard M. Carlson and Henry T. Maschel, Profitable Food and Beverage Operation (th rev. ed.; New York: Anrens Publishing Co., Inc., 1962), pp. 375-395.

Il"The State of Information Precessing in the Hotel-Motei Industry: a Survey Report" (New York: Harris, Kerr Chevernak and Co., October, 1970), p. 15.

CHAPTER JV

CURREIT INDUSTRY PRACTICES

Although this section will be devoted to the investigation of current practices in food service operation, with preticular attention to infomation, planning, and control as applied to the food used in the operation, it will be recessary to set certain Iimitations on the investigation.

As can be seen by returning to Table 1 , there are more than 371,000 eating and drinking places in the United States. These range from establishments doing less than $\$ 20,000$ per year in gross sales to those doing more than $\$ 6,000,000$ per annum. It is obvious that methods of operation must, and do, vary depending on size, type of management, type of operation, location, and several other factors. For this reason, the practices described will be those most generally found in the better managed establishments. It shouid be kept in mind that, unfortunately, a Iaree number of operators have no systematic approach on operating policy. These operators run their establishments much as ar extension of the home kitchen or on the basis of some uniathomable personal vision of a successfful. restaurant operation.

The Menu

It would be difficult to overrate the importance of the menu to the success of a food service operation. It is the single most important determinant in the areas of purchasing, staffing, equipping, marketing, and production. It is a controlling factor in estabiishing the atmosphere or ambience of the establishment and will establish the profit potential of the establishment. Strargely, the menu is only an afterthought in many operations. ${ }^{\text {I }}$

Definition

There is sone confusion as to just what is meant by the word "menu." The term is derived from the French word minute and originally meant a small list. Bill of Fare is a closeiy related term. What is meant here is the communications device by which the restaurant operator informs his customers exactly what his product line is for a particular day. It is part of his marketing effort.

The other use of the word "menu" is in the more generic sense of the product line itself. It is this concept of the term that we refer to as being the dominant factor in the food service establishment. It is in the confusion of the two concepts that some operators find themselves concentrating on the marketing device and ignoring the greater irnoort of the product line idea.

For example, it is common practice for some chefs to
walk into their refrigerators early in the morning and, on inspecting their contents, to base the day's menu on what they may happen to have on hand. A popular book on food and beverace operation states that "the contents of the refrigerators should be the first consideration of the menu writer because they are fundamentaliy a place of temporary storage, not a low temperature storeroom. ${ }^{2}$ Later we find that "a good menu from the patrons' standpoint, and an economical menu from the restaurant's standpoint, is not possible unless the refrigerator is checked before menumaking is undertaken. "3 These statements simply will not stand up under a careful consideration of the needs of the food service operatior in the areas of planning, purchasing, and the development of an optimum product mix--a mix that will satisfy both the customer demand and the desired profits.bility of the establishment. Other considerations must come before the refrigerator.

The menu and the investment decision

Theorotically, anyone wishing to build a restaurant should develoo his menu before attempting to consider his finarcing, budgeting, or before shoveling the first spadefull of dirt for the foundotion. The reasoning follows. Before entering into the restaurant business (or any other) the entrepreneur attempts to forecast his probable raturn on his investment. He is, after all, supposedly
going to make a logical decision regarding the value of his investment in the restaurant in relation to lost opportunities to invest his capital in other ventures. We will assume, for example, that he will not choose to suffer the agonies and risks of running his own establishment for a lesser return on his capital, after taxes, than he would on a tax-free municipal bond.

In order to calculate his probable return he must cast a pro forma income statement. The usual method of forecasting income and expenses is to: l) calculate the profit needed to provide the desired after-tax return; 2) using average industry statistics, calculate the sales volume necessary to provide this return; 3) determine whether this sales figure is feasible--considering the size and the planned average sale of the proposed operation; 4) subtract forecast profit, fixed costs, and semi-variable costs from sales; 5) determine whether the remainder, which represents the amount available for variable costs--primarily raw materials--is reaiistic in light of industry statistics for establishments of the class being considered. 4 There are several probiems inherent in this approach.

To begin with, it is obvious that the size of the proposed restaurant is a critical variable. This variable in turn is dependent on the amount of available investment capital ard the class of the proposed operation. With a few exceptions, class and size are opposing veriables and
must compete for available capital; that is, we must expect that a higher class establishment with a concommitant higher check average will mean less seating (and vice-versa) if we are dealing with a given amount of capital. 5

The problem then becomes one of balancing the size of the establishment and the average check in such a way that the multiple of the average check value and the potential customers will produce the desired sales volume. But in order to determine what the average check figure will be the sales mix must be known.

By sales mix we are referring to the menu items being presented to the customer and the number of each item we expect to sell. If this is kovm, along with the sales price of each item, we can then calculate a potential average check. In other words, it would be impossible to make a logical forecast regarding potential sales volume without first mowing what the makeup of the menu will be. Unfortunateiy, the budgeting procedure described three paragraphs back would still lead an operator astray. For If he were to utilize the sales volume as a staring point and proceeded to subtract out all costs other than raw matorials, he would quite likely end up with a periectly useless figure for his budgeted cost oif food. In fact, once a menu vas developed and priced in order to determine potertial sales volume it would be found that potential
food cost and potential profi.t had also been determined. To clarify this situation it is necessary to look at the method by which meru prices art established.

Menu pricing

In general, there are two recommended methods for pricing items on a menu--the food cost method and the prime cost method. The first involves marking up a given item using the buageted food cost percentage and the cost of the raw food used in the item.

Food cost method.--For example, a restaurant offers a one-pound order of chichen with nothing accompanying it (a la carte pricing). If the chicken costs the establishment $\mathbf{~} .30$ and if the target ratio fron the operating budget of the cost of food to sales was $\$.40$, the menu price of the chicker would then be $\$.30 / .40$ or $\$.75$. Actually, the price would probably be set at some higher figure, say $\$.80$ in craer to allow for certain inefficiencies in the operation. It would, after all, be unreaiistic to expect 100 percent efficiency in the utilization of raw materials.

If a price is being set on a combination of items the cost of the items surrounding the entree must be determined and added in. This becomes a fair-y complicated procedure in the case where the customer has a choice from several different appetizers, vegetables, desserts, and the like. It then oecomes necessary to deterrine some weighted average
cost of each of these categories. This requires that sales data be available or, in the case of a proposed operation, that forecast data be available for all items.

Prine cost method.-- The second method is the prime cost method in wich the labor cost (direct) of the items is added to the raw material cost. The selling price is then based on the budget ratio for both food and labor in the same manner as the method described above. Proponents of this method argue that it is unfair and unreasonable to ignore the fact that an item such as beef stew may incur three to four times as much direct labor per serving as a \mathbb{T}-Bone steak. 6

Disadvantages of current methods.--Although on the face of things both of these methods appear to provide a logical means of pricing menu items it turns out that neither can be used for little more than approximate bench marks.

The operator using either of these methods will soon find himself face to face with the factors of tradition and competition. Traditionally, customers expect to pay certain prices for certain items. Each jump in price from five, to ten, to fifteen cents for a cup of coffee in fast food establishments has been accompanied by the heartfelt yowls of the recuiars. Ons establishment, for example, raised the price of coffee by discontinuing refills. Where coffee plus refills had cost the customer \$.10, he now found himself payire $\$.10$ for each cup. Within three days the daily
breakfast covers had dropped from 400 to 200 , where they remained until the new pricing policy was rescinded.

The customer is also aware of the relationship of the prices of certain items even when absolute price is not a factor. If the price of stew appear's to be too high relative to the price of steak we can expect to see a decrease in the number of sales of stew.

If two or more restaurants are in direct competition the operator who prices certain items above his competitors will find that he is at a disadvantage--even if other items he sells are priced under the competition prices. He will discover that those items do not perform as they should in his sales mix.

The use of these pricing methods will often create price mixes that are unacceptable to the custoner and maire a reasonable pattern of prices impossible. As an example, the current price of chicken is about $\dot{\$} \cdot 30$ per pound. If it is assumed that the cost of surrounding items is $\$.50$ per cover the total food cost for a chicken plate would be $\$.80$. If the desired food cost ratio was $\$ \cdot 33-1 / 3$ the price of the dinner would have to be $\$ 2.40$ (igroring the inefficiency factor). The present cost of a l2-ounce U.S.D.A. Choice Sirloin Strip steak is approximately $\$ 2.00$. If we add in $\$.50$ for the cost of surrounding items and apply the ratio of $\$ \cdot 33-1 / 3$, the cost of the steak dinner would have to be $\$ 7.50$. It is quite probable that the
restaurant operator would, in fact, use neither price. If the class of his restaurgnt and the willingness of his customers to pay dictated that he could successfully charge $\$ 7.50$ for the steak he would also be able to charge considerably more than $\$ 2.50$ for the chicken. Or, in another class of establishment, management might find that they would have to lower the price of the steak considerably in order to sell the item. At the same time they might find that they were able to do quite nicely with the chicken at a $\$ 3.00$ selling price.

The prine costing method has one further disadvantage and that involves the difinculty in obtaining item labor costs.

Restaurant kitchens have no set standards of productivity; nor, in most cases, does a cook work solely with one item at any given time. The separation and allocation of specific direct labor costs under these conditions is nearly impossible. There are no machines or production lines to establish work speeds and these speeds vary from employee to employee. For these reasons the prine cost method exists more as a concept than a practical reality.

Some advantages of food cost ine thod.--The oricing

 method based on food cost has some value to the restaurant operator. He can use it as a guide for pricjng unusual combinations of items, is a basis for pricing single-entreemeals (such as banquets), and as a method of putting him somewhere in the ballpark when he has no other indicators he can use.

One other traditional block to the food cost method of pricing is worth mentioning here. That is the practice of most public restaurants of maintaining menu prices for relatively long periods of time. This means that changing food costs are not immediately reflected in changed menu prices. Whereas a grocer changes his prices as his costs change, the restaurateur does not. The result is that When a price change does come it may reflect not only changes in costs that have taken place over a fairly long period but the anticipated changes over some period in the future. This in turn means that current price is only one factor in the decision.

In actual practice most prices are set by a sort of "cut-and-fit" method. The restaurateur sets a price with an eye on competition, a knowledge of traditional pricing, and finally on what he ieels his customers will pay without an effect being felt on his total volume. This means that each food item will probably have a different mariup and the actual ratio of the cost of food to sales will depend on the weighted average of the items sold. Only by forecasting sales and costs can the potential or the menu be determined.

The concept of variable margin
As a matter of fact, the good restaurant operator is not overly concerned with his food cost percentage. What he really is interested in is the amount each iten will contribute to all other costis and the profit of the operation. He is interested in selling items that will give him the largest possible margin between his variable costs and gross sales. The larger he can make this margin with a given number of customers the greater his profit. In accounting terms this mount is known as a variable margin and has particular significance in the restaurant industry.

The concept of variable margin is significant because of the nature of the other costs incurred in the operation of a food service establishment. In most restaurant operations only the cost of raw materials is truly variable; i.e., proportionate to sales. Even this cost is proportionate to sales over a fairly narrow range of volume. An exception to this are certain supply costs, such as napizins and other paper supplies. And as this caterory of supplies is often thrown into the same expense account as other supply costs that are not variable, it is possible to consider raw materials as the only variable cost. Cver any reasonably short period of time all other costs show only slight variability.

If a period of time as short as one day is considered
only the raw materiais cost is of concern to the operator as a controllabie cost. Iebor costs cannot be reduced bj any sigrificant amount. Costs of heat, light, and power are nearly constant regerdiess oi voiume. The only savings, other then raw materials cost, will be on certain supply and linen costs--reietively smail items.

It is possible to visualize a typical restaurart at 5:00 P. A. On eny given day. The builcing is wam, the employees are present, ミdvertisements have been run, the long cleanins job preparatory to opening hes been completed, and the erenings customers have begun pushing through the doors. The profitability of the day's business now rests on the numieer of customers thet will be served, the mix of items that these customers purchase, and the eificiency with which the raw materials go into the patron's meais. Only these three variebles are subject to control: once the operator is committed to serving tine meミ1. By speedy service he cen attempt to serve the greatest possible number of customers; bj clever merchandising he can try to sell those items with the lergest VEriable margin: and by ifficient control of raw materisis he can attempt to avert weste and inefficiency.

An example will show how his seles mix nili effect hie verisile marcin and. ultimately, his profitability. Consider a hypotheticei focd service operator who selis only two iters as follows:

| | Fried Hali
 Chicken | Sirloin Strip
 Steak |
| :--- | :---: | :---: | :---: |
| Selling Price | $\$ 3.00$ | $\$ 5.00$ |
| Variable Cost | $\$ 1.00$ | $\$ 2.50$ |
| Variable Cost \% | $33-1 / 3 \%$ | 50% |

This is a situation that is often misinterpreted by food service operators. Part of the reason is a bujilt-in predilection toward food cost percentages on the part of the operator. If an operator, basing his action on the lower food cost percentage for chicken, should fush the sale of chichen, he would minimize his profit with every sale. Actually, his profit would increase in the same direction as food cost witn the largest amount of proift (or least amoint of loss) occurring at a 50 percent cost witin ell steak sales and the minimum at a $33-1 / 3$ percent cost with alI chicken sales. To clarify, let us look at these two items again.

Now, if 200 guestswalk into this establishment the maximurn total variable margin (or contribution) would be $\$ 500.00(200 \times \$ 2.50)$ if all steaks were $s 0 l d$, and $\$ 400.00$
(200 $\times \$ 2.00$) if all chicken were sold. We can also see that if our fictitious operator can increase the proportion of steak to the chicken he sells by dropping the price of steak to any anount above $\$ 4.50$, he can increase his total contribution.

If food service operators could price all items at the same ratio of cost to selling price it would, of course, still be to his favor to sell the higher priced items to jncrease his contributions.

Another way to see the effect on profits achieved by seliing higher contribution items is through the use of a break-even chart, such as the one in Figure 2.

Given ar operation with a sales mix and customer count that produces the cost/volume relationship indicated by V. The profit for this operation is the difference between total costs (T.C.) and sales ($C=S$) or the distance from C to S. If the sales mix should change in such a way that higher variable contribution items became a larger shere of the individual sales, with customer count remaining the same, the cost volume relationship indicated by V_{1} would apoly and, even though total costs would have risen fron T.C. to T.C. ${ }_{I}$, the distance from C_{1} to S_{1} would be greater than that from C to $S-$-indicating that profits had risen. Of course, if all items bore the same cost/sales ratio the slope of the total cost line would

Fig. 2.--Breakeven chart showing cost/volume relationship in a hypothetical food service operation.
not charge and profits would be even higher. As it was pointed out in the previous section, however, this would rarely be the case.

Difficulties in use of variable margin
It becomes apparent trat the cost/saies price relationshin of each menu item and the total variabie contribution
of each menu or a total menu pattern is critical to the success of an operation in relation to profits. Unfortunately, this information is seldom known to the operator. There are a number of reasons for this lack of information.

In order to be able to predict the contribution of any given menu or menu pattern several conditions must be met. The menu makeup must be known in advance, a reliable forecast of expected volume must be available, a good purchasing system (which includes reliable sources of supply) must exist, and item costs and selling prices must be known. Let us look at each of these necessary conditions. Although the ability to create menus or menu patterns well in advance of use is well within the grasp of food service operators, a surprising number of them make up their menus only one step in advarce of the arrival of their customers. These operators do not use their menu as a guide to purchasing but rely on what has been purchased to indicate what will appear on the bill of fare. Their argument is that by holding off on their menu-making they can take advantage of current changes in market prices. The criticism of this argument lies in the fact that:

1) the poor sales mix that may result from this lack of planning may be much more costly than paying higher costs; 2) all departments of the establishment will suffer from lack of pianning; and 3) it is possible to make substitutions in planned menus to enable the operator to take advantage
of significant inarket-price changes.
Those restaurants that present a non-changing menu have eliminated their planning problems as far as their menu is concerned. There are a limited number of restaurants whose location or type of menu allow them this luxury. Prominent among these are the fast-food operations. Single-menu establishments are also found at the other end of the class spectrum where large offerings and high prices tend to eliminate some of the necessity for change.

It is the middle-priced food service operation, enjoying the patronage of a steady clientele, that requires change and variety to maintain demand. It is in these operations that considerable tirne and effort should be expended to create profitable menus rar enough in advance of use so that they can be used as an effective tool for planning. Before investigating how this is dons, let us look at the other conditions necessary to predict the contribution of any given nenu or menu pattern.

A good forecast of expected volume is primarily dependent on the skill of the forecaster. This means that he must be conversant with a number of variables that will effect k is forecast and must be able to correlate them to obtain meaningful estimates. As indicated in Chapter I, these variables include such information as day of the week,
montin, season, weather, special everits, economic conditions, department store sales, and the like. Some of the data used are historical; other data involve assumptive information.

In general, the forecast is made far enough in advance of the date of the menu to allow sufficient leadtime for purchasing. Historical sales data are utilized to indicate total customer count under similar conditions. This is tempered by any information the forecaster may have concerning the date in question to arrive at an estimate of totel customer count. This count is then broken down into an item-by-item forecsst with the forecaster dravine upon his experience and the track record of the items being offered. This presents some difficulty if records are not quailable on the exact mix of items on the menu in question.

The reason for this is that the sale of any given Item is dependent to a large extent on the array of dishes that are "up egsirst" it on the menu. The demand for roest beef, for $\in\left\{a r m p^{?} \in\right.$, may be quite different when steak is aiso on the menu than wher it is not. Here, again, the estehijzment that offers only a single menu has the adventage of a constarit mix. Even so, there may be 2 different sales mix for different days of the week. Roast prime ribu may be an exceilent saies item on Saturday night but a rather poor one cr ilonday. A good sales history
record wili help to pinpoint these daily changes.
Even a forecaster with considerable experience may show consistent forecest error. The personality of the forecaster may dictate whether he will tend to over or underestimate as a usual practice. Some operators maintain a cormarison of forecast versus actual sales to spot consistent types of forecasting errors.

A method of forecasting that would enable accurate forecasts to be made regardless of the experience factor of individual forecasters is a needed addition to the managerent tools available to the restaurateur. An experienceá manezer in a new location, or an inexperienced forecsster, may result in poor forecasting for a considereble lengtin of time. Such a method would be an Integrai part of a total planning and control system. As Indicatea in the previous chapter, such a method is not cuncentiy aveilable.
A. good purchasing system is the third condition that wast be uet in order to predict the contribution of a ziven monlu. The opersitor rast have the capability of euccesefully obteinine the ingredients neceseary to prepare the zenu. offerings, end must see that these items will be airikleble at the cesirod time. It has hoen sold that eood foss parchasing is "having the proper foods, at the propor place, at the proper tine, and a.t a prico that you
wish to pay." Purchasing practices will be discussed in detail in a later section but at this point it is sufficient to point out that the above statement embraces the goals of a purchasing subsystem--another important element of a total planning and control system.

The last condition, that item costs and selling prices must be knowr., is easily achievable in concept but considerably more difficult to meet in practice.

A menu item may have anywhere from one to twenty or more firgredients. Even a very simple menu may have at least twenty-five menu items and some menus may have items nurnbering into the hundreds. Purchase prices on these items are constantly changing. In addition, the transformation a food item may go through from its condition as purchased to its condition as used in a recipe may require that adiditional computations be made to translate recipe amounts back into as-purchased quantities. Conversely, it may be necessary to translate as-purchased costs into edible portion costs. For exampie, a straight division calculation may involve determining the cost of one cup of flour taken from a hundred-pound bag. This caletilajion can be made more complex if the recipe calls for a cup of sifted flour. Now we mast know the yield of a hundred-pound bag in these terms in order to calculate the cost properly. Other examples are yields from the butchering of meats and vields from the preparations of raw
vegetables. Taken together, these considerations pose an almost insurmountable obstacle for the operator interested in achieving the proper mix of costs and selling prices in a. situation where he is making up a fresh menu for each day's operation. Unless he enjoys the luxury of a large staff, he is simply unable to make the necessary calculations. The use of computers to simplify this task is an obvious answer to the problem and a few members of the industry are beginning to move in this direction. The use of computers will be investigated in greater detail in a. later section.

A result of the computational problems is that few food service operators enjoy knowing the profit potential of their menus unless the same menu or set of merus has been used for a considerable period of time and the results have been observed. This information is ex post and planning for the period already gone by has been forfeited.

Planning the menu
How does the restaurant operator decide what specific items should appear or his menu? This question has numerous answers; the most of these will be investigated at this point.

It has already been indicated that a large number or overators construct their menus around the raw materials on hand. Whether the products are actually in the
establishment or are on order in advance of menu-planning is immaterial. The purchasing function is determining the product line rather than the other way around.

A second method is an improvement of the first. The operator develops his menu plan in advance of purchasing. This gives him the obvious advantage of being able to fit his menu to the various considerations it must meet. The problem lies in the number of variables the menu-planner must consider.

It has been indicated that a well-planed menu must have the potential of returning an acceptable variable contribution to all other costs and to profit. This mesns that all menu-item costs must be known along with selling prices and forecasts. The difficulty in determining item costs and developing reliable forecasts has been previously discussed. Unfortunately, the menu-planner has a number of other variables he must consider.

He must first consider the staff available to produce and serve the various items on the menu. Is the skill. qvailable to create a desired item? Will the proposed items create a work overload for the staff? Will the number of samces and the amount of carving required slow service? AII of these questions must be answered.

The menu maker must also consider the equipment available. Toc many fried items on the menu may overload the capacity of the deep fat fryers. He must also determine
whether there is sufficient oven capacity, cooking ware, and china available to accommodate his menu plan.

Marketing considerations are a primary concern of the meru-planner. Will the menu fit the needs of h is desired cliertele? Cost/price considerations become meaningless if the operator cannot create a demand for his product. In order to sell high-contribution items he may have to offer items with a relatively low contribution to bring people into h_{i} establishment.

Other marketing considerations revolve around internal consistencies which must be present in the menu structure. The menu offerings must cover a wicie-enough range of product types to meet customer expectations. This may be orly one item in centain operations, but this fact is well advertised. A speciality house may emphasize a particular type of products such as steaks or seafood. Otner operations need to offer a range of choices from meats, fish, and poultry to nor-meat dishes. The planner must be avare of flavor combinations; he must offer complimentary flavor choices. Fe must be careful not to repeat flavors in different courses. The menu marer must be arare of coics combinations, food shapes, and consistericies. An execrable example ci reglect of these principles is a plate of creamea chicisen with mashed potatoes and conn. Garnishes must be considered to increase the attractiveness of the princinal item.

In addition, as mentioned earlier, the good menuplanner must worry about the necessity of creating a marketing device, the menu card, to present to the customer. Here he must be concerned with layout, readability, attractiveness of wording, color, placement of items to create a merchandising impact, and the use of special devices to call the reader's attention to those high-contribution items he wishes to push.

It is a safe conclusion that, from all points of view, few, if any, perfect menus are created. Large chains with large staffs come closest to the ideal. The individual operator has little chance of satisfying all of the constraints that must be met in the planning of a menu. If he can settle on one menu or on one menu pattern he may, in time, be able to adjust his offerings to meet most of these considerations. If he creates a new menu for each day he must simply trust to luck.

There are methods, used by too few operators, by which the problem created by the complexities of menu-making can be attacired. One of these, the use of a cyclical menu pattern, is an old concept; the other, computer assisted menu planning involving the use of linear programming, is quite new.

The cyclical raenu

A cyclical menu pattern is one that repeats itself at
given intervals. Technically, a restaurant that has but a single, unchanging menu has a cyclical menu pattern. Cyclical menus may also mean that the customer can expect to find the same items on the menu each Monday and so on through the week. Unfortunately, these two concepts of a menu cycle have done much to discredit the approach in the Industry on the basis that cyclical menus result in menu monotony. This does not have to be the case.

An effective way to use cycle menus is to stagger a given menu so that it does not appear in a pattern recognizable to the customer. For example, a restaurant that used similar menus on week-days and a special menu on Sundays might set up a number of different daily menus-providing that number is not divisible by six. This causes the daily menus to appear on different days in consecutive sppearances. Obviously, the larger the number of different menus the more difficult it would be to detect the cycle. On the other hand, too large a number defeats the purpose of the cycle menu, that of appearing to offer a larger selection of iters than really is the case. Three or four Sunday menus are then used to create diversity for that day. A tyoical meru cycle might be the one iliustrated in Figure 3.

The cycle in Figure 3 is constructed for a restaurant that serves one typa of menu lionds.y through Thursday and on Saturday and somewhat different menus on Fridays and

The Complete Menu Cycle for 13 Weeks or 18 Weeks Wks. Sun. Mon. Tues. Wed. Thurs. Fri. Sat.
lst $\mathrm{S}-1$ D-1 D-2 D-3 D D 4 F-1 $\mathrm{D}-5$

2nd S-2 D-6 D-7 D-8 $\begin{array}{llllll}\text { D-9 } & \text { D- } & \text { D-2 } & \text { D-10 }\end{array}$
3rd $S-3$ D-11 D-12 D-13 D-14 $\quad \mathrm{F}-3 \quad \mathrm{D}-15$
4th S-4 D-16 D-17 D-15 D-1 \quad F-4 $\quad D-2$
5 th $S-1$ D-3 D-4 D-5 D-6. F-1 $D-7$
6th S-2 D-8 D-9 D-10 D-11 F-2 D-12
7th $\mathrm{S}-3 \quad \mathrm{D}-13 \quad \mathrm{D}-14 \quad \mathrm{D}-15 \quad \mathrm{D}-16 \quad \mathrm{~F}-3 \quad \mathrm{D}-17$

8 th $\mathrm{S}-4$	$\mathrm{D}-18$	$\mathrm{D}-1$	$\mathrm{D}-2$	$\mathrm{D}-3$	$\mathrm{~F}-4$	$\mathrm{D}-4$

9th	$\mathrm{S}-1$	$\mathrm{D}-5$	$\mathrm{D}-6$	$\mathrm{D}-7$	$\mathrm{D}-8$	$\mathrm{~F}-1$	$\mathrm{D}-9$
ICth	$\mathrm{S}-2$	$\mathrm{D}-10$	$\mathrm{D}-11$	$\mathrm{D}-12$	$\mathrm{D}-13$	$\mathrm{~F}-2$	$\mathrm{D}-14$
11th	$\mathrm{S}-3$	$\mathrm{D}-15$	$\mathrm{D}-16$	$\mathrm{D}-17$	$\mathrm{D}-18$	$\mathrm{~F}-3$	$\mathrm{D}-1$
12th	$\mathrm{S}-4$	$\mathrm{D}-2$	$\mathrm{D}-3$	$\mathrm{D}-4$	$\mathrm{D}-5$	$\mathrm{~F}-4$	$\mathrm{D}-6$

| 13 th | $S-1$ | $D-7$ | $D-8$ | $D-9$ | $D-10$ | $F-1$ | $D-11$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 14 th | $S-2$ | $D-12$ | $D-13$ | $D-14$ | $D-15$ | $F-2$ | $D-16$ |
| 15 th | $S-3$ | $D-17$ | $D-18$ | $D-1$ | $D-2$ | $F-3$ | $D-3$ |
| 16 th | $S-4$ | $D-4$ | $D-5$ | $D-6$ | $D-7$ | $F-4$ | $D-8$ |
| 17 th | $S-1$ | $D-9$ | $D-10$ | $D-11$ | $D-12$ | $F-1$ | $D-13$ |
| $18 t h$ | $S-2$ | $D-14$ | $D-15$ | $D-16$ | $D-17$ | $F-2$ | $D-18$ |

Fig. 3.--Typical cyciical menu pzttern, 13 or 18 weeks.
Source: AIbert I. Wrisley, Jr., "The Cyclical Menu," Food Manafement Profram Leaflet Number ó (University of p. 8.

Sundeys. This particular cycle includes 18 daily menus, 4 Friday menus, and 4 Sunday menus. As can be seen, daily menu number one ($D-1$) makes its first appearance on a Monday and does not appear again until three weeks later on a Thursday. It would not appear on a Monday again for 18 weeks. Friday and Sunday menus are run through for four weeks and are then repeated.

Although this type of a staggering scheme is effective in relieving monotony in offerings, it is not always necessary. Resort hotels and hospitals, for example, may be able to take advantage of average lengths-of-stay and simply repeat menus at given intervals. This gives then the aided advantage of designing each menu for a particular dey--an important consideration in resorts which may have relatively poor sources of supply and aiso may wish to tie in certain items with days of arrival, party nights, and other special functions.

An important point concerning cycle menus is that when properly used they tend to prevent the monotony that affects many menu patterns. This monotony is a result of the meriu maker falling into a rut due to a number of different factors. Among these may be habit, the fact that certain foods are delivered on certain days, and that the absence of certain employees on certain days--the head chef may be off on Wednesdays--resulting in the menu being
tailored to the skills of a second man. A restaurant operator may not even recognize that a pattern has been formed until faced with his handiwork over time.

There are a number of advantages to the use of a cyclical menu pattern. Among these are:

1. Forecasting. 4. Service.
2. Purchasing. 5. Training.
3. Production.
4. Time saved in the menumaking process.

Remembering that forecasting is essentially a two-step process: 1) estimating the total number of expected covers and, 2) breaking this total down into the number of each individual item expected, it can be seen that the use of a cycle menu soives a major problem involved in the second step. The forecaster $c _n$ take advantage of the fact that, when the menu appears in the cycle, an historical record is available with the ezact mix of offerings. He can then use this established relationship to forecast the item breakdown more accurately.

Improved forecasting means improved purchasing. The operator has better knowledge of quantities needed. Additionaily, by knowing well in advance what his product mix is, he is able to meet lead-time requirements easily.

The management of a food service establishment that has set up standard recipes to guide the production of the menu is anxious that these menus be followed exactly in
order to maintain quaiity．Even a well－trained cook may experience difficulty with a new or strange recipe and will do a better job upon repetition within reasonable periods of time．This is particulariy true in a new operミtion and would work very much to the advantage of a seasonal operator－－such as a resort feeder－－wino has but a short time to break in a crew that may be inexperienced to stant with．Iire production personnel，service people gain in efficiency with repeated appearances of certain menu items．

Those dishes thet require niceties of service or special handiling will de presented with greater delicacy or flair than if the semice person were relatively un－ familiar with them．Inis is especially true in the arrangement of food on the plate，where plate service is used，to present the most ettractive appearance possible． Use $0 \hat{E}$ E CPlic三l menu Eiso results in service personnel who are more familiar with proper gamishes to accompany certain dishes and the proper use of china or glassware to set off the food．

It $c \equiv n$ be seon that training personnel to hardle fcoi with consistency can be made easien by the use of a cyclic三l menu． 1 great many difierent items mey be served in en sstablishment over the counse of a year under a c戸ূlicミl menu plen，but the nen employee will have tine to becors adept at hendiing en item before a nたわ cjcle is
put into use. This is particularly appropriate in seasonal businesses or in situations where training time must be compressed.

It takes a considerable time to develop and writs a good cycle menu. Once the job is finished, however, the operator will need to spend only the time necessary for refinements and changes. This represents a considerable saving in effort devoted to menu making over time.

In general, the use of a cyclical menu pattern is a matter of putting the menu operation on a businesslike basis; it is setting up that part of the food service operation according to a plan. It also eliminates the haphazard, operation-by-crisis chaos that is all too often present.

Two disadvantages often cited in relation to cycle menus are the lack of flexibility and the need to make use of left-overs. Properly used, this type of menu does not have these disadvantages.

Once a cycle menu is completed it should not be ignored as "finished" and considered inflexible. One practice is to keep a list of substitute items in verious cost/price ranges to use in the event of emergency or a changing situation.

The leftover problem can be attacked in the following ways:

- the leitover item can be sold as a flyer or rider item;
- preparation methods can be refined so that smaller batches are made at any one time, thus lessening the chance of large amounts of leftovers;
-improved forecasting through use of the cycle menu will result in better production estimates;
- full utilization of some items can be realized by freezing for use the next time around the cycle.

Seascnality of certain foods are handed in cyclical patterns by altering the pattern to fit the seasons. A northern operation, for ezample, misht have four distinctive thirteen-week cycles yet have the actual menu content differ reletively little--using seasonal offerings to create the illusion of consicerably more difference than actually exists.

Computer assisted menu planning

The use of computers to assist in menu planning is a comparatively recent development. Although thers has been no application of computers to the planning of menus for comnerciai restaunants it is worth noting the progress that has been made in other areas.

Menu planning by computer has been localized in the institutional segment of the food service industrif, primarily in hospital menu planning.

The impetus for planning menus in hospitals by corputer grew originally out of the weli-kown diet probler. This problem was ettacked first by Stigler with refinenents
in terms of palatability published later by Smith. ${ }^{7}$ These studies were concerned with finding the minimum cost cmbinations of foods satisfying certain nutritional constraints.

An operational extension of these early studies was developed by Balintfy at Tulane University. Balintfy's work is by far the most comprehensive and useful application of the use of computers to menu planning and forms the base of most other applications by other investigators.

Balintfy defined menu planning as "the problem of finding the optimum combination of menu items which satisfy predetermined levels of nutrition, palatability, and economy for a sequence of days." 9 He considered the menu item, not food, as the basic unit of planning.

Using integer programing techniques he developed a multistage menu planning model that would plan least cost meals, further subject to nutritional and popularity constraints, for a series of days. In addition, a food usage program provides a listing of the food ingredients needed to produce the menus planned.

The importance of this development can be understood if the complexity of preparing dietary menus is considered. Not only must certain minimum requirements for common nutrients be met but a variety of diets such as Iow sodium and low fat--the so-called "modified" diets--must be plenned. The multistage model makes it possible to plan
menus that each day meet necessary requirements.
Balintfy also developed a single-stage model that plans dietary menus over a cycle or pericd of several days, meeting total constraints for the period. This model has the advantage of using a linear programming, rather than integer programming technique. 10

Although Balintfy's work represents a real contribution to those institutional feeders, such as hospitals with limited menus and relatively little choice, the actual planning concept does not fit the usual restaurant situation.

In the first place, as Balintfy indicates, "Maximizing profit implies the existence of selling prices which depend on the other hand on the demand and this leads to very complicated nonlinear models. All the applications thus far justify the acceptability and advantages of the minimum cost 'best buy' models."11 Minimum cost, of course, does not necessarily mean maximum profits.

Secondly, although Balintfy, along with separate studies by Gue and Ligget, has indicated the possibility of adding the element of selectivity to dietary menus, this selectivity is not without cost. ${ }^{12}$ Too, the degree of selectivity possible under the proposed algorithms is not sufficiently wide for the average restaurant.
The significance of the work done by Balintfy and others to the investigator interested in planning and control
systems for public eating establishments is that they have proven that it is possible to maintain and manipulate recipe and food ingredient files at reasonable cost on the computer. At this point, Balintfy's food use program is of more value and significance to the public food service operator than his remarkable development of usable menu planning algorithms.

In essence, two files, one containing all food ingredients used in an operation, the other containing recipes which in turn are made up of food ingredients can be combined with census rorecasts to produce a food requisition for any given period of time. This concept, of course, is similar to the parts explosion problem in a job shop. This concept, however, had been generally considered unworkable for a food service operation because of the large number of combinations and the short periods of time involved. The fact that the concept has been installed and is working in several hospitals and other institutions has done much to awaken investigators to the possibility of using the techrique in commercial operations.

Slimmary
In summary, it is clear trat commercial food service operators seldom come anywhere near optimizing the most essential aspect of their operations--the menu. The monu plenner must deal with a large number of variables and
organize these variables into some relationship that will tend to lead to various goals. Some of these goals, such as maximum customer choice and maximum profit, are incompatible. The need to work with cost/price/volume data is apparent. This body of data, however, is seldom available in a form that is of use to the menu planner. There is a need for this information, along with a method of quickly determining the potential of various combinations of menus and menu items on specific menus.

Forecasting

Current industry methods of forecasting vary from establishment to establishment with much of this function carried on quite informaily in a large number of food service operaiions. Where no formal forecasting procedure is used, managers and chefs rely on experience and intuition to guide them in deciding on amounts to purchase and produce. Although this lack of systemized planning may not seriously affect a small operation, it may create considerabie inefficiencies in larger restaurants.

Forecasting for food planning and control is reletively short-term demand forecasting. Long-term budget or sales forecasting, used as an aid in the overall financial planning, is not considered here. Rsther, the concern is with forecasting for two primary purposes: l) to estimate the needed amounts of raw materials in order to plen for
purchasing and production, and 2) to arrive at the potential contribution of each menu toward costs and profits.

In order to serve both purposes it is first necessary to estimate the number of covers to be served and the number of sales of each menu offering. As this function is heavily reliant on past events, it is necessary to maintain a history of past saies.

Recording sales

It is a normal practice to record sales either through scoring a menu card or through the use of some form of multi-counter. Recently, the National Cash Register Corporation has introduced a machine that effectively totals both number of item sales and individual dollar totals for these items. The current cost of this device, however, presently precludes its use in all but large operations. This recording may be carried out by a food checker or by the restaurant cashier. These totals are then sent to the food cost accountant to be recorded in some type of sales analysis record.

Sales analysis record

One type of sales analysis frem consists of a thirtyday columed sheot on which menu items are entered as they appear during the morth (see Figure 4). As items are reDeated throughout the month it is necessary to find where they have been previously posted. This is one disadvantage

Figure 4.--Sample of a daily sales analysis record.a
a Joseph Brodner, Howard Carlson and Howard Maschal, Profitable Food and Beverage Operation, 4th rev. ed. (New York: Ahrens Publishing Co., Inc., 1962), p. 381.
of this system. The advantage of the system is that it is possible to have the entire month's sales at hand and also to determine what the sales mix was for any particular day. Another method often used is that of maintaining a card file for each menu item counted. This has the advantage of ease of locating an item in question. The disadvantages are those of losing the overall recent sales picture and the difinculty of determining the relationship of the item to other items sold on a particular day.

Other information than that of actual sales totals needs to be recorded on the sales analysis sheet. The ratio of the number of sales of individual items to the total is useful information both as an aid in the future for forecasting and to determine the relative popularity of a dish. Items that consistently carry an unusually low ratio to total sales may be dropped from the menu (unless they happen to be the favorite dish of the owner's mother-in-law). The operator may also be interested in the proportion of daily entrees that are sold to the total number of patrons. A shrinking of this ratio in favor of sandwiches or other lesser margin-producing a la carte offering may be an inaication that something is amiss, either in the seiection of du jour items being offered or in the price structure.

Other information which shoula be maintained for the use of the forecaster includes:

1. Date.
2. Day of Week.
3. Weather.
4. Special Events.
5. Total Covers.
6. Run out Times.
7. Remarks re unusual occurrences.

All these items can affect the pattern of sales for any given day.

Sales patterns and total sales will vary with the day of the week. Sunda.y patterns are usually unlike any other day. Friday patterns may show a seafood influence, although this pattern has weakened over the past few years. Lighter items tend to sell well on Mondays and after holidays. In certain situations payday may mean that a better sale of higher-priced items can be expected.

Weather changes affect each operation differently. Those restaurants with relatively more remote locations may suffer in inclement weather; establishments close to transportation facilities may gain. An unseasonably wàm day may change sales patterns from the expected.

Special events, such as conventions or area sporting events, may drastically alter a normal sales pattern.

If in item has run out early in a meal period the recorded sales for that item will not be a reliable forecast incieator. Some adjustment will need to be made to accourt for the early sellout.

There are a number of other variables that may affect sales for any given day. Among these may be labor shortages that cause service breakdowns, production mishaps that generate the same result, or the death of a President that causes potential customers to remain glued to their television sets.

One other factor that enters into the total forecasting process is the banquet trade carried on by the establishment. This type of variable is categorized by Brown as a prediction rather than a forecast variable. ${ }^{13}$ By this it is understood that it is possible to predict the effect of the variable with a high degree of certainty. To plan the inclusion of this type of variable is a mechanical process--the need being simply that of making sure that the sales represented by predictive variables are included in the total. The record of banquet sales is usually maintained as a separate part of the sales history.

Methods of forecasting
The actual forecasting is done well enough in advence of the day of sale to provice sufficient lead time for purchasing. This time may vary from company to company. If necessary, the forecast is adjusted as the day of sale approaches to account for any perceived changes in the forecast variables.

The authors of Profitable Food and Beverage Oferation recommend that forecasting be done at a forecast meeting attended by the chef, the steward, maitre d'hotel, head checker, food cost accountant, and a representative of the manager. ${ }^{14}$ Many operations involve more than one person in the forecasting procedure although there would appear to be an optimum number of participants with the nunber being large enough to include different points of view, yet small encugh to function efficiently.

As has been indicated, heavy reliance is placed on the sales history as a guide to the actual forecast. To this historical information is added the judgenent of the forecasters as to the effect or certain assumptions they make concerning the future. These assumptions may inciude such variables as recent sales trends, the effect of special events, and the effect of demand cross elasticity resulting from a particular sales mix. If a single meru or cyclical menu pattern is used the latter variable can be considered historical rather than assumptive--improving the accuracy of the forecast.

Some establishments pre-cost their menus to determine what sales, costs, and ratios would be based on forecast covers. Brodner, Carlson, and Maschal recommend that this be done by applying the rorecested portions to the individual costs and sales to arrive at the anticipated revenue and costs for the menu. ${ }^{15}$

The advantage of utilizing forecasts to pre-cost menus is that it enables the operator to adjust his menu so that he can anticipate his sales and costs. Additionally, of course, he can also predict his food cost ratio and his variable margin. Ideally, he would always be able to adjust his menu offerings to meet any desired standard.

Problems in forecasting.-- In practice, restaurant people do not normally have the information available to carry out a menu pre-cost. The time involved in gathering, updating, and calculating recipe costs simply is too costly to support the pre-costing advantages. Even if recipe costs are known for main items some sort of an average cost of surrounding items must be used. If this cost is inaccurate it may cause considerable overail inaccuracies in the pre-cost procedure. Forecasting covers and portion totals is a task that is carried out fairly subjectively with considerable reliance on historical information. No formula method of utilizing these variables is currently in wide use. Some means of collecting, maintaining, and manipulating this data is sorely needed in order to carry out the forecasting function efficiently so that maximum use can be realized by the restaurant operator.

Purchasing

In the area of purchasing we find a considerable range of procedures with most of the differences being attributable to the size of the establishment. The owner-manager of a small establishment may do his own purchasing, another may turn it over to his chef. Larger companies have purchasing agents or stewards, mary have large purchasing departments. Still other very large companies do their purchasing through a subsidiary organization that has a separate corporate structure. Within these various types of purchasing setups, however, there are certain fundamental steps in which they all engage.

It is possible to distill certain general practices now being followed by better food service operators in the area of purchasing. By doing so, we can better establish the background against which data to serve the purchasing agent can be made available.

Good food vurchasing

Good food purchasing can probabiy be best described as having the right product, at the right place, at the right time, and at a price the purchaser wishes to pay. It is obvious that food purchasing, like the procurement function in any manuiacturing enterprise, has much influence on the success or failure of the firm.

Anyone can pick up a telephone and give an order to a purveyor, but ordering is not purchasing. We must accept the fsct that purchasing or buying is a complex activity with well-defined procedures which must be followed in order to achieve good results.

It is possible to break the knowledge needed by a food purchaser into five areas:

1. Knowledge of the needs of the establishment.
2. Knowledge of the market in which he buys.
3. Knowledge of the products he must purchase.
4. Knowledge of the procedures he must use.
5. Knowledge of the results, including the receiving and storage of his purchases.

Knowledge of the needs of the establishment

Figure 5 shows the relationship of the various components involved in the flow of food through a typical food service operation. It becomes clear from this illustration that all food purchasing is dependent upon a number of parameters that are characteristic of the particular firm for which the purchasing is being cone.

In a previous section the relationship of the menu to purchasing was considered in some detail. It is sufficient here to reiterate that the menu determines what is to be purchased. There may be some temporary advantage to turning
this sequence around and fitting the menu to "good buys," but it is impossible to maintain the desired character of the operation if this becomes the standard procedure. We have also indicated that a cyclical menu can be of much help to the food buyer. He knows well in advance which items he must purchase and is able to concentrate on becoming familiar with these products. Also, by lending itself to more accurate forecasting, the cyclical menu aids in pinpointing the quantities needed.

The forecast, combined with the menu, provides the necessary information concerning quantities of the particular needed raw materials. In this sense the menu is considered as a list of recipes that are, in turn, lists of food ingredients. Implicit in this scheme is that the recipes have been developed with a standard service portion as a base. That is, the quantities of raw materials needed in a particular recipe are factors of portion size times the number of portions the recipe is geared to produce.

Once the gross anount of needed raw materials is know, the purchasing agent must refer to his inventory to determine the net amount of raw materials needed. As indicated in Chapter IIT, purchasing is normally carried on as a two-3tep process with staple items purchased according to some formal or implied par-stock system and most perishable items ordered as needed. This implies that
the quantities of a large number of inventory items are not dependent on any one menu forecast. It is true, however, that many of the items purchased on a daily basis to satisfy the needs of a particular menu are the most significant items in terms of cost. Meats, fish, and poultry fall into this category, for example, and these items alone account for approximately 50 percent of the total food cost dollar. ${ }^{26}$

Inventory controls vary from nonexistent to perpetual controls maintained on computer files. In those operations where size precludes full-time storage controls the usual practice is to take monthly inventories and to make visual checks on current stock when necessary. To a.ll intents and purposes, effective control simply does not exist. Even where store clerks are used and an issuing systern is in effect, there may exist a wide gap between what the cardex or other record indicates is in stock and the actual goods on hand because items are not properly recorded as they pass in and out of storage. There is usually no attempt made to maintain an accounting control on goods outside of controlled storages, such as raw materials in the production area. This practice can citen be justified, however, on the basis that a relatively small portion of any current inventory is in noncontrolled storages and that the effect of any changes from accounting period to accounting period will balance out over time.

A common industry practice is to price food inventories on a modified FIFO basis. 17 It is modified in the sense that most establishments apply the last price to all like goods in storage at the time inventory values are calculated, causing costs to be overstated in a time of rising food costs and overstated if costs are falling. This practice obviously affects raw material cost calculations to some extent but is excused on the basis that there is normally a very small proportion of the older stock on the shelves.

A problem for restaurant operations regarding inventory control is the fact that it is necessary to control a large number of items moving in and out of storage compared to the dollar value of the sales of these items. This creates pressure on the establishment bcth in the area of physical control of the goods and in maintaining the requisite files to communicate to management the current status of the raw materials inventory.

It is appropriate at this point to indicate that a food purchaser is dependent on good specifications to define, in a market sense, the items he must purchase. This definition is based upon the needs of the establishment relative to the quality, size, performance, and numerous other standaras that may be applicable to various products. The reputation of the establishment depends upon the maintenance of certain product standards. These

Abstract

finished-product standards are largely dependent on the raw-material standards utilized in the purchasing of food for processing.

In Figure 5 capital on hand is shown as a modifier applied to purchasing decisions after considering the menu, forecast, inventory, and specifications. This indicates that the assumption is made that there is enough capital to make current purchases and that capital considerations usually are significant only in those cases where the purchasing agent is considering buying quantities beyond current needs. He may be inclined to purchase for future needs when offered a price break on quantity purchases, expects prices to rise in the future, or feels that he must protect himself against an expected shortage of an item.

It would appear that decisions regarding future buying are generally made only on the expressed cost of the purchase. Opportunity costs, storage costs, and cost of capital are not factors in the decision. As a consequence, numerous questionable decisions in regard to future purchases are the order of the day.

Knowledge of the market

Operators have numerous choices among the various sources of supply to filll the focc needs of a food service establishunent. Regardiless of which one, or which

Figure 5.--The food purchasing system.
comoination, is selected, they should have a good knowledge of the market in order to buy most effectively.

Knowing the market involves finding out what sources of food are available; what foods can be obtained from each purvejcr; and what the qualities, brands and price ranges of the food are. It also means maintaining contact with the maniet to deternine which suppliss can best meet the needs of an establishment at a given time.

Kromledge or the product

It is, of course, necessary that a good food service operator be knowleaigsable concerning the raw materials of his trade. This knowledee includes such areas as grades, other food standerds, and specifications writing.

Knowledge of the procedure

A good punchesine procedurs incluces the use of specifications, proper ordering procedures, and proper record keeping. Lack of a proper bujing procedure often nuilifies the operator's monledge of establisnment nosds, marlet, and the proiuct. Also, a properly organized purchasing prosedure is important to the bujeer in tirse saved, in eliminating enror, and in assuring that the rigint foods are celivered at the right time.

A good buying proceaure involves a sjateratic rarlest seanch, sjetematic control of purciase oxders and oniering times, developins good relationships with purvejore, and
other procedures that facilitate the purchasing process.

Use of specifications

Clear, written specifications are key factors in any good food purchasing system. The importance of having a clear, concise, written set of food specifications is lost if they are not properly used in the purchasing procedure.

Copies of the specifications should be put into the hands of the suppliers. This enables the seller to know exactly what the buyer wants when he orders a product. It also provides a means of resolving differences with the supplier when products are delivered which are not satisfactory. Some estabiishments send out a list of foods needed, with the specifications stated for each item, to two or three suppliers. Each supplier inserts the price at which he will supply each item and returns the list. The buyer then telephones the supplier who gets the order.

Some operations simplify the use of specifications by organizing them into a book and assigning a code designation to each specification. This provides positive identification of each item without a lengthy explanation on the purchase order form.

Ordering staple items.-- If ordering is done at regular intervals, a par-stock can be established and used as an ordering guide. A nomal usage over the lead-time interval
is established and a safety-stock amount added to this. At ordering time the buyer replenishes the stock to the predetermined par.

The mini-max principle can be used when ordering can be done at any time or when certain order quantities are most desirable in terms of economy. A safety stock is set to cover the lead time and this becomes the minimum stock or reorder point. When this point is reached the order is placed.

Although Balintfy and others have suggested inventory control formulas that have the potential of being used by the industry, the lack of useful data, the difficulty inherent in changing long-established buying patterns, and the lack of empirical testing in this area appear to have resulted in littie change in food-buying practices. 18

Standing orders with purveyors are quite commonly used for certain products. If the supply of goods on hand is closely watched and any buildup or depletion of inventory corrected immediately, they can be used successfully. The danger in using standing orders is that the purchaser often $\mathrm{I}^{\prime \prime}$ ils to provide proper supervision of the current inventories, with resulting discrepancies because of either dishonesty or oversupplying on the part of the purveyor.

Knonledge of receiving and storage practices

Good purchasing does not end with the giving of the order to the vendor. To insure that good purchasing practices are not wasted, it is necassary for the operator to determine that the goods received at the estabiishment are the exact goods ordered. In addition, the handing of the goods after they are received is most important in the preservation of quality and quantity. This can be translated into the need for the meintenarice of good receiving and storage practices.

Receiving

If the quantity and quality of incoming merchandise are not inspected careifully, the use of detailed purchase specifications and careful buying are to no avail. Eood cannot be profitably resold if it did not arrive, was in short weight, or was delivered in poor condition.

How receiving is done varies considerabiy amone food service estabinshments. There are, however, certain principles governing this control.

According to Iukowsti, the basic rules of receiving in a food service operation are:

1. Accept the merchandise.
2. Inspect the merchandise to see if the products agree with trie irvoice.
3. Iist ali items received on the receiring cierlsis えaily report.
4. Deliver the merchandise to the storeroom or kitchen.
5. Inspect the merchandise to determine if it is in agreement with the specifications. 19

How these practices are performed depends upon a number of variables including the size and type of establishment, available facilities, and the kind of control system used.

Receiving responsjoility..-Ideally, a food service establishment should have a full-time receiving clerk with specifi.c responsibilities. The clerk should be a member of the auditing staff and should report to the auditor. Many operations have the clerk reporting to the steward, chef, or purchasing agent, thus violating a basic principle of control.

A large number of smaller establishments either use the receiving clerk as a stores clerk in addition to his receiving duties or have no receiving clerk. Of those establishments who have no clerk, some take the logical step of assigning another employee to part-time receiving duties with responsibility for this function. Unfortunately, a large number of operations leave receiving responsibilities to the person nearest the door when the delivery errives. The result is a complete lack of attention to this important area of control and the loss of any effective check on purchasing.

Receiving records.--Figure 6 illustrates one type of receiving record, usually known as the Receiving Clerk's
RECEIVING CLERK'S DAILY REPORT

Figure 6.--Sample receiving clerk's daily report form. ${ }^{\text {a }}$
aLukowski, p. 17.

Daily Report. The purpose and function of these records is to record all incoming food deliveries. Each delivery should be accurately recorded for date of delivery, quantity, price, and amount of each item received. Done properly, this record then becomes a basic link in the operation's food cost control system.

In addition to recording quantity, prices, and amounts, the receiving record also indicates the disposition of the incoming goods. Deliveries are generally divided into Food Direct and Food Stores.

Purchases that are sent to storages from which they will later be requisitioned by the production department are classified as Food Stores. This includes all types of storages, including refrigerated and frozen.

Purchases such as milk and bread that are sent directly to production for temporary storage and are not later requisitioned are classified as Food Direct. It is assumed that these foods will be used on the day they are received so that the total of this column of the Receiving Clerk's Daily Report serves as the daily requisition for those items.

Storage

Storage is important in the overall operation of a
food service business because it is the link between roceiving and preparation. Storage performs a holding
function in which quality can be retained or lost. It also serves as a major food control point.

Food is placed into various storages by the receiver or storeroom clerk and is issued from these storages to the various preparation centers. In some food service operations the storeroom clerk is responsible for maintenance of the price book or index and prices all requisitions. Requisitions are then sent to accounting for extension and totaling. Other establishments hold the storeroom clerls responsible only for the items and quantities of these items that leave the storeroom.

The great majority of establishments without stcreroom clerks utilize a variety of methods to a.ttempt some control over the storage area. Certain times of the day may be set aside in which goods can be requisitioned-usually a bottleneck for production when the inevitable iten, forgotten at issuing time, is needed. Another method is to tack a sheet on the storeroom door for employees to note items taken from the storeroom. It appears to be a time-tested fact that this is the first thing a new assistant manager does after straightening out the storeroorn. For rather obvious reasons, this hopeful attempt at control is seldom successful. A great many managers simply open the storeroom doors in the morning and hope that nothing is taken--a rather forlorn possibility in the usual scheme of things.

Like other aspects of food control, storeroon control is complicated by the large number of items handled along with their relative perishability. Where storeroom records are kept, it is usual to use some type of card file to record purchases, requisitions, and goods on hand. Bin cards are sometimes used in food storerooms; but their greatest use in the restaurant industry is in liquor and wine storerooms.

A number of companies are using computer assisted storeroom controls. These systems are, for the most part, based on the use of punch cards to follow items on their route through the departments. This affords better inventory control with most of the problems in the system centering around generating, ana keeping track of the cards.

Johnson and Moore, describing the inventory and control system they developed at the University of Missouri Medical Center, indicated that, in addition to the above problerns, considerable effort had to be experded in training emplcyees to operate the system. They feel that methods that would eliminate use of cards for data transmission-i.e., on-line systems-wculd be preferable to the use of cards. 20

Cost of food storage is considered a fixed overhead item by most food service operators (when it is considered at ail). In a study conducted by Luhowski, Eshbach, and Wrisley, an attempt was made to allocate storage costs to
recipos--along with those of receiving and issuing. ${ }^{21}$ Although the project is technically feasible, the problem of a meaningful basis for allocation tends to make the effort less meaningful than could be hoped. Operators are aware that there is expense involved in creating storage space and in the maintenance of equipment. In going operations, however, the fact that the space has already been committed removes it from the consideration of the operator when cost reduction possibilities are in order. The fact remains, that better control over inventories can lead to reduction in storage costs.

Summary

The food service operator needs to relate to five areas of knowledge in order to do a competent job of purchasing. These areas include: knowledge of the noeds of the estiolishment, knowledge of the market, knowledge of the product, knowledge of the procedure, and knowledge of the results--an area which includes receiving, storage, and issuing.

Although this functional area is a critical one in the planning and controi of a food service operation, many restaurants have no systematic pian for coordinating purchasing with other aspects of the operation of the establishment. Purchasing, then, is another area in which
the lack of data and facilities for manipulating such data works to the disadvantage of the entemprise.

Computation and Use of Food Costs

There are two aspects of food cost computation that are of interest to the food service operator. The first of these is the computation of costs of raw materials used in a given period of operation to enable him to calculate profit and to maintain his historical bookkeeping records. The second involves the use of various categories of food costs as managerial tools for increasing the efficiency of the operation, planning purchasing, and for use in menu pricing. The latter two uses of item food costs were covered in previous sections.

This section will describe the major method of computation of food costs for the various categories of uses. It will also describe how these costs are utilized.

Overa.1] cost of food

The basic formula used in calculating cost of food is trie same as that used for any raw material use: cost of purchases for the period are added to the opening inventory to obtajn cost of goods available for consumption; the closing inventory is then subtracted from this figure to arrive at the cost of food used. It is at this point that differences from the usual equation appear. Although the cost of food used is the total food expense for a restaurant operation,
it does not represent the cost of food sold.
One reason for this discrepancy is that most food service operations feed their employees as an additional benefit of their employment. The cost of the rood served to employees is clearly a wage cost and should not be considered a part of the cost of raw material.

A second cause of the difference between food used and food sold is the practice of most food service operations of transferring food to other non-food departments. This is usually the beverage department. Food items such as fruit and sugar are purchased primarily for use in customer meals and are requisitioned by the bar as needed. Transfers also run in the opposite direction with wines and liquors being transferred from the bar to food for cooking purposes. The cost of food must be adjusted to reflect the net effect of these transfers before a figure for the cost of food sold can be reached.

Food cost as a management tool
In order for management to use information about the cost of food sold as a basis for correcting inefficiencies in its operation it is sometimes necessary to make further adjustments when calculating the cost of food sold. These adjustments revolve arouna kinds of sales made by the enterprise that are clearly not representative of the major thrust of its business. These sales car be classified as steward's
sales or discount sales.
Steward's sales are sales made by the establishment at cost. These come about when employees or customers wish to purchase raw materials from the establishment--usually because they are not readily available through the usual retail sources. As a courtesy (and usually against the better judgement of the management) this type of request is handled at cost.

Discount sales may occur for a variety of reasons. The usual situation is that of the operator who does not give meals to employees but sells them at a discount. A diffferent type of discount sale may occur when products made by the restaurant are sold over-tho-counter for consumption off the premises, when this type of sale is only incidental to the operation.

It is clear that both steward's sales and discount sales should be separated from the regular food sales before cost calculations are made; otherwise it would be difficult for management to determine exactly why certain cost deviations might occur, particularly if the amount of these sales were significant.

A typical formula for calculating food cost for management purposes is:

$$
I_{1}+(D \pm T-S-E-D)-I_{2}=C .
$$

And the food cost percentage based on sales would be:
$(C / G S-(S S+D S)) 100=C P$
where:

```
I
I}\mp@subsup{I}{2}{}=\mathrm{ Inventory at the end of the period.
P = Food purchases for the period.
T = Net transfers.
S = Cost of steward's sales.
E = Cost of employee meals.
D = Cost of discount sales.
C = Cost of food sold.
GS = Gross sales.
SS = Steward's soles.
DS = Discount sales.
CP}=\mathrm{ Food cost percentage.
In the first formula the effect of transfers, food cost.
``` of steward's sales, employee meals, and discount sales are removed from the goods available for consumption and a cost of food served at full price from the menu is calculated.

In the second formula the steward's sales and the discount sales figures are deducted from gross sales to leave net sales from the menu so that menu costs can be shown as a ratio of menu sales. In practice, discount sales and stewara's salez shovild be recorded separately from memu sales, but there is usually no practical method of sepsrating the costs for these items.

If menl item costs were maintained, howevor, it would
be possible to calculate what the costs of these incidental sales should be.

A problem arises also in the calculation of employee meal costs. Without sajes records or menu-item costs the best that can be done is to estimate the cost of employee meals, and this is the method generally used. Some operators make random spot checks on employee meals and compute an average per meal cost. Others simply choose a figure for the cost of each meal and multiply it times the nurnber of employees served in the period.

A somewhat more accurate method of accounting for employee meals is to require that a meal check be created for each meal served. The total of these chocks then represents the employee-meal saies for the period. The current food cost percentage can then be applied to this totial to achieve an estimated armployee-meal cost.

In the situation where it is desirable to keep track of the transfers to more than one department-a situation which may occur wher food is charged out of a central kitchen or commissary to several distinct food opera亡ions-more than one transfer account may be kept.

\section*{Use of the overall food cost}

It should be noted that food service operations otiner than conmercial restaurants may use other bases tinan food sales. Hospitsis, for example, may use patient-days as a
base and cost per patient day as management criteria. In conmercial restaurants, however, the ratio of cost to sales is the indicator most used. \({ }^{22}\)

As the cost of food is a variable cost, comparisons can easily be made between periods with different sales levels. Comparison of costs from period-to-period tend to use historical costs as a standard for current costs. Comparisons with historical costs also indicate any trends that may be present regarding costs of food.

Another use of the figures is that of comparing enterprise and industiry statistics. These comparisons may range from those with competitors down the block to published figures by larger fimm or statistical studies carried out by industry accounting firms.

The most practical comparisons, of course, are those between actual costs and a budgeted figure. Figure 7 shows the relationship betreen actual and budgeted (desired) costs.

This figure indicates that the variance between actual cost figures and budgeted figures are measured and reported back to management. Management then has tiree options: it csn change the budget: it can work to change the actuai condition; or it can do nothing.

It is at this point that food cost control changes from a. control tool to a control process. If, 2 s is usually the case, manarement acts to change the actual condition, it must take positive action in the areas of purchasing,

Fig. 7.--Relationship between actual and budgeted costs. preparation, portion control, and any other area that may be the cause of unwanted variances from budget. With only a total food cost figure, this presents the problem of where to start Icoking. There are so many areas in which waste, theft, inefficiency, spoilage, or poor planning may occur that it is by no means obvious where the starting point should be. To provide a point of inquiry several kinds of cost breakdowns can be employed.

\section*{Breakdown of total cost}

One methoa of broaking down tiotal food cost to make it more useful as a management tool is to divide inventoriable
foods into categories. This breakdown can run from a minimum of three or four groupings to twenty-five or thirty. Purchase records and inventories must be set up in such a way that the groupings can be separated. A typical purchase record to achieve this is shown in Figure 8. In this case it is assumed that four groupings such as 1) fresh and frozen fruits and vegetables; 2) meats, fish and poultry; 3) dairy products, and 4) groceries (staples) are desired. When invoices are entered into the purchase record they are broken down into the various categories. The inventory sheets are set up by like groups and the cost caiculations simply follow the pattern of those for total cost.

By calculating cost percentages of individual groupings the management is able to make historical comparisons of certain groupings and determine which group or groups may be out of line. If a product or product group is pinpointed as carrying too high a cost it is usually evident where the inefficiency lies. It is then necessary to check the purchasing, production, and service of these items.

Another method of breaking totel cost into components is illustrated in Hotel Accounting, oy Horiath, Toth and Lesure. \({ }^{23}\) In their system, foods are separated into main ingredient groups, costs and sales are allocated to each group, and costs aro then analyzed daily in relation to the sales of that cost grouping. Focds are first divided into the sub-departments where they are prepared and then into
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Date & 2nvoice no. & Total & A & в & c & D & \(\underbrace{\text { Sup } 1 \text { itecec }}\) \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & - & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & - & - & & & & & \\
\hline & & & & & & & \\
\hline - & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & - & - & & & & & \\
\hline & 20 & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline Toras & & & & & & & \\
\hline TOPR & & & & & & & \\
\hline
\end{tabular}

Figune 8..- Purchase voucher used to separate food purchases into catecories to facijitate food cost control.

\begin{abstract}
groups within each sub-department. Sales are analyzed on the basis of the waiters' checks. Menu items are grouped as closely as possible to relate to the ingredients on the cost sheet. Then costs and sales are compared on a percentage basis.
\end{abstract}

Breaking the food ingredients into groupings has advantages in that it is possible to pinpoint trouble spots with a relatively small amount of accounting effort.

The method used by Horwath, Toth, and Lesure, by their own admission, is time consuming and costly. There are other problems inherent in allocating to menu items severai ingredients that cut across sub-department or group lines. The method does solve one problem that is a critical consideration in many food service operations-- that of the timing of food cost information.

\section*{Daily food cost}

A typicel food service operator who inventories his stock once a month may then wait from one day to several weeks before his food cost is calculated. Obviously, even i.i it is calculated immediately--and if inefficiencies are derronstrated-he may be 30 days too late to take needed correction, as his inefficiencies may have started on the first day of the accounting period.

The time gav can oe shortered by taking more frequent inventories. They may be taken twice a month or even weekly
and cost calculated in the usual way. The cost of control, of counse, increases with the frequency of the inventorytaking and cost calculation.

Ideally, a daily cost shortens the time between infraction and discovery to a practical minimum. As Horwath et al., points out, "Food control must present the cost figures day by day. Food cost is subject to continuous fluctuations. Even with fairly constant sales, it may rise suddenly because of a change in the menix, because of incorrect pricing of seasonable dishes, or because of overproduction and waste. The rise may mean loss instead of profit." \({ }^{24}\)

The problem with conducting daily food costs by the regulan method lies in the cost of daily inventories. The cost of inventorying hundreds of items daily becomes exorbitant. This problem can be overcome by estimating the cost through the use of requisitions and the daily receiving report. Other methods might include inventorying only certain key itens or those items of highest cost.

An illustration of this method, taken from "Using Storage Controls to Simplify Determination of Daily Food Costs," by Wrisley is shown in Figure 9.25

Part of this form is used for inventory. Columns 1 , 2, and 3 are not used in figuring the food cost. They are a perpetual storeroom recora.

The storeroom inventony at the besinning of the accourting

period is entered on the first line in colum l. The total of the daily purchases sent to the storercom is obtained from the "Food Stores" column of the daily receiving record illustrated in Figure 10, and entered in column 2.

The total of columns 1 and 2 is entered in column 3; and this total, minus the daily storeroom issues from column 4 , will give the next day's beginning storeroom inventory. At the end of the month the inventory figure is checked against the actual physical inventory to ascertain the efficiency of the storeroon records. If there are major discrepancies, a check should be made to determine where control was lost.

The remaining columns, 4 through 13, are used for the data from which the daily and to-date food costs are figured. Storeroom issues plus direct purchases equal gross cost, of food used. The gross cost less transfers gives the net cost of food sold. (It is assumed that the operation used for the example does not have any steward's sales or employee meal cost--although they could be accounted for if necessary.) Total net costs and total sales for the accounting period are then carried forvard to the "To-Date" columns and a to-date percentage cost is calculated.

This method of obtaining a daily food cost produces an estimated, rather than an actual, cost figure because the kitchen inventory has not been included.
RECEIVING CLERK'S DAILY REPORT

Figure 10.--Sample receiving record showing source of food stores and storeroom purchase information. \({ }^{\text {a }}\)
\(\mathrm{a}_{\text {Wrisley, }}\) p. 5.

This omission does not decrease the value of the cost figures to eny great extent. There are several reasons for this.

First, mosi food service establishments tend to have about the same amount of leftovers or kitchen inventory from one day to the next. When that is true, the food cost figure is not affected materially by leftovers or kitchen inventory.

Second, the keeping of a rumning or "To-Date" cost tends to smooth out daily fluctuations after the first few days of the accounting period. By the end of the accounting period the "Io-Date" figures should be very close to the actual cost figures.

Lastly, management receives the daily figures at a time when discrepancies due to more--than-usual amounts of leftovers, which may result from poor business or inaccurate forecasting, can be readily accounted for. For example, a high-cost day followed by a low-cost day (as leftovers are used \(u p\)) is understandable and to be expected. Two or three high cost days in a row, however, would be signal for management action.

One problem with this method centers around the first few daye of an accounting period. Until enough figures are melded into the to-date calculations, it, may be difficult for management to deternine just what is going on--particularly if there have ceen unusual problems with forecasting,
weather, or production planning.
Another problem with daily food cost systems is that of pricing and extending the requisitions daily. mhis involves considerable book work in large establishments. And, of course, the problem always present with perpetual inventory systems, that of not being able to account for storeroom theft, is present with daily food cost systerns that depend on means other than actually taking inventories.

In any case, actual physical inventory should be taken at frequent intervals, usually at the end of a monthly or four-week accounting period, to check the accuracy of the perpetual inventory records.

\section*{The problem or standards}

Although grouping of items helps to pinpoint cost deviations, and daily cost calculations baing information close to the point of generation so that corrective action can be taken immediately, the probiem of a proper standard of measurementi still remains.

Historical costs indicate what has happened in the past and budgeted costs tell what management would like to have happen. lejther of these standards indicate what costs should be--based on the mix of items actually sold.

The ideal would be a standard cost system that would compare standard costs oI the Iood sold with the actual Iood cost. The variance betreen standard and actual cost
would then serve as an indicator of the efficiency of the operation. As indicated in Chapter II, such a system is advocated by the accounting firm of Harris, Kerr, Forster. In the next section a look will be taken at this method-called "Pre-Cost, Pre-Control."26

\section*{The pre-cost, pre-control system}

The "Pre-Cost, Pre-Control" system is a two-part system. The pre-cost aspect of the system develops standard food costs based on forecasts; the second part develops standard food costs based on actual sales and then compares these costs with the actual costis.

As advocated by the accounting firm, meru itern costs are calculsted by adding to the cost of the menu item the cost of surrounding items, such as appetizers and vegetables, and these cosis are then multiplied by the expected or forecast covers of each item. The forecast covers are then multiplied by the selling price to produce forecast salos figures. Figure 31 iliustrates this procedure. The resulting forecsst cost percentage then indicates to management whetrer or not the expected sales mix will produce the desired food cost fercentage.

Theoretically, if the desired profit figures are not forthconing, based on the pre-cost caiculations, the menu rix can then be changed in order to produce this profit. Iower pereentage cost items can be substituted for higher,

Figure 11,--Developing pre-costs and potential costs for a dinner menu. \({ }^{\text {a }}\)
\({ }^{\text {a Brodner, Carlson, and Maschal, p. } 392 . ~}\)
for example.
Although it is not specifically advocated by the accounting firm it is also true that the forecasted variable margin for any given menu can be calculated from the pre-cost. As has been shown in the section on menu pricing, this margin is more important than the percentage figures. After the menu has been offered, the actual sales for each item can be recorded in a similar fashion as shown in Figure 1l. The result of these calculations is the potential cost of food for the menu. That is, if a restaurant were operating at optimum efficiency this would be the cost of food sold for the menu.

Before the standard (or poteritial) cost of food sold can be compared with actual costs, it is necessary to make certain adjustments. As actual cost is a total of ail food used for the day the potential costs of all menus must be summed. If the establishment serves breakfast it is necessary to determine the cost on the basis of some percentage of sales. The number of possible combinations of breakfast items prohibjets the calculation of the cost of each cornbination. One method of harding this problem is to cost out periodica? ly the total cost of food served at breakfast to estabiish a reasonebie vercentage standard.
```

Another problem is related to those odci sales on any

``` menu that are not standard price combinations. The guest who comes in at dinner and orters serambled eess is one
example. Brodner, Cerison, and Maschal suggest that this type of sales be included in a. category, "A la carte other," and costed on the basis either of the overall percentage of sales for tre particular meal or on the basis of periodic costing.

If the establishment caters to a banquet trade, the banquot sales are calculated at cost.

When the total potential cost for the day has been caiculated it is compared to the actual cost. Figure 12 illustraties how this can be done for a hotel food service operation.

The difference between potential cost and actual cost, or potentisl sevings indicates the degree of inefficiency in the daily food operation. Tre objective, of course, is to mininize tris difference.

\section*{Problems of the pre-cost, pre-control systern}

The "Pre-Cost, Pre-Control" systern, overcomes the major disadvantage of all of the other systerns mentioned in that it uses 2. istendard based upon the actual sales of any particular menu. The systern aiso provides these figures on a deily and to-date basis, another necessery attribute of a good food-cost accounting systiem. lievertheless, some problems do remain.

The mejon dranbacir of tine zyatem lies in the difficulty In calcuitating cost figures for the various menu items. In
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{} \\
\hline & \multicolumn{2}{|l|}{Iorin} & \multicolumn{3}{|l|}{} \\
\hline & \begin{tabular}{l}
Eニジッ Letza Cenculates \\
5in \(5 \sin\) Cos
\end{tabular} & & \begin{tabular}{l}
Latual \\
5゙ie：
\end{tabular} &
Cote & \[
\begin{aligned}
& \text { CoEt } \\
& \text { FER } \\
& \text { Doile } \\
& 2=10 \\
& \hline
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{} \\
\hline －¢ ¢－¢ & & \(\begin{array}{ll}32.0 & 5,35 \\ 32.5 & 2,502\end{array}\) & 4，556．10
2，710．05 & \％ 12851.27 & 32.0 \\
\hline －1ニご & 21\％121．25 シア．L3 & こ2．5 2，701 & 3，745．\(=0\) & 1，235．74 & 33.0 \\
\hline E－ect & －－－ & 743 & 1，571．75 & 987.75 & 53.5 \\
\hline & & ＜0．\＃i， 15.0 & 1，352． 15 & 4.9 .53 & 33.2 \\
\hline \＆L Cou゙u Coseこs & & 31．6 1．173 & 3，751．23 & 1．203．-1 & \\
\hline ：\(=\)＂\(\times 1\) & & シ̇．3 31.37 ？ & & 5 \(5,=\frac{5}{5}\) ， 23 & 35．5 \\
\hline \multicolumn{6}{|l|}{－ 2 ¢0：} \\
\hline こッニンショ2 & 5\％ 32.25 \％22．25 & 27．引 1，洰 & 2，91\％．30 & \％552．24 & 22.3 \\
\hline ごこ上 & 62 247．59 Li，2ミ & こ3．3 1，502 & 3，447． & 1， 135.5 & 32.4 \\
\hline & 5\％257．53 75．31 & ここ．2 1，5こ2 & 5，220．59 & 2，021．52 & こ2．1 \\
\hline & \(55 \quad 135 \times 5\) ？ 43.73 & 边 5 359 & 2．201． 2 ． & 7 ブこ． 3 & 法， \\
\hline ごニ1 & & 3： 5 5 5．L5 & 2.735 .37 & 2hriz＝ & 353 \\
\hline \multicolumn{6}{|l|}{} \\
\hline 5－5 \％ & い 153.75 シ5． 0 & 三人．6 572 & ここ．50 & ご2．21． & 32.3 \\
\hline & 52 213．75 122．L2 & Lミ． 7 Ef！ & 2，2：2．70 & & 25． 2 \\
\hline & & ごご5 133 & 3.372 .65 & 1．225． & － \\
\hline こここご & & 洔？ 3 ， 513 & 13， 207.6 & \＆ \(2 . \sum \pm 3,23\) & 20 \\
\hline \multicolumn{6}{|l|}{ここつ Serfice：} \\
\hline こを号っ゚きご， & 21 \％ 31.10 \％ 37.27 & こכ．2 1， 159 & 2，174030 & （ 65？．こ？ & 30.3 \\
\hline こッこことに， & 22.70 & 21.1114 & 17L． 35 & 4． 5 & \\
\hline －1－3s＝ & 21 52．00 27.50 & 52．4 2：3 & 757.95 & くショ． 5 & 33．9 \\
\hline & & シミ．5 2，203 & 2，202． 03 & こ， & \\
\hline & 30 71，57－ 21.75 & こ1 \％Ei & & L゙ごこ？ & \(: 1 .{ }^{2}\) \\
\hline ごっ1 & & & & & －1． 5 \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & & シャッ 27っだん & 51， 12.5 & そここ，1．上・ロー & シ5． 5 \\
\hline シx－ & & 213 こ & こ7：000ご年 & & 27.0 \\
\hline & & 23， \(7 \times .75\) & と3，บ！ 2 － & & 32， \\
\hline \multicolumn{6}{|l|}{20ア＊} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & & こう．9 ジっ，7シュ 2.5 & ほこっいこ．ズ & & \\
\hline & & & 23.112 .81 & O．L．．．0 & \\
\hline & & 事こ？ & & E \(3.2=2\) & \\
\hline & \％ 153 & 1，5 & & 12ご7．62 & 2.2 \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multirow[t]{3}{*}{} & \multicolumn{5}{|l|}{} \\
\hline & \multicolumn{5}{|c|}{7．\％．：－－} \\
\hline & \multicolumn{5}{|c|}{} \\
\hline
\end{tabular}

Eisure 12．- －di \(\equiv\) ily rec三pitui三tion of costs，usirg the Pre－Coにt，Pre－Control syeter．

Esrodner，Carlson，and Masch三1，p．393．
an establishment with a changing menu the need for accounting for cost and price changes would be formidable.

Secondly, the inclusion of surrounding items at sone average ifgure can result in a considerable cost deviation on any one day if customers tend toward the higher-cost accompaniments. On the other hand, the cost of maintaining sales and cost figures for these items in a hand system would be more than the additional verification would be worth. This same difficulty exists in relation to those items in the "A la carte other" category.

A third comment does not relate to the system itself, but to its use. As indicated in the section on menu pricing, the restaurant operator should be interested in his variable margin rather than food cost percentages. The use of the "Fre-Cost, Pre-Control" system to compare forecasted, potential, and actual variable mareins, as well as potential savings, would help to emphasize the importance of this figure to the operator. One operator expressed the concept with beautiful simplicity. His comment was, "You can't put percentages in the bank."

\section*{Summary}

In this section we have described the major methods of calculating and using food cost figures. All of the methods have cortain axambacks in sither calculation or application. In the next section he wili describe a systers model that
draws or the currerity used systems, but adds certain refinerents and computer assistance not currently in use.

\section*{FOOTNOTES}
\({ }^{1}\) personal observation by the author over a period of some thirty years. During this time he has been connectod with the food service industry--either as an operator or as an instructor in food service management practices.
\({ }^{2}\) Brodner, Carlson, and Maschal, p. 30.
\({ }^{3}\) Ibid.
4 Ibid., pp. 327-336.
\({ }^{5}\) Commercial Kitchens (New York: The American Gas Association, Inc., 1962), p. 104. (The space allowed per seat for popular-priced restaurants is ll-13 square feet. For deluxe restaurants, the recommendation is for 13-18 square feet.)
\({ }^{6}\) John M. Welch, "Analyze Your Food Cost," Circular 723, University of Missouri Agricultural Extension Service, July, 1960, pp. 2-3.

7G. J. Stigler, "The Cost of Subsistence," Journal of Farm Economics, XXVII (1945), 303-3I4. Victor E. Smith, "Linear Programming Models for the Determination of Palatable Human Diets," Journal of Farm Economics, XXXXI (May, 1959), 272-283.
\({ }^{8}\) Joseph L. Balintfy, Computerized Dietary Information System (3 vols.; IVew Orleañ, La.: Tulane Tniversity School of Business Administration, 1967).
\({ }^{9}\) Joseph L. Ealintfy, "Computer Assisted Menu Planning," Working Paper 4I, Tulane University, Graduate Schooi of Business Acministration (undated), p. 3 .
\({ }^{10}\) Ibid., p. 48.
\({ }^{11}\) Ibid., p. 24 .
12 Ioid., po. 36́-40. R. Gue and J. Iriggett, "Mathenatical Programing and Hospital vienu Flanning," IncustriaI Ensineering, XVII (August, 1966), 395-400.
\({ }^{13}\) Robert G. Brown, Statistical Forecasting for Inventory Control (New York: McGraw-Hill Book Company, Inc., 1959), p. 3.
\(14_{\text {Brodner, Carlson, and Maschal, p. } 390 .}\)
\({ }^{15}\) Ibia.
\(16_{\text {personal observation of the author. This ratio }}\) held true in each of the several food service operations he managed over a period of years. It is a well-known fact that many food service operators multiply the meat cost of a dish to establish the selling price for the item. See, also, Charles Eshbach and Albert I. Wrisley, "Purchasiñ Food for Food Service Establishment," Food Management Ieaflet IO, University of Massachusetts Cooperative Extension Service (1965), for a more complete discussion of food purchasing practices.
\(17_{\text {This }}\) has been true in each of the operations with which the author has been connected. The gross sales of these operations ranged from \(\$ 50,000\) to over \(\$ 2,000,000\) annually. Conversations with other food service operators confirm this.

18 Joseph L. Balintfy, "On a Basic Class of MultiItem Inventory Problems," Management Science, X (January, 1964), 287-297.

19
Robert Lukowski, "Receiving Food in Food Service Establishments," Food Manecement Leaflet 3, University of Massachusetts Cooperative Extension Service (1963).

\section*{\(20_{\text {R. A. Johnson and Amy N. Moore, "Inventory and }}\)} Cost Controls by Computer," Journal of the American Dietetic Association, XIIX (November, 1966), 413.
2. Robert \(^{\text {Lukowski, Charles Esioach and Albert }}\) Wrisley, Conducting Educational Work with Operators of Food Service Establishments: Cost Analysis Procedure, Food Service lianual Number ? (Aminerst, Mass: The University of Massachusetts Cooperative Extension Service, 1963).
\[
{ }^{22} \text { S }
\]

See: Harris, Ferr, Forster and Co., Pin-Pointing Your Profits: Ten Case Studies in Actual Restaurant Operations (Hew York: Ahrens Publishing C0., Inc., 1958), for an example of the use of the ratio of cost of food to sales as a management tool.

23Ernest B. Horwath, Louis Toth, and John D. Lesure, Hotel Accounting (3d ed.; New York: The Ronald Press Co., 1970), 310-345.

24 Ibid., p. 312 .
\({ }^{25}\) Albert L. Wrisley, "Using Storage Controis to Simplify Determination of Daily Food Costs," Food Mianagement Leaflet 5, University of Massachusetts Cooperative Extension Service (10,62).

26
Brodner, Carlson, and Naschal, pp. 376-305.

\section*{C H A P T ER V \\ THE PLANNING AND CONTROL SYSTEM}

In Chapter III the needs of the industry in several areas were discussed. These areas included forecasting needs, food cost information needs, purchasing and the needs related to the production of food. The current practices used by the industry to meet these needs were discussed in Chapter IV. In this chapter a model planning and control system will be described. The model is designed to fill tre currert needs more fully than is being done under current practices.

\section*{Specifications of the Model}

It would be ideal if all of the information needs of a food service firm could be handled in one integrated computerized planning and control system. Such a system would include all bookkeeping functions, production planning and record keeping, and a sophisticated purchasing/ inventory control system. Such a system is possible. The proposed model, however, is designed as an interim step-one that \(\hat{\text { irpm a financjal and practical point of view can }}\) be immediately implemented in a mediun-sized or larger (\(\$ 200,000\) and up gross sales) tood service operation. In other viords, the overriding specification for the proposed
system is that it be capable of being installed in a restaurant currently in operation, requiring the minimum adaptive effort to accommodate the system.

\section*{System is time-sharing}

Certain conditions had to be placed on the model in order to meet the goals of financial and practical feasibility. First of all, the system had to be designed as \(\varepsilon\) time-sharing system. The purchase of complete computer installations, no mattor how small or limited, is not financially feasible for the average medium-sized restaurant operation. Tirne-sharing operations have already been formed specifically to serve the food service industry. \({ }^{\text {I }}\) They are eurrently working primarily with standard accounting information. \({ }^{2}\) They do represent the future direction for the industry in terms of information need.s.

A secondary specification concerning the time-sharing feature of the system js that it should be capabie of operation on UMASS, the time-sharing capability currently available at the University of Massachusetts, Amherst, Massachusetis. This limitation is primarily one of convenience for the investigator although UMASS is quite representative of the better currently available timesharing systems.

The system should be designed to operate from a
teletype or keyboard input. Although other input/output (I/O) equipment couid be used, and may ever be desirable, the keyboard is currently the most versatile as well as the least expensive I/O equipment currently on the market. Extensions concerning the use of more sophisticated equipment will be covered in Chapter VII.

\section*{Cost specifications}

It is self-evident that any system of control should not be more costly than the expected loss the system is designed to avert. If a simple manual planning and control system can successiully keep costs within a desired range there is little advantage of going to more costly electronic data processing. Of course, the larger the operation the greater the need for control and the more the oporator can afford to pay. The number of variables invoived make the setting of a specific dollar amount quite difficult. For exaniple, if the EDP equipraent is used for other purposes than food planning and control, the effective cost is lowered. \({ }^{3}\) Obviously, some iarget is useful. For this reason the proposed model was designed to meet the following specifications:
- Capable of being cperated from one terminel.
- One haif hour of CDC 3600 equivalent C. F.U. time each month.
- No more than 2 hours of operator's time per day.

At current charges this should man that terminal rental, operator's time, and the time-sharing package (including software charges) would run about \(\$ 300.00 /\) month. 4 Again, some or these charges would be offset if other use were made of the terminal. This would represent about 1.8 percent of sales for a \(\$ 200.00\) operation. It would be expected that the provosed system would save its cost by lowering expenditures on raw materials. As indicated, however, these figures should be considered only the roughest guide.

\section*{Forecasting specifications}

In Chapter IV it was indicated that forecasting is based primarily upon an individual's interpretation of historical and assumptive data. The system should be capable of taking over a major part of this task, that of storing, locating, and using historical information. This would then provide a base upon which a forecaster could more accurately reach a final forecast. Such a base woula tend to eliminate differences due to personalities of forecasters and would be particularly useful to those new to forecasting for a particular operation.

It should be possible to make the forecast with suff ficient lead time to purchase necessary items. It should also be possible to forecast for variable time lengths
and to update forecasts as new information becomes available.

Forecasting covers.-- The form of the forecasts should be in total transient covers expected for each meal and the number of each menu item expected to be sold.

It would appear to be infeasible to expect a formula approach to forecasting to handle all possible variables. For this reason the model will rely on added inputs and judgements from the individual making the forecast to "round out" the task. Known variables, such as banquets, and unknown variables, such as weather, will both be left to the forecaster.

Forecasting food use.--Once covers have been forecast the system should be capable of calculating the amount and cost of ingredients needed to meet the forecast. This information would provide the basj.c information necessary for planning purchasing. When the forecast is combined with inventory on hand a purchasing agent would be able to do an intelligent purchesing job in terms of amounts needed.

The periods for which food use would be determined should be variable and the model should have the capability of determining the amount of food needed for a given recips item, a group of unrelated recipe items, a menu, or a group of merus. This would allow a food production manager to obtain the amount of ingredients to requisition
for specific items or menus if necessary.
Pre-costing menus.-- In the discussion of the "Precontrol" system in Chapter IV it was indicated that the system advocated pre-costing menus on the basis of forecast covers. Two advantages to this pre-costing capability are: (I) the advantage of knowing in advance the expecta volume/cost relationship for a given menu, and (2) the ability to test proposed menu mixes. The latter advantage makes it possible for the operation to test the effect of adding or subtracting various items; the first allows the operator to determine how much variance from desired variable margin is caused by shifts in the menu sales mix.

It would also be advantageous to calculate the actual. cost of specific surrounding items (where possible) rather than utilize average cost as is recommended for the "PreCost, Pre-Control" system. \({ }^{5}\) By doing so a more accurate picture of the cost/volume relationship can be obtained.

\section*{Spacifications for food cost information}

To be able to obtain the proper information to control the cost of raw materials we must be able to determine what the eurrent costs are and whether or not they meet current standards or buaget. The value of some kind of a cost system to accomplish this goal has been pointed out and the uso of a potential cost system suggested. \({ }^{6}\) What has also beon pointed out is that a potential cost systieri is extremiy difficuli to meintain manualy, even when average
costs of groups of items served are used rather than the individual item cosis?

Ideally, then, the proposed system should be capable of calculating what the raw materials cost should be (standard or potential raw materials cost), what the cost actually was (raw materials cost), and compare the two.

The cost calculations should be made available on a daily basis, and the operator should be able to retrieve daily and to-date costs and comparisons. Costs as a percentage of sales should also be calculated and sales figures maintained on a daily and to-date basis.

Potential costs and sales.--The system should be capable of receiving figures for the number of covers actually sold and converting these figures into potential costs and sales. It should be able to provide period totals on these costs and sales. Ihis should be done with a minimun of human input. In addition, the potential variable margin gerierated by each menu item should be calculated-as should totais when desired.

The system should be able to hendle all items sold in a particular period. This would mean items not normally appearing on the regular menu. Banquets and nor-meru a la carte items would appear in this category. The result would be a total of all potential costs, sales, and variable mareins for a given period.

Actual costs and sales.--The systen should be capable of calculating a daily estimated food cost such as the one described in Chapter IV. \({ }^{8}\) As a first step this should be the total cost of food sold in a given day. The system, however, should be so designed that it would also be possible to break this total cost down into food groupings in order that a more detailed cost analysis can be made.

The system should also be capable of receiving actual sales inputs and store this infomation for retrieval for daily reports, comparison with potential sales, or other possible statistical uses.

Cost analysis.--Finally, the system should be able to retrieve potential and actual cost information, calculate the variance between the two, and display this information for the use of management. This information should be available on a period or to-date basis.

\section*{Suecification for inventory control}

As a starting point, a minimum provision for inventory control should be provided by the system. Records of receipts, issues, and the inventory valuation should be maintainod.

Receiving.--The system should be capable of recording daily receipts of iood ittms and. updating perpetual inventory balances of foods placed in storage.

Issuirs.-- Requisitions for food from storage should
result in the updating of perpetual inventory records and in records of issues for use in calculating the daily estinated food cost.

Inventory evaluation.-- It should be possible to retrieve the value of storeroom inventories at any time. It should be possible to change or update perpetual inventories easily as new items are added or deleted or as prices change. It should also be possibls to adjust recorded quantities on hand if these quantities do not agree witr those determined by physical inventory.
rhere is a considerable amount of input necessary for inventory mainterance. For this reason the method of computing inventory changes should be as time saving as possible--considering that a keyboarci-type input device is being used. Consideration should be given to the incorporation of other types of input devices at some future date.

\section*{Overall system specifications}

In general, the system should male it easier for the focd service operators to forecast the number of people he expects to serve, what they will eat, and the amount of the various ingredients needed to serve these numbers. It should allow him to obtain daily food cost informetion anc to update and extend his inventory. It should provide chocks against operator error. The
restsurant manager provided with accurate information should be able to plan and control more effectively.

Lastly, the system should be capable of being expanded to provide more and different kinds of information if desired. Very large operators might well need, and be able to afford, systems capability not provided in the basic system.

These, then, are the specifications of a planning and control systems model that will provide managers with useful information not now readily available. The next question is: how should such a system be designed? The next section describes the pattern by which the system was constructed. The implementation ard testing of the system will be covered in Chapter VI.

\section*{The Design of the Systems Model}

The design of the model can be considered in terms of. systen functions: input, process, and output. The model design can also be described in terms of the elements of the sjstem. It is not always possible to evoid overlap, such as when certain systems elements serve both processing and output or processing and input functions. The elements of the system considered in the design state are data. files and paograna.

The system consists of ten computer programs (which incluce several subprograms), six categories of data files,
and the various source documents by which data are gatherea for input to the computer. There is, of course, the human element that must be consiaered--primarily in relation to the construction of the source documents and the entering of information from them.

\section*{System files}

The ingredient file contains the following information for each food item used:
1. Ingredient code.
2. Ingredient name.
3. Purchase price of the ingredient.
4. Unit on which the purchase price is based.
5. The unit by which each ingredient is inventoried or issued.
6. A conversion factor to convert units of purchase to units of issue.
7. Number of inventory units on hand.
8. Storeroom in which ingredient is located. The ingredient code is a five-digit number. The first integer indicates to which one of nine primary food groups the item belongs. Within each of the nine primary groupings are ten subgroups. The last three digits form the number of the item, allowing for the possibility of 1000 items in oach subsroup. Codes then may run from 1000 to 99999, with the numbers fror 00000 to 09999 reserved for a speciel type of ingredient, called a subassembly, that
will be covered in the recipe file description. A listing of the primary and secondary group codes can be found in Appendix A. Although a food inventory, let alone a subgroup, may not contain a thousand items, the additional available codes allow for the addition of new items in alphabetical order. The primary groups are the same as those used by Balintfy in the CAMP system. (One expressed need nas been for standardization of the numbering system for raw food ingredients.) An example of the information it is necessary to gather for each ingredient is shown in Figure 13.
\begin{tabular}{llllllll}
\hline \begin{tabular}{l}
Inq. \\
Code
\end{tabular} & Ing. Name & \begin{tabular}{l}
Pur. Pur. \\
Price Unit
\end{tabular} & \begin{tabular}{l}
Conv. I/I On \\
Pactor Unit Hand
\end{tabular} & \begin{tabular}{c}
Store \\
No.
\end{tabular} \\
\hline 60010 Milk, Homogenized & 4.55 & 5 gal & 5.0 & GaI & 10.0 & 3 \\
\hline
\end{tabular}

Figure 13.-- Ingredient file information.

The recipe file.-. The recipe file contains all of the recipes used in the model. These recipes are of two types: (1) subassemblies and (2) recipes. Subassemblies are recipes that are not sold individually but aiways appear as part of another recipe. An example would be a gravy or other sauce. These subassemblies appear in the regular. recipes as ingredients. A given recipe record contains two kinds of information, general information about the recipe
and information about each ingredient in the recipe. The general information includes the recipe code, recipe name, selling price, number of ingredients, number of portions, and the smallest number of portions it would be possible to make by dividing the recipe. The recipe ingredient information contains the ingredient code, ingredient name, and the amount of each ingredient used in the recipe exprossed in inventory issue (I/I) units. An example of the general information (designated as a "Recipe Header") needed for the recipe for broiled live lobster is shown in Figure 14. The ingredient information for the same recipe is shown in Figure 15.
\begin{tabular}{llllll}
\hline \begin{tabular}{c}
Recipe \\
Code
\end{tabular} & Recipe Name & \begin{tabular}{c}
Selling \\
Price
\end{tabular} & \begin{tabular}{c}
No. of \\
Ingreds.
\end{tabular} & \begin{tabular}{c}
No. of \\
Portions
\end{tabular} & \begin{tabular}{l}
Linear \\
Divisor
\end{tabular} \\
\hline 25060 & Br. Live Iobster & 5.95 & 3 & 1 & 1 \\
\hline
\end{tabular}

Figure lly.--Header information for Iobster recipe.
\begin{tabular}{|c|c|c|c|}
\hline Recipe Code & \[
\begin{aligned}
& \text { Ing. } \\
& \text { Code }
\end{aligned}
\] & Ingredient Name & Amount in I/I Ünits \\
\hline 25060 & 14020 & Butter, Print & . 1870 \\
\hline 25060 & 23020 & Lemons, Fresh & . 2500 \\
\hline 25060 & 58025 & Lohster, İve/l-3/4 lb. & 1.7500 \\
\hline
\end{tabular}

Figure 15.-- Ingrediont information for lobster recipe.

The recipe is a five-digit code with the first digit representing the course of a meal in which a recipe is normally used, and the second digit the primary food grouping of the main recipe ingredient. A listing of the primary codes and the courses they represent is given in Appendix B.

It should be noted that the information in the recipe file is not intended for use by production personnel. The model design assumes that a recipe tub file is maintained for use by the cooks. These file cards have the recipe information in a form (tablespoons, cups) that can be readily understood by kitchen personnel. This differs from the CAMP system, in which menus are produced daily by the computer. The decision to deviate from the CAMP example was made to: (1) require less file space, (2) allow easier file updating and maintenance, and (3) avoid the necessity of daily recipe print-out. The primary advantage in the daily print-out, tine ability to communicate recipe changes immediately to production personnel, does not accrue to the commerciai feeding establishment as it would to the hospital food service.

The menu file.--The menu iile contains all of the menus used in the model. Menus are distinguished both by the recipes apoearing in the menu and the day of the woek on which the menu is used. It is necessary that some form of cyclical menu pattern be used to satisfy the forecasting
alogrithm used with the nodel．For the model a series of seven menus，presented consecutively in a six－daj operation， creates forty－two day－menu combirations．The menu codes are two－digit codes with the first digit representing the day and the second a particular menu．Meru 35，for example， would be menu number 6 being used on day 3 ．It would fol－ 10\％from this that an operation with a never－chanzing menu． （ore form of a cyclical menu pattern）would have only siz day－menu combinations in a six－day operation．

Like the recipe file，the menu file conteins both generalized menu information and specific information ebout each recipe on the menu．The general（or header） information includes：

1．The menu code．
2．The date on which the menu last eppearei．
3．The total nurbber of covers sold on that date．
4．The total dollar sales for that date．
5．The exponentiaily smoothed avenaze totミl covers．
6．Trie exponentiaily sroothed trend of total covers．
7．Forecest covers for next use（optional）．
6．lumber of menu items in the menu．
Besides the forty－two neader recoris，ar adilitional siz records are maintained in the file to record sales totals for sach of tre six days of operation．These reconds are then used in the forecasting procedure described in the next seこさfon．

In addition to the headers, the following information is maintained for each menu item (recipe) that appears on a menu:
1. Recipe code.
2. Recipe name.
3. Number or recipe covers sold on header date.
4. Exponentially sinoothed average sales of the recipe expressed as a ratio to total covers.
5. Exponentially smoothed trend of the recipe ratio. The information that must be collected for the menu file are the manu and recipe codes, the recipe nanes, and the original number of recipes or menu items. All other information is entered or updated on a regular basis through an input program. It would be possible, however, to visualize the information carried in the header and recipe sections of the menu file appearing as in the samples in Figure 16 and Figure 17, respectively.
\begin{tabular}{llllllll}
\begin{tabular}{c}
Menu Date \\
Code Last \\
Used
\end{tabular} & \begin{tabular}{l}
Total \\
Covers
\end{tabular} & \begin{tabular}{c}
Dollar \\
Sales
\end{tabular} & \begin{tabular}{l}
Ave. \\
Sales
\end{tabular} & Trend & \begin{tabular}{c}
Forecast \\
Covers
\end{tabular} & \begin{tabular}{c}
Number \\
of \\
Recipes
\end{tabular} \\
\hline 36 & \(11 / 23 / 70\) & 150 & 843.00 & 157.51 & -0.763 & 157 & 12 \\
\hline
\end{tabular}

Figure 16.--Representation of menu header record.
\begin{tabular}{llllll}
\hline \begin{tabular}{l}
Menu \\
Code
\end{tabular} & \begin{tabular}{l}
Recipe \\
Code
\end{tabular} & Recipe Name & \begin{tabular}{l}
Last Avg. \\
Covers
\end{tabular} & Trend \\
\hline 36 & 12060 & Minted Fruit Cup & 62 & .48 & .030 \\
36 & 14020 & Celery/Bleu Cheese & 41 & .17 & .011 \\
36 & 251.50 & Tenderloin Tips & 44 & .31 & .030 \\
36 & 25160 & Broiled Lamb Chops & 80 & .21 & .010 \\
36 & 25170 & ChixA La Maryland & 29 & .46 & .044 \\
36 & 38010 & Tossed Green Salad & 90 & .71 & .057 \\
36 & 38040 & Au Gratin Potatoes & 77 & .65 & .043 \\
36 & 46060 & Creme de Monthe Parfait & 40 & .36 & .020 \\
36 & 49110 & Apricot Pie & 56 & .25 & .017 \\
36 & 59000 & Coifee & 87 & .68 & .052 \\
36 & 59100 & Milk/Glass & 41 & .17 & .009 \\
36 & 63000 & Folis \& Butter & 119 & .82 & .057 \\
\hline
\end{tabular}
record for menu 36 .

Three other files: non-menu (BANQUET), forecast covers (FORCAST), and a summary saies and cost history (COST) are utilized in the model.

The banquet file.--Not all restaurant food sales are made frori the daily menu. Banquet sales and a la carte sales of items not on the regular inenu (such as Ieitovers solá by means of clip-ons) must also be accounted for. The saies of these items ere entered into the banquet
file daily, or as often as such sales take place. Entries are recipes, grouped by date. All recipes sold on the same banquet are further identiried by an alphabetic or alpha-numeric code. Number of sales, selling price, and total item dollar sales are stored in addition to the date, recipe code, and recipe name. An example of the file data is shown in Figure 18. Note that this particular example includes one banquet (for Taite) and one a la carte other sales item (Lemon Chiffon Pie).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Date & Rec. Code & Recipe Name & Banq. Code & No. of Port. Sold & \[
\begin{aligned}
& \text { Sell- } \\
& \text { ing } \\
& \text { Price }
\end{aligned}
\] & \begin{tabular}{l}
Total \\
Sales
\end{tabular} \\
\hline 12/31/70 & 12070 & Pears/Frosc. Ham & Taite & 35 & 0 & 0 \\
\hline 12/31/70 & 25070 & Pr. Ribs of Beeir & Taite & 35 & 6.00 & 210.00 \\
\hline 12/31/70 & 38010 & Tossed Green Salad & Taite & 35 & 0 & 0 \\
\hline 12/31/70 & 38050 & Fr. Fried Potatoes & Taite & 35 & 0 & 0 \\
\hline 12/31/70 & 46330 & Strawberry Parfait & Taite & 35 & 0 & 0 \\
\hline 12/31/70 & 59000 & Coffee & Taite & 35 & 0 & 0 \\
\hline 12/31/70 & 63000 & Rolls \& Butter & Taite & 35 & 0 & 0 \\
\hline 12/31/70 & 49070 & Lemon Chiffon Pie & & 10 & . 50 & 5.00 \\
\hline
\end{tabular}

Figure 18.--Sample banquet file data.

Note that, in this instance, only the total price of the banquet is retained with the entree. If more than one entree is scld that price can be retained. That the Lemon

Chiffon Pie is an a la carte other item is indicated by the absence of a banquet code.

Contents of the banquet file are printed out daily and retained as hard copy. The banquet file can then be cleared to cut down on disk storage costs.

The forecast file..-The forecast file is used to accept the menu forecasts as they are made. Total and recipe cover forecasts are written into this file for later use in the pre-costing and food use programs. The file has the same format as the menu file with these exceptions: (I) the name of the weekday on which the menu will appear is substituted for the date, and (2) only the forecast covers are retained--2II other information is zeroed out. For a sample of this format see Figuros ló and 17. Like the date in the banquet file, the contents of the forecast file are only temporary ard can be cleared after they are utilized.

The cost file.--Total dollar sales, total issues, total food direct, net transfers, and total potential costs are recorded in the cost file. These figures are entered jinto the file daily by other programs and are used to calculate and display cost information. This information is designed to be majntained as long as is needed with a. year's out considered to be the usual tinie span. An example of a single day's cost file data is shown in Figure 19.

Date
Total Total Food Net
Total
Sales Issues Direct Transfers
Potential Cost
\(\begin{array}{llllll}12 / 31 / 70 & 819.05 & 150.00 & 60.00 & -20.00 & 182.04\end{array}\)

Figure 19.--Sample cost file data.

Systems programs
The systems programs are designed to: (I) input data to the fj.jes, (2) utilize file data in the calculations required by the system, (3) write the results of the calculations into files, and (4) print out various information as "hard" data. One program, an executive program, only calls other programs.

The executive program.-- The executive program (ExERCPRO) is a calling program that allows the user to call the particular program he wishes to use. Control is returned to the executive after the program called completes execution. The relationship between EXECPRO and the other nine main programs is illustrated in Figure 20.

Intermittent input programs.-- The intermittent tasks of initializing, changing, and displaying data in the FOODS, RECIPES, and BANQUET riles are handled by the three file maintenance programs INGPRO (ingredients or inventory), RECPRO (recipes), ana iAENPRO (menus). These programs enable the user to add and delete whole or parts of records and

Figure 20.-- Pelationship between executive control program (EXFCPRO) and other main system programs.
display the contents of the three files. They are used apart from the regulax daily input/output operations. An outline of the scheduling and functions of the three programs discussed above is presented in Figures 21, 22, and 23. In each of these figures the files used by the program are indicated by arrows from the small boxes above the "Program" box. Arrows emanating from the "Program" box to the small boxes below indicate that information is being written into the designated files. Keyboard input and outputs are shown at the left and right of the "Program" box.

Note that INGPRO, RECPRO, and EXECPRO are entirely devoted to file maintenance. It is necessary that they be sufficiently fiexible for the user to be able to make any desired change to the three files on which they operate. The operator may choose any combination of inputs, depending on the data he wishes to affect.

Two programs are designed to allow the regular inputting of daily sales and cost figures. These programs, FILPROI and FILPHO2, would normally be run on a daily basis with their primary tasks being to update the files with the figures from the previous day's operation. They would be run before any of the data retrieval prograns. Although these programs are intended to be run daily, it nould be possible to let data accumulate for several days before input--as long as retrieval, too, was delayed.

Program: . . Ingredient file progeam (INGPRO).
Previous step: None required.
When used: • - Irregularly.
Objective: • Provide irregular updating for ingredient file.
Next step: • . Kecipe file updating (optional).

File inputs

File outouts
Figure 21.--Scheduling, inputs, and outputs of ingredient fiile prognarn (INGPRO).

Program: . . . Recipe file update (RECPRO).
Previous step: All recipe ingredients must be in FOODS file.
When used: . - Irregularly.
Oojective: • Provide irregular updating for recipe file.
Next stap: . - Menu file updating (optional).

\section*{File imputs}

\section*{File outputs}

Figure 22.--Scheduling, inputs, and outputs of the recipe file upiate program (RECPRO).
Program: . . . Menu file update (MENPRO).
Previous step: All menu recipes must be in RECIPES file.
When used: . . Irregularly.
Objective: • Provide irregular updating for menu file.
Next step: . . Use of MENUS file data.

\section*{File inputs}

Figure 23.--Schoduling, inputs, and outputs of menu file update program (ifivproi.

Sales inputs.-- The program FILPROI (see Figure 24)
is the venicle for inputting daily sales figures. The total nuriber of menu covers sold, the number of each menu item solá, and any banquet or a la carte other sales are recorded through this program. The sales data must be retrieved by the cashier or checker and summarized for use by the system operator. This information would be taker directly from sales checks, duplicate sales checks or a digital counter maintained by the checker. For larger oneratjons additional data collestion equipmont could prove useful. This type or equipment is discussed in Chapter VII under "Extensions."

FILPROI also provides for the updating of total menu and recipe cover averages and tronds. This results in these figures always reflecting the latest sales data.

Cost inputs.-- Cost inputs are handled by the program FILPRO2 (see Figure 25). Storeroom purchases are entered into the FOODS file from the receiving record or invoices along with current purchase prices. Recuisitions from storage are deducted from FOODS and are extended and totaled. The total value of food that has been sent directly by to the kitchen for immeaiate use is entered. If any additions or deductions from food issued or sent directly to the kitchor (such as tranefers to other departments, steward's sales, or empiojee's meals) have occurred they are entered as "Transfers." (For purposes of the model it is assumed

Progran: . . . Daily sales update (FILPRO1).
Previous step: MENUS file must be current.
Whein used: • ._Daily.
Objective. . To input sales information and update averages and trends.
Next step: . . Forecasting, cost calculations.

File inputs

File outputs
Fjgure 24.--Scheduling, inputs, ard outputs of daily sales update program (FILPROI).

Program: . . Daily cost update (FILPRO2).
Previous step: FOODS file must be current.
When used: . . Daily.
Objective: • Input purchase and issue data.
Next step: . . Cost calculations.

File inputs

File outputs
Figure 25.--Scheduling, inputs, and outputs of daily cost update program (FILPROZ).
that only interdepartmental transfers need be considered.)
Two important options available with FILPRO2 are: (1) the ability to display and total daily issues and storeroom purchases, and (2) extend and display the current inventory.

As can be seen in Figure 25, FILPRO2 writes new prices and updates on-hand amounts in the inventory (FOODS) file and writes the totals of issues, food direct, and transfers into the cost (COST) file.

Calculation and retrieval programs fall into two categories. The first category contains programs PCSTPRO and COSTPRO. These programs are illustrated in Figures 26 and 27, respectjvely, and are intended for daily use.

Potential and pre-cost program.--Program PCSTPRO (Figure 26) calculates the potential cost and sales of each item sold and extends and totals these sales and costs for each menu, banquet, or a la carte recipe scld. Potential cost differs from that described in Chapter IV In that the cost of \(2 l l\) recipes sold is calculated, not just the value of the entree with an estimate for surrounding items. This definition of the term potential cost will hold when referred to in connection with the model. The difference between potential sales and potentjal cost, or potential variable margin, is also calculated.

As an option, PCSTPRO will also accept forecast figures from the forecast file (FORCAST) and calculate

Prograz: . . . Potential and pre-cost program (PCOSTPRO).
Previous ste?: All file undate programs completed.
When usse: . . Eotential-dailv. Pre-cost-any time.
Objective: . Io calculate and list recipe cost information.
Nezt step: • Calculating actual cost.

File inputs

Figure zo.--Schéulirg: inputs, and outyuts of the こotentiEl and pre-cost prognam (PCCSTPZO).
sales, costs, and variable margin based on forecasts.
Potential or pre-costs, sales, and variable margins can be displayed and written into files for further use. Potential costs and sales would normally be written into the cost file (COST) for further use in the daily costing program.

The cost program.-- The cost program (COSTPRO) is designed to calculate and display daily and to-date potential and actual costs and sales, and to display them for management use. Inis program is illustrated in Figure 27.

The two remaining elements of the system, the forecasting and food use programs, are designed for use when needed. Both can be used daily or at longer intervals.

The forecasting program.--The forecasting program (FORPRO) is designed to utilize the average and trend information in MENUS to forecast total menu and menu recipe sales. The program should be sufficiently flexible so that ary menu or combination of menus can be selected. Normally, however, the program use is expected on a weekly basis with forecasting being carried out for the following week. This provides a lead time of seven days, normally quite sufficient for obtaining food items. See Figure 28 for the description of FORPRO.

Ihe food use program.--Program USEFRO (see Figure 29), the food use progiram, can be used with either actual or

Program: . . . Cost calculation and display program (COSTPRO).
Previous step: Cost file updated through FILPRO2 and PCOSTPRO.
When used: • Daily or anytime cost information needed.
Objective: . . To provide actual and potential cost information.
Next step: - None within model.

File inputs

Figure 27.--scheduling, inputs, and outputs of the cost calculation and display program (COSTPRO).

Program: . . . Forecast program (FORPRO).
Previous step: Averages and trends updated by FILPRO1.
When used: • Anytime forecast desired.
Objective: • Forecasting total and reripe covers.
Next step: . . Pre-cost calculations, food use calculations.

File inputs

Figure 28.--Scheduling, inputs, and outputs of foracast program. (FrORPRO).

Program: . . . Food use program (USEPRO).
Previous step: FOODS, RECIPES, and FORECAST files updated.
When used: . . Whenever purchase needs are required.
Objective: • To provide purchase information re amounts.
Next step: . . Purchase order.

File inputs

File cutputs
Figure 29.--Scheduled inputs and olitputs of the food use program (USEPRO).
forecast covers. When used with actual covers sold it calculates and displays what the arnount and value of each ingredient used should have been. When used with forecast figures it calculates the amount of ingreaients needed to produce the forecast covers, along with the value of these ingredients at current prices.

This systeins design meets the specification olitined in the first part of this chapter. It can be adapted by food service managers with little disruption of their current operation. The model provides needed food cost information with minimal human inputs and at an acceptable estimated coat. The specific workings of the nodel, along with actual output of the system will be described and shown in the following chapter.

\section*{FOOTNOTES}
"The State of Information Processing in the HotelMotel Industry," pp. 4, 8.
\({ }^{2}\) Ibid.
\({ }^{3}\) Ibid.
4 This figure would be in addition to current expendj.tures on food cost information.
\({ }^{5}\) Brodner, Carlson, and Maschal, pp. 388-389.
\(6_{\text {Above, p. } 116 . ~}^{\text {Bit }}\).
\(7_{\text {Above, }} \mathrm{pp} .115,118\).
\(8_{\text {Above, }}\) pp. 106-11ć.

CHAPTER VI
CONSTRUCTING AND TESTING THE MODEL

An integrated system, by definition, implies a number of interdependent elements. This interdependency makes it difficult to present a system description without redundancy. In an attempt to overcome this difficulty, the system is divided into the following functional elements in this section:
1. Data collection.
2. File construction and maintenance.
3. Forecasting.
4. Food cost determination.

\section*{Date Collection}

The data used in the model were not intended to portray any partioular food service operation. The intent Was to create a model that was sufficiently complex to De believable, but not so large as to cause unnecessary effort which, in the final analysis, would not add to efiectiveness of the system.

\section*{Menu data}

An operation serving one renu per day is assumed in the model. The seven menus used in the model each have
the following structure：
2．ごo ミppetシェers．
2．Tnグニe entrees．
3．Iossed green \(\equiv\)－i三d with choice of dressing．
4．A potato．
5．Tro deミミentミ．
6．Ino beverages（milz or coffiee）．

An atterpt was made to follon 三ccepted renu－making prec－ tices in the arees offleror，consisterey，form，end
 presentation of items，mitin no＂speri三lty house＂tenden－ cies．
 out in tinelaミニ cinsptsr．It is importent tinat e Eiven conoinetion of iters ie connidered＂different＂if it

 ticミfor HEEin Poこecミミちing cミn then ce こミミntミined to

 ニะセン file．

which will be described in a later section. The total dollar figure is simply a place holder and is meaningless. It would normally be generated by the potential cost program (PCSTPRO). The averages and trends, both total and recipe, along with total and recipe covers were generated as the last forty-two days of a simulated year and have been entered with dates running from \(11 / 13 / 70\) to \(12 / 31 / 70\) (skipping every seventh day).

\section*{Recipe data}

The recipes that appear in the seven menus were gathered from a number of sources, mostly standard recipe books. It would have been easier to design recipes to fit the system, but this would have violated the concept that the system must be able to handle recipes currently being used in a given operation. The number of ingredients in a recipe, and the number of portions the recipe was designed to prepare, were established by the recipe chosen.

Each recipe was then analyzed to determine the smallest number of portions that could be produced by simple linear division of the recipe. This figure was designated the "Iinear divisor." The selling price was then assigned to each recipe, based on current area prices. Subassamblies and certain recipes (such as salad) carry no selling price because they are inciuded in the price of another dish or the mes. (If a salad is purchased separately, it can be
priced by the a la carte "other" feature in the cost input program.)

The conversion factor for each recipe ingredient was calculated on the basis of the inventory/issue unit of that ingredient. For example, a recipe calling for eight ounces of chicken base, issued in one pound jars, would show a converion factor of .5000 for that item. The conversion of cups, quarts, tes.spoons, tablespoons, and the like is a time-consurning task. Fortunately, it has to be done only once. This method was chosen over the use of conversion tables because of the difficulty in providing tables for all possible conversions, and because less machine time would be needed than with the tables.

The file listing for all of the recipes used in the model is provided in Appendix D. Note that all recipes with code numbers less than 10,000 are subassemblies.

\section*{Ingredient diata}

The entire ingredient file is show in Appendix E. The ingredjent data were taken from jnvoices received at the University of Massachusetts Student Union in the spring of 1969. The number of units on hand for each ingredient is an arbitrary figure. The ingredient conversion factor is a number which, when divided into the unit of jurchase, will give the inventory/issue unit.

This allows items to be entered into the system in the units by which they are invoiced.

The storeroom codes represent the various storages as follows:
1. Dry storage.
2. Meat refrigerator.
3. Dairy refrigerator.
4. Fruit and vegetable refrigerator.
5. Freezer.
6. Kitchen.

The collection of data for the menu, recipe, and ingredient files is necessarily the first step in the construction of the model. The next section will treat the manner in which these data are entered into the system.
\(\qquad\)

\section*{File Construction ard Undating}

Tho types of file formats are available on the UMASS time sharing system. Files held in BCD (binary coded decimal) format. can be fetched and listed by the user through the use of simple systems commands. Binary files, on the other hand, can be written and read only through other programs. The binary format has several advantages over \(B C D\), including the ability to read and write unformatted data and to allow pointer settings any place in the file. Still, the BCD format was chosen
because of the ease of checking file content, deemed necessary in the experimental situation.

Files are stored on disks in the UNASS systern, and formatted BCD data are read from, or written to the following: terminal, active storage, and files from the disk under format control. It is possible to assign eight files to eight different units, but only three of these units can be opened at any one time. The process of opening and closing files is relatively expensive in terms of CPU (computer central processing unit) time. The fewer files used in any one program, the greater advantage in terms of cost to the user. Files are opened and closed in each program by subroutine OPENUP, described in Figure 30.

The names used in any program are input by the user. This feature allows several files of the same type, e.g., menti files, to be maintained. Multiple operations can then be operated from the same set of programs.

The system requires two general types of file updating, intermittent and daily. These are handled by two different sets of programs and can be discussed most easily in separate sections.

\section*{Intermittent file updating}

The ingredient and menu files are normally updated daily, but may also require intermittent updating. The

Figure 30.--Descriptive flow diagram of subroutine ORENUP, a file-opening
subroutine for all. main prograns.
recipe file is changed only at regular intervals. A group of three programs perform the non-daily changes. These three programs, INGPRO, RECPRO, and NENPRO must be used to initialize the ingredient, recipe, and menu files, respectively. The program logic is similar for the three prograns. A description of program INGPRO is shown through the medium of Figure 31. (This "program description" style of flow chart will be used throughout this chapter.) Programs RECPRO and MENPRO differ from INGPRO primarily in the use of "headers" for each recipe or menu. These headers identify the start of each recipe or menu in the file and coritain the necessary POF (end of file) information to let the program know when it has finished with one complete unit.

When the files are first initialized, the ingredient file is written first. The recipe file is then written and, as codes are entered for new ingredients, a check is made on the ingredient file to determine whether or not the ingredient is in the file. In it is, the name of the ingredient is printed out to inform the operator visually the name of the iten coded. The operator must then respond before the input process can continue. Figure 32 shows the dialogue that takes piace when a recipe for potatoes au gratin is added to the rile. A similar dialogue takes place when the menu ijile is being upated--vith the recipe rather than the ingredient file being checked for matching codes. A

Figure 31.--Descriptive flow diagram of program INGPRO, a file updating program.

RUN RECPRO
16K
RECP. FILE NAME ?RECIPES
ING. FILE NAME ?FOODS
```

OPERATION AND CODE ?ADD 38040
NEW REEP. NAME ?POTATO AU GRATIN
SELL-PRICE, NO. ING., NO. SEPV., AND LIN. DIV
?.30 5 48 12
ING. CODE AND CONV.
2110 1.5
NAME IS CHEESE SAUCE/OTS CORPECT ?YES
ING. CODE AND CONV.
?14020.125
NAME IS BUTTER/PRIHT CORPEECT ?YES
ING. CODE AND CONV.
?30010.125
NAME IS BREAD CP.UMES CORPRECT ?YES
ING. CODE AND CONV.
?82050 15.
NAME IS POTATOES/MAIHE CORRECT ?YES
ING. CODE AND CONV.
?95150.0312
NAME IS PAPRIKA CORPEET ?YES
OPEPATION AND CODE ?DISPLAY }3804

```
38040 . 30 FOTATO AU GRATIII 54812
\begin{tabular}{lrlr}
3.8040 & 110 & CHEESE SAUCE/OTS & 1.5000 \\
38040 & 14020 & PUTTER/PRINT & .1250 \\
38040 & 30010 & EREAD CRUMRS & .1250 \\
38040 & 82050 & POTATOES/MAINE & 15.0000 \\
38040 & 95150 & PAPRIKA. & .0312
\end{tabular}
OPERATION AND CODE ?END RUN

Figure 32.--Adaing and dispiaying a recipe through the use of program PECPRO.
search subprogram, used by all of the main programs, locates the item in the file being used or indicates that the j.tem is not in the file. A description of this subprogram (SEARCH) is shown in Figure 33.

The flexibility of programs INGPRO, PECPRO, and MENPRO is such that almost any kind of file change can be initialized by one of the three programs. If an ingredient is added to a recipe, the header is automatically updated to reflect the change. If a menu iter is dropped, the number of menu items shown on the header is automatically decreased by one. Another time-saving feature is that only the figure, or figures the operator wishes to change rust be typed in at the terninal. For all others the "X" key is struck, indicating "no change."

The display option allows the operator to check. quickly on any itern in the file. Figure 32 2lso shows the display of the recipe for potatoes au gratin.

The program options, "add," "delete," "replace," "update," and "display," are included in each of the three programs, INGPRO, RECPRO, and VENPRO. The "add" option EIlows a new ingredient, recipe, or menu to be added. "Delete" allows a current item to be dropped. Arter each of these options are exercised the file directories are sorted into numerical order according to their codes and the new information is merged into the file. The "replace" option provides for replacement of everabit of information

Figuze 33.--inairlperve flow disgram of Eubroutiris SEARCH, renteine used by all maln programs.
carried about an item except the code. The "update" option allows data to be changed, but not the item name or code. RECPAO and VEUPFO EIIOW Eithor the header or the bcdy of the record to be changed independently. The display option was described in the preceecing paregrapn.

\section*{Dailyfile updeting}

The syzten was designed to accormodate the deily entry of certain ssies and cost date. Although it is not necessary to input this inforration physically each day, it roxst be entered in daily segrents.

Salea information is entered through the usa of progran FILPROI. As inajicated in Figure 34 , this infomation can relate either to one of the foriju-tno dzj/menu cornbinations on any recipe in the recipe file. The normel procedure would be to enter the number of covers pertinent to the remu of the previous cay, and then input benquet and a la carte "otner" information. Tnis information would be teken from a rarised menu or other collecting device. Ine optionsl oencuet code allowe ail recipes served on a particuler benquet to be groupec togetiner. The current recipe seiling price cerr be used for thess recipes, on an optionei velue can be entered. This makes it possible for one price to be set for an entire barouet, if so desired. The zesul diat are witten into the neru file ari the bancuet ari = ia certs "otiser" data into a

banquet file. A typical daily input cycle for FILPROI can be found in Appendix \(F\). An example of a banquet file, resulting from this input, can be seen in Appendix \(G\).

FILPFOl updates the total and recipe averages and trends to reflect the import of the daily inputs. The formulas used to update these figures are given in the section on forecasting under "Testing the forecasting algorithm."1

Cost information enters the system through FILPRO2, described in Figure \(35^{\circ}\). Costs and amounts of ingredients are taken from invoices or the receiving clerk's daily record and entered--ejther by individual ingredient for those foods that are placed in storage, or as a total of those goods sent directly to the kitchen for use that day. The amounts of issues from storage are then entered and autonatically priced and extended. The price used is the most recent price. (This price is also used in the calculation of potential cost so that comparisons are not affected by price differences.) This method of entering and pricing requisitions leaves only the amount of issue units to be certified by a storeroom clerk. He does not need to maintain prices in the storeroom.

Transfers to or from cost of food sold are entered through Filpro2. The totals of issues (requisitions), food sent directly to the kitchen (food direct), and

Figure 35.--Descriptive flow diagram of program FILPRO2, the cost input program.
transfers (rood from other departments) are then written into the cost file. These three figures are then combined later in order to determine the estimated cost of food sola for the day by program COSTPRO. \({ }^{2}\)

Program FIIPRO2, at the option of the user, can then cause to be printed out an itemized list of storeroom purchases, or issues, or both. The user also has the option to list those inventory listings affected either by purchase or issue, to show the new amounts of goods on hand. Lastly, the user may ask that the entire inventory be extended, totaled, and printed out, either in detail or in suminary. A sample day's input for FILPRO2 is shown in Aopendix Hi .

\section*{Other file updating}

There is one other file used in the model. This is the forecast file, used only as a temporary storage for forecast data. Its use will be covered in the following section.

\section*{Forecasting}

It was pointed out in Chapter IV that formula approaches to the forecasting of covers expectect in food service operations were not used by the industry. In an attempt to find a workable method, an investiegation was made into the use of exponential smoothing for restaurant forecasting. A
description of this investigation follows.

\section*{Testing the forecasting algorithm \({ }^{3}\)}

It should be recalled that forecasting the expected demand for a public food service operation is complicated by the number of variables involved, the interdependency of these variables, and the number of unique demand functions displayed by the nation's restaurants. Remember, too, that only a base demand is sought--the forecaster is expected to coordinate predictive variables such as weather and special events.

Data for the model used to test the algorithr were not available and had to be generated. Three typical demand situations were simulated: (I) increasing cycle, (2) increasing ramp, and (3) increasing ramp with a step function. The general method used was to generate a total demand curve and then generate a demand for the menu items (recipe demand), based on total demand.

Two total derand generating programs were used. (The Fortran version of all programs used in the test can be found ir Appendix I.) The first demand was used to generate cyclical or ramp demard data. Up to ten points cen be entered (six wera used in the model). Solutions of the equations were achieved through matrix inversion, and a smoothod curve through these points was used as a base for a. randon generation of demard points, using a uniform
distribution. The generator will handle any number of days up to 365, and the parameters of the distribution can be changed for each point. The results of the demand generation can be written on binary files, printed, or plotted graphically by the computer.

The second totel demand generator (STEPS) will take either a cycle or a ramp and create a step in the curve of any amount and at any point or points. It will also write on binary files, print, or plot (as a percentage) the demand function it generates. Only the ramp with step was used in the test.

Recipe demand was generated by two programs-- BRDMiD or BRDMNDN. These programs mado use of a seed file (BANK) Which gave the average popularity of each recipe item as a percertage of total demand. BRDMND utilized a uniform distribution with a range of plus or minus .05 , and BRDMIDN a normal distribution with one standarc deviation about the mean of .05 , to generate demands randomly around the means furnished in BANK.

Program FORSIH contained the forecasting algorithm for the model. Total forecast demand was calculated using exponential smoothjng. 4 First a new everage demand was calculated using the formula: New Averags Demand (FAVG) = Alpha (I:Ota]. Demend [I] - Old Averege) + 0id Average. 5 The current trend was then determined: Current Irend \(=\) New Average - Old Everage. The New mrend then equaled:

Alpha (Current Trend - 0ld Irend) + Old Trend. The forecast for day I+6 was then made using: Total Forecast \((I+5)=\) New Average \(+(1-A l p h a) / A l p h a) x\) New Trend. Averages and trends were calculated and stored for each day of the week so that, for example, Monday's figures were used in forecasting the demand for the folloving Monday

Recipe forecast demand was calculated using the same formula approach. Trends and averages, however, were calculated for each day/menu/recipe combination. (Remember that these trends and averages are carried as a ratio to total demand.) For example, an average and a trend were maintained for a shrimp cocktail when it appeared on Menu \(I\) on a Monday. This avoided the probIem of cross elasticity between menu items and the varying ponularity of certain menu items on a certair day.

Demand for each type of curve was generated for two years, with 312 days of operation each year. Averages and trends were calculated as of the end of the first year and were then used as a starting point to track the second year's demand. The plots of these demand -functiors for both years, for the three tested curve shapes, are shom in Appendix J.

The statistical program COMPARE was used to test the accuracy of the aigorithm and to determine the best constants to use for each of the three demand functions.

The statistical program was designed to calculate:
1. The standard deviation (SDEV) of the difference between demand and forecast.
2. The coefficient of variation (SDEV mean of the demand).
3. The square of the forecast errors.
4. Total of the absolute forecast errors.
5. Sum of the demarid.
6. Average of the demand.

The square of the forecast errors was chosen over total absolute error as the governing criterion on the basis that large errors on particular days would cause more problems for the restaurateur than smaller absolute error over time.

Selected results of the simulation are given in Appendix \(\pi\). In general, the model produced acceptable results within the limitations described in the following section.

The \(\equiv\) Igorithm tracked the ramp demand more closely than the cycle or step demands. The coefficient of variation was .022 (Alpha \(=.07\)) indicating (if normal distribution of the forecast errors is assurned) that spproximstely two-thirds of the time the standard deviation of the error would be less than 2.2 percent of the demand. The coefficient of variation of the recipe errors was .1527 (Alpha \(=.1\)) using the nomal. Eenerator. The kigh recipe was number 9 with .2487 and the low was
number 12 with .1032.
The algorithm tracked the cycle demand with a coefficient of variation of total forecast error of .0274 (Alpha \(=.37\)). Recipe errors, using the uniform genexator, had a coefficient of variation of .0933. Recipe 9 was high with .1695 , and recipe 12 low with .0563.

The step demand was run with one step of 20 (about 15 percent increase) on the 156 th day. The result for total forecast error was a coefficient of variation of .0318 (Alpha \(=.09\)) (using the nomal generator) with recipes 9 and 12 high and low, respectively, at .2486 and .1044.

The conclusion drawn from the test was that exponential smoothing appears to provide a useful method of formula forecasting when cycle menus are used. Certain recommended changes seem appropriate before this method is used in an actual operation.

The primary change would be to use a trackirg signal to findicete needed changes in the smoothing constant. When the standard deviation of the error became too large, Fould cause a change in the smoothing constant to diminish the error. Because the success of the algoritinn witn indiviaual recipes fluctuated with the size of the Cemand -i would alzo bo advisable to provide different alnhe factors for individual recipes or groups of recipes.

Both of the above changes should improve the accuracy
of the recipe forecasts. Even without these changes, the average accuracy would seera to be well within the useful range.

\section*{Making the forecast}

The actual forecast for the food cost information system model is accomplished through program FORPRO, described in Figure 36. The normal procedure would be for a forecast to be generated at least one week in advance of the target date in order to provide sufficient lead time for purchasing.

The forecaster simply indicates the code of the first menu in the forecast and the number of menus he wishes included. He must recognize, however, that the farther he forecasts into the future, the less accurate his forecasts will be, because the averages used will become more and more out of date. For example, if a forecast is made on a Monday for the six days becinning a week from the forecast date, the averages and trends used for the total covers would have been calculated two weeks before the actual date of forecast. If a two-week advanced forecast is desired, the averages would have been calculated three weeks in the past. Of course, there is nothing to prevent daily upiating of forecasts as new information is added to the files.

The forecast(s) are written into a forecast file for

Figure \(36 .--\) Descriptive flow diagram of progran FOAPRO, a programed cesigned to forecast total and recipe covers.
use in pre-costing and food use calculations by program FORPRO. A sample of the file information for a forecast for two renus, numbers 36 and 47 , for the Monday January 11 , 1971, and Tuesday January 12, 1971 is shown in Figure 37. It could be assumed that this forecast was made a full week before the intended date of sale, and was based on total averages and trends calculated after sales information had been entered for December 28 and 29, 1970. The recipe averages and trends would be those as of the last appearance of menus 36 and 47. Note that the file is formatted like the menu file, but with unnecessary infomation zeroed out. This allows the food use (USEPRO) and pre-cost/potential cost (PCSTPRO) programs to operate either on the menu file (historical data) or the forecast file (forecast data).

The food use program
After a forecast has been made, it is possible to calculate the amount of ingredients needed, and their cost at current prices, through program USEPRO. This progran, described in Figure 38 , will caiculate the amount of food items needed for as many menus, single recipes, or a combination of both the user may wish to enter. For example, the exact amount of foods needed for the two menus forecasted (Figure 37) are generated by USEPRO and displayed in Figure 39. If banquets had been scheduled for

EXECUTE FORPRO
16K
MENU AND UTILITY FILE NAMES ?MENUS FORCST
MENU START AMD NO. OF DAYS ?37 2 PROGRAM NIAME ?EXIT

TIME: 0.427 SEC.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 26 & & & & & \\
\hline 37 & MONDAY & 0142 & 0 & 0 & 0 & 012 \\
\hline 37 & 12040 & CRANBERPY SHRUB & 49 & 0 & 0 & \\
\hline 37 & 15010 & bluepoinits/it Shl & 58 & 0 & 0 & \\
\hline 37 & 25120 & SHEDISH STEAK & 37 & 0 & 0 & \\
\hline 37 & 25130 & BA STUFF SHRIMP & 84 & 0 & 0 & \\
\hline 37 & 25140 & CHIX POT PIE & 34 & 0 & 0 & \\
\hline 37 & 38010 & TOSSED GR SALAD & 92 & 0 & 0 & \\
\hline 37 & 38030 & hash br potato & 73 & 0 & 0 & \\
\hline 37 & 42.010 & CHOC PAPFAIT & 28 & 0 & 0 & \\
\hline 37 & 49090 & BLUEBERRY TART & 47 & 0 & 0 & \\
\hline 37 & 59000 & COFFEE & 83 & 0 & 0 & \\
\hline 37 & 59100 & MILK/GLASS & 34 & 0 & 0 & \\
\hline 37 & 63000 & ROLLS BUTTER. & 121 & 0 & 0 & \\
\hline 41. & TUESD. & 0 142 & 0 & 0 & 0 & 012 \\
\hline 41 & 12080 & tomato juice ct & 38 & 0 & 0 & \\
\hline 41 & 15090 & SHRIMP COCKTAIL & 46 & 0 & 0 & \\
\hline 41 & 25180 & FILET MIGNON & 75 & 0 & 0 & \\
\hline 41 & 25190 & beEF Pot Pie & 33 & 0 & 0 & \\
\hline 41 & 25200 & HALF BR. CHIX & 44 & 0 & 0 & \\
\hline 41 & 38010 & TOSSED GR SALAD & 97 & 0 & 0 & \\
\hline 41 & 38050 & FR. FRIED POT. & 95 & 0 & 0 & \\
\hline 41 & 46130 & STRAIIEY PARFAIT & 25 & 0 & 0 & \\
\hline 47 & 49120 & APPLE PIE & 25 & 0 & 0 & \\
\hline 41 & 59000 & COFFEE & 82 & S & 0 & \\
\hline 41 & 59100 & Milk/glass & 38 & 0 & 0 & \\
\hline 41. & 63000 & POLLS BUTTER & 98 & 0 & 0 & \\
\hline & 37 & \(3 \quad 41 \quad 107\) & & & & \\
\hline
\end{tabular}

Figure 37 --Instructions given to rurt program FORPKO and to forcast mentis 37 and 41 for \(1 / 11 / 71\) and for \(1 / 12 / 71\).
ASK YOR, AND ACCEPT FROM KEYBOARD, FILE NANES (ING., REC., MENU)-CPEN FILES

these two days, it would have been possible to enter the number of servings of each item to be sold on the banquets through the "recipe" option and have these amounts added to the list. By inputting only those items needed for a banquet, the total cost of the banquet alone can be quickly calculated as an aid in setting the selling price of the affair.

Forecasts and the number of portions it is possible to make with a given recipe do not always agree. For example, a forecast of 65 covers for a recipe geared to 48 portions poses a problem. This is partially solved through the use of the linear divisor and the rounding option in USEPRO.

Referring to the example in the previous paragraph, let it be assumed that \(l 2\) is the Inear divisor for the recipe in question. This means that the recipe can be divided by quarters and that it is possible to make 60 or 72 portions of the recipe. A decision rule (in this case to round up if the forecast figure is half or more of the difference between possible batch sizes) then would round the 65 forecast to 60 and use that figure to calculate food use. The rounded output of USPPRO, comparable to that shown in Figure 39, is shown in Figure 40 .

USEPRO can also be used with historical data from the menu file to calculate the exact amount of each ingredient that should have been used to produce a given

10010 SHORTEHIHG/HYD 12010 OIL. OLIVE I4010 BUTTEP/CHIP
I4020 BUTTER/PRIIIT
20010 CHERPIES/BLACK
21010 CRAHBERRY JUICE
23010 LEHONS/FR.
31010 P.OLLS /BRSP.V
33010 FLOUR/BREAD
50010 BEEF/BOTTOH RND
50020 己EEF/FILET
50040 BEEF/SIP STP/8
55010 EGGS/FRESII WHOLE
56005 CHIX/FO:!L
56010 CHIX/FPYER/2. 5
58030 OYSTERS/BLPTS
58040 SCALLOPS
58050 SHRIMP/FROZ/5LB
60010 IIILK/HOHOG
61040 CPEAM/IIHIPPING
62010 ICE CREAM/VANILL
63010 SHEPBET/LIME
64020 CIEESE/BLEU
64040 CHEESE/CREAM
70010 SUGAR! GRAN
73010 BLUEBEPRY FILLIN
73030 STRANBEPRY TOPNG
76010 CHOCOLATE SAUCE
80010 CARROTS /SLICED
80030 CARROTS/!!HOLE
80050 : MUSHROOMS/CAPS
80090 ONIONS/PEARL
80170 PEAS/GREEN:
80170 TOMATO JUICE/450
80190 TOMATO PUREE
81010 CARPOTS/FRESH
81030 CELERY/FRESH
81050 CUKES
81070 HORSEPADISH/FR.
81090 LETTUCE/ICEBERG
81730 OiIIOMS/FRESH
81150 PARSLEY/FPRESH
81170 PEPPERS/GPEEH
\(81 I 90\) PAADISHES
82030 POTATOES:FP.F/FP.Z
82050 POTATOES/HAINE
83010 PEAS/FROZ.
90010 BEEF BASE
90020 CHIX BASE
91010 COFFEE
92010 TOBASCO
92920 MORCESTR SC
93010 PIE/APPLE
93100 TART SHELLS
95010 BAYLEAF
05030 CATSUP
95050 CHILI SAJCE
95150 PAPRIKA
95170 PEPPER/GLACK
952.3. SALT

95250 THYME
95260 VAiNilla
95270 VIHEGAR/I!HITE
95290 ! IHOLE CLOVES
97010 CORIISTARCH!
\(97 I 00\) IIATEP.
3.03
.39
3.01
6.10
17.53
.16
1.52
52.95
36.50
6.23
27.60
17.69
46.88
18.50 .74
19.38
22.00
2.32
5.29
28.30
9.95
1.08
1.64
.78
.31
.79
1.53
.42
.32
.36
2.28
.69
.10
1.13
.07
1.13
\(4.24 \quad\) C5C \(\quad 1.93\)
\(.07 \quad \mathrm{ClO} \quad .07\)
.17
11.90
9.45
.60
28.22
7.24
.04
3.15
5.77
4.75
21.29
1.72
.07
.40
10.31
.00
.37
4.15
3.90
.02
.60
.45
. 32
.52
.04
.07 PT .21
.28 GAL .17
\begin{tabular}{lll}
.02 & LB & .03 \\
.31 & LE & .06
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 3.29 & x \({ }^{\text {x }}\) & 0 \\
\hline
\end{tabular}

Figure 39...
Output of food uee program (USBP? 0) ,
not roumded.

sales configuration. Comparison of these figures with requisitions or production records could turn up discrepancies in the use of certain items.

\section*{Pre-costing}

After a forecast has been made it may also be desirable to pre-cost a menu for reasons discussed in Chapter IV. 6 This can be done, using program PCSTPRO. The use of program PCSTPRO will be discussed in the next section, devoted to cost calculations, as the development of precost and potential cost figures differ only in that forecast covers are used for the former and actual coveri for the latier.

\section*{Calculation of Food Costs}

Through use of the system it is possible to develop actual and potential costs and compare the two. Whe magnitude of the difference between what food costs should be (potential costs), and what they are (actual costs), indicates to a significant degree the inefficiency being experienced in this important cost area. 7

\section*{Potential costs}

Potential costs are calculated and written out into the cost file by program PCSTPZ̈O. The program descriptions of prograri PCSMPRO and EVAIREC, a key subroutine of the prognam, are shown on the next three pages in figures 41
and 42. PCSTPRO reads the numbers of covers sold for a given menu (requested by date), calculates the potential cost per portion for each recipe, and then calculates the total potential cost for each item and for the entire menu. It reads the recipe (menu itern) selling price from the recipe file and calculates to sales for each itern and total menu sales. Potential costs are subtracted from sales to show variable margins, and the ratio of each menu item to total covers sold is calculated.

Banquets or a la carte "other" sales are read from the banquet file and potential costs, sales, and variable margins calculated. The potential cost as a percent of sales for the menu, banquets, and a la carte "other" are calculated, total costs and variable margins for the day are figured, and the total is printed out as shown in Figure 43. These particular costs and sales calculations were based on the inputs for January 1,1971 illustrated in Appendjees \(F\) and \(H\). Total sales and potential costs are then written into the cost file for evaluation by a final cost program (COSTPRO).

Menu or banquet pre-costs can be made by PCSTPRO. The same logic is used as for potential costing but number of sales are read from a Iorecast file with menu code, rather than date, as the indentifying input. These costs and variable margins indicate the possibilities if expectations are realizec. Too, new menus can be tested for expected
 A la carte "other" recipes oi banquet file are grouped together and evaluated as if they were

-urexSoxd 7 sos

\section*{}

Sax

\section*{(1) INITIATE B/M/A FROCESSING BY READING FROM APPROPRLATE FILE \(b\)}

Figure 41.--Continsed.
\(\mathrm{b}_{\mathrm{B}} / \mathrm{i} / \mathrm{A}\) refers to banquer, menu, or a la carte "other"-dependirs on which of the three is being processed.
cThe evaluation of an individual recipe is shown in Figure 42 on the following page.

CALL PROM MAN
SET RECIPE PRICE AND COST - 0.0

READ RECIPG HEADEK FROS RECYPE FILE

Figure 42.--Descriptive flow diagram of subroutine EVALREC,
recipe price and cost evaluation subroutine for programs PCSTPRO
and USERRO.

\section*{EXECUTE PCSTPRO}
```

16k
FILE NAMES
BANQ, ING, REC, AND HENU
?BANQ FOODS RECIPES MENUS
DATE REQUEST ?10171

```

DATE IS 01/01/71

Figure 43.--Potential cost calculations Fron prorram PCSTPRO. This is simulated for \(1 / 1 / 71\) (menu 15). Banquet and a la carte "other" figures are on the following page.

BANQUET CODE SIMMONS
\begin{tabular}{llrrrrrrr}
RECIPE RECIPE NANE & SOLD PRICE & COST TOTSALE TOTCOST VAPIIARG PCTTC. \\
\hline
\end{tabular}
\(\operatorname{cosT} \%=33.32\)

ALA CARTE
\begin{tabular}{lrrrrrrr}
RECIPE RECIPE NAME SOLD PRICE COST TOTSALE TOTCOST VAR:IARG PCTTCI \\
\hline
\end{tabular}
```

\operatorname{cosT}%=12.61

```

OVERALL TOTALS
SALES 1204.00
COSTS 291.81
VIIARG 912.19
COSTS \(\quad 24.24\)

Figure 43.--Continued.
variable margin by writing them into a dumm menu file, using MENPRO, and evaluating them with PCSTPRO. Still another feature of the program is its ability to pre-cost a banquet so the operator can check to see if his proposed banquet price will produce an acceptable margin.

Lastly, entire menu, forecast, or banquet files can be costed by inputting " 0 ," rather than date or menu code. This feature saves considerable time if a large number of iterns are being costed or pre-costed.

\section*{Actual costs and analysis}

The final step taken by the system to provide usable information for the food service operator is to calculate actual costs and compare them with potential costs. This is acconplished through program COSTPRD (charted in Figure 44).

COSTPRO operates on the information placed in the cost file by FILPRO2 and PCSTPRO. This file now contains the following information for each date of operation (the number of days that can be carried is limited oniy by the cost of disk storage--normally a year's data would be riaintainea):
I. Totai potential cost.
2. Total sales.
3. Total issues.
4. Total fond direct.

\section*{ASK FOR, AMD ACCEPT FROM KYYEOSRD, COST FILENAME}

ASK FOR, AND ACCEPT FROM KEYBOARD:
BEGINNING DATE, ENDING DATE: TYPE AND OPTION

5. Plus or minus transfers.

The program totals issues, food direct and transfers to obtain the estimated actual daily cost and compares this with potential cost. The difference is potential savings--defined as the amount that could have been saved if planned food costs had been obtained. Potential savings could be a negative figure (underportioning could cause this), although this result would be highly improbable. The user has the option of obtaining daily or to-date cost information, using any start date he selects. This information can be listed in detail or it can be summarized, as shown in Figure 45 .

\section*{Summary}

In this section the detail and use of a model information system for planning and control has been shown through the use of diagrams, and by showing actual data inputs and outputs. Intermittent file updating, regular file updating, forecast, determining food use, pre-costing, potential cost calculations, and cost evaluation were described as handled by the syster. The significance of these functions, along with some recommendations for extensions of the system, will be discussed in the next, and concludins, chapter.

\section*{EXE COSTPRO}

8K
COST FILE NAME ?COSTF
```

DATEI,DATE2,TYPE,AND DISPLAY
?122870 IOI71 DAILY DETAIL

```

DAILY INFORMATION FPOM 122870 TO 10171

MORE INPUT ?YES

DATE1, DATE2, TYPE, AND DISPLAY ? 122370 1017I TODATE DETAIL

TO DATE IIIFORMATION FROM 122870 TO 10171
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DATE & SALES & ACTUAL COST & ACTUAL COST \% & \[
\begin{aligned}
& \text { POT } \\
& \text { COST }
\end{aligned}
\] & \begin{tabular}{l}
POT. \\
SAVINGS
\end{tabular} & SAVINGS \\
\hline 122870 & 708.65 & 160.00 & 22.58 & 145.19 & 14.81 & 2.09 \\
\hline 122970 & 1341.15 & 285.00 & 21.25 & 249.35 & 35.55 & 2.66 \\
\hline 123070 & 2160.20 & 488.13 & 22.60 & 432.24 & 55.89 & 2.59 \\
\hline 1231.70 & 2966.70 & 734.13 & 24.75 & 647.46 & 86.67 & 2.9? \\
\hline 10171 & 4170.70 & 1072.68 & 25.72 & 933.27 & 133.41 & 3.20 \\
\hline
\end{tabular}

MORE IHPUT ?NO
PROGRAIM NAIIE ?EXIT

TIME: 0.274 SEC.

Figure 45..-Daily and to-date food costs displeyed by program Cosmpro.

\section*{FOOTNOTES}
\(I_{\text {See }} \mathrm{p} .175\).
\({ }^{2}\) see the discussion of estimated food costs in Chapter IV (po. lOó-Il2).

3The material in this section was first presented by the author as an invited paper at science of Survival/70 (SO S/70), Washington, D.C. (August 14, 1970).

4 see Brown, pp. 1-159, for a presentation of the method of forecasting using exponential smoothing.
\(5_{\text {Alpha is a constant with a value between zero and }}\) orle.
\({ }^{6}\) See above, p. 113.
\(7_{\text {See above, }}\) p. 117 .

C H A P T E R V I I
EVALUATION OF THE SYSTEMS MODEL

This paper has outlined the need for, developed, and tested a systems model of an information system for the planning and control of food cost in comnercial food service operations. To thjs extent it has fulfilled the purpose set forth on page \(I\) of Chapter \(I\). There are, however, further considerations which must be taken into account before the success of the undertaking can be fuIly assured.

\section*{The need for further tosting}

That the system works when applied to simulated conditions is unquestionabie. What is needed is further testing under actual conditions. Ihe model, made as realistic as possible under the assumptions used, still may lack thosc little survirises that are an integral part of actual operations.

As a first test, it would be recomended that an operation with a sinclo menu be used. This would present the most favorable condition for the use of the forecasting feeture, probably the largest question marle in the model. The systern could be mun in parajlul with whatever current systen is E®eing usec in the test oporation until confidence
in the system capability was achieved.

\section*{Potential problems}

A potentigl problem in the use of the system could Iie in the problen of inputting sales and cost data, particularily in the larger operations. In the first place, it is in the input and output processes that humans must interact with the system. Unfortunatelys humans are more mistake-prone than machines where routine operations are of concern. Secondly, a problem is created by the sheer amount of reoipe sales data, purchase data, and issues data inaigonous to a large operation.

A potential solution to this problem lies in the use of different types of terminal devices than the teletype. An example of such a device, now on the market, is the Documentor--manufactured and sold by the Docunentor Sciences Jomporation, 2921 S . Daimlor, Santa Ana, California. This device, really a mini-computer, has the capability of reading mark-sensed input records. A sales check that can be used in this system is shown in Figure 46. The check is marked as shown by the waitress when the guest order is taken. The check is then fed into a small computer which selects the proper program to record the data. The time is recorded on the check, and if desired, a cash drawer is automatically openca to accept payment. There are no buttons or any other device for the operator

Fighue 46.--Sales chock used in the Documentor system.
to hit, raiss, or negiect. If there is an error in the data, the rachine sirally pushes the check back out to the operator. Lt the other end of the system, an inventory entry docurent aliows the item code, quantity, and price to be entered the same way.

At the end of each day it vould be possible for the cost and sales information held in the Documenton to be transmitted automaticelly to the files of the master computer.

The initis.l cost of such a systen would be corsiderably higher (\(\$ 8,000-\$ 10,000\)) then if only a teletype were used. It would be assumed that an operation Ierge enough to reed such a device would also be able to justify the cost.

Another potential probler is inherent in the length of time necessary to buila up recipe sales informetion if several menis are used in a cjcle. The more menus in the cycle, the more tirne is needed to accumilate comperable statistics. There is no way to get around this proolem except to use the smallest number of renus possible. Fortunately, the success of specialty restaurants and "one menu" establishments would appear to indicate that a large number of aifferent menus are not essential to success in comerciai restaurants.

A last, readily observable, shortcoming of the system is that orly one price, the last, is retained for each food
item. This factor aids comparisons between potential and actual costs by assuring that they are calculated on the same base prices. For inventory valuations to be used in calculating cost for the formal income staterent, however, it would be desirable that it be possible to calculate the actual value of goods in inventory, using LIFO, FIFO, or some other standard inventory valuation system. Fortunately, this objection cen be easily overcome by creating additional price slots for each food item in inventory. One price is then used until the items to which it related are used up, at which tirne the "new" price comes into use. This feature was left out of the model because the use of \(B C D\) files linited, for practical purposes, the lensth of the record used.

This leads into a final recomendation: that binary files be used in actual operation--primarily because of their greater flexibility and ease of programming.

\section*{Sorie extensions of the system}

A very useful addition to the system would be the incorporation of an expanded system of information inventory ana purchesing control. This couici be as simple as the par-stock and mini-max systems discussed in Chapter IV. \({ }^{l}\) Another possibility would be the use of standard E.C.Q. (economic order quantity) formulas.? A thind possibility could be a joint order cost
formulation such as that proposed by Balintfy. 3
Another possible addition would be the capability of using the ingredient codes to break both potential and actual costs dowr into various food groupings. This would enable a irood service operator to pinpoint the area of food losses more readily than would be possible under the system as proposed.

The successful advent of the computer into the area of food cost operation covld open up possibilities for the use of operations research techniques for production control. Modéls could be constructed of normal operating patterns at different times of the day and at different points in a given meal. A plot of actual performance against this norm, displayed on cathode ray tubes, would aid the food service operator in those on-the-spot operating dacisions that are an integral part of food service management.

Finally, the proposed system serves only one part of the informetion needed by food service operators. Beverage costs, wage costs, productivity data, the list of information neecis that should be served by a total food service information system are practically limitless. When confidence of food service management is gained in the use of the computer as a managerial tool, it might be expected that there will be no dearth of proposed future applications.

\section*{FOOTNOTES}
\(I_{\text {Above, }}\) p. 88.
2 For a discussion relating the E.O.Q. to food service see: Eileen Matthews, "Economic Evaluation of Food Procurement Models," Proceedings of the 23 r Conference of the Society for the Advancement of Food Service Research (Oakbrooks IlI.: Society for the Advancement oi Food Service Research, Spring, 1971).

3Balintfy, "On a Class of Multi-Item Inventory ProbIems."

\section*{BIBL IOGRA PFY}

Balintfy, Joseph L. "Computer Assisted Menu Planning." Working Paper 41. New Orleans, La.: Tulane University Graduate School of Business Administration, undated.
, ed. Computerized Dietary Information System. 3 vols. New Orleans, La.: Tulane Uriversity School of Business Administration, 1967.
"On a Basic Class of Multi-Item Inventory Problems." Management Science, X (January, 1954), 287-297.

Booz, Allen \& Hamilton (under the direction of the Cornell School of Hotel Administration. Operation Breakthrough: An Approach to Hotel/Motel Operations in 1978. New York: The American Hotel \& Motel Association, 1969.

Brodner, J.; Maschal F.; and Carlson, H. Profitable Food and Beverage Operation. 4 th rev. ed. New York: Ahrens Publishing Co., 1962.

Brown, R. Statistical Forecasting for Inventory Control. New Yorle: McGraw-Hill Book Co., Inc., 1959.

Casberque, John P., ed. A Computation of Infomation on Computer Applications in Nutrition and Food Service. Columbus, Ohio: Division of Medical Dietetics, School of Allied Medical Professions, Ohio State University, -1968.

Commercial Kitchens. New York: The American Gas Association, Inc., 1962.

Dukas, P., and Iundoerg, D. E. How to Operate a Restaurent. New York: Ahrens Publishing Co., Inc., loou.

Eshbach, C., and Wrisley, A. "Publishing Food for Food Service Fistablishments." Food Management Leaflet 10. University of Massachusetts Cooperative Extorsion service, 1965.

Gagne, F., ed. Psychalagianl Principles in System Development. New York: Holt, Rinahart and Winston, 1962.

Goode, Harry H., and Machol, Robert E. System Engineering. New York: McGraw-Hill Book Co., 1957.

Hall, Arthur D. A Methodology for Systems Engineering. Princeton, N.J.: D. Van Nostrand Co., Inc., 1962.

Hare, Van Court, Jr. Systems Analysis: A Djagnostic Approach. New York: Harcourt, Brace, and World, 1957.

Herris, Kerr, Forster \& Co. Pin-Pointing Your Profits. New York: Ahrens Publishing Company, 1958.

Johnson, R. A.; Kast, F. E.; and Rosenzweig, J. E. The Theory and Management of Systems. 2d ed. New York: McGraw-Hill Book Company, 1907.

Johnson, R. A., and Moore, A. N. "Inventory and Cost Control by Computer." Journal of the American Dietetic Association, XJIX (November, 1960), 413.

Katz, D., and Kahn, R. L. The Social Psychology of Orgarizations. New York: John Wiley \& Sons, Inc., 1966.

Lukowski, P.: Eshbach, C.; and Wrisley, A. Conducting Educational Work with operators of Food Service Establishments: Cost Analysis Procedure. Food Service Vanual No. 2. Amherst, Mass.: The University of Massachusetts Cooperative Extension Service, 1963.
\(\qquad\) - "Receiving Food in Food Service Establishments." Food Management Ieaflet 3. University of Massachusetts Cooperative Extension Service, 1963.

Lundberg, Donald E. The Hotel and Festaurant Business. Chicago: Medalist Publications, 1970.

Orwell, George. Down and Out in Paris and London. New York: Harper 8: Bros., 1933.

Prirce, T. R. Information Systems for Management Planning and Control. Homewood, III.: Richard D. Irwin, Inc., 1960.

Schoderbek, Peter P. Management Systems: A Book of Readings. John wiley \& Sons, Inc., 1907.

Smith, Victor E. "Linear Programming Models for the Detemination of Palatable Human Diets." Journal of Farm Economjes, XLI (map), 1959.
"The State of Information Processing in the Hotel-Motel Industry: A Survey Report." New York: Harris, Kerr, Chenernak and Co., October, 1970.

Stigler, G. J. "The Cost of Subsistence." Journal of Earm Economics, XXVII (1945), 303-314.

Stockton, R. S. Basic Inventory Systems Concepts and Analysis. Boston: Allyn \& Bacon, Inc., 1965.
U.S. Department of Agriculture, Economic Research Division. The Food Service Industry: Its Structure and Characteristics. Statistical Bulletin No. 416. Washington: U.S. Government Printing Office, 1968.

Welch, Jonn M. "Analyze Your Food Cost." University of Missouri Agricultural Extension Service Circular 723 , July, 1960.

Wrisley, Albert I. "The Convenience Foods Decision." The Cornell Hotel and Restaurant Administration Quarterly, X, NO. 2 (August, 1969), 44-49.
"The Cyclical Menu." Food Management Program Ieaflet Number 6. University of Massachusetts Cooperative Fxtension Service, 1965.
- "Using Storage Controls to Simplify Determination of Daily Food Costs." Food Nanagement Leaf"let -5, University of Massachusetts Cooperative Extension Service, 1962 .

Young, Stanley. Management: A Systems Analysis. Glenview, Ill.: Scott, Foresman and Co., 1966.
APPENDIX A
INGREDIENT PRIMLARY AND SUBGROUP CODES
Fats \& 0ils
Shortenings IO
Frying Fats II
Salad Oils I2
Salad Dressings I3
Butter I)
Fruits \& reruit Products
Canned Fruits 20
Canned Fruit Juices \(2 I\)
Fruit Concentrates 22
Fresh rruits 23
Fresh Fruit Juices 24
Frozen Fruit 2.5
Trozen Fruit Juices 26
Dried Fruits 27
Grain \& Grain Products
Breads 30
Roils \(3 I\)
Cakes 32
Flour 33
:Pastia \(3!\)
Crackers 35
Nuts \& Soybeans
Nuts 40
Soybean Products 41
Coconut 42
Meat, Poultry, Fish, Eggis
\(B e \in f\) 50
Porls 51
Veal 52
Lamb 53
Wild Game 54
Eggs 55
Poultry 56
Fish 57
Shellinish 58
Miscellaneous (sausage, etc.) 59
Milk \& Milk Products
Fluid \& Dried Milk 60
Cream 61
Ice Cream 62
Sherberts 63
Cheese and Cheese Products 64

\section*{Sugars \& Sweets}
Sugar 70
Syrups, honey, molasses 71
jellies 72
Toppings, other than chocolate 73
Sauces 74
Candies 75
Chocolate, cocoa, etc. 76
Gelatin desserts 77
Cordials 78
Vegetables
Connied Vegetables \& Juices 80
Fresh Vegetables (Except Potatoes) 81
Potatoes, Fresh \& Dried 82
Frozen Vegetables 83
Dried Vegetables 84
Miscelilaneous
Soups 90
Beverages \& Soft Drinks 91
Stavices \& Sauce Mixes 92
Pre-prepared pies \& tarts 93
Fpudatings, pic mixes ic fillings 94
Spices, colorincs, flavorings 95
Wine. 96
All Other - Bouiljon, plain gelatin, yeast, baking powder, etc. 97

\title{
APPENDIX B \\ REC IRE CODE COURSE DESIGINTION
}
Subassemblies \(00000-0099\)
Appetizers 1990
Entrees 2999
Salads, Vegetables 3999
Desserts 4999
Beverages 5999
Breads \(60000-6999\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 48 & 552 & & & & & & & \\
\hline 1 & HEADER & 122570 & 145770 & 770.00 & 148.30 & +2.117 & 15 & 0 \\
\hline 2 & HEADER & 122670 & 152820 & 820.00 & 152.04 & +1.874 & 148 & 0 \\
\hline 3 & HEADER & 122870 & 14597 & 973.00 & 146.18 & +2.322 & 149 & 0 \\
\hline 4 & HEADER & 122970 & 14765 & 657.00 & 146.25 & +2.404 & 147 & 0 \\
\hline 5 & HEADER & 123070 & 14669 & 691.00 & 147.43 & +2.470 & 148 & 0 \\
\hline 6 & HEADER & 123170 & 14770 & 703.00 & 151.45 & +1.979 & 149 & 0 \\
\hline İ & HEADER & 121170 & 14662 & 620.00 & 153.67 & +1.313 & 15 & 12 \\
\hline 11 & I2080 & tolmato & JUICE CT & - 82 & . 46 & . 020 & & \\
\hline 11 & 15090 & SHPIMP & COCKTAIL & - 40 & . 14 & . 002 & & \\
\hline 11 & 25180 & Filet M & MI GNON & 54 & . 48 & . 015 & & \\
\hline 1.1 & 25190 & BEEF PO & Ot PIE & 54 & . 20 & . 011 & & \\
\hline 11 & 25200 & HALF BR & R. CHIX & 48 & . 27 & . 009 & & \\
\hline 1 & 38010 & TOSSED & GR SALAD & - 107 & . 62 & . 034 & & \\
\hline 11 & 38050 & FR. FRI & ED POT. & 108 & . 58 & . 036 & & \\
\hline 11 & 46130 & STRAWBY & PARFAIT & - 33 & . 22 & . 005 & & \\
\hline 11 & 49120 & APPLE P & IE & 35 & . 11 & . 006 & & \\
\hline 11 & 59000 & COFFEE & & 95 & . 54 & . 027 & & \\
\hline I. 1 & 59.100 & MILK日GL & ASS & 40 & . 29 & . 021 & & \\
\hline 11 & 63000 & ROLLS & BUTTER & 125 & . 67 & . 023 & & \\
\hline 12 & HEADER & . 120470 & 153687 & 687.00 & 154.06 & +1.854 & 15 & \\
\hline 12 & -12070 & PEARUPR & OSC HAM & 85 & . 48 & . 018 & & \\
\hline -12 & - 25050 & MAP INAT & TED HERRIN & IN 39 & . 31 & . 015 & & \\
\hline 12 & 25010 & LAMB, R & ROAST LEG & G 57 & . 31 & . 016 & & \\
\hline 12 & 25020 & BEEF ST & RROGANOFF & - 67 & . 39 & . 024 & & \\
\hline 12 & 25030 & CLAMS \({ }^{\text {a }}\) & FRIED & 41 & . 30 & . 020 & & \\
\hline 12 & -38010 & TOSSED & GR SALAD & - 90 & . 71 & . 045 & & \\
\hline 12 & 38020 & SAK STU & uff potato & O 88 & . 75 & . 046 & & \\
\hline 12 & 42010 & CHOC PA & APFAIT & 12 & .24 & . 011 & & \\
\hline 12 & 49020 & ORANGE & CHIF PIE & - 38 & . 21 & . 007 & & \\
\hline 12 & 59000 & COFFEE & & 100 & . 58 & . 022 & & \\
\hline 12 & 59.100 & MILK日GL & ASS & 28 & . 24 & . 007 & & \\
\hline 12 & 63000 & ROLLS & BUTTER & 112 & . 82 & . 036 & & \\
\hline 13 & HIEADER & -112770 & 15078 & 783.00 & 156.44 & +1.543 & 155 & \\
\hline - 13 & -12060 & MIIHTED & FRUIT CUP & P 44 & . 57 & . 039 & & \\
\hline 13 & -15030 & CHERRYS & STOHES & 40 & . 19 & . 010 & & \\
\hline -13 & 25070 & PR RIES & OF BEEF & - 72 & . 34 & . 020 & & \\
\hline 13 & 25080 & BR. VEA & al cutlet & - 30 & . 38 & . 023 & & \\
\hline 13 & 25.110 & FIllet & OF SOLE & 48 & . 23 & . 022 & & \\
\hline -13 & 38010 & TOSSED & GR SALAD & 139 & . 58 & . 014 & & \\
\hline 13 & -38040 & AU GPat & IN POTATO & TO 82 & . 60 & . 045 & & \\
\hline 13 & 46060 & C D MEil & ITH PAPFAI & AI 23 & . 24 & . 020 & & \\
\hline 13 & 49050 & PEACH T & TART & 23 & . 11 & . 012 & & \\
\hline 13 & 59000 & COFFEE & & 100 & .64 & . 040 & & \\
\hline 13 & 59100 & Milkegl & ASS & 50 & . 14 & . 015 & & \\
\hline 13 & 53000 & ROLLS & BUTTER & 117 & . 73 & . 058 & & \\
\hline 14 & HEADEF & 112070 & 15479 & 790.00 & 157.88 & +1.607 & 157 & \\
\hline -14 & 12080 & TOMATO & JUICE CT & - 51 & . 30 & . 025 & & \\
\hline -14 & 15010 & BlUEPOI & IHTSEH SHIL & 1241 & . 28 & . 026 & & \\
\hline 14 & 25050 & ROAST T & TURKEY & 31 & . 21 & . 017 & & \\
\hline 14 & 25060 & BR LIVE & LOBSTEP & & . 28 & .02I & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 14 & 25190 & BEEF POT PIE 61 & . 49 & . 042 \\
\hline 14 & 38010 & TOSSED GR SALAD 133 & . 83 & . 072 \\
\hline 14 & 38050 & FR. FRIED POT. 107 & . 49 & . 043 \\
\hline 14 & 46040 & BLUEBPY PARFAIT 29 & . 20 & . 017 \\
\hline 14 & 49030 & Rilubarb pie 36 & . 11 & +.001 \\
\hline 2.4 & 59000 & COFFEE 116 & . 57 & . 039 \\
\hline 14 & 59.100 & MILK:3GLASS 11 & . 26 & . 014 \\
\hline 14 & 63000 & ROLLS BUTTER 212 & . 72 & . 052 \\
\hline 15 & HEADER & \(111370 \quad 155 \quad 830.00\) & 159.57 & +1.558 \\
\hline 15 & -12040 & CRANBERRY SHRUB 30 & . 33 & . 023 \\
\hline 15 & -15030 & CIIEPRYSTONES 64 & . 29 & . 023 \\
\hline 25 & 2.5040 & REEF JARDINIERE 40 & . 24 & . 026 \\
\hline 15 & 25100 & SIRLOIN STRIPal2 44 & . 41. & . 029 \\
\hline 15 & 25110 & Fillet of sole 61 & . 31 & . 025 \\
\hline 15 & 3801.0 & TOSSED GR SALAD 103 & . 79 & . 052 \\
\hline 15 & 38020 & BAK STUFF POTATO 100 & . 63 & . 045 \\
\hline 25 & 42010 & CHIOC PARFAIT 45 & . 19 & . 011 \\
\hline J. 5 & 49070 & LEMON CHIF PIE 36 & . 20 & . 010 \\
\hline 15 & 59000 & COFFEE 92 & . 72 & . 061 \\
\hline 15 & 59100 & MILKuglass 44 & . 10 & . 011 \\
\hline 15 & 6.3000 & ROLLS BUTTER 127 & . 72 & . 057 \\
\hline 16 & HEADER & J.22570 145470.00 & 148.30 & +2.117 \\
\hline -16 & -12060 & MINTED FRUIT CUP 51 & . 42 & . 021 \\
\hline -16 & - 14020 & CELERYGELEU CH 30 & . 20 & . 007 \\
\hline 16 & 25150 & TENDERLOIN TIPS 38 & . 30 & . 009 \\
\hline \(-16\) & 25-160 & BR. LAME CHOPS 71 & . 29 & . 008 \\
\hline -16 & 25170 & CHIX ALA MARYI.ND 47 & . 39 & . 022 \\
\hline -16 & 38010 & TOSSED GR SALAD 80 & . 61 & . 037 \\
\hline -16 & -38040 & AU GRATIN POTATO 100 & . 61 & . 034 \\
\hline 16 & 46060 & C D MENTH PARFAI 19 & . 30 & . 013 \\
\hline -16 & -49110 & APRICOT PIE 37 & . 2.2 & . 014 \\
\hline 16 & 59000 & COFFEE 84 & . 59 & . 026 \\
\hline \(-16\) & . 59100 & MILKaglas 42 & . 27 & . 015 \\
\hline 16 & 63000 & F.OLLS BUTTER 85 & . 81 & . 035 \\
\hline -17 & HEADER & 121870144800.00 & 150.83 & +1.877 \\
\hline -17 & - 12040 & CRANBERRY SHPUB 70 & . 25 & . 020 \\
\hline -17 & -15010 & BLUEPOINTST:H SHL 20 & . 33 & . 012 \\
\hline -17 & 25120 & SWEDISH STEAK 76 & . 23 & . 006 \\
\hline -17 & 25130 & BA STUFF SHPIMP 28 & . 48 & . 030 \\
\hline 17 & . 25140 & CHIX POT PIE 39 & . 27 & . 006 \\
\hline \(\underline{-17}\) & . 38010 & TOSSED GR SALAD 89 & . 58 & . 034 \\
\hline -17 & 33030 & HASII SR POTATO 90 & . 67 & . 037 \\
\hline \(-17\) & -420.10 & CHOC PAPFAIT 31 & . 18 & . 004 \\
\hline -17 & 49090 & BLUEBERPY TART 12 & . 30 & . 020 \\
\hline \(-17\) & 59000 & COFFEE 89 & . 55 & . 036 \\
\hline -17 & 59100 & iILLKEGLASS 46 & . 31 & . 019 \\
\hline -17 & 63000 & POLLS BUTTER 104 & . 61 & . 029 \\
\hline 2 L & - HEADER & \(121970 \quad 150 \quad 654.00\) & 153.23 & \(+2.272\) \\
\hline -21 & -12080 & toilato Juice ct 55 & . 34 & . 013 \\
\hline .21 & -15090 & SHRIMP COCKTAIL 30 & . 22 & . 009 \\
\hline 21 & 25180 & FILET HIGNON 47 & . 50 & . 027 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 21 & 25190 & BEEF POT PIE 66 & . 21 & . 014 & \\
\hline 21 & 25200 & HALF BR. CHIX 33 & . 3.1 & . 019 & \\
\hline 21 & 38010 & TOSSED GP. SALAD 46 & . 43 & . 02.4 & \\
\hline 21 & 38050 & FR. FRIED POT. 106 & . 67 & . 030 & \\
\hline 21 & 46130 & STRAVIBY PARFAIT 27 & . 26 & . 005 & \\
\hline 21. & 49120 & APPLE PIE 39 & . 12 & . 001 & \\
\hline 21 & 59000 & COFFEE 83 & . 52 & . 027 & \\
\hline 21 & 59100 & MILKIIGLASS 55 & . 28 & . 018 & \\
\hline 21 & 63000 & ROLLS BUTTER 87 & . 80 & . 044 & \\
\hline 22 & HEADER & 121270149640.00 & 155.72 & +2.148 & 15412 \\
\hline 22 & 12070 & PEARIIPROSC HAII 54 & . 38 & . 015 & \\
\hline 22 & -15050 & MARIMATED HERRIN 37 & . 22 & . 006 & \\
\hline 2.2 & 25010 & LAME, roast leg 33 & . 27 & . 009 & \\
\hline 22 & 25020 & BEEF STROGANOFF 64 & . 47 & . 030 & \\
\hline 22 & 25030 & CLAISAFRIED 67 & . 22 & . 007 & \\
\hline 22 & 38010 & TOSSED GR. SALAD 93 & . 33 & . 019 & \\
\hline 22 & 38020 & BAK. STUFF POTATO 123 & . 68 & .03i & \\
\hline 22 & 42010 & CHOC PAPFAIT 16 & . 29 & . 011 & \\
\hline 22 & 49020 & OPANGE CHIF PIE 34 & . 19 & . 015 & \\
\hline 22 & 59000 & COFFEE 95 & . 56 & . 032 & \\
\hline 22 & . 59100 & MILKaglass 35 & . 31 & . 013 & \\
\hline 22 & 63000 & ROLLS BUTTER 140 & . 59 & . 030 & \\
\hline 23 & HEADER & \(120570 \quad 152 \quad 757.00\) & 257.90 & +2.127 & 15712 \\
\hline 23 & -12060 & HINTED FRUIT CUP 35 & . 34 & . 011 & \\
\hline 23 & - 15030 & CHERRYSTONES 50 & . 23 & . 008 & \\
\hline 23 & 25070 & PR PIBS OF BEEF 98 & . 19 & . 015 & \\
\hline 23 & 25080 & BR. VEAL CUTLET 34 & . 40 & . 024 & \\
\hline 23 & 25110 & Fillet OF SOLE 38 & . 38 & . 011 & \\
\hline 23 & 38010 & TOSSED GR SALAD 117 & . 58 & . 029 & \\
\hline 23 & -38040 & aU gratin potato 73 & . 78 & . 040 & \\
\hline 23 & 46060 & C D MENTH PARFAI 26 & . 25 & . 0222 & \\
\hline 23 & 49050 & PEACH TART 21 & . 13 & . 005 & \\
\hline 23 & 59000 & COFFEE 10 ? & . 61 & . 037 & \\
\hline 23 & 59100 & Milkoglass 12 & . 24 & . 014 & \\
\hline 23 & 53000 & POLLS BUTTER 123 & . 90 & . 050 & \\
\hline 24 & HEADER & \(112870 \quad 154 \quad 790.00\) & 160.19 & +2.033 & \(160 \quad 12\) \\
\hline 24 & - 2080 & tomato juice ct 45 & . 27 & . 025 & \\
\hline 2.4 & 15010 & BLUEPOIMTSAH SHL 46 & . 31 & . 016 & \\
\hline 24 & 25050 & ROAST TURKEY 37 & . 19 & . 010 & \\
\hline 24 & 25060 & BR LIVE LOESTER 58 & . 17 & . 008 & \\
\hline 24 & 25190 & BEEF POT PIE 59 & . 58 & . 045 & \\
\hline 24 & 38010 & TOSSED GR SALAD 105 & . 69 & . 047 & \\
\hline 24 & -38050 & FR. FRIED POT. 112 & . 119 & . 041 & \\
\hline 24 & -46040 & BLUEBPY PARFAIT 26 & . 23 & . 023 & \\
\hline 24 & 49030 & RHUBAPB PIE 30 & . 18 & . 020 & \\
\hline 24 & 59000 & COFFEE 91 & . 68 & . 052 & \\
\hline 24 & 59100 & MILKnglass 33 & . 13 & . 011 & \\
\hline 24 & 63000 & ROLLS EUTTER 122 & . 72 & . 045 & \\
\hline 25 & HEADER & \(112170 \quad 156860.00\) & 162.64 & +1.782 & 16312 \\
\hline 2.5 & \(-12040\) & CPANGERRY SHRUE 40 & . 28 & .02] & \\
\hline 25 & 15030 & CHERRYSTONES 56 & . 24 & . 013 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 25 & 25040 & BEEF JAPDIIIIEPE 33 & . 23 & . 012 & \\
\hline 25 & 25100 & SIPLOIH STPIPMI? 35 & . 37 & . 025 & \\
\hline 2.5 & 2511.0 & FILLET OF SOLE 83 & . 36 & . 030 & \\
\hline 25 & 38010 & TOSSED GP. SALAD 31 & . 68 & . 051 & \\
\hline 25 & 38020 & BAK. STUFF POTATO 106 & . 66 & . 046 & \\
\hline 25 & 42010 & CHOC PAPFAIT 50 & . 19 & . 022 & \\
\hline 25 & 49070 & Lelloll Chif Pie 35 & . 17 & . 012 & \\
\hline 25 & 59000 & COFFEE 105 & . 60 & . 046 & \\
\hline 2.5 & 59100 & IIILKUGLASS 37 & . 22 & . 017 & \\
\hline 2.5 & 63000 & ROLLS RUTTEP. 133 & . 77 & . 053 & \\
\hline 26 & HEADEP. & 111470158800.00 & 165.37 & +1.227 & 16612 \\
\hline 26 & 12060 & :1I:!TED FPUUIT CUP 6? & . 33 & . 028 & \\
\hline 26 & -14020 & Celeprymbleu ch 37 & . 21 & . 021 & \\
\hline 26 & 25150 & TENDEPLOIII TIPS 45 & . 21 & . 012 & \\
\hline 26 & 25160 & BP. Laile chops 69 & .24 & . 019 & \\
\hline 26 & 25170 & CHIX ALA MARYLIID 54 & . 48 & . 035 & \\
\hline 26 & 32010 & tossed gr salad 125 & . 63 & . 053 & \\
\hline 26 & 38040 & AU GRATIII POTATO 90 & . 64 & . 039 & \\
\hline 26 & 4,6060 & C D MEIITH PARFAI 35 & . 32 & . 022 & \\
\hline 26 & 493.10 & ARPICOT PIE 53 & . 24 & . 014 & \\
\hline 26 & 59000 & COFFEE 91 & . 67 & . 054 & \\
\hline 26 & 53100 & HILKIGLASS 49 & . 17 & . 015 & \\
\hline 26 & 63000 & P.OLLS EUTTER 144 & . 77 & . 064 & \\
\hline 27 & HEADEP. & 122670 252820.00 & 152.04 & +1.874 & 14812 \\
\hline 27 & -12040 & CRAILERRY SHFUE 47 & . 22 & . 012 & \\
\hline 27 & 15010 & BLUEPOIIITSmA SILL 34 & . 39 & . 023 & \\
\hline 27 & 25120 & SIEDISH STEAK. 73 & . 28 & . 010 & \\
\hline 27 & 25130 & BA STUFF SHPIAP 24 & . 38 & . 027 & \\
\hline 27 & 25140 & CHI\% POT PIE 47 & . 31 & . 019 & \\
\hline 27 & - 38010 & TOSSED GR SALAD 71 & . 72 & . 047 & \\
\hline 27 & 38030 & HASHI 8? POTATO 104 & . 57 & . 034 & \\
\hline 27 & 42010 & CHOC PAPPAIT 35 & . 19 & . 017 & \\
\hline 27 & 49090 & BLUEBEPRY TARTT 26 & . 30 & . 021 & \\
\hline 27 & 59000 & COFFEE 82 & . 56 & . 027 & \\
\hline 27 & 59100 & I1ILKRGLASS 46 & . 29 & . 015 & \\
\hline 27 & 63000 & POLLS BUTTEP. 124 & . 70 & . 034 & \\
\hline 31 & HEADER & \(122370 \quad 145 \quad 973.00\) & 146.1? & \(+2.322\) & 14912 \\
\hline -31 & -12080 & TOMATO JUICE CT 47 & . 27 & . 021 & \\
\hline 31 & -15090 & SHPIIMP COCKTAIL 36 & . 23 & . 013 & \\
\hline 31 & 25180 & FILET HIIGIO!! 34 & . 48 & . 022 & \\
\hline 31 & 25190 & BEEF POT PIE 59 & . 20 & . 003 & \\
\hline -31 & 25200 & ミALFF BP. CHI\% 54 & . 28 & . 013 & \\
\hline 31 & -38010 & TOSSED G?. SALAD 27 & . 54 & . 030 & \\
\hline 31 & -33050 & FP. FPIED POT. 78 & . 76 & . 033 & \\
\hline 32 & 46130 & STPAHBY PARFAIT 35 & . 22 & . 013 & \\
\hline -31 & 49120 & APPLE PIE \(4 \delta\) & . 20 & . 017 & \\
\hline -31 & 5,9000 & COFFEE 27 & . 54 & . 022 & \\
\hline 31 & 59100 & lillkrglass 39 & . 314 & . 018 & \\
\hline 31 & 53000 & POLLS BUTTE? 101 & . 72 & . 031 & \\
\hline 32 & HEADEP. & 122170 140 732.00 & 149.52 & +1.552 & 15012 \\
\hline 32 & 12070 & PEAPIPROSC HM1 53 & . 29 & . 011 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 32 & 15050 & harimated herrim & 51 & ． 28 & ．01？ & \\
\hline 32 & 25010 & banil，poast ler； & 35 & ． 27 & ． 1220 & \\
\hline 32 & 25020 & BEEF STROCAHIOFF & 59 & .40 & ． 025 & \\
\hline 32 & 25030 & CLA1SUFPIE：D & 65 & .33 & ． 010 & \\
\hline 32 & 32010 & TOSSED GP．SALAD & 105 & ． 63 & ． 020 & \\
\hline 32 & 30020 & bak．Stuff potato & 113 & ． 54 & ． 025 & \\
\hline 32. & 42010 & Choc papfait & 2.5 & ． 35 & ．023 & \\
\hline 32 & 49020 & ORAIGE CIIF PIE & 2？ & ． 27 & ． 020 & \\
\hline 32 & 59000 & COFFEE & 32 & ． 5 ？ & － 01 & \\
\hline 32 & 59100 & MILK日Glass & 30 & ． 33 & ．03 & \\
\hline 32 & 63000 & POLLS EUTTER & 91 & ． 1.6 & ． 034 & \\
\hline 33 & HEADEP． & 123470 24\％ 700 & ． 00 & 152．05 & \(+1.147\) & 14\％12 \\
\hline 33 & 22000 & MIITED FPUIT C CUP & 20 & .34 & ． 015 & \\
\hline 33 & 15030 & CHEPRYSTOİES & 33 & ． 30 & ．015 & \\
\hline 33 & 25070 & PR PIES OF UEEF & 79 & ． 29 & ． 012 & \\
\hline 33 & 28080 & ER．VEAL SUTLET & 30 & ． 3 ？ & ． \(02 \%\) & \\
\hline 33 & 25110 & FILIET OF SOLE & 42 & ． 43 & ． \(02 \%\) & \\
\hline 33 & 30070 & TOSSED GP SALAD & 170 & ． 73 & ．031 & \\
\hline 33 & 30040 & AU CPPAFTIA POTATO & 6.6 & ． 73 & ． 034 & \\
\hline 33 & 45050 & C U lientu phofal & 27. & .21 & ．013 & \\
\hline 33 & 49050 & PEACH TART & 13 & ． 13 & ＋．003 & \\
\hline 33 & 59000 & COFFEE & 108 & ． 59 & ． 020 & \\
\hline 33 & 53200 & MILKE：GLASS & \(3 \%\) & ． 22 & ．013 & \\
\hline 33 & 63000 & POLLS SUTTEP & 153 & ． 63 & ． 131 & \\
\hline 34 & HERUEF & \(1207 \% 0153\) & ． 60 & 151.50 & ＋2．117 & 15212 \\
\hline 34 & 22080 & TO：1ATO JUICE C．T & 3 象 & ． 21 & ． 011 & \\
\hline 34 & 15030 & DLJEPOIHTS日：SHL & \(5 \%\) & ． 21 & ．013 & \\
\hline 34 & 25050 & ROHST TUEKE！ & 63 & ． 20 & ． 025 & \\
\hline 34 & 25060 & 2\％LIVE LOESTEF & 23 & .30 & ． 025 & \\
\hline 34 & 25350 & 3EEF POT PIE & 63 & ． 52 & ． \(02 \%\) & \\
\hline 34 & 30010 & TOSEED G？SALAO & 13 & ． 73 & ． 016 & \\
\hline 34 & 30050 & Fh．Fills pot． & 30 & ． 33 & ． 523 & \\
\hline 34 & 450180 & & 26. & ． 37 & ． 012 & \\
\hline 34 & 43031 & & 35 & ． 13 & ． 131 & \\
\hline 34 & 53000 & CCFFEE & 27 & ． 56 & ． 027 & \\
\hline 37 & 53130 & & \(3 ?\) & ． 17 & ． 505 & \\
\hline ご。 & 630000 & bolls puttea & 101 & ． 5 \％ & ． \(93 \%\) & \\
\hline 35 & HEACE6 & 11：070 145 322 & 10 & 151．73 & ＋1．509 & 15612 \\
\hline 35 & 120160 & & 21 & ． 21 & ． 013 & \\
\hline ， & I50： & & \(\%\) & ．\(=9\) & ． 020 & \\
\hline 35 & 2こち4） & PEEF JWKUSHIERE & 30 & －＂只 & ． 023 & \\
\hline \(3 \%\) & 25100 & StRLOill strupsz？ & 912 & ． 43 & O\％ & \\
\hline － & 25120 & FILLET Of SOLE & 57 & ．15 & ． \(00 \%\) & \\
\hline 3 & 3 3 010 & TCSSED Gi SMLA & \(13 \%\) & ． 75 & ． 065 & \\
\hline 35 & 39020 & EんLC STUFF PGTATO & 105 & ．53 & － 241 & \\
\hline 隹 & 42010 & GISC．P\＆゙Fん！ & S & ． 12 & .007 & \\
\hline 3） & 430？ & & 景 & ． 27 & ． 015 & \\
\hline 33 & & COFFEC & 10； & ． 54 & ．CDS & \\
\hline \％ & 号： & M！ & 20 & ． 3 & ． 082 & \\
\hline 35 & 6，：30： & GOLLS DUTYER & 124 & ． 3 & －次3 & \\
\hline 35 & トG：CER & & ．10 & 35\％．51 & ，．763 & 15712 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 57 & 59000 & COFFEE 119 & . 64 & . 049 & \\
\hline 57 & 59100 & MILK日GLASS 18 & . 23 & . 024 & \\
\hline 57 & 63000 & ROLLS BUTTER 113 & . 82 & . 068 & \\
\hline 61 & HEADER & \(120370154 \quad 976.00\) & 160.65 & \(+1.545\) & 16112 \\
\hline 61 & 12080 & tolato Juice ct 84 & . 32 & . 028 & \\
\hline 61 & 15090 & SHPIMP COCKTAIL 52 & . 37 & . 023 & \\
\hline 61 & 25180 & FILET MIGNON 35 & . 47 & . 037 & \\
\hline 61 & 25190 & BEEF POT PIE 78 & . 19 & . 009 & \\
\hline 61 & 25200 & HALF ER. CHIX 40 & . 28 & . 021 & \\
\hline 61 & 38010 & TOSSED GR SALAD 116 & . 57 & . 043 & \\
\hline 61 & 38050 & FR. FRIED POT. 85 & . 59 & . 039 & \\
\hline 61 & 46130 & STPA:IBY PARFAIT 29 & . 29 & . 023 & \\
\hline 61 & 49120 & APPLE PIE 35 & . 22 & . 025 & \\
\hline 61 & 59000 & COFFEE 98 & . 57 & . 048 & \\
\hline 61 & 59100 & MILKnglass 37 & . 26 & . 011 & \\
\hline 61 & 63000 & ROLLS BUTTER 128 & . 74 & . 052 & \\
\hline 62 & HEADER & 112670157 816.00 & 162.80 & +1.192 & 16212 \\
\hline 62 & 12070 & PEAR:IPROSC HAM 36 & . 48 & . 037 & \\
\hline 62 & 15050 & MAPINATED HERRIN 60 & . 39 & . 025 & \\
\hline 62 & 25010 & LAMB, ROAST LEG 18 & . 23 & . 021 & \\
\hline 62 & 25020 & BEEF STROGANOFF 75 & . 49 & . 032 & \\
\hline 62 & 25030 & CLAMSHFPIED 60 & .24 & . 015 & \\
\hline 62 & 38010 & TOSSED GR SALAD 86 & . 78 & . 058 & \\
\hline 62 & 38020 & BAK STUFF POTATO 1.28 & . 55 & . 043 & \\
\hline 62 & 42010 & CHOC PARFAIT 22 & . 17 & . 007 & \\
\hline 62 & 49020 & ORANGE CHIF PIE 31 & . 13 & . 005 & \\
\hline 62 & 59000 & COFFEE 90 & . 63 & . 050 & \\
\hline 62 & 59100 & MILK:GLASS 57 & . 17 & . 006 & \\
\hline 62 & 63000 & ROLLS BUTTEP 125 & . 79 & . 067 & \\
\hline 63 & HEADER & 111970 161 787.00 & 163.86 & +1.271 & 16412 \\
\hline 63 & 12060 & MINTED FRUIT CUP 33 & . 20 & . 013 & \\
\hline 63 & 15030 & CHEPRYSTONES 54 & . 35 & . 032 & \\
\hline 63 & 25070 & PR RIBS OF BEEF 62 & . 13 & . 012 & \\
\hline 63 & 25080 & BR. VEAL CUTLET 55 & . 43 & . 031 & \\
\hline 63 & 25110 & Fillet Of SOIE 45 & . 35 & . 019 & \\
\hline 63 & 38010 & TOSSED GR SALAD 78 & . 50 & . 035 & \\
\hline 63 & 38040 & AU GRATIH POTATO 207 & . 80 & . 061 & \\
\hline 63 & 46060 & C D MENTH PARFAI 36 & . 25 & . 029 & \\
\hline 63 & 49050 & PEACH TAPST 34 & .14 & . 006 & \\
\hline 63 & 59000 & COFFEE 97 & . 49 & . 035 & \\
\hline 63 & 59100 & MILKUGLASS 31 & . 34 & . 018 & \\
\hline 63 & 63000 & ROLLS BUTTE只 22 & . 72 & . 057 & \\
\hline 64 & HEADER & 123170 147 703.00 & 151.45 & +1.979 & 14912 \\
\hline 64 & 12080 & -TOMATO JUICE CT 58 & . 18 & . 011 & \\
\hline 64 & 15010 & BLUEPOINTS:HH SHL 42 & . 32 & . 018 & \\
\hline 64 & 25050 & ROAST TURKEY 56 & . 35 & . 017 & \\
\hline 64 & 25060 & BR LIVE LOBSTER 42 & . 23 & . 020 & \\
\hline 64 & 25190 & BEEF POT PIE 54 & . 38 & . 013 & \\
\hline 64 & 38010 & TOSSED GR SALAD 92 & . 46 & . 02.5 & \\
\hline \(61:\) & 38050 & FR. FPIIEC POT. 94 & .63 & . 034 & \\
\hline 64 & 45040 & BLUEBRY PARFAIT 25 & . 22 & . 011 & \\
\hline
\end{tabular}

\footnotetext{

}

\section*{APPENDIX D}

\section*{RECTPE FILE}
\begin{tabular}{|c|c|c|c|c|}
\hline 64 & 378 & & & \\
\hline 10 & 0 & BATTERHBPEADING & 4 & 4816 \\
\hline 10 & 55010 & EGGS:IFRESH \(: 1 / H O L\) & & .1660 \\
\hline 10 & 60010 & MILKEHHOMOG & & . 1870 \\
\hline 10 & 95170 & PEPPERtBLACK & & . 0010 \\
\hline 10 & 95230 & SALT & & . 0310 \\
\hline 30 & - & blev Cheese sprd & 3 & 4812 \\
\hline 30 & 61010 & CREAifILIGHT & & . 0630 \\
\hline 30 & 64020 & Cheeserbleu & & . 2000 \\
\hline 30 & 64040 & CHEESERCREAII & & 1.0000 \\
\hline 50 & 0 & BLEU CHEESE DR & 6 & \(120 \quad 40\) \\
\hline 50 & 64020 & CHEESEnBLEU & & . 6000 \\
\hline 50 & 640140 & CHEESE:CREAM & & 1.5000 \\
\hline 50 & 70010 & SUgARIGRAN & & . 0620 \\
\hline 50 & 95150 & PAPRIKA & & . 0310 \\
\hline 50 & 95270 & VINEGAR millite & & . 0460 \\
\hline 50 & 97100 & liater & & 1.0000 \\
\hline 70 & 0 & BOUNUET GAPMIHPG & 7 & 11 \\
\hline 70 & 81010 & CARROTS:IFRESH & & . 2500 \\
\hline 70 & 81030 & CELEPYGFPESH & & . 1250 \\
\hline 70 & 811.30 & OHI ONSUFPESH & & . 2500 \\
\hline 70 & 81150 & PARSLEYEIFPESH & & . 0630 \\
\hline 70 & 95010 & bayleaf & & . 0310 \\
\hline 70 & 95250 & THYME & & . 0630 \\
\hline 70 & 95290 & :/HOLE CLOVES & & . 0310 \\
\hline 90 & 0 & BROIIN SAUCEEQTS & 10 & 51 \\
\hline 90 & 14020 & BUTTERUPFIINT & & . 6250 \\
\hline 90 & 3301.0 & FLOURGBREAD & & . 6250 \\
\hline 90 & 81010 & CAPROTS AFRESH & & . 5000 \\
\hline 90 & 81030 & CELERY:AFRESH & & . 5000 \\
\hline 90 & 81130 & OHIONS:FRESH & & 1.0000 \\
\hline 90 & 90010 & beEf base & & . 0870 \\
\hline 90 & 95010 & BAYLEAF & & . 0100 \\
\hline 90 & 95170 & PEPPEREBLACK. & & . 0050 \\
\hline 90 & 95230 & SALT & & . 0100 \\
\hline 90 & 97100 & WATER & & 1.0000 \\
\hline 110 & 0 & CHEESE SAUCEROTS & 9 & \\
\hline 110 & 14020 & BUTTER:SPRIHT & & . 3750 \\
\hline 110 & 30010 & BREAD CRUUBS & & .3750 \\
\hline 110 & 50010 & HILKKıHOI!0G & & . 7500 \\
\hline 110 & 64010 & Cheeseramerit cani & & . 2000 \\
\hline 110 & 64030 & CHEESEUCHEDUAP. & & . 2000 \\
\hline 110 & 92920 & VORCESTK SC & & . 0040 \\
\hline 110 & 95130 & IIUS TARDEDRY & & . 0200 \\
\hline 110 & 95150 & PAPRIKA & & . 0200 \\
\hline 110 & 95230 & SALT & & . 0200 \\
\hline 130 & 0 & COCKTAIL SAUCEOO & 7 & 41 \\
\hline 130 & 23010 & LE! iOI!S:FR. & & 1.0000 \\
\hline 130 & 81070 & HORSEPADI SHIFPR & & . 3100 \\
\hline 130 & 92010 & torasco & & . 0040 \\
\hline 130 & 92.920 & !:ORCESTP. SC & & . 3100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 30 & 95030 & CATSUP & & 5000 \\
\hline 130 & 95050 & chili sauce & & . 3750 \\
\hline 130 & 95230 & SALT & & . 0330 \\
\hline 150 & 0 & CREAM SAUCE:QTS & 4 & 41 \\
\hline 150 & 14020 & BUTTERUPRIIIT & & . 5000 \\
\hline 150 & 33010 & FLOURabread & & . 5000 \\
\hline 150 & 60010 & MILK: \({ }^{\text {LHOHOG }}\) & & 1.0000 \\
\hline 150 & 95230 & SALT & & . 0100 \\
\hline 170 & 0 & FRENCH DRESSIMG & 8 & 12040 \\
\hline 170 & 12020 & OIlasalad & & . 6880 \\
\hline 170 & 70010 & SUGAREGPAN & & . 7500 \\
\hline 170 & 81130 & ONIONSUFRESH & & . 2500 \\
\hline 170 & 95150 & PAPFIIKA & & . 2500 \\
\hline 170 & 95230 & SALT & & . 2750 \\
\hline 170 & 95270 & VIMEGARAUHITE & & . 2340 \\
\hline 170 & 97010 & corns tarch & & . 1860 \\
\hline 170 & 97100 & h/ ATER & & 1.0000 \\
\hline 190 & 0 & Oíl VInEgA? DR & 4 & 12040 \\
\hline 190 & 12010 & OILHOLIVE & & . 7500 \\
\hline 190 & 95170 & PEPPERIBLACK & & . 0620 \\
\hline 190 & 95230 & SALT & & . 0660 \\
\hline 190 & 95270 & VIMEGAR nVIIITE & & . 2500 \\
\hline 210 & 0 & OHIONS:SAUTEEDEL & 4 & 51 \\
\hline 210 & 14020 & BUTTERISPRINT & & . 2.200 \\
\hline 2.10 & 81130 & OHIONSAFPESH & & 5.0000 \\
\hline 210 & 95150 & PAPRIKA & & . 1250 \\
\hline 210 & 95230 & SALT & & . 0310 \\
\hline 230 & 0 & pie crustalb & 4 & \\
\hline 230 & 10010 & SHORTENINGIHYDR. & & 2.0000 \\
\hline 230 & 33010 & FLOUPrsbread & & 3.0000 \\
\hline 230 & 95230 & SALT & & . 0310 \\
\hline 230 & 97100 & WATER & & 1.0000 \\
\hline 250 & 0 & STUFFIGGECPACKILB & 3 & \\
\hline 250 & 14020 & BUTTER:IPPIMT & & 2.0000 \\
\hline 250 & 35010 & CRACKERS:RITZ & & 5.0000 \\
\hline -250 & 58040 & SCALLOPS & & 1.0000 \\
\hline 270 & 0 & TOHATO SAUCE:QTS & 13 & \\
\hline 270 & 14020 & BUTTER.EPP.IIIT & & . 7500 \\
\hline 270 & 33010 & FLOUPRBREAD & & . 3750 \\
\hline 270 & 80190 & toilatoe puree & & . 5400 \\
\hline 270 & 81030 & CELEPYMFP.ESH & & . 5000 \\
\hline 270 & 81130 & OHI OITS:FPESSH & & 1.0000 \\
\hline 270 & 90010 & beef base & & . 04770 \\
\hline .270 & 95010 & BAYIEEAF & & . 0200 \\
\hline 270 & 95090 & GARIL P POMUEP. & & . 0100 \\
\hline 270 & 95190 & PEPPERCORUS & & . 0100 \\
\hline -270 & 95230 & SALT & & .0100 \\
\hline - 270 & 95250 & THYite & & . 0100 \\
\hline 270 & 95290 & UHOLE CLOVES & & . 0100 \\
\hline 270 & 97100 & vater & & 2.0000 \\
\hline 290 & - & VEloute scrots & & i; 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 290 & 14020 & BUTTERaPRINT & & ． 6250 \\
\hline 290 & 33010 & FLOURロBPEAD & & ． 6250 \\
\hline 290 & 60010 & MILK口HOMOG & & 2500 \\
\hline 290 & 90020 & CHIX BASE & & ． 2500 \\
\hline 290 & 97100 & WATER & & 1.0000 \\
\hline 310 & 0 & CUSTARD PUDDIRQT & 6 & \\
\hline 310 & 14020 & BUTTERIPRINT & & ． 0310 \\
\hline 310 & 55010 & EGGSUFRESH WHOL & & ． 3330 \\
\hline 310 & 60010 & MILKロHOMOG & & 2500 \\
\hline 310 & 70010 & SUGARUGPAN & & ． 5000 \\
\hline 310 & 95260 & VAll & & ． 0310 \\
\hline 310 & 97010 & CORNSTARCH & & ． 0940 \\
\hline 330 & 0 & STUFFINGECHIX：LB & 7 & \\
\hline 330 & 14020 & BUTTER：IPRINT & & ． 2500 \\
\hline 330 & 30010 & BPEEAD CPUMES & & 1.0000 \\
\hline 330 & 55010 & EGGS：FRESH WHOL & & ． 0870 \\
\hline 330 & 81030 & CELERYHFRESH & & ． 5000 \\
\hline 330 & 81130 & OHIONSTFRESH & & ． 5000 \\
\hline 330 & 95170 & PEPPERaBLACK & & ． 0140 \\
\hline 330 & 95230 & SALT & & ． 0310 \\
\hline 12040 & ． 40 & CRANBERRY SHPUB & 2 & \\
\hline 12040 & 21010 & CRANBEPRY JUICE & & ． 03.10 \\
\hline 12040 & 63010 & SHERBET：HIME & & ． 0160 \\
\hline 12060 & ． 60 & MIMTED FRUIT CUP & 5 & \\
\hline 12060 & 23020 & MELON BALLSUFR & & ． 0150 \\
\hline 12060 & 23030 & MİCD FRUITSEFR & & ． 0125 \\
\hline 12060 & 23050 & STRAUIBERRIES：FR & & ． 0290 \\
\hline 12060 & 63010 & SHEPBETELIIIE & & ． 0160 \\
\hline 12060 & 81110 & MINTuFRESH & & ． 0100 \\
\hline 12070 & 1.00 & PEAREPROSC HAll & 3 & \\
\hline 12070 & 23040 & PEARS \(\mathrm{P}^{\text {FR }}\) & & 1.0000 \\
\hline 12070 & 51020 & HAMEPROSCIUTTO & & ． 0620 \\
\hline 12070 & 81090 & LETTUCEGICEBERG & & ． 0750 \\
\hline 12080 & ． 40 & tomato Juice ct & 3 & \\
\hline 12080 & 23010 & LEMONS：IFR & & ． 1250 \\
\hline 12080 & 35010 & CRACKERS：PRITZ & & ． 0300 \\
\hline 12080 & 80170 & toimato juiceral 6 & & ． 1300 \\
\hline 14020 & ． 50 & CELERY』BLEU CH & 4 & 11 \\
\hline 14020 & 30 & bleu Cheese sprd & & ． 0210 \\
\hline 14020 & 80130 & PIMEIITOS & & .0010 \\
\hline 14020 & 81030 & CELERYMfRESH & & .2000 \\
\hline 14020 & 81090 & LETTUCEAICEBERG & & .1000 \\
\hline 15010 & 1.50 & BLUEPOIUTS：H SHL & 4 & \\
\hline 15010 & 130 & COCKTAIL SAUCE：O & & ． 0080 \\
\hline 15010 & 23010 & LEMOHS：FR & & ． 2500 \\
\hline 15010 & 58030 & OYSTERSロBLPTS & & .0400 \\
\hline 15010 & 31070 & HORSERADISHEF？ & & ． 0040 \\
\hline 15030 & 1.50 & CHERRYSTONES & 4 & \\
\hline 15030 & 130 & COCKTAIL SAUCERO & & ． 0120 \\
\hline 15030 & 23010 & LEMOIISnFP． & & ． 2500 \\
\hline 15030 & 53010 & CLAIIS：CH．STONE & & ． 0909 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 15030 & 81070 & HORSERADISHEFR & & ． 0040 \\
\hline 15050 & ． 75 & MARINATED HERRIII & 4 & 11 \\
\hline 15050 & 5703.0 & HERRINGEMARINAT & & ． 1870 \\
\hline 15050 & 61020 & CREAITISOUR & & 0620 \\
\hline 15050 & 81090 & Lettucericeberg & & .1500 \\
\hline 15050 & 81150 & parsleyafresh & & ． 0400 \\
\hline 15090 & 1.25 & SHPIIMP COCKTAIL & 4 & 11 \\
\hline 15090 & 130 & Cocktail saucera & & ． 0160 \\
\hline 15090 & 23010 & LEMONS \(n\) FR & & ． 2.500 \\
\hline 15090 & 58050 & SHRIIPEFROZO5L & & ． 2500 \\
\hline 15090 & 81090 & LETTUCE：ITCEBERG & & ． 1000 \\
\hline 25010 & 3.50 & LAMIB，ROAST LEG & 9 & 4812 \\
\hline 25010 & 33010 & FLOUPubread & & ． 7500 \\
\hline 25010 & 53020 & ALAMBulieg & & 28.0000 \\
\hline 25010 & 72010 & JELLY：MINT & & ． 0310 \\
\hline 25010 & 95090 & garlic pouner & & ． 0050 \\
\hline 2501.0 & 95110 & marjorail & & ． 0100 \\
\hline 25010 & 95.170 & PEPPER：B \({ }^{\text {PAACK }}\) & & ． 0310 \\
\hline 25010 & 95230 & SALT & & ． 0930 \\
\hline 25010 & 95250 & Thyme & & ． 0100 \\
\hline 25010 & 97100 & hater & & 1.0000 \\
\hline 25020 & 4.00 & beef stroganoff & 8 & 484 \\
\hline 25020 & 90 & BRCUIN SAUCEHQTS & & .6000 \\
\hline 25020 & 14020 & BUTTER的PRINT & & ． 3750 \\
\hline 25020 & 34010 & NOODLESIEEG & & 5.0000 \\
\hline 25020 & 50060 & BEEFETEND TIP & & ． 1200 \\
\hline 25020 & 51020 & CREAMISSOUR & & 1.5000 \\
\hline 25020 & 80070 & MUSHROOIISESLICE & & .2140 \\
\hline 25020 & 95270 & VIMEGARロIHITE & & ． 1250 \\
\hline 25020 & 96050 & WINEDVHITE & & ． 3500 \\
\hline 25030 & 3.25 & CLAMSaFRIEO & 6 & 603 \\
\hline 25030 & 30010 & bread cruidbs & & 7.0000 \\
\hline 25030 & 33010 & FLOURUBREAD & & 2.0000 \\
\hline 25030 & 55010 & EGGSUFPESH WHOI． & & ． 5000 \\
\hline 25030 & 58020 & CLAMSIFPYYING & & 20.0000 \\
\hline 25030 & 60010 & HILKAHOIOG & & ． 2500 \\
\hline 25030 & 95230 & SALT & & ． 0310 \\
\hline 25040 & 4.00 & beef Japdinicre & 11 & 505 \\
\hline 25040 & 12020 & oilrsalad & & ． 2500 \\
\hline 25040 & 33010 & FLOURHDREAD & & 1.0000 \\
\hline 25040 & 50010 & BEEF：BOTTON RND & & 22.0000 \\
\hline 25040 & 80210 & tomatoestahlole & & 1.0000 \\
\hline 25040 & 81010 & CARROTS ：IFRESH & & ． 5000 \\
\hline 25040 & 81.030 & CELERYGFRESIH & & ． 5000 \\
\hline 25040 & 81130 & OIIIONS：IFRESH & & 1.0000 \\
\hline 25040 & 90010 & BEEF BASE & & ． 0780 \\
\hline 25040 & 95010 & BAYLEAF & & ． 0100 \\
\hline 25040 & 95250 & THYIEE & & ． 0050 \\
\hline 25040 & 97こ00 & HATEP． & & 1.0000 \\
\hline 25050 & 3.75 & ROAST TUPKEY & 12 & \(35 \quad 35\) \\
\hline 25050 & 330 & STUFFINGUCHIXAL & & 4.3750 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 25050 & 12020 & OILISALAD & & 0940 \\
\hline 25050 & 20030 & CRAIIBERRY SAUCE & & ． 5000 \\
\hline 25050 & 33010 & Flourubread & & ． 3750 \\
\hline 25050 & 56020 & TURKEY：HHOLE & & 25.0000 \\
\hline 25050 & 81010 & CARROTSEFRESH & & ． 2500 \\
\hline 25050 & 81030 & CELEPY㕩只ESH & & ． 2500 \\
\hline 25050 & 81130 & ONI ONS If RESSH & & 2500 \\
\hline 25050 & 90020 & CHIM BASE & & ． 0630 \\
\hline 25050 & 95170 & PEPPER：BI＿ACK & & ． 0630 \\
\hline 25050 & 95230 & SALT & & ． 1250 \\
\hline 25050 & 97100 & HATER & & 1.0000 \\
\hline 25050 & 5.95 & BR LIVE LOBSTER & 3 & \\
\hline 25060 & 14020 & BUTTERIPRIINT & & ． 1870 \\
\hline 25060 & 23010 & LEMONS：AFR & & ． 2500 \\
\hline 25060 & 58025 & LOBSTERELIVE！．I． & & 1.7500 \\
\hline 25070 & 4.95 & PR RIBS OF beEF & 5 & 201 \\
\hline 25070 & 50030 & BEEFIRRIBS & & 20.0000 \\
\hline 25070 & 90010 & beef base & & ． 0310 \\
\hline 25070 & 95170 & PEPPERJBLACK & & ． 1250 \\
\hline 25070 & 95230 & SALT & & ． 1250 \\
\hline 25070 & 97100 & HATER & & 1.0000 \\
\hline 25080 & 4.50 & BR．VEAL cutlet & 3 & \\
\hline 25080 & 10 & batterndpeadimg & & ． 0200 \\
\hline 25080 & 30010 & BREAD CRUIMBS & & ． 0620 \\
\hline 25080 & 52010 & VEALgcutletrs & & ． 2500 \\
\hline 25－100 & 4.95 & SIRLOIN STRIP：I2 & 2 & \\
\hline 25100 & 50050 & BEEFASIR STPEI2 & & ． 7500 \\
\hline 25100 & 80050 & MUSHROOISSACAPS & & ． 0260 \\
\hline 25.110 & 3.25 & Fillet of sole & 7 & 488 \\
\hline －25110 & 30010 & BREAD CRUIIBS & & 5.0000 \\
\hline 25110 & 33010 & Flournbreail & & 2.0000 \\
\hline 25110 & 55010 & EGGSuFRESHi \(: 1 \mathrm{HOL}\) & & ． 5000 \\
\hline 25110 & 58060 & SOLEraflet & & 20.0000 \\
\hline 25110 & 60010 & MI LKorHOHOG & & ． 2500 \\
\hline 25110 & 95170 & PEPPER口BLACK & & ． 0100 \\
\hline 25110 & 95230 & SALT & & ． 0310 \\
\hline 25120 & 4.25 & SUEDISH STEAK & 3 & \\
\hline 25120 & 21.0 & ONIONS：SAUTEED：L & & ． 0375 \\
\hline －25120 & 12020 & Oilasalad & & ． 0312 \\
\hline 25120 & 50040 & 3EEFESIP STPE8 & & ． 5000 \\
\hline 25130 & 4.50 & BA STUFF SHRIHP & 3 & \\
\hline 25130 & 250 & STUFFIG：CRACK日L & & ． 0630 \\
\hline 25130 & 23010 & LEMONS 7 FR & & ． 2500 \\
\hline 25－130 & 58050 & SHRIMPUFROZn5LB & & ． 2000 \\
\hline 25240 & 3.00 & CHİ POT PIE & 8 & \\
\hline 25140 & 230 & PIE CRUSTHLB & & ． 0210 \\
\hline 25140 & 290 & veloute scaots & & ． 0470 \\
\hline －2540 & 56005 & CHİ日时O！iL & & ． 5700 \\
\hline 25.140 & 80010 & CARPOTS：ISLICED & & ． 0670 \\
\hline 25140 & 80050 & mushroolisacaps & & ． 0030 \\
\hline 25140 & 80090 & OHiOMSAPEARL & & ． 0130 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 251.40 & 301.10 & PEAS:GPEEN & & . 0020 \\
\hline 25140 & 80150 & Potatoes:Iparisin & & 0130 \\
\hline 25150 & 4.00 & TEHDERLOIN TIPS & 6 & 481 \\
\hline 25150 & 90 & BROVIN SAUCE:QTS & & 1.2000 \\
\hline 25150 & 12020 & oilmsalad & & 5000 \\
\hline 25150 & 14020 & BUTTERIPRINT & & 1870 \\
\hline 25150 & 50060 & BEEFGTEND TIP & & 17.0000 \\
\hline 25150 & 80070 & MUSHPOOMSaSLICE & & 4290 \\
\hline 25150 & 960.10 & WInErIburguildy & & .2500 \\
\hline 25160 & 4.95 & BR. LAME CHOPS & 3 & \\
\hline 25160 & 53010 & LAMBICHOPS & & . 7500 \\
\hline 25160 & 72.010 & JELlymilint & & . 0310 \\
\hline 25160 & 81090 & LETTUCEnI CEbERG & & . 0310 \\
\hline 25170 & 3.50 & CIIIX ALA MARYLND & 11 & 502 \\
\hline 25170 & 150 & CREAM SAUCE:QTS & & 1.0000 \\
\hline 25170 & 270 & tomato saucerop & & . 8000 \\
\hline 25170 & -12020 & OILInSALAD & & 1.0000 \\
\hline 25170 & 30010 & bread cruites & & 2.0000 \\
\hline 25170 & 33010 & FLOUR!日R & & 2.0000 \\
\hline 25170 & 51010 & BACOH:ISLICED & & 3.5000 \\
\hline 25170 & . 55010 & EGGSAFRESH :HOL & & . 5000 \\
\hline 25170 & 56010 & CHIXGFRYERU2.5 & & 62.5000 \\
\hline 25170 & 60010 & MI LK:HOIOG & & . 2500 \\
\hline 25170 & 95170 & PEPPER:BLACK & & . 0100 \\
\hline 25170 & 95230 & SALT & & . 0100 \\
\hline 25180 & 5.25 & Filet mignon & 2 & 1 l \\
\hline 25180 & 14020 & BUTTERAPRINT & & . 0620 \\
\hline 25180 & 50020 & BEEFaFILET & & .6250 \\
\hline 25190 & 3.25 & BEEF POT PIE & 13 & 4812 \\
\hline 25190 & 70 & BOUQUET GARNIITB & & 1.0000 \\
\hline 25190 & 230 & PIE CRUSTalb & & 1.1560 \\
\hline 25190 & 12020 & OILnSALAD & & . 7500 \\
\hline 25190 & 33010 & FLOURBBPEAD & & 1.0000 \\
\hline 25190 & 50010 & BEEFBEOTTOH RND & & 17.0000 \\
\hline 251.90 & 80030 & CAROOTS mHOLE & & 1.0000 \\
\hline 25190 & 80090 & ONI ONSEPEAPL & & 1.0000 \\
\hline 25190 & 80150 & Potatoesmparisn & & 1.0000 \\
\hline 25190 & 80190 & TOIHATOE PUREE & & . 1070 \\
\hline 25190 & 83010 & PEASUFROZ. & & 2.5000 \\
\hline 25190 & 30010 & beef base & & . 1090 \\
\hline 25190 & 95230 & SALT & & . 0620 \\
\hline 25.90 & 97100 & VATER & & 1.0000 \\
\hline 2.5200 & 3.50 & HALF BR. CHIX & 4 & 502 \\
\hline 25200 & -12020 & OILUSALAD & & . 2500 \\
\hline 25200 & 14020 & BUTTER:PPPINT & & 1.0000 \\
\hline 25200 & 56010 & CHIKıFRYERE2.5 & & 25.0000 \\
\hline 25200 & 95230 & SALT & & . 0310 \\
\hline 3801.0 & 0 & TOSSEO GR SALAD & 8 & 1203 \\
\hline 38010 & 50 & blev ChEESE DP & & . 3330 \\
\hline 38010 & 170 & FREIICH DRESSIMG & & . 3330 \\
\hline 38010 & 190 & OIL VINEGAP. DR. & & . 3330 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 38010 & 81030 & CELERY:FRESH & & 7.5000 \\
\hline 38010 & 81050 & CUKES & & 6.0000 \\
\hline 38010 & 81090 & Lettucenicererg & & 15.0000 \\
\hline 38010 & 81170 & PEPPERSITGREEN & & 2.0000 \\
\hline 38010 & 81190 & RADISHES & & 3.6660 \\
\hline 38020 & . 30 & BAK STUFF POTATO & 8 & 50 I \\
\hline 38020 & 14020 & BUTTER:IPRIIIT & & . 5000 \\
\hline 38020 & 55010 & EGGSDFRESH : \(: 1 \mathrm{HOL}\) & & . 4150 \\
\hline 38020 & 60010 & MILKRHOHOG & & . 3750 \\
\hline 38020 & 64050 & CHEESE:PARMESAN & & . 5000 \\
\hline 38020 & 82010 & potatoesabakefis & & 50.0000 \\
\hline 38020 & 95150 & PAPRIKA & & . 0200 \\
\hline 38020 & 95170 & PEPPER!BLACK & & . 0100 \\
\hline 38020 & 95230 & SALT & & . 0620 \\
\hline 38030 & . 30 & hash br. potato & 4 & 484 \\
\hline 38030 & 12020 & OILBSALAD & & . 5000 \\
\hline 38030 & 82050 & potatoesumaine & & 14.0000 \\
\hline 38030 & 95170 & PEPPER日BLACK & & . 02.00 \\
\hline 38030 & 95230 & SALT & & . 0930 \\
\hline 38040 & . 30 & au gratin potato & 5 & 4812 \\
\hline 38040 & 110 & Cheese saucerots & & 1.5000 \\
\hline 38040 & 14020 & BUTTEREPPRINT & & . 1250 \\
\hline 38040 & 30010 & BREAD CRUHBS & & . 1250 \\
\hline 38040 & 82050 & potatoesmmaine & & 1.0000 \\
\hline 38040 & 95150 & PAPRIKA & & . 0312 \\
\hline 38050 & . 30 & FR. FRIED POT. & 1 & \(20 \quad 4\) \\
\hline 380.50 & 82030 & POTATOESEFRF:OFR & & 1.0000 \\
\hline 42010 & . 40 & CHOC PARFAIT & 4 & \\
\hline 42010 & 20010 & CHERPIES:BBLACK & & . 0030 \\
\hline -42010 & 61.040 & CREAMIIIHIPPIMG & & . 0160 \\
\hline 42010 & 62010 & ice creamavanil & & . 0310 \\
\hline 42010 & 76010 & chocolate sauce & & . 0130 \\
\hline 46.040 & . 40 & BLUEBPY PARFAIT & 4 & \\
\hline 45040 & 20010 & CHERRIES\#BLACK & & . 0030 \\
\hline -46040 & 61040 & CREAMIUHIIPPING & & . 0160 \\
\hline -46040 & 6201.0 & ICE CREAMuVANIL & & . 0310 \\
\hline -46040 & 73010 & blueberry filli & & . 0130 \\
\hline . 45050 & . 50 & C D MENTH PARFAI & \(?\) & \\
\hline - 46050 & 62010 & ICE CREAMEVAI!IL & & . 031.0 \\
\hline -46060 & 78010 & CR. DE MENTHEEg & & . 0600 \\
\hline -46130 & . 40 & STRAIIEY PARFAIT & 4 & \\
\hline -46130 & 20010 & CHERRIESEBLACK & & . 0030 \\
\hline -46-130 & 61040 & CREAMOIHIPPING & & . 0160 \\
\hline 46130 & 62.010 & ICE CREAIITVANIL & & . 0310 \\
\hline -46130 & 73030 & STRAWBERPY TOPN & & . 0130 \\
\hline 49020 & . 50 & ORANGE CHIF PIE & 1 & \\
\hline 49020 & 93070 & PIE:ORANGE CHIF & & . 1660 \\
\hline - 49030 & . 50 & PHUEARS PIE & 1 & \\
\hline -49030 & 93080 & PIEAPIHJARB & & . 2660 \\
\hline 49050 & . 40 & PEACII TAPT & 4 & \\
\hline 49050 & 310 & CUSTARD FUDDEOT & & . 0470 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 49050 & 61040 & CREAMIIVHIPPING & & . 0050 & & & & \\
\hline 49050 & 73020 & PEACH TOPPII! \({ }^{\text {a }}\) & & . 0090 & & & & \\
\hline 49050 & 93100 & TART SHELLS & & . 0830 & & & & \\
\hline 49070 & . 50 & Lemon Chif pie & 1 & & & & & \\
\hline 49070 & 93050 & PIERLEMON CHIFF & & . 1660 & & & & \\
\hline 49090 & . 40 & BLUEBERRY TART & 4 & & & & & \\
\hline 49090 & 310 & CUSTARD PUDDIRT & & . 0470 & & & & \\
\hline 49090 & 61040 & CREAMDI:HIPPING & & . 0050 & & & & \\
\hline 49090 & 73010 & blueberry fillit & & . 0090 & & & & \\
\hline 4.9090 & 93100 & TART SHELLS & & . 0830 & & & & \\
\hline 4.9110 & . 50 & APRICOT PIE & 1 & 11 & & & & \\
\hline 49.110 & 93030 & PIErAPRICOT & & . 1660 & & & & \\
\hline 49120 & . 50 & APPLE PIE & 1 & 11 & & & & \\
\hline 49120 & 93010 & pienapple & & . 1660 & & & & \\
\hline 59000 & . 20 & COFFEE & 2 & 4816 & & & & \\
\hline 5.9000 & 91010 & COFFEE & & 3.0000 & & & & \\
\hline 59000 & 97100 & VATER & & 1.0000 & & & & \\
\hline 59100 & . 20 & Milknglass & 1 & 11 & & & & \\
\hline 59.100 & 60010 & MILKaHOMOG & & . 1250 & & & & \\
\hline 63000 & 0 & Rolls butter & 2 & 66 & & & & \\
\hline 63000 & 14010 & BUTTERICHIP & & . 1670 & & & & \\
\hline 63000 & 31010 & ROLLSEBRSRV & & 1.0000 & & & & \\
\hline & 10 & \(3 \quad 30 \quad 33\) & 50 & 57 & 70 & 99 & 90 & \\
\hline & 110 & \(213 \quad 1300273\) & 150 & 321 & 170 & 351 & 190 & \\
\hline & 210 & \(435 \quad 230 \quad 465\) & 250 & 495 & 270 & 519 & 290 & \\
\hline & . 310 & \(639 \quad 3300681\) & 12040 & 729 & 12060 & 747 & 12070 & \\
\hline & 12080 & 80714020831 & 15010 & 861 & 15030 & 897 & 15050 & \\
\hline & 15090 & 95125010981 & 25020 & 1041 & 25030 & 1095 & 25040 & 113 \\
\hline & 25050 & 1209250601287 & 25070 & 1371 & 25080 & 1347 & 25100 & 137 \\
\hline & 251101 & 1389251201437 & 25130 & 1461 & 25140 & 1485 & 25150 & 15 \\
\hline & 25.1601 & 1581251701605 & 25180 & 1677 & 25190 & 1695 & 25200 & 17 \\
\hline & 33010 & 1809380201863 & 38030 & 1917 & 38040 & 1947 & 38050 & 19 \\
\hline & 420101 & 1995460402025 & 146060 & 2055 & 46130 & 2073 & 49020 & 2.1 \\
\hline & 49030 & \(211549050 \quad 21.27\) & 49070 & 2157 & 49090 & 2169 & 49.10 & \\
\hline & 49120 & 2211590002223 & 59100 & 2241 & 63000 & 2253 & & \\
\hline
\end{tabular}

\section*{APPENDIX E}

\section*{INGREDIEN'I FILE}
\(119 \quad 119\)
10010 SHORTENINGGYYD
12010 OILHOLIVE
12020 OILbSALA.D
14010 BUTTERACHIP
I4020 BUTTERHPRINT
20010 CHEPRIESABLACK
20030 CRANBERRY SAUCE
21010 CRANBERRY JUICE
23010 LEAMONSRFR
23020 MELON BALLSIFR
23030 HíKED FRUITSTIFR
23040 PEARSAFR
23050 STRAMEERRIESAFR
30010 BREAD CRUMBS
30020 BREADGYHITERSL
31010 ROLLSロBRSRV
3301.0 FLOUREBREAD

34010 NOODLESaEGG
35010 CRACKERSERITZ
50010 BEEFDBOTTOM RND
50020 BEEFEFILET
50030 BEEFARIBS
50040 BEEFDSIF STPロ8
50050 EEEFUSIR STP:IL2
50060 EEEFETEND TIP
51010 BACON:SLICED
51020 HAMAFROSCIUTTO
52010 Vealacutlete:5 53010 LAMB:CHOPS
53020 LAítBialeg
55010 EGGS:FP.ESH I!HOLE
56005 CHINBFO:IL
56010 CHIXGFRYERa2. 5
56020 TURKEYMVHOLE
57010 HERRING:MARI:IATE
57020 SOLEGFILETaFRESH
58010 CLA:AS:ICH. STONE
58020 CLAMSAFRYING
58025 LOBSTERT:LIVErI. 7
58030 oYs TERSABLPTS
58040 SCALLOPS
53050 SHRIMPAFROZE5LB
580 ÓO SOLEEFILET
60010 HILKMHOHOG
610 IO CRENilaLight
6102.0 CREATASSUV

6I030 CREAMIDTOPPIHG
61040 CREATHUHIPPIIG
62010 ICE CREAMGVAIIILL
63010 SHERBETRLIHE
\begin{tabular}{|c|c|}
\hline \[
\begin{array}{r}
6.75 \\
.85
\end{array}
\] & LBu25
QT \\
\hline 6.00 & CS:12 \\
\hline 18.00 & LBs=30 \\
\hline 12.50 & LBn24 \\
\hline 8.25 & CS: 6 \\
\hline 9.00 & CSn6 \\
\hline 4.50 & GALs \({ }^{\text {c }}\) \\
\hline 4.25 & CS:310 \\
\hline 3.00 & GAL \\
\hline 2.00 & GAL \\
\hline . 07 & EA \\
\hline . 35 & QT \\
\hline . 50 & LB:5 \\
\hline . 30 & LOAF \\
\hline . 40 & DOZ \\
\hline 2.50 & LBa25 \\
\hline 2.75 & LBrio \\
\hline 2.25 & LB:5 \\
\hline 1.15 & LP \\
\hline 1.70 & LB \\
\hline 1.45 & LB \\
\hline 1.55 & LB \\
\hline 1.55 & LB \\
\hline 1.30 & LB \\
\hline . 85 & LB \\
\hline 2.20 & LB \\
\hline 1.45 & LB \\
\hline 1.20 & LB \\
\hline . 95 & LB \\
\hline . 60 & DOZ \\
\hline . 45 & LB \\
\hline . 40 & LB \\
\hline . 55 & LB \\
\hline . 75 & LB \\
\hline . 06 & L.B \\
\hline \(\underline{1} 25\) & PECK \\
\hline . 75 & LB \\
\hline 1.35 & LB \\
\hline 2.00 & PECK \\
\hline 1.05 & LE \\
\hline 1.55 & LE \\
\hline . 65 & LB \\
\hline 4.55 & GAL=5 \\
\hline . 55 & QT \\
\hline . 35 & PT \\
\hline . 40 & CAN \\
\hline . 75 & Qt \\
\hline 1.70 & GAL \\
\hline . 85 & GAL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 25.00 & LB & 50.00 \\
\hline 1.00 & QT & 6.00 \\
\hline 12.00 & QT & 23.00 \\
\hline 6.00 & LRa5 & 7.00 \\
\hline 24.00 & LB & 32.00 \\
\hline 6.00 & Clo & 9.00 \\
\hline 6.00 & Cl0 & 12.00 \\
\hline 4.00 & GAL & 8.00 \\
\hline 110.00 & EA & 110.00 \\
\hline 1.00 & GAL & 3.00 \\
\hline 1.00 & GAL & 2.00 \\
\hline 1.00 & EA & 30.00 \\
\hline 1.00 & OT & 8.00 \\
\hline 5.00 & LB & 6.00 \\
\hline 1.00 & LOAF & 45.00 \\
\hline 1.00 & DOZ & 10.00 \\
\hline 25.00 & LB. & 150.00 \\
\hline 10.00 & LB & 20.00 \\
\hline 5.00 & LB & 8.00 \\
\hline 1.00 & LB & 70.00 \\
\hline 1.00 & LB & 18.00 \\
\hline 1.00 & LB & 80.00 \\
\hline 1.00 & LB & 20.00 \\
\hline 1.00 & LB & 30.00 \\
\hline 1.00 & LB & 25.00 \\
\hline 1.00 & LB & 24.00 \\
\hline 1.00 & LB & 8.00 \\
\hline 1.00 & LB & 22.00 \\
\hline 1.00 & LB, & 40.00 \\
\hline 1.00 & LB & 40.00 \\
\hline 1.00 & DOZ & 28.00 \\
\hline 1.00 & LB & 42.00 \\
\hline 1.00 & LB & 60.00 \\
\hline 1.00 & LB & 72.00 \\
\hline 1.00 & LB & 6.00 \\
\hline 1.00 & LB & 18.00 \\
\hline 1.00 & PECK & 3.00 \\
\hline 1.00 & LB & 6.00 \\
\hline 1.00 & LB & 35.00 \\
\hline 1.00 & PECK & 6.00 \\
\hline 1.00 & LB & 10.00 \\
\hline 1.00 & LB & 15.00 \\
\hline 1.00 & LB & 25.00 \\
\hline 5.00 & GAL & 7.00 \\
\hline 1.00 & CT & 16.00 \\
\hline 1.00 & PT & 4.00 \\
\hline 1.00 & CAN & 4.00 \\
\hline 1.00 & OT & 3.00 \\
\hline 1.00 & GAL & 10.00 \\
\hline 1.00 & GAL & 4.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 64010 & CHEESEGAMERICAN & 3.00 & LBn 5 & 1.00 & LB： 5 & 2.00 & 3 \\
\hline 64020 & CHEESEIBLEU & 8.75 & LBa 5 & 1.00 & LBra & 3.00 & 3 \\
\hline 64030 & CHEESEICHEDDAR & 4.75 & LB－5 & 1.00 & LB：5 & 3.00 & 3 \\
\hline 64040 & CHEESEGCREAl4 & ． 85 & LB & 1.00 & LB & 3.00 & 3 \\
\hline 64050 & CHEESEmPARMESAN & ． 75 & LB & 1.00 & LB & 3.00 & 3 \\
\hline 70010 & SUGARUGRAN & 2.75 & LBa25 & 25.00 & LB & 200.00 & 1 \\
\hline 72010 & JELLYGMINT & 1.20 & QT & 1.00 & QT & 6.00 & 1 \\
\hline 73010 & BLUEBERRY FILLIN & 10.40 & csab & 6.00 & C10 & 5.00 & 1 \\
\hline 73020 & PEACH TOPPING & 10.40 & CS：6 & 6.00 & Cl0 & 3.00 & 1 \\
\hline 73030 & STRAllBERRY TOPING & 13.50 & CS： 6 & 6.00 & CiO & 3.00 & 1 \\
\hline 76010 & chocolate sauce & 6.00 & CS： 6 & 6.00 & Clo & 9.00 & 1 \\
\hline 78010 & CR．DE MENTHE！GR & 3.50 & FTH & 1.00 & FTH & 3.00 & 1 \\
\hline 80010 & CARROTSESLICED & 6.60 & CS＝6 & 6.00 & Cl 0 & 12.00 & 1 \\
\hline 80030 & CARROTSEVHOLE & 6.00 & CS： 6 & 6.00 & C 30 & 11.00 & 1 \\
\hline 80050 & MUSHROOHS：CAPS & 21.00 & CS： 6 & 6.00 & Cl0 & 10.00 & 1 \\
\hline 80070 & MUSHROOMSaSLICED & 15.00 & csn6 & 6.00 & Cl0 & 9.00 & ］． \\
\hline 80090 & ONI ONSIPEARL & 9.25 & Csn6 & 6.00 & C10 & 7.00 & 1 \\
\hline 80110 & PEASEGREEN & 5.20 & csa6 & 6.00 & C］． 0 & 11.00 & 1 \\
\hline 80130 & PIMENTOS & 7.25 & CS： 6 & 6.00 & Cl0 & 8.00 & 1 \\
\hline 80150 & POTATOES：IPARISN & 12.00 & Cs： 6 & 6.00 & Cl0 & 20.00 & 1 \\
\hline 80170 & tomato juicenl6o & 4.70 & CSul2 & 12.00 & C5C & 35.00 & 1 \\
\hline 80190 & TOMATO PUREE & 6.00 & CS：6 & 6.00 & Cl0 & 20.00 & 1 \\
\hline 80210 & toinatoesmbhole & 4.80 & CSa6 & 6.00 & Cl0 & 18.00 & 1 \\
\hline 81010 & CARROTS OFRESH & ． 25 & LB & 1.00 & LB & 20.00 & 4 \\
\hline 81030 & CELERYロFRESH & 5.75 & LB－70 & 70.00 & LB & 60.00 & 4 \\
\hline 81050 & CUKES & 2.85 & LBrio & 10.00 & LP， & 8.00 & 4 \\
\hline 81070 & HORS ERADI SH：IFR & 2.00 & GAL & 1.00 & GAL & 3.00 & 4 \\
\hline 81090 & LETTUCE日ICEBERG & 7.50 & LBa50 & 50.00 & LB & 75.00 & 4 \\
\hline 81110 & MINTuFRESH & ． 20 & BNCH & 1.00 & BNCH & 8.00 & 4 \\
\hline 81130 & ONI OilSUFRESH & 2.50 & LBa50 & 50.00 & LS & 46.00 & 1 \\
\hline 81150 & PAPSLEYEFRESH & ． 15 & BNCH & 1.00 & BNCH & 3.00 & 4 \\
\hline 81170 & PEPPPERSGGREEN & ． 16 & LB & 1.00 & LS & 6.00 & 4 \\
\hline 811.90 & RADISHES & ． 08 & BNCH & 1.00 & BNC： 4 & 12.00 & 4 \\
\hline 82010 & POTATOES：BAKERS & 3.75 & BX：90 & 90.00 & EA． & 120.00 & 1 \\
\hline 82030 & POTATOES日FPFFFRZ & ． 60 & LB：35 & 1.00 & L855 & 8.00 & 5 \\
\hline 82050 & POTATOES milaine & 2.00 & LBa50 & 50.00 & LB & 300.00 & 1 \\
\hline 83010 & PEAS \({ }^{\text {a }}\) FROZ． & ． 85 & LBric． 5 & 2.50 & LB， & 15.00 & 5 \\
\hline 90010 & BEEF BASE & 2.25 & LB & 1.00 & LB & 6.00 & 2 \\
\hline 90020 & CHIX BASE & 2.25 & LB & 1.00 & LB & 8.00 & 2 \\
\hline 91010 & COFFEE & 10.75 & LB：12 & 12.00 & LB & 30.00 & 1 \\
\hline 92010 & TOBASCO & 4.80 & CSnl2 & 12.00 & EA． & 24.00 & 1 \\
\hline 92920 & horcestr sc & 5.75 & GAL？ 4 & 4.00 & GAL & 3.00 & 1 \\
\hline 93010 & PIEGAPPLE & ． 95 & ᄃA． & 1.00 & EA． & 15.00 & 5 \\
\hline 93030 & PIE：APPICOT & ． 95 & EA． & 1.00 & EA． & 10.00 & 5 \\
\hline 93050 & P．IE：LEHON CHIFF & ． 95 & EA． & 1.00 & EA． & 12.00 & 5 \\
\hline 93070 & PIEnORANGE CHIFF & ． 95 & EA． & 1.00 & EA． & 14.00 & 5 \\
\hline 93080 & PIERRHUSARS & ． 95 & EA． & 1.00 & EA． & 8.00 & 5 \\
\hline 93100 & TART SHELLS & 4.25 & DO2п3 & 3.00 & DOZ & 10.00 & 5 \\
\hline 95010 & gayleaf & 1.00 & LB & 1.00 & LB & 2.00 & 1 \\
\hline 95030 & catsup & 6.00 & CSa 6 & 6.00 & C10 & 9.00 & 1 \\
\hline 95050 & CHILI SAUCE & 6.60 & CS：\(\quad\) ¢ & 6.00 & C10 & 5.00 & 1 \\
\hline
\end{tabular}

95
95
95
951
951
9517
951
95
95
95
95
95
95
95
9
9
9

\begin{tabular}{ll}
7.20 & CS .6 \\
1.80 & LB \\
.65 LB \\
1.25 LB \\
1.35 LB \\
1.00 LB \\
1.20 LB \\
1.20 LB \\
.65 LB \\
1.50 & LB 5 \\
.75 LB \\
3.00 & PT \\
2.40 GALa 4 \\
1.50 LB \\
.95 & FTH \\
.95 & FTH \\
4.50 & CSE 24 \\
0 XX
\end{tabular}
\begin{tabular}{|c|c|}
\hline 6.00 & Cl0 \\
\hline 1.00 & LB \\
\hline 1.00 & L8 \\
\hline 1.00 & LB \\
\hline 1.00 & LB \\
\hline 1.00 & LB \\
\hline 1.00 & LB \\
\hline 1.00 & LB \\
\hline 1.00 & LB \\
\hline 5.00 & LB \\
\hline 1.00 & LE \\
\hline 1.00 & PT \\
\hline 4.00 & GAL \\
\hline 1.00 & LB \\
\hline 1.00 & FTH \\
\hline 1.00 & FTi- \\
\hline 24.00 & L. \\
\hline 0 & x \(x\) \\
\hline
\end{tabular}
\begin{tabular}{rr}
3.00 & 1 \\
2.00 & 1 \\
1.00 & 1 \\
2.00 & 1 \\
3.00 & 1 \\
6.00 & 1 \\
3.00 & 1 \\
4.00 & 1 \\
2.00 & 1 \\
30.00 & 1 \\
1.00 & 1 \\
3.00 & 1 \\
9.00 & 1 \\
3.00 & 1 \\
6.00 & 1 \\
8.00 & 1 \\
24.00 & 1
\end{tabular}

\begin{tabular}{rrrrr}
21 & 14010 & 30 & 14020 & 39 \\
66 & 23010 & 75 & 23020 & 84 \\
111 & 30010 & 120 & 30020 & 129 \\
156 & 35010 & 165 & 50010 & 174 \\
201 & 50050 & 210 & 50060 & 219 \\
246 & 53010 & 255 & 53020 & 264 \\
291 & 55020 & 300 & 57010 & 309 \\
336 & 58025 & 345 & 58030 & 354 \\
381 & 60010 & 390 & 61010 & 399 \\
426 & 62010 & 435 & 53010 & 444 \\
471 & 64040 & 480 & 64050 & 489 \\
515 & 73020 & 525 & 73030 & 534 \\
561 & 80030 & 570 & 80050 & 579 \\
605 & 80130 & 61580150 & 624 \\
651 & 81010 & 660 & 81030 & 669 \\
696 & 81110 & 70581130 & 714 \\
741 & 82010 & 750 & 82030 & 759 \\
785 & 90020 & 795 & 91010 & 804 \\
831 & 93030 & 841409350 & 849 \\
876 & 95010 & 885 & 95030 & 894 \\
921 & 95110 & 930 & 95130 & 939 \\
965 & 95200 & 975 & 95210 & 934 \\
1011 & 95270 & 1020 & 95290 & 1029 \\
1056 & 97100 & 1065 & &
\end{tabular}

\author{
INPUT TO FILPROI
}
```

EXECUTE FILPROI
16K
FILE NAMES(BANQUET, RECIPE,MENU)
?BANQ RECIPES MENUS
BANQ IS CURRENTLY EMPTY--STOP OR RETURN
DATE ?10171
TYPE AND CODE ?MENU 15
TOTAL COVERS AND SALES ?150 600.00
RECIPE COVERS
CRANBERPY SHRUB ?35
CHERRYSTONES ?73
BEEF JARDINIERE ?45
SIRLOIN STRIP/12 ?64
FILLET OF SOLE ?41
TOSSED GR SALAD ?143
BAK STUFF POTATO ?112
CHOC PARFAIT ?40
LEMON CHIFFON PIE?56
COFFEE ?123
MILK/GLASS ?10
ROLLS BUTTER ?132
TYPE AND CODE ?RECIPE 12070
NAME IS PEAR/PROSC HAM CORRECT ?YES
CODE, COVERS, PRICE ?SIMMONS 50 O.
TYPE AND CODE ?RECIPE 25070
NAME IS PR RIBS OF BEEF CORRECT ?YES
CODE, COVERS, PRICE ?SIMMONS 50 5.95
TYPE AND CODE ?RECIPE 38010
NAME IS TOSSED GR SALAD CORRECT ?YES
CODE, COVERS, PRICE ?SIMMONS 5O O.
TYPE AND CODE ?RECIPE }3805
NAME IS FR. FRIED POT. CORRECT ?YES
CODE, COVERS, PRICE ?SITHONS 50 0.
TYPE AND CODE ?RECIPE }6300
NAHEE IS ROLLS BUTTER CORRECT ?YES
CODE, COVERS, PRICE ?SIMMONS 5O O.
TYPE ANDD CODE ?PECIPE 59000
NAME IS COFFEE CORRECT ?YES
CODE, COYERS, PRICE ?SIMMONS 50 0.
TYPE AND CODE ?RECIPE 25050
NAME IS POAST TURKEY CORPECT ?YES
CODE, COVERS, PRICE ?A I3 X

```

\section*{APPENDIX G}

\section*{SAMPLE BANQUET FILE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
710101 \quad 12070^{7}
\] & \multicolumn{2}{|l|}{PEARAPROSC HAM SIMMOMS} & \(50 \quad 0\) & 0 & \\
\hline 71010125070 & PR RIBS OF PEEF & S Simions & \(50 \quad 5.95\) & 297.50 & \\
\hline 71010138010 & TOSSED GR SALAD & SIMmoris & 50 & 0 & \\
\hline 710101 38050 & FR. FRIED POT. & SImmons & 50 & 0 & \\
\hline 71010163000 & ROOLS BUTTER & SImiows & 50 & 0 & \\
\hline 71.010159000 & COFFEE & SIMHONS & 50 & 0 & \\
\hline 71010125050 & ROAST TURKEY & & \(13 \quad 3.75\) & 48.75 & \\
\hline 710101 & 3710101 11 & 1710101 & 19710101 & 27710101 & 35 \\
\hline 710101 & 4371010151 & & & & \\
\hline
\end{tabular}
```

PROGRAM FILPRO2--DIALOGUE AND OUTPUT

```
```

EXECUTE FILPRO2
FILE NAMES, COST AND ING ?COSTF FOODS
DATE ?10171
CURRENT STATUS
T.SALES S.REQS. F.DRCT TRANSF. P.COST
STOREROOM PURCHASES ?YES
ING CODE ?14020
BUTTEREPRINT CORRECT ?YES
I-I UNITS(LB ) ?2.
COST PER LB/24?12.75
ING CODE ?52010
VEAL/CUTLET/5 CORRECT ?YES
I-I UNITS(LB ) ?50.
COST PER LB ?X
ING CODE ?63010
SHERBET/LIME CORRECT ?YES
I-I UNITS(GAL ) ?5.
COST PER GAL ?.90
ING CODE ?END
STOREROOM REQUISITIONS ?YES
ING CODE ?12040
NO SUCH INGREDIENT
ING CODE ?210IO
CRANBERRY JUICE CORRECT ?YES
I-I UNITS(GAL )?2.
ING CODE ?50010
BEEF/BOTTO:\ RND CORRECT ?YES
I-I UNITS(LB )?5?.
ING CODE ?50050
BEEF/SIR STP/I2 CORRECT ?YES
I-I UNITS(LB )?30.
ING CODE ?82010
POTATGES/BAKERS CORRECT ?YES
I-I UNITS(EA. )?I20.

```

\section*{Note}

Please observe the following about the dialogue on the prececding page and the computer output on the following page:
1. The current cost file status is given to prevent double posting.
2. The user has the option not to enter issues or purchases if he so chooses.
3. If the purchase price has not changed, user need only enter "X" as price.
4. User has the option to list purchase entries in order to check for errors.
5. User has the option to list issue entries in order to check for eriors.
6. User has the option to list inventory entries affected by purchases and ussues, the entire inventory, or can simply obtain summaries of each.

ING CODE ？END
FOOD DIPECT TOTALS AND TRANSFERS TOTALS ？225．0． PURCHASE LISTING
DETAIL，SƯNARY，BOTH，OR NONE
？BOTH
\begin{tabular}{llrlr}
CODE & \multicolumn{1}{c}{ NAME } & AMOUNT & UNIT & COST \\
\hline & & & & \\
14020 & BUTTER／PRINT & 2.00 & LB／24 & 25.50 \\
52010 & VEAL／CUTLET／5 & 50.00 & LB & 72.50 \\
63010 & SHERBET／LIME & 5.00 & GAL & 4.50 \\
& TOTAL & & & 102.50
\end{tabular}

REQUISITION LISTING
DETAIL，SUF：HARY，BOTH，OR NON： ？BOTH
\begin{tabular}{|c|c|c|c|c|}
\hline CODE & NH：SE & AMOUNT & UNIT & COST \\
\hline 21010 & CPA：BERPY JUICE & 2.00 & GAL & 2.25 \\
\hline 50010 & EEEF／BOTTO：PND & 52.00 & LB & 59.80 \\
\hline 50050 & BEEF／SIR STP／12 & 30.00 & LB & 46.50 \\
\hline 82010 & POTATOES／BAKERS & 120.00 & EA． & 5.00 \\
\hline & TOTAL & & & 113.55 \\
\hline
\end{tabular}

EXTENDED INVETTORY LISTING DETAIL，SUPTHPY，BOTH，OR NOT：
？EOTH：
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & NATE & PRICE & Oi：HAND & I／I & value \\
\hline I4020 & BUTTEP PRINT & ． 53 & 80.00 & LB & 42.50 \\
\hline 21010 & CPS：IEEPRY JUİCE & 1.12 & 6.00 & GAL & 6.75 \\
\hline 50010 & BEEF／BOTTAM RID & 1.15 & 18.00 & LB & 20.70 \\
\hline 50050 & EミEF／Sİ／STF／I2 & 1.55 & 0 & LB & 0 \\
\hline 52010 & VEんL／CUTLET／シ & 1.45 & 92.00 & L3 & 133.40 \\
\hline 63010 & SHERJET／LIME & ． 90 & 9.00 & GAL & 8.10 \\
\hline 82010 & POTATOES／BAKEPS & ． 04 & 0 & EA． & 0 \\
\hline & totals & & & & 211.45 \\
\hline
\end{tabular}

\section*{APPENDIX I}

\section*{FORECAS' SIMULATION PROGRAMS (TEST)}

\section*{Total Demand Generator--Unifowm Distribution}

0001 PROGRAII DEIIAIIDS
0010 DIMENSION DAYS(365), DEFMAND(3Ú5), SMOOTH(365), DL(7), DH(7),
\(0011 A \operatorname{DIF}(7), X(10), Y(10), X S(10,10), B(10,1), \operatorname{NPT}(4,4), \operatorname{NOPT}(5)\)
0015 DATA (NPT \(=1,3,0,0,0,0,1,3,1,0,2,3,1,3,1,3)\)
0016 DATA (NOPT \(=6 H S H O O T H, ~ G H D E M A H D, ~ 8 H C O H P O S I T, ~ 4 H B O T H, ~ 4 H W O N E ~\)
0019 READ, XHIN., XMAX, YiAIN, YMAX
0020 READ, NUMD., RANS, NCYCLE, (DL(I), I = I, NCYCLE), (DH(I), I=1, HCYC
0021.A NPOINTS, (\((X(I), I=1, N P O I N T S),(Y(I), I=1\), NPOIMTS)

0023 READ, NSTEP1, HSTEP2, NSTEP3: DEL, DELDEL
0025 CALL RANFSET(RAIIS)
0030 NDIM \(=10\)
0040 DO 60 LP \(=1\), NUMD
0050 DAYS (LP) \(=\) LP
0060 CONTINUE
0070 DO 90 LP \(=1\), NCYCLE
0080 DIF(LP) \(=\) DH (LP) - DL(LP)
0090 CONTINUE
0095 NSUEB \(=\) NPOINTS
0100 NSUB2 \(=1\)
0110 DO \(170 \mathrm{~J}=-1\), NPOINTS
\(0120 \operatorname{XS}(J, 1)=1.0\)
\(0130 \quad B(J, 1)=Y(J)\)
0140 DO \(160 \mathrm{I}=2\), NPOINTS
\(0150 \times S(J, I)=\times(U): \times S(U, I-I)\)
0160 CONTINUE
0170 CONTINUE
0180 CALI. MATINV(NS, NSUBI,B,NSUB2,DET, NDIM)
\(0190 \mathrm{~K}=1\)
0200 DO 290 LP \(=-I\), NU:TD
0210 SMOOTH(LP) \(=0.0\)
0220 DO \(240 \mathrm{I}=-\), NPOIMTS
0230 SHOOTH(LP) \(=S H O O T H(L P)+(\operatorname{DAYS}(L P) \because \because(I-I)) \because B(I, I)\)
0240 COIITINUE
\(0250 \mathrm{R}=\operatorname{RANF}(-1)\)
0260 DEMAND (LP) \(==\operatorname{SHOOTH}(L P) *(D L(K)+(D I F(K) \because R))\)
\(0264 \mathrm{ND}=\mathrm{DE}!\mathrm{A}!\mathrm{D}(\mathrm{LP})+.5\)
0266 DEMAND (LP) \(=\) ND
\(0270 K=K+I\)
0280 IF (\(K\).GT. NCYCLE) \(K=1\)
0290 CONTINUE
0291 IF (NSTEPI .EO. O) GO TO jOO
0292. DO 299 LPI = ISTEPI, NSTEP2, ISTEP3

0293 ISTEP4 = LPI - i ISTEP3 - 1
0294 IF (I!STEP4 .GT. NSTEPZ) NSTEP4 = HSTEP2
0295 DO 217 LP2 = 1 PI, HSTEP4
0296 DE:MAID (LP2) = DEMAIID (LP?) \(\div\) DEL
0297 COITTIIUE
0293 DEL = DEL + DELDEL
0299 COiATIIUE
0300 FPIIIT 320
\(03 I 0\) FORAAT (\(\because\)-EXA:IIIE \(: ~)\)

0320 INPUT, NDEC
0330 IF (NDEC .NE. ЗHYES) GO TO 410
0340 PRINT 350
0350 FORMAT (\(\because\)-INPUT DAY RANGE (FIRST AND LAST) \(\because\))
0360 INPUT, NI, N2
0370 PRINT 380
0380 FORNAT (//: DAY SMOOTH DEMAND PCTLOW PCTHIH PCTACT : : IX)
\(0390 K=0\)
0391 DO 400 LP \(=1, N\) ?
\(0392 K=K+1\)
0393 IF (K.GT. NCYCLE) K \(=1\)
0394 IF (LP .LT. NI) GO TO 400
0395 PCT \(=\) DEMAND(LP)/SMOOTH(LP)
0396 PFINT 397, LP, SHOOTH(LP), DEMAHD (LP), DL(K), DH(K), PCT
0397 FORMAT (\(1 \times, 13,2(1 \times, F 6.1), 3(1 \times, F 6.3)\))
0400 CONTINUE
0410 PRINT 420
0420 FORIMAT (\(\because\)-PLOT SMOOTH, DEMAND, COIMPOSIT, BOTH, OR NONE \(\because\))
0430 INPUT, NDEC
0440 IF (NDEC. EQ. 4 HNONE) GO TO 560
0450 DO 490 LP \(:=1,4\)
0460 IF (NDEC.NE. NOPT(LP)) GO TO 490
\(0470 \quad \mathrm{~J}=\mathrm{LP}\)
0480 GO TO 510
0490 CONTINUE
0500 GO TO 410
0510 CONTINUE
0520 CALL PLOTER (DAYS, SMOOTH, NUMD, NPT(I, J), IHS, XMIM, XMAX, YMIH, YMAX. 0521 A 3HDAY, 6 HDEMAND)
0530 CALL PLOTER (K, Y, NPOINTS, NPT \((2, J)\), IHX, XHIN, XHAK, YHIN, YMAX, 0531A ЗHDAY, G:HDEHAND)
0540 CALL PLOTER(DAYS, DEMAND, NUMD, NFT \((3, J)\), IHD, XMIN, XMAX, YMIH, YMAX
0541 A 3HDAY, KHDEMAMD)
0550 CALL PLOTER (K, Y, NPOINTS, NPT \((4, J)\), IHK, XMIN, XIAAX, YMIM, YMAX,
055 IA 3HOAY, GHDEMAND)
0560 PRINT 570
0570 FORHAT (\(\because-F I L E\) NAME (INPUT NONE IF NOT TO BE FILED :)
0580 INPUT, HDEC
0590 IF (NDEC. EQ. 4HMONE) GO TO 680
0600 CALL OPEN(I, NDEC, -1)
0605 U!RITE(I) (DEMAND(I), I=1, NUMD)
0610 CALL CLOSE (I,HDEC)
0680 FRIHT 690
0690 FORIMAT (/ : END OF RUIN : / IK)
0695 STOP
0700 END

\section*{Step Demand Generator--Total Demand}

0001
0010 DIMENSION TDEM(500), NDAY(500), STEP(500), TDEMII(500)
0020 PRINT 30
0030 FORMAT (//:-NAMES OF INPUT AND OUTPUT FILES :)
0040 INPUT, NFILEI, NFILE2
0050 CALL OPEN(I,NFILEI,-1)
0060 IF (NFILEI.NE. NFILE2) CALL. OPEN(2,NFILE2, -1)
0070 PRINT 80
0080 FORMAT (\(\because\)-FILE LENGTH:)
0090 INPUT, LEN
0100 PRINT 110
0.110 FORMAT (\(\because-P L O T\) OUTPUT \(:\))

0120 INPUT, NPLOT
\(0-130\) PRINT 240
0140 FORIAAT (\(\because\)-INSTRUCTIONS FOR INPUTING STEPS \(\because\))
0150 INPUT, INST
0.160 IF (INST •EQ. BHYES) CALL INSTR

0170 NS \(=0\)
0180 INPUT, NI, N2
0190 IF (NI .EQ. 3HEND. AND. N2 .EO. 2HOF) GO TO 240
0200 NS \(=\) NS +1
0210 NDAY(NS) \(=W I\)
0220 STEP(NS) \(=N 2\)
0230 GO TO 130
0240 NDAY \((N S+I)=0\)
\(0250 \operatorname{READ}(1)\) (TDEM(I), \(I=1\), LEN)
\(0260 \mathrm{KK}=1\)
0270 ADD \(=0.0\)
0280
0290
0300
Q3I0 IF (LP . NE. NDAY (KK)) GO TO 340
0320 ADD \(=\operatorname{STEP}(K K)\)
\(0330 \mathrm{KK}=K K+1\)
0340 TDEHI (LP) \(=\) TDEN (LP \()+\) ADD
0350 IF (TDEMCLP) .LT. YMIN) YMIN = TDEHCL.P
0360 IF (TDEM(LP) .GT. YHAX) YMAK = TDEM (LP)
0370 IF (TDEMI(LP) . LT. YMIM) YMIM = TDEMI (LP
0380 IF (TDEMI(LP) •GT• YMAX) YMAK = TDEMI (LP)
0390 CONTINUE
0392
0394
0400
0410
0430
0440
0450
0460 RETE (
0117 WRITE \(I\)) (TDEHII (I), \(I=I, L E M)\)
0470 CALL CLOSE(I,NFILEI)
0472 PRINT 474
\(01 \div 74\) FORIMAT (\(\because\) IMPUT IVI, N2, AND \(\operatorname{iV} 3: /\)
\(0475 A\) : RESULTS(I), \(I=N 1, N 2, N 3 \ldots\).... HILL BE PRINTED \(\because\))
0476 INPUT, NI, N2, N3
0478 IF (NI.EQ. O .OR. N2. LT. NI) GO TO 492
0480 PRINT 482
0482 FORMAT (//: DAY STEP DEIIAND NEUDEM \(\because /\) IX)
0484 DO \(490 \mathrm{LP}=\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 3\)
0486 PRINT 488, LP, TDEMI (LP)-TDEN (LP), TDEM (LP), TDEMI (LP)
0488 FORMAT (\(1 \times\), I3, IX, F5.1, 2(IX,FG.1))
0490 CONTINUE
0492 IF (NPLOT .NE. 3HYES) GO TO 570
0494 DO 540 LP \(=1\), LEN
0500 TDEH(LP) \(=(\) TDEN \((L P)-\) YMIN \() /\) YDIF
0510 TDEHI (LP) \(=\). (TDEMI (LP) -YMIN) / YDIF
\(0520 \cdot X P=L P\)
0530 STEP \((L P)=(X P-1.0) / X D I F\)
0.540 CONTTINUE.
0.550 CALL PLOTER(STEP, TDE 4 , LEN, \(1,1 H 1,0.0,1.0,0.0,1.0,6 \mathrm{HPCTDAY}, 6 \mathrm{HPC}\))
0560 CALL. PLOTERCSTEP, TDEMI, LEIY, \(3,1 H 2,0.0,1.0,0.0,1.0,6 H P C T D A Y, 6 H P C\))
0570 PRINT 580
0580 FORMAT (// : END OF RUN :)
0590 STOP
0600 END
0610 SUEROUTINE INSTR
0620 PRINT 630
0630 FORMAT \(/: \because\) ON EACH LINE, INPUT I VALUE OF DAY NO. AND STEF SIZ: 0631 A : AFTEP THE LAST LINE INPUT "END OF FIL". * /
\(0632 A \%\) THE STEP SIZE ON A GIVEN LINE UILL BE ADDED TO THE DEI:AID
\(0633 A:\) CURVE STARTING AT THE DAY SPECIFIED AHD COITINUING UP TO, \(\because /\) O634A : BUT NOT INCLUDING, THE DAY SPECIFIED OH THE NEXT LINE. : / O635A : THE STEP SPECIFIED ON THE LAST LINE IS ASSUIED TO BE EFFECT 1
O636A: U UP TO THE END OF THE DEMAND CURVE. \(: /\) IX)
0640 RETURN
0650 END

\section*{Matrix Inversion Subroutine}
```

I SUBROUTINE IIATINV(A,NSUB,B3,MSUE,DET,NHAX)
2 DIMEHSION A(NMAX,NSUB),B(MMAX,MSUB)
DIMENSION IPIVOT(50), INDEX(50,2),PIVOT(50)
9 EQUIVALENCE (IROH, JROW), (I COLUM, JCOLUHI), (AMAX, T, SIIAP)
10 DETERM=1.0
11 N=NSUB
12 M=MSUB
15 DO 20 J=1,N
20 IPIVOT (N)=0
30 DO 550 I=I,N
4 0 ~ A l : A X = 0 . 0 ~
45 DO 105 J=?,N
5 0 ~ I F ( I P I V O T ( J ) - 1 ) 6 0 , 1 0 5 , 6 0 ~
5 0 ~ D O ~ 1 0 0 ~ K = l , N
70 IF(IPIVOT(K)-1) 80,100,740
80 IF(ABSF(AMAX)-ABSF(A (J,K)))85,100,100
85 IRO:V=J
90 ICOLUM=K
95 AMAX=A(U,K)
100 CONTINUE
105 CONTINUE
110 IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1
130 IF(IROH-ICOLUM)I40,260,140
140 DETERM=-DETER\1
150 DO 200 L=l,N
160 S:HAP=A(IRO!:1,L)
170 A(IROH,L) =A(ICOLUH,L)
200 A(ICOLUH,L)=SWAP
205 IF(M)260,260,210
21.0 DO 250 L=l,M
220 S:IAP =B(IROU,L)
230 B(IROW,L)=B(ICOLUM,L)
250 B(ICOLUM, L)=SUAP
260 INDEX(I,I)=IROW
270 INDEK(1,2)=I COLUM
310 PIVOT (I )=A(I COLUN, I COLUM)
3 2 0 ~ D E T E R M = D E T E R M : \% P I V O T ( I ) ~
330 A(I COLUH, I COLUHI)=1.0
340 DO 350 L=?,N
350 A(I COLUI1,L)=A(ICOLU!1,L)/PIVOT(I)
355 IF(i.i) 380,380,360
360 DO 370 L=I,M
370 B(I COLUII,L)=E(ICOLUH,L)/PIVOT(I)
380 DO 550 LI=I,N
390 IF(LII-ICOLUMSM400,550,400
400 T=A(LI, ICOLUH)
420 A(LLI, ICOLUNI)=0.0
4 3 0 0 0 4 5 0 ~ L = ? , N
450 A(L.I,L)=A(L.I,L)-A(I COLUHi,L)*T
455 IF (11)550,550,460
460 DO 500 L=1, H

```
```

500 B(LI,L)=B(LI,L)-B(I COLUII,L):T
5 5 0 ~ C O N T I N I U E ~
600 DO 710 I=I,N
510 L=N+I-I
6 2 0 ~ I F ( I N D E X ( L , I ) - I N D E X ( L , 2 ) ) 6 3 0 , 7 1 0 , 6 3 0 ~
6 3 0 ~ J R O H = I N D E X ( L , I )
640 JCOLU:I=INDEX(L,2)
6 5 0 DO 705 K=I,N
660 SUIAP=A(K,JPO!1)
670 A(K, JROH)=A(K, JCOLUM)
700 A(K, JCOLUHi)=SWAP
705 CONTINIUE
710 continue
7 2 0 ~ D E T = D E T E R M ~ A
740 RETURN
750 END
760 ENDPROG

```

\section*{Plot Subroutine}
```

OOOI SUBROUTIIE PLOTER(K,Y,NUH, HOPT, MSY=,XMIH, XMAX, YMIN, YMAX, LAEX,L
0 0 1 0 ~ D I M E N S I O H ~ K ( 1 ) , ~ Y ( 1 ) , ~ H P ( 5 1 , 2 6 ) ~
0011 OIHENSION KLAE(G)
0015 IF (HOPT .EO. 0 ) REETURH
002.0 GO TO ( 30, 80, 80, 30), NOPT
0030 CONTJINE
0034 DO 64 LPI = 1,26
0036 IF ( LPI .EO. I .OR. LPI. .EQ. 26 ) 38, 52
0030 DO 42 LP2 = I,51
0040 iNP(LP2,LPI) = IH-
O042 CONTINUE
0044 DO 48 LP2 = 1,51,10
0046 NP(LPP2,LPI) = 1H+
0048 COIITIHUE
0 0 5 0 ~ G O ~ T O ~ 6 4 ~
0052 DO 56 LP? = 2,5I
0054 NP(LP2,LP1) = 1H
0056 CONTINUE
0058 iNP(I,LPI) = IHI
0050 LPPIL = LPI - I
0052 IF (L.PMI - (C LPMI/5) ) : 5 ) .EO. O ) NP(I,LPI) = IH+
0054 COLITIILUE
0055 RANGEX = WHAX - XMIH
OO68 RIAHGEY = YiINX - YIIIH
0030 DO I40 LP = 1, 1|UM
0090 IK = ((C K(L.P)-KMIII ) / RAIIGEX ) : 50.0 ) + 1.5
0.00 IY = ((( Y(LP)-YMIH) / RN\IGEY ) : 25.0 ) + 1.5
0110 IF (I%.LT. 1 .OR. IX .GT. SI ) GO TO 140
0J.20 IF(IY .LT. I .OR. IY .rT. 26 ) GO TO I40
0130 11P(I%,IY) = 115Y:1
0I40 CONTII!UE
0142 IF (HOPT . LT. 3 ) GO TO 270
0.4.4! PPINTT J.46
0.4E FOPHAT ( // I%)
0151 iMY = 26
01.52 D0 186 LPI = 1,2.6
0153 LOC = 1
0154 LABYY = 6H
01.55 IF (IIY .E!. I3 ) LAIYYY = LAGY
0255 DO 1.6? LP2 = 1,51
0258 IF (IIP(LP2,HY) .EO). IH ) GO TO 1.62
0150 LOC = LP2
0252 conT\IM!:
0166 :IYI = IIY - J.
0150 IF (11Y2 - (-(11Y1.15)::5) .E\cap.0) 170, 180
0I70 YHI= NYI
0I7? YLAES = (( YI! / 25.0) \because PINI!GEYY ) + YHIHH

```

```

0175 FGPi:NT (I%, E22.5, I%, 51A1)

```


```

0182 FORHAT ( $7 \times$, A6, 1X, 5IAI )
0184 NY = NY - I
0186 CONTINUE
0190 RXDIV $=$ RANGEX / 5.0
0200 XLAB(1) $=$ XIIIN
0210 DO 230 LP $=2,5$
$0220 \mathrm{XLAB}(L P)=X L A B(L P-I)+$ RXDIV
0230 CONTINUE
$0240 \quad \mathrm{XLAB}(6)=X V 1 A K$
0250 PRINT 260, ( $\operatorname{XLAB}(I), I=1,5,2),(X \operatorname{LAG}(J), J=2,6,2), \operatorname{LABX}$
0260 FORIAT $(8 X, E 11.5,2(9 X, E 11.5) / 9 x, 3(9 K, E 11.5) / 32 x, A 6 / / 1 K)$
0270 CONTINUE
0280 RETURN
0290 END

```

\section*{Recipe Demand Genexator－－1）niform Iistribution}
```

0001 PROGGPAlI RDDHi!D
OOIO COHTHOH REAHK(42,12),TDE:M(312), PDELI(31?,]2)
0012 PRIHT 13
OOL3 FOPHIAT(\becauseIHPUT HANE LIL AHD WANHE OUT:O)
0014 IISPUT, :HAMEF, HAVIES
0020 CALL OPEEH (3,H:|\A:HK,-1)
0022 PEAD(?)RBAIH
0023 PE:HIHD 3
0024 CALL CLOSE (3,4HBAIK)
OD30 CALL OPE:C (I,NWHEF,-1)
0031 READ(.1)TDEM
0032 RE|H1HD 1
0033 CALL CLOSE (I,I!N:汭F)
0035 k=0
0040 00 3.22 I=1,312
0045 ! =%+1
0046 IF(K.今T.42)K=1
0050 00 120 J=1,,12
0 0 7 0 ~ T = 3 2 ん a ! \% ~ ( \% , 1 ) ~
0071 T=T/L00.0
0080 CFLL UNTF:OH(T,7)
OOg0 RDELI(I,N)=TDE:(%):%%
0120 coor!nue
0222 CO|TIT.JE
0124 C:LL O:ご(2,|N':S, -1)
0125 !RITE(Z)ごごり
0125 QEIIIIO ?

```

```

02:% \Xiリ0

```

\section*{Recipe Demand Generator--Normal Distribution}
```

0001 PROGRA:I RDIVND
O010 COMHOM PEANK(42, -2), TDE:M(312), RDEM:(312, I2)
0012 PRINT 13

```

```

OOI4 INPUT, NAAIEF, NAUIES
0020 CALL CPEN (3, HHBAN!K, - 1)
O022 READ(3)RBAFH
0023 RENIND 3
0024 CALL CLOSE (3, HHBAIIK)
0030 CALL OPEN (1,HANEF, -1)
OO3I READ(I)TDE:
0032 RENIIND I
0033 CALL CLOSE (I, IIAUEF)
0035 K=0
0040 DO I22 I=I,3I2
0045 K=K+I
aO4% IF (K.GT.L!2)K=1
0050 00-120 J= -1,12
0070 T=RSANN (K,J)
007-1 T=T/IO0.0
0080 CALL NORIHAL (T, 首)
O090 RDEii(I ,U)=TDEII(I ):\because
OL20 CONTIIIUE
01-22 CONTIUIUE
O-124 EALL OPEN(2, NAMES, -I)
OI25 URITE(2)RDEII
0125 RE:!IID 2
OI27 CALL CLOSE(2,NA:NES)
0I30 END

```

\section*{Uniform Ranciom Number Generator}
```

O001 SUBROUTINE UNIFRM(T,X)
0010 A=T-.10
0 0 2 0 ~ B = T + . 1 0 ~
0 0 3 0 ~ R = R A N F ~ ( - 1 ) ~
0040 X=A+(S-A) \becauseR
0050 RETURN
0060 END
0070 ENDPROG

```

\section*{Normal Random Number Generator}
```

0001 SUBROUTINE NORMAL(T,X)
0 0 1 0 ~ S D = . 0 5 ~
0020 K=(-2.0%\operatorname{LOGF}(RANF(-1)))}\because%0.5%\operatorname{COSF}(6.283%RANF(-1))
00.30ASD\divT
0040 RETURN
0050 END
0060 ENDPROG

```

\section*{Forecast Program (Test)}
```

0 0 0 1 ~ P R O G R A M ~ F O R S I M ~
0010 COMMON AVG(6),TDEM(312), TND(6), TFORE(319), RDEM(312,12),
00IJARR(6,12,7), RRT(6,12,7),RFORE(319,12)
0013 CALL OPEN(1,5|FILEI,-1)
0015 READ, NRUN, NAMEF, NAMER, ALPHA, BETA, ITNO, ITNOP, I RNO, I RNOP
0017 IF (NRUN.EQ. 2 ) GO TO 33
0020 DO 30 LI = I,6
0021 AVG(LI) = TND(LI) =0.0
0022 DO 30 L2 = 1,7
002.3 DO 30 L3 = 1,12
0024 RR(LI,L3,L2) = RRT(LI,L3,L2) = 0.0
0030 CONTINUE
0 0 3 1 ~ G O ~ T O ~ 6 0 ~
0 0 3 3 ~ R E W I N D ~ l 1 ~
READ(l) AVG, TIID, RP,, RRT
0045 REWIND I
0060 CALL OPEN(2,NAMEF,-1)
0062 READ(2) TDEM
0064 RE|IND 2
0065 CALL CLOSE(2,NAMEF)
0066 CALL OPEN(3,NAMER,-1)
0068 READ(3) RDEM
O070 REWIND 3
0072 CALL CLOSE(3,NAMER)
0076 KI=0
0080 KZ=0
O130 DO 267 I=1,312
0140 KI=KI\div1
0160%:%%%CALCULATE NEN AVERAGE FOR DAY OF THE WEEK
0170 FAVG=ALPHI%(TDEM(I)-AVG(KI))+AVG(KI)
0180%:%:%CALCULATE CURRENT TPEND FOR DAY OF THE :IEEK
0190 CTND=FAVG-AVG(KI)
0200%::%:%CALCULATE NE:V TREND
0210 FTND=ALPHA::(CTND-THD(KI)) +TND(KI)
0220::%:%CALCULATE TOTAL FORECAST FOR DAY (I %5)
0230 TFORE (I+G)=FAVG+((I.0-ALPHA)/ALPHA ):FTND
0240:%:%:UUPDATE AVERAGE AIND TREND
0250 AVG(KI)=FAVG
0260 TND(K1)=FTND
0261 IF ( I .LT. ITNO .OR. I .GT. ITNOP ) GO TO 265
0262 PRINT -263, KI, AVG(KI), TMD(KI), TFORE(I+6),TDEII(I +6), I , (I +!!)
0263 FOPMAT(IK,I2,4FlO.4,2I4)
0265 IF(KI.EQ.6)KI=0
0267 CONTINUE
0269 KI=0
0270 -DO 500 I=1,312
0272 KI=K.I+I
0273 k2=k2\div1
0275 D0 410 J = I,I2
0280%:%:%:CALCULATE CURRENT R.ECIPE RATIOS
0290 CRR=F:DEI:(I , J)/TDE:IC(I)

```
```

0300::::%:%CALCULATE NEW RFCIPE RATIO
0310 FRR=BETA:\because(CRR-RR(KI,J,K2))+RR(KI,J,K2)
0320%:%\because:%CALCULATE CURRENT RECIPE RATIO TREND
0330 CRRT=FRR-RR(KI,J,K2)
0340:::::%:CALCULATE NEU! RECIPE RATIO TREND
0350 FRRT=BETA::(CRRT-RRT(KI, J,K2)) +RPT(KI, J,K2)
0 3 5 1 ~ N l = ( 1 + 6 ) - ( ( ( 1 + 6 ) / 6 ) : \because 6 ) )
0352 IF(NI.EQ.0)NI=6
0353N2: (I+6)-(((I+6)/7):7)
0354 IF(N2.EQ.0)N2=7
0360%%%%%CALCULATE RECIPE. FORECAST FOR DAY I+5
0370 RFORE (I+6,J)=TFCRE (I+\sigma) \because(RRR(NI,J,N2)+((I.0-BETA)/BETA):
037IARRT(NI,J,N2))
0380::%::%:UPDATE RECIPE RATIO AND RECIPE RATIO TREND
0390 RR(K], J,K2)=FRR
0400 RRT (K1,J,K2)=FFRRT
0402 IF (I.LT.IRNO.OR.I.GT.IRHOP)GO TO 4IO
0403 PRINT 405,RR(NI,J,N2), RRT(NI, J,N2), RFORE (I +6,J), TFORE (I +0́),
0404A ROEN(I+6,J),KI,J,K2,I,NI,N2
0405 FORMAT(IX,5F9.4,6I4)
0410 CONTINUE
0420%:%:%CHECK DAY AND MENU AND RESET COUHTERS
0430 IF(KI-6)450,440,440
0440 KI=0
0450 IF (K2-7)500,460,460
0460 k2=0
0 5 0 0 ~ C O N T I N U E ~
0525 WRITE(I) AVG, TND, RR, RRT
0527 REWIND I
0 5 3 0 ~ C . A L L ~ C L O S E ( I , 5 H F I L E I ) ~
0535 CALL OPEN(4,5HTFORE,-1)
0540 URITE(4) TFORE
0550 REVIND 4
0 5 6 0 ~ C A L L ~ C L O S E ( 4 , 5 H T F O R E ) ~
0570 CALL OPEN(5,5HRFORE,-1)
0575 WIRITE(5) RFORE
0580 REWIND 5
0590 CALL. CLOSE (5,5HRFORE)
0750 END
0760 ENIDPPOGG
0770 - TDEMI RDEMI
0780 . 37 .41 31.3 313 309 310

```
```

OO10 PROGRAM COMPRE
002.0 COMMON TFORE(319),TDEH(312), RFORE(319,12), RDEHI(312,12)
0025 COMMOM! ERR(312),RERR(3I2,12)
0 0 3 0 ~ P R I N T ~ 4 0 ~ \% ~
0040 FORMAT(:FILE NAME I,FILE NAME 2,START NO., STOP NO.,NRUN:%)
0050 INPUT, NAMEI,NAME2,LOC,LEN,NFUN
0060 CALL. OPEN(1, MAME1, -1)
0 0 7 0 ~ C A L L ~ G E T P T R ( 1 , L I , L 2 ) ~
0080 CALL OPEN(2,NAME2,-1)
0 0 9 0 ~ C A L L ~ G E T P T R ( 2 , 1 1 1 , M 2 ) ~
0I00 PRINT IIO,L2,M2
0IIO FORMMT(*LENGTH OF FILE I IS*I8,2%,*LENGTH OF FILE 2 IS*,I8)
0115 R=LEN-LOr.+1
O120 IF(NAMEI.ES.5HTFORE)GO TO 140
0130 IF(NAPEI.EQ.5HRFORE)GO TO 180
0.140 READ(1)TFORE;READ(2)TDEH
0150 IF(NP.UN.EO. ?)GO TO 260
0160 DO }370\mathrm{ I=LOC,LEN
0I65 PRINT 200,TFORE(I),TDEM(I)
0170 CONTINUE
0175 GO TO 720
OI80 READ(1)RFOPE;READ(2)RDEM
0183 IF(HRUM.EQ.2)GO TO 370
0185 DO 195 I=LOC,LEN
0187 00 195 J=l,12
0190 PRINT 200QRFORE(I, U), RDEM(i, U)
0195 CONTINUE
0200 FORHAT(IX,2FIO.2)
0250 IF(HRUH.EO.I)GO TO }72
0250 STDEN=TERR=TERR2=0.0
0270 DO 310 I=LOC,LEN
0280 ERP(I)=TFORE(I)-TDEH(I)
0283 TAERR=TAERR+ABS(ERR(I))
0287 TERR2=TERR2\div(ERR(I):%:2)
0290 STDEM=STDEM\divTDEMKI)
0300 TERR=TERR+ERR(I)
0 3 1 0 ~ C O N T I N U E ~
0 3 2 0 ~ S D E V = S Q R T ( ( T E R R 2 / R ) - ( ( T E R R / R ) : : \% 2 ) ) ~ )
0 3 3 0 ~ C F V A F = S D E V / ( S T D E N I / R ) ~
0340 PRINT 350,SDEV,CFVAR,TERR2, TAEPRR,STDE:!
0350 FORIAT (\becauseTHE STATS FOR TFORE ARE:/(ICK,FI5.4))
0355 FORHAT(:THE STATS FOR RFORE ARE:/(10X,Fl5.4))
0360 EO TO 720
0370 SRDEH:=TREPRR=TRERR2=0.0
0375S=(LEH-LOC+I):12
0380 DO 450 F=LOC,LEN
0 3 9 0 ~ D 0 ~ 4 5 0 ~ J = 1 , ~ l ? ~ ? ~
0420 RERP(I, U)=RFORE(1, N)-ROEM:(I, J)
0423 TARERR=TAPEPR+AES (RERR (I,N))
0427 TRERRZ=TREPRR2+(RERP(I , |):%:2)
0430 SRDEH=SRDEVITRDEM(I, U)

```
```

0440 TRERR=TRERR+RERR(I,J)
0450 CONTINUE
0460 RSDEV=SQRT ((TRERR2/S)-((TRERR/S)::%2))
0470 CFVAR=RSDEV/(SPDEII/S)
0480 PRINT 355,RSDEV,CFVAR,TRERR2,TARERR, SP.DEM
0490 DO 710 J=1,12
0495 SRDEM=TRERR=TRERR2=TARERR = T=0.0
0500 DO 560 I=LOC,LEN
0 5 0 5 T = T + 1 . 0
0510 RERR(I,J)=RFORE (I ,J)-RDE|I(I , U)
0520 TARERR=TARERR+ABS(PERRR(I,J))
0530 TRERR2=TRERR2+(RERR(I , U)*:2)
0540 SRDEN=SRDEHI+RDEIG(I,J)
0550 TRERR=TRERR+RERR(I,J)
0560 CONTINUE
0 5 7 0 ~ R S D E V = S Q R T ~ ( ( T R E R P R 2 / T ) - ( ( T R E E R R / T ) : \because \% 2 ) ) ~
0 5 8 0 ~ C F V A R = R S D E V / ( S F D E : M / T ) ~
0590 PRINT 600, J, RSDEV, CFVAR,TRERRR2, TARERR, SRDEH
0 6 0 0 ~ F O P M A T ( : T H E ~ S T A T S ~ F O R ~ R E C I P E : I X , I 4 , 2 X , \because A R E \% / ( 1 D X , F 1 5 . 4 ) ) ~
0 7 1 0 ~ C O N T I N U E ~
0 7 2 0 ~ R E W I N D ~ I ~ \$ ~ R E V I I N D ~ 2 ~
0 7 3 0 ~ C A L L ~ C L O S E ( I , N A P E I ) ~ \$ ~ C A L L ~ C L O S E ( 2 , N A M E 2 ) ~
0 7 4 0 ~ E N D ~
O750 ENDPROG

```

\section*{APPENDIX J \\ DEMAND PLOTS--FORECAST ALGORITHM TEST}

\section*{Ramp Dernand Data--First Year}
```

.20000E+03
I
I
I
I
.17500E+03
I
I
I
.15000E+03
I
I
DEMAND I
I X
.12500E+03+
D DD
DDXDDDD
DOUDOCDDDDD
DDXDDDDDLDDD
DDDDODUDODDDDDDD
D DXDDDDDDD
D DDDDDDDDODD D
DDDKDDDDDDDD
DDDDDDDDDDDDO
XDDDDDDD
.75000E +02
DAY .70000E+02.14000E+03 . 21000E+03. . 28000E+03 . 35000E+0

```

DAY STEF DEMAND NEHDEM
\begin{tabular}{rrrr}
150 & 0 & 149.0 & 149.0 \\
151 & 0 & 149.0 & 149.0 \\
152 & 0 & 154.0 & 154.0 \\
153 & 0 & 144.0 & 144.0 \\
154 & 0 & 139.0 & 139.0 \\
155 & 0 & 145.0 & 145.0 \\
156 & 20.0 & 152.0 & 172.0 \\
157 & 20.0 & 149.0 & 159.0 \\
158 & 20.0 & 151.0 & 171.0 \\
159 & 20.0 & 156.0 & 176.0 \\
160 & 20.0 & 142.0 & 162.0 \\
161 & 20.0 & 148.0 & 168.0 \\
162 & 20.0 & 155.0 & 175.0
\end{tabular}

Cycle Demand Data--Second Year
```

.20000E+03
I
I
I
I
.18000E+03 +
I
I
I
I
.7.6000E+03+
I
DEMAND I
DDDDDDDDDDDD D DDDDDD
. 24000E+03 KDDDD DODDYDDDDDD DD D
ID DODDDDDUDDDDDDDD
ID DO DDDD D
I
DD
I
.12000E+03 +
I
I
I
I
.-10000E+03
+-------------------------
.23000E+03
.70000E+02
DAY
DXDDDDD
DDDDD DDDDDD
UDDDDDDDL D DDDD
DDDD DD DDDDD DODXD
DDDDDDD DDDDDDD
XDDDD D
DDDDDUDX
DDDD
DD
D
D

```

\section*{Cycle Demand Data--First Year}
```

.20000E+03
I
I
I
I
.18000E+03
O
I
I D DD
.16000E+03+
I
I
DEMAND I
I
. 14000E+03+
I
DDKDODDD
DDDDDDDDDDDDDD
DUDDDDDDDDDDODDDDX
D DDD
DDDD D
DODDDDD
DODDDDD D
XDD D DDDDX
DDDD
D D DDD
DDDDD D
D
IDD
D DD
I-DDDD DDDDDDDDOD
. I2000E+03 +D DDDDDDDXDDDDD
I DODDDDDDDDDD
I DD D D
I D
I
.10000E+03

## Ramp Demand Data--Second Year



## APPENDIX K

## SEI-ECTED RESULTS--FORECAST TEST PROGRAM

1.     - Total Forecast; Ramo; Alpha $=.07$, Year 1 . Total Demand $=45,644 ;$ Mean Demand $=149.16$

Alpha	S.D.	Co. Var.	Tot. Err.	Tot. Abs. Demand
.05	3.8172	.0256	4459	961
.07	3.2797	.0220	3292	821
.08	3.2801	.0220	3292	817
.09	3.3279	.0223	3389	825
.10	3.3764	.0226	3488	835
.20	3.5358	.0237	3823	864

2. Total Forecast; Cycle. Alpha $=.37$ Year l, 2. Total Demand $=45,955$; Nean Demand $=150.18$

.36	4.1140	.0274	5179	1018
.37	4.1130	.0274	5176	1015
.36	4.1133	.0274	5177	1017

3.     - Total Forecast; Step; Alpha = .O7, Year 1 Total Demand $=48,784 ;$ Mean Demend $=159.42$

.2	5.3752	.0337	8841	1123
.40	5.0751	.0318	7882	1038
.41	5.0739	.0318	7877	1088
.42	5.0735	.0319	7877	1089

4.     - Total Recipe Forecast; Ramp; Alpha $=.07$ Year 1 Total Demand $=228,677$; Mean Demand $=62.28$

Beta	S.D.	Co. Var.	Tot. Err.2 Tot. Ans. Demand	
.09	9.7136	.1560	346470	28011
.10	9.5065	.1527	331852	27880
.11	9.7239	.1551	347204	28753
.20	11.2472	.1806	464509	34405


|  | 5. - Total Recipe Forecast; Cycle; Alpha | $=.37$ Years |
| :--- | :--- | :--- | :---: | :---: |
| Total |  |  | Demand $=228,532 ;$ Mean Demand $=62.24$

6.     - Total Recipe Forecast; Step; Alpha $=.07$ Year 1 , Fotal Demand $=244,1460$; Mean Demand $=66.57$

.08	10.8723	.1626	430183	31676
.09	10.2938	.1546	389096	29950
.10	10.3119	.1549	390462	29942
.20	12.8337	.1928	604788	36702

## VITA

Alberit L. Wrisley, Jr., was born in Northport, Michigan, on August 12, 1923. He received his B.S. degree in Hotel Administration from Cornell University, Ithaca, New York, in 1950 and his M.A. degree in Hotel Adninistration from Michigan State University, East Lansing, Michigan, in 1963.

Professionally, his career began in the tradition of most "hotel brats"--at the pot sink of the family resort. Aften graduating from college he spent eleven years operating restaurants and hotels in Chicaro, New York City, Northern Michigan, Florida and Onio. Since 1900 he has held the ranks of assistant and associate proiesson of Hotel and Restaurant Administration at the Jniversity of Massachusetts, where he specializes in marageriai accounting and control systems.

