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CHAPTER ONE 

INTRODUCTION 

Perennial ryegrass (Lolium perenne L.) has emerged as an impor¬ 

tant turfgrass for home lawns, golf courses, athletic fields, and 

cemeteries. Observations in New England have indicated that perennial 

ryegrass turfs are damaged during severe winters. Many management 

factors seem to affect low temperature injury of perennial ryegrass. 

Among the least understood of these factors is the influence of soil 

fertility, especially nitrogen and potassium levels. It has been 

recognized for several years that nitrogen and potassium affect cold 

hardiness of turfgrass species, even though research concerning nitro¬ 

gen :potassium ratios effect on winter injury of cool season turfgrass 

has not been extensive. It is known that nitrogen and potassium are 

essential growth elements but disagreements remain as to the appro¬ 

priate amounts required to optimize low temperature survival of turf- 

grasses. 

The purpose of this experiment is to examine the effects of ni¬ 

trogen :potassium ratios on the direct low temperature kill of perennial 

ryegrass. 

1 



CHAPTER TWO 

LITERATURE REVIEW 

Perennial ryegrass (Lolium perenne L.) is thought to be one of 

the first cultivated grasses and is used extensively as a fine turf- 

grass in the temperate regions of the world. Perennial ryegrass 

originated in the Mediterranean region of southern Europe, North 

Africa, and Asia Minor and is adapted to cool, humid regions that 

have mild winters and cool summers. Perennial rvegrass is a common 

constituent of seed mixtures used on home lawns, parks, cemeteries, 

golf courses, and other general use turfgrass areas. Perennial rye¬ 

grass is a desirable turfgrass because of its rapid germination rate 

2 
(usually within 7 days), high shoot density (100-200 shoot/dnT at 

3.8 cm cutting height), fine texture (leaf width 1-2 mm), uniformity, 

and wear tolerance, and is adapted to a wide range of soil types. 

Perennial ryegrass is generally considered to be a short-lived peren¬ 

nial but can persist indefinitely if not subjected to extreme temper¬ 

ature stress. Perennial ryegrass has the poorest low temperature har¬ 

diness of all the perennial cool season turfgrass commonly used in the 

United States (Beard, 1966 6 Carroll, 1943). Recent interest by turf¬ 

grass breeders and the seed industry has resulted in the release of 

numerous improved turf-type perennial ryegrass cultivars which exhibit 

improved potential for use as a permanent turfgrass. Improved cul¬ 

tivars such as 'Manhattan' perennial ryegrass retain the characteris¬ 

tics of rapid establishment rate, high shoot density, texture, and u- 

niformity; and have improved tolerance to low temperature stress. 

2 
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Optimum temperature for perennial ryegrass growth is dependent on 

the stage of plant development. Beevers and Cooper (1964) investiga¬ 

ted early growth stages (4 to 7 weeks) of perennial ryegrass and ob¬ 

served that plants grown at 25/15 C (day/night) temperatures had 

higher relative growth rates and dry matter production than did plants 

grown at 12/12 or 25/25 C temperature regimes. Munata et al (1963; 

1966) working with mature perennial ryegrass reported that photosyn¬ 

thesis was optimal at 15 C and decreased slowly at lower temperatures 

and rapidly at temperatures above 35 C. However, respiration rate in¬ 

creased exponentially with increasing temperatures. Parks and Fischer 

(1958) reported that mature perennial ryegrass yield was superior at 

a constant temperature of 20 C than at 10 C or 30 C. Watschke et al 

(1973) reported perennial ryegrass yields were greater at 23/15 than 

at 32/25 C temperatures. Valentine and Charles (1979) reported peren¬ 

nial ryegrass had maximum dry-matter yield at a constant 15 C. As the 

above studies indicate, perennial ryegrass has a temperature-dependent 

growth rate with optimal growth occurring within the range of 15 to 

25 C. This optimal growth range for perennial ryegrass is conducive 

with the mild summers of New England. 

The major factor affecting the persistence of perennial ryegrass 

in New England are the severe winters. Winter injury of perennial 

ryegrass can be caused by one or several factors including; direct 

low temperature kill, alternating freezing and thawing cycles, smoth¬ 

ering due to ice layer formation which prevents gas exchange, dessica- 

tion, and low temperature diseases. 



Several workers have examined the low temperature persistence of 

perennial ryegrass and other cool season turfgrasses. Carroll (1945) 

reported the lethal soil temperature for Kentucky bluegrass (Poa prat- 

4 

ensis L.) and bentgrass (Agrostis spp.) was between -10 and -15 C. 

Beard (1966) using sod plugs determined that air temperatures of -15 C 

for 15 hours was lethal to 'Norlea' perennial ryegrass. Thomas and 

Fayenby (1968) found that a tall fescue (Festuca arundinacea Schred.) 

ecotype from North Africa had a lethal temperature of -8 C. Cook and 

Duff (1976) reported that 'Kentucky 51' tall fescue had a similar le¬ 

thal temperature. Lorenzetti et al (1971) working with different var¬ 

ieties and ecotypes of perennial ryegrass used a freezing test to de¬ 

termine cold tolerance. Decreasing air temperature resulted in 50 

percent kill (LT^) of plants held at -8 C for 2 to 4 days. Fuller 

and Eagles (1978) working with perennial ryegrass seedlings observed 

a LTj-q ranging from -5.7 to -12.2 C depending on the method of freezing 

and cultivar of perennial ryegrass used. 

The effects of soil fertility on the direct low temperature kill 

of various turfgrass have been well documented. (Adams and Twerskv, 

1960; Carroll and Welton, 1959; Cook and Duff, 1976; Gilbert and Davis, 

1971; Goss, 1965; Jung and Kocher, 1974; Juska and Nfurray, 1974; Keis- 

ling, 1979; Kresge, 1974; Kresge and Decker, 1965; Ledeboer and Skog- 

ley, 1975; Reeves and McBee, 1972; Reeves et al, 1970; Schwartzkopf, 

1972; Smith, 1964; Wilkinson and Duff, 1972; Wilson et al, 1966). 

Numerous workers have shown that excessive nitrogen results in 

reduced low temperature hardiness (Beard and Rieke, 1966; Carroll, 
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1943; Carroll and Welton, 1939; Gilbert and Davis, 1967; Harrison, 

1931; Juska and Hanson, 1967; Miller, 1966). High nitrogen fertiliza¬ 

tion levels stimulate growth (at the expense of carbohydrate reserves), 

increase cell size, and reduce cell wall thickness; thereby creating a 

more succulent plant (Carroll, 1943; Drake et al, 1963; Roberts and 

Sprague, 1933). Oswalt et al (1959) observed that nitrogen will stim¬ 

ulate shoot growth at the expense of root growth. Increased tolerance 

to low temperature stress has been reported to be favored by conditions 

which reduce metabolic activity before low temperature stress condi¬ 

tions occur (Levitt, 1956). Carroll and Welton (1939) in Ohio reported 

that Kentucky bluegrass fertilized to supply 365 kg N/ha in equal in¬ 

crements in the spring, summer, and fall had less tolerance to low tem¬ 

perature stress than did unfertilized check plots. Carroll (1943) ob¬ 

served that heavy, late fall nitrogen applications increased the low 

temperature injury of 16 turfgrasses and concluded that low soil tem¬ 

peratures were more injurious to the plant than low air temperatures. 

Howell and Jung (1965) investigating the seasonal changes in cold re¬ 

sistance of 'Potomac' orchardgrass (Dactylis glopierata L.) at two 

rates of nitrogen fertilization reported that cold resistance increases 

rapidly through November, to a maximum in December and January, and de¬ 

creases slowly through February and quickly through March. Resistance 

levels on March 30 and September 24 were equal. The lower nitrogen 

level resulted in less injury than the higher level of nitrogen fer¬ 

tilization. Jung and Kocher (1974) studying winter injury of several 

cool season turfgrasses noted that winter injury increases when rates 
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of nitrogen were increased from 0 to 240 kg/ha. Two common-type per¬ 

ennial ryegrass cultivars had an average winter injury of 83% for all 

N treatments, while ’Norlea' and 'Pennfine' had a winter injury of 33% 

and 41% respectively for all nitrogen treatments. Mathias et al (1973) 

conducted studies on perennial ryegrass fertilized with nitrogen at 

rates of 112, 224, 448, and 672 kg/ha/yr applied in three equal applic¬ 

ations and observed no winter injury at air temperatures as low as 

-22 C. Baker and David (1963) found that high levels of nitrogen (in 

excess of 336 kg N/yr) promoted winter injury of perennial ryegrass. 

The above studies indicate that excessive nitrogen fertilization can 

be detrimental to low temperature hardiness of grasses. 

The practice of potassium fertilization for reducing low temper¬ 

ature injury of turfgrass has been advocated in recent years (Beard, 

1973; Schwartzkopf, 1972). However, limited research has been con¬ 

ducted on turfgrasses. 

Improvements in winter survival and yield of alfalfa (Medicago 

sativa) were reported when there was 1.25% or more potassium in the 

herbage (Seay et al, 1949), Robinson et al (1962) reported that po¬ 

tassium fertilization increased survival and yield of orchardgrass 

(Dactylis glomerata L.). Wang et al (1953) stated that high levels of 

lime and available potassium markedly promoted winter survival of alf¬ 

alfa. Jung and Smith (1959) working with alfalfa in sand culture noted 

that survival after exposure to freezing temperatures increased as the 

level of elemental potassium increased up to an amount equivalent to 

224 kg/ha. Juska and Murray (1973) noted that Arizona common 
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bermudagrass [Cynodon dactylon (L.) Pers.] averaged 8% winterkill for 

plots treated with potassium and 27% winterkill for plots not receiving 

any potassium fertilization; while potassium treatments did not signif¬ 

icantly improve winter survival of 'Midiron' bermudagrass, a cultivar 

selected for its improved tolerance to low temperature stress. 

Investigators have advocated the use of balanced nitrogen to po¬ 

tassium ratios to increase the freezing tolerance of grasses (Beard, 

1973; Parsens et al, 1953: Schwartzkopf, 1972; Smith, 1964). Winter 

survival of grasses appears to be favored by a narrow N:K ratio 

(Smith, 1964). Low clipping height combined with high N and low K 

fertilization severely reduced the stand density of orchardgrass in 

Indiana (Griffith and Teel, 1965). Adams and Twersky (1960) observed 

that low temperature injury of 'Coastal* bermudagrass resulting from 

high levels of nitrogen fertilization were reduced with increasing 

ratios of potassium fertilization. In a study by Reeves et al (1970), 

nitrogen levels did not significantly reduce cold hardiness but did 

influence the uptake of phosphorous and potassium. High phosphorous 

to potassium ratios increased freezing damage. Kresge and Decker (1966) 

reported winter injury of 'Midland' bermudagrass decreased with in¬ 

creasing rates of potassium. A 2.4:1 ratio of applied nitrogen to po¬ 

tassium maximized winter survival, Gilbert and Davis (1971) reported 

that nitrogen:phosphorous:potassium ratios of 4:1:4 and 5:1:5 improved 

regrowth of bermudagrass following low temperature stress, Optimum 

low temperature survival of common Kentucky bluegrass and 'Toronto' 

creeping bentgrass (Agrostis palustris Huds.) occurred at a ratio of 
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2:1 nitrogen to potassium (Beard and Rieke, 1966). 

MacLeod (1956) examined the nitrogen to potassium interaction in 

a number of grass species and observed that potassium fertilization in¬ 

creased the storage of carbohydrate reserves at higher rates of nitro¬ 

gen and that high rates of potassium without nitrogen fertilization 

were detrimental to the storage of carbohydrates. Several workers 

have shown a close correlation between low temperature hardiness and 

carbohydrate levels in the plant (Bula and Smith, 1954; Jung and Smith, 

1961). Cook and Duff (1976) postulated that a properly balanced ni¬ 

trogen to potassium ratio may affect carbohydrate metabolism associated 

with freezing tolerance. 

Potassium fertilization effect on carbohydrate content has been 

investigated. Eaton (1952) working with sunflowers (Helianthus annus 

L.) showed that potassium deficiencies decreased the carbohydrate con¬ 

tent of the plant. Russel (1958) found similar results with barley 

(Hordeum vulgare L.). Loustalot et al (1950) working with nitrogen 

and potassium relations in tung (Aleurites fordii Hemsl.), noted that 

low potassium levels were associated with a decrease in the rate of 

photosynthesis and growth. 

Among higher plants most members of the families Campanulaceae and 

Compositae and the subclass Monocotvledonae accumulate fructosans as 

their reserve carbohydrate (Phillip et al, 1954; Steward, 1966). Ac¬ 

cording to DeCugnac (1951), two groups of perennial grasses can be 

distinguished by the type of reserve carbohydrates, harm season 

grasses including bermudagrass and bahiagrass (Paspalum notatum Flugge.) 
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store sucrose and starch while cool season grasses including bluegrass, 

bentgrass, orchardgrass, and ryegrass store fructose. Schluback (1957) 

postulated that cool season grasses contain a series of condensation 

products of fructose called fructosans. The degree of fructosan poly¬ 

merization varies with the grass species. 

The predominate carbohydrate present in perennial ryegrass is 

fructose and its polymeric form fructosan (Baker and Garwood, 1961; 

Oswalt, Bertrand and Teel, 1959; Sprague and Sullivan, 1950). Laidlaw 

and Reid (1952) found that fructosans in perennial ryegrass have a 

chain length of 25 to 30 fructose units. Fructosans are described as 

being levorotatory, amorphous or microcrystaline, of varying solubility 

in cold water, and highly soluble in hot water. Fructosans are non¬ 

reducing and are readily hydrolyzed by plant enzymes, to fructose by 

acids. Smith et al (1964) found that water was a suitable extractant 

only if fructosans predominate, since starch is not readily soluble in 

water. Fructosans occur in all parts of the grass plant. The amount 

found in any one part of the plant has been shown to be related to 

season, effect of defoliation and influences of fertilizers (Colby et 

al, 1965; Drake et al, 1963). Waite and Boyd (1953, 1958) observed 

that stems of actively growing grass plants contain higher levels of 

fructose polymers than do leaves. 

MacLeod (1966) concluded that both nitrogen and potassium are 

required by plants to store carbohydrates and the supply of nitrogen 

and potassium should not be limited during the hardening and wintering 

stages. Beard and Daniel (1965) associated winter hardiness in grasses 
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to changes which include an increase in soluble carbohydrates and a 

reduction in the level of hydration in the plant tissue. Julander 

(1945) has shown that resistance of plants to injury during unfavorable 

conditions has been correlated with carbohydrate reserves in the plant. 



CHAPTER THREE 

MATERIALS AND METHODS 

The influence of nitrogen to potassium ratios on the vegetative 

growth and development and low temperature hardiness of ’Manhattan' 

perennial ryegrass (Lolium perenne L.) maintained as a turf was studied 

in greenhouse and environmental growth chamber experiments. 

Experiment 1 

The procedure used to study perennial ryegrass response to differ¬ 

ent nutrienc regimes wa,s to grow three plants in semi.-conica,l plastic 

tubes 4 cm in diameter and 21 cm long containing 165 cc of acid-washed 

silica sand. Ten-day old seedlings were selected for uniformity from 

a larger population which were germinated on half-strength Hoagland's 

solution (Hoagland and Arnon, 1950) in a growth chamber at 20 C and 

16/8 (day/night) photoperiod. Seed used in all experiments was ob¬ 

tained from a single lot of certified ’Manhattan’ perennial ryegrass. 

Four nutrient treatments were applied per replicate using plexi- 

glas boxes measuring 32 x 32 x 21 cm that were sectioned into four 

water-tight compartments (Figure 1). Each compartment was connected by 

tygon tubing to 20-liter carboys containing nutrient treatments (Table 

1). Nutrient solutions were delivered to each compartment using a, 

modified time-pressure- reservoir system as detailed by Garg et al 

(1967). Nine semi-conical tubes containing three perennial ryegrass 

plants were suspended in a rack above each water-tight compartment. 

11 



Figure 1, Arrangement of semi-conical tubes containing 

perennial ryegrass plants on support rack suspen¬ 

ded over compartmentalized, plexiglas box. 
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Table 1. Concentrations of nutrient solutions 
used in Experiment 1. 

N:K Ratio Nitrogen (ppm) Potassium (ppm) 

1:1 100 100 

1:2 100 200 

1:3 100 300 

2:1 100 50 

2:3 100 150 

2:5 100 250 

3:1 150 50 

4:1 200 50 

Concentration of Remaining Plant Nutrients 

Element Concentration (ppm) 

P 50.00 

Ca 80.00 

Mg 24.00 

S 32.00 

B 0.50 

Mn 0.50 

Zn 0.05 

Cu 0.02 

Mo 0.01 

Fe 1.00 
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Pressurization of the carboys caused the nutrient solution to flood 

the respective compartment causing a capillary rise of the nutrient 

solutions into the sand contained in the semi-conical tubes (Figure 2). 

Height of solution movement in the tubes, duration, and frequency of 

nutrient delivery cycles was varied to maintain proper soil moisture 

content and to prevent wilt. 

Plants were grown in the greenhouse at 20 C for five weeks fol¬ 

lowing transplanting. Supplemental lighting using 1500 mamp fluores¬ 

cent lamps was provided to extend the daylength to 16 hours. Plants 

were monitored daily and clipped twice weekly to 3.8 cm. Nutrient 

solutions were changed weekly. 

The experimental design used in these experiments was a random¬ 

ized complete block design with four nutrient treatments per experiment; 

two experiments were performed and each experiment was duplicated. 

Data presented are the means of separate experiments. 

At the end of the five week growing period, the physiologically 

mature plants (Draper, 1975) were transferred to an environmental 

growth chamber and subjected to a hardening process for three weeks. 

During the first few days the temperature in the growth chamber was 

gradually lowered to 1 C and the photoperiod was decreased to 8/16 

hours (day/night). Beard (1973) stated that air temperature between 

4.4 and -1.1 C for a period of 21 to 28 days would produce plants 

tolerant to low temperature stress. 

From each replication three tubes were harvested before freez 

ing, three tubes were harvested after freezing, and three tubes were 
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Figure 2, Arrangement of plexiglas boxes and nutrient de¬ 

livery system under supplementary lamps in the 

greenhouse. 
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allowed to recover from freezing under greenhouse conditions. Before 

the freezing period, three tubes were randomly selected from each 

treatment and root and shoot fresh and dry weights and tiller counts 

■determined. Plant tissue below the root-shoot interface of the crown 

and leaf tissue 3.8 cm above the root-shoot interface were removed and 

discarded. The plant shoot tissue 3.8 cm in length from the root-shoot 

interface constituted the crown tissue. Crown tissue was separated 

into two groups for further analysis of electrolyte conductivity, min¬ 

erals, and water-soluble carbohydrates. 

To determine the extent of injury due to low temperature stess, 

leakage of electrolytes from the cells of the crown tissue was measured. 

Injury to plant cells by low temperature stress has been correlated 

with electrolyte leakage (Dexter, 1956). A single crown was placed in 

18 x 150 mm test tubes containing 10 ml of distilled water and allowed 

to equilibrate for 24 hours. At the end of the equilibration period, 

the electrolyte conductivity was measured using a Markson 20 electrolyte 

conductivity meter. The crown tissue was boiled for 15 minutes at 1.0 

2 
kg/cm pressure, which destroyed cell membrane integrity causing elec¬ 

trolytes to be released from the crown tissue and enabling total cell 

electrolyte conductivity to be measured. The initial reading divided 

by the final reading x 100 was used to determine the percent electrolyte 

leakage. 

Mineral and carbohydrate analysis were performed on a second 

group of crowns dried at 70 C, and passed through a 40 mesh Wiley mill. 

Tissue was stored in an evacuated dessicator at -18 C prior to analysis. 
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Fructose analysis was performed using the anthnone method (Yemm and 

Willis, 1954) as modified by Colby et al (1965). Optical densities 

were measured at 620 nm and fructose concentrations were determined 

from a standard fructose curve. Total nitrogen was determined using a 

micro-Kjeldahl test (Stubblefield and DeTurk, 1940). Phosphorous was 

determined colorimetrically at 882 nm by the reduction of ammonium- 

molybodiphosphate complex by ascorbic acid (Watanabe and Olsen, 1965). 

Potassium was determined by emission spectrophotometry and calcium and 

magnesium were determined by absorption spectrophotometry. 

The remaining six tubes were gradually subjected to a low tem¬ 

perature stress of -10 C for 24 hours. From preliminary experiments it 

was determined that an air temperature of -10 C for a period of 24 hours 

produced a stress which killed 50% of field-hardened plants (Tables 10 § 

11). At the end of the freezing process three tubes were randomly 

selected and separated into crown tissue, and root and shoot fresh and 

dry weights, and tiller counts were determined. The plants in the re¬ 

maining three tubes were allowed to recover after the freezing period 

for one week by gradually increasing the temperature in the environmen¬ 

tal growth chamber to 20 C. The plants were transferred to the green¬ 

house and after four weeks of regrowth visual and laboratory determina¬ 

tions of hardiness, plant vigor, and quality were made. 

Experiment 2 

'Manhattan* perennial ryegrass seeds were germinated in flats 

containing a 80:20 (w/w) mixture of sand and peat. Plants were grown 
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for 32 weeks on four different N:K nutrient solutions (Table 2 ). 

Treatments were replicated six times in a randomized complete block 

design. Plants were maintained on their respective nutrient solutions, 

clipped to 3.8 cm and fertilized twice weekly from June to January. 

The perennial ryegrass plants were allowed to field harden in protec¬ 

tive cold frames covered directly above, but open to the environment on 

all sides. After the onset of low but not lethal temperatures, plants 

were washed free of the sand/peat mixture and individual plant’s roots 

were removed. The aerial portion of the plant was clipped to 2 cm 

above the root-shoot interface to remove all expanded leaves. Perennial 

ryegrass plants were placed in water-tight polyethylene bags and sub¬ 

merged in a circulation freezing bath containing a 1:1 ethylene/glycol: 

water (v/v) mixture for 6 hours at -10 C. Plants were allowed to thaw 

at room temperature and transplanted to flats containing expanded ver- 

miculite. Plants were maintained for 4 weeks under greenhouse condi¬ 

tions and fertilized with half-strength Hoagland's (Hoagland and Amon, 

1950) solution. Measurements of the first fully expanded leaf blade 

and tiller survival were recorded. 
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T^ble 2. Concentrations of nutrient solutions 
used in Experiment 2. 

X:K Ratio Nitrogen Potassium (pprQ 

1:1 100 100 

2:1 100 50 

2:5 100 150 

5:1 150 50 

Concentration of Pezainir.c Plant Nutrients 
s- 

Eler^ent Concentration jpprfj 

P 50.00 

Ca SO. 00 

Mg 24.00 

S 52.00 

B 0.50 

Mn 0.50 

In 0.05 

Cu 0.02 

NSo 0.01 

Fe 1.00 



CHAPTER FOUR 

RESULTS 

Experiment 1 

The effects of solution levels of N and K on growth and develop¬ 

ment of perennial ryegrass are summarized in Table 3. Fertilization 

treatments did not affect tiller numbers per plant, but had a signif¬ 

icant effect on plant weight and carbohydrate levels. Maximum fresh 

weight accumulation within experiment occurred when solution ratio 

levels of N:K were 100 ppm N and 50 to 150 ppm K. High solution 

levels of K resulted in plants that were diminutive and chlorotic in 

appearance (Figure 3). Shoot dry weights increased linearly with in¬ 

creasing solution ratio N:K levels (Figures 4 § 5). A similar linear 

relationship existed between the ratio of N:K in solution and tissue 

level of water-soluble carbohydrate (Figures 6 § 7), but was only sig¬ 

nificant in experiment la. 

Nutrient uptake of perennial ryegrass growing in different levels 

of N and K in solution are summarized in Table 4. No linear relation¬ 

ship existed between solution level of N and tissue N content. In 

experiment la, maximum plant N levels occurred with 100 or 200 ppm K 

and 100 ppm N; while in experiment lb, maximum accumulation occurred 

with N:K solution levels of 200 and 50 ppm, respectively. 

Phosphorous content of plant tissue was significantly higher in 

both experiments with low levels of solution K. Tissue P content was 

correlated to N content (Tables 5 § 6). 

20 
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Figure 3. Chlorotic appearance of perennial ryegrass plants 

growing in solution levels of 200 and 300 ppm K 

(treatments c and d, respectively). 
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A highly significant linear relationship existed between solution 

levels of K and tissue K content for both experiments (Figures 8 § 9). 

Tissue K content was negatively correlated with shoot dry weight, Ca 

.content, and Ca:Mg ratio (Tables 5 § 6) in experiment 1. 

Calcium content in the plant tissue was significantly surpressed 

at K solution levels greater than 150 ppm. A significant linear re¬ 

lationship existed between solution N:K ratios and tissue Ca levels 

for both experiments (Figures 10 £ 11). Tissue Ca content was positive¬ 

ly correlated in both experiments with Mg tissue content (Tables 5 £ 6). 

Tissue Mg levels increased with decreasing solution K levels. No 

linear relationship existed between nutrient solution levels and Mg 

tissue content for experiment la (Figure 12). However, in experiment 

lb a significant linear relationship existed between ratios of N:K in 

solution and the tissue level of Mg (Figure 13), 

Tissue Ca:Mg ratio increased as solution K levels decreased. The 

highest Ca:Mg ratio was observed at the highest level of supplied N 

(200 ppm). Regression analysis revealed a significant positive linear 

relationship between Ca:Mg ratio and N:K ratio (Figures 14 § 15). 

Fertilization ratios of N:K had a significant effect on percent 

tiller kill (Table 7), High solution levels of N or K increased the 

percentage of tillers killed. Percent kill was positively correlated 

with K tissue levels, and negatively correlated with water soluble 

carbohydrates (Tables 5 § 6). Percent electrolyte leakage of stressed 

crown tissue did not differ significantly among N:K treatments (Table 8). 
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Table 7. Tiller mortality of ’Manhattan’ perennial ryegrass 4 weeks 
after low temperature stress. 

Fertilization Treatments 
N: K 

Tiller Mortality 

(ppm) (%) 

Experiment la 

100:300 99.7a 

100:200 90.0a 

100:100 64.8b 

100:50 44.7b 

Experiment lb 

100:150 72.7b 

100:250 96.8a 

150:50 64.9c 

200:50 89.3ab 

Means within columns followed by unlike letters are significantly 

different at the 5% level by Duncan’s Multiple Range Test for each 

experiment. 
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Table 8. Percent electrolyte leakage of stressed crown tissue 

Fertilization Treatment Leakage 
N: K 

(ppm) (%) 

Experiment la 

100:300 53.9a 

100:200 49.1a 

100:100 48.5a 

100:50 46.6a 

Experiment lb 

100:150 36.0a 

100:250 38.6a 

150:50 41.1a 

200:50 45.9a 

Means within columns followed by unlike letters are significantly 

different at the 5% level by Duncan’s Multiple Range Test for 

each experiment. 
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Experiment 2 

The effects of N:K ratios on low temperature survival and recuper¬ 

ative vigor of field-hardened perennial ryegrass are summarized in 

Table 9. Percent kill of plants exposed to low temperature stress was 

significantly greater in 100:100 and 100:50 ppm N:K solution ratios. 

Increasing levels of N or K increased the percentage of tillers killed. 

Leaf elongation of stressed plants increased with increasing N:K ratios 

(Figure 16), 
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Table 9. The effects of N:K solution levels on % kill and blade 
length of the first fully expanded blade after clipping. 

Fertilization Treatments 
N: K 

Kill 
(% of control) 

Stressed Plants 
Elongation 

(ppm) (%) (cm) 

100:50 40bc 5.3ab 

100:100 29c 4.2b 

100:150 52a 4.1b 

150:50 46ab 6.5a 

Means within columns followed by unlike letters are significantly dif¬ 

ferent at the 5% level by Duncan’s Multiple Range Test for each ex¬ 

periment . 
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Figure 16. Effect of N:K fertilization ratio on blade 
elongation of low temperature stressed 
'Manhattan' perennial ryegrass. 



CHAPTER FIVE 

DISCUSSION 

Maximum low temperature hardiness of ’Manhattan' perennial ryegrass 

occurred when solution levels of N and K were in a ratio of 2:1 for ex¬ 

periment 1. Tiller mortality increased as the N:K ratio increased or de¬ 

creased from 2:1 (Figure 17). High N fertilization rates have been re¬ 

ported to decrease the low temperature hardiness of grass species (Car- 

roll and Welton, 1938) , However, this experiment revealed that high 

rates of K can have the same effect. In a combined analysis of data from 

nutrient treatments in experiment 1 containing 100 ppm N, increasing lev¬ 

els of K in solution significantly increased tiller mortality (Figure 

18) . 

These findings agree with earlier low temperature stress studies, 

using different grass species. Beard and Rieke (1966) reported that 

common Kentucky bluegrass and 'Toronto' creeping bentgrass fertilized 

with a N:K ratio of 2:1 were more tolerant to low temperature stress. 

Increasing the ratio of N:K increased low temperature injury. They con¬ 

cluded that, a balanced nutrient relationship rather than a high potas¬ 

sium or low nitrogen level, is essential for maximum low temperature sur¬ 

vival. Gilbert and Davis (1971) reported that ratios in which the levels 

of N and K were approximately equal and 4 to 5 times greater than P, 

maximized plant regrowth after low temperature stress. In an earlier 

study, Adams and Twersky (1960) examined the effect of soil fertility 

on the winter kill of coastal bermudagrass and summarized that a K fer¬ 

tility program should be considered in regions where winter kill may 
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occur. 

Although excessive N fertilization has been reported to cause an 

increase in low temperature kill, no research can be found on the effects 

of excess K on low temperature hardiness. From this and other studies 

it can be concluded that excessive levels of either N or K are detrimen¬ 

tal to low> temperature survival of cool season turfgrasses. Potassium 

should be approximately equal to N for optimal low temperature survival 

of cool season turfgrasses. When tissue K levels are too low or too 

high, low temperature hardiness may be affected. 

The relationship between carbohydrate content and low temperature 

tolerance has been reported (Dexter, 1956; Levitt, 1956), Olien (1967) 

stated that carbohydrates prevent ice crystal formation in the cell at 

low temperatures. The degree of freeze resistance depends on the type 

and quality of carbohydrates present. Water soluble carbohydrates are 

in an aqueous solution within the cell thereby increasing the osmotic 

pressure and depressing the freezing point of the cell. To a certain 

extent, the greater the amount of water soluble carbohydrates in the cell 

the greater the freezing point is depressed. This led Trunova (1965) to 

postulate that carbohydrates may act as a cryoprotectant against ice 

crystal formation in the plant, Potassium nutrition has been observed by 

several researchers (Loustalot et al, 1950; Eaton, 1952; and Wall, 1939) 

to be important to carbohydrate metabolism. Holt and Hilst (1969) and 

Cook and Duff (1976) found that increasing K levels during the hardening 

phase decreased water soluble carbohydrates in Kentucky bluegrass and 

’Kentucky 31’ tall fescue, respectively. 
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Under the conditions of this experiment, water soluble carbohy¬ 

drates decreased with increasing solution levels of K in experiment la. 

However, there was no significant linear relationship between water 

soluble carbohydrates and solution K levels in experiment lb. This 

difference in results may be due to the high levels of N used in exper¬ 

iment lb, Colby et al (1965) reported that high levels of N fertiliza¬ 

tion caused consistently lower levels of fructosans in orchardgrass. In 

experiment 1 tiller mortality was negatively correlated with water solu¬ 

ble carbohydrates such that as water soluble carbohydrates increase, the 

percent tiller mortality decreases. These results suggest that K is in¬ 

fluencing tiller mortality by decreasing water soluble carbohydrate lev¬ 

els with higher K levels. 

Levels of K lower than N produced plants with greater shoot dry 

weight in ’Manhattan’ perennial ryegrass. A significant reduction in 

shoot dry weight was observed at 100 ppm N by increasing K up to 300 

ppm (Figure 4), Christians et al (1979) observed that maximum tissue 

production occurred when K levels exceeded that of N for both Kentucky 

bluegrass and creeping bentgrass. At 96 ppm N tissue dry weight of 

both turfgrass species increased linearly with added K up to 96 ppm. 

MacLeod and Carson (1966) found that high solution levels of N (250 

ppm) and low K (50 ppm) decreased yield, increased mortality and signify 

icantly altered tissue content of P, K, Ca, and Mg in several grasses. 

Results from this experiment show that high levels of K also decrease 

yield, increase tiller mortality and significantly affected tissue con^ 

tent of P, K, Ca, and Mg in ’Manhattan' perennial ryegrass, 
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Calcium and Mg tissue content decreased with increasing solution 

levels of K due to cation competition for root absorption sites. Rath- 

man et al (1960) also found that increasing levels of applied K resulted 

in decreasing levels of Ca in ryegrass. Loue (1963) attributed decreas¬ 

ing levels of Ca and Mg in corn leaf tissue to cation competition as 

levels of applied K increased. Broyer (1959) had observed similar re¬ 

sults in other crops. 

Total N in the tissue did not correspond with applied levels of N. 

However, assimilation of N was positively correlated with P uptake. Ni¬ 

trogen and P were negatively correlated in both experiments with water 

soluble carbohydrate levels. Koontz and Vose (1960) postulated that N 

stimulates P uptake, which increases carbohydrate utilization through 

oxidative phosphorylation. Potassium tissue levels followed similar 

trends to those of Robinson, Rhykerd, and Gross (1962) working with or- 

chardgrass where it was noted that increasing rates of applied K result 

in increasing levels of K in the plant tissue. This is often referred to 

as luxury consumption of K. 

A direct and indirect method of estimating freezing tolerance was 

used in experiment 1. In the direct method (percent of live versus dead 

tillers after 4 weeks of recovery) there was significant differences in 

the percent kill under different N:K solution levels. In the indirect 

method (measuring the increase in electrolyte content after freezing) 

solution levels of N and K had no significant effect on percent electro¬ 

lyte leakage. Cook and Duff (1976) using an indirect method on 'Kentucky 

31' tall fescue found similar results. 



CHAPTER SIX 

SUMMARY AND CONCLUSIONS 

Low temperature hardiness of ’Manhattan’ perennial ryegrass was af¬ 

fected by solution levels of N and K. Narrow ratios of N:K, where N is 

equal to or slightly greater than K, produced the least low temperature 

kill. Whereas, high levels of N and K at low levels of K and N, respec¬ 

tively, increased low temperature kill. Water soluble carbohydrates were 

inversely related to low temperature kill and K suggesting that water sol¬ 

uble carbohydrates act as a cryoprotectant and enhance low temperature 

hardiness, while excessive levels of K are detrimental to accumulation of 

water soluble carbohydrates. 

Turfgrass plants must be winter hardy not just low temperature har¬ 

dy to survive in the field. Winter hardiness of turfgrass is dependent on 

several stress factors including; heaving, smothering, desiccation, di¬ 

seases, as well as low temperature stress. Climatic factors, soil con¬ 

ditions, and cultural practices will influence the degree of winter hardi¬ 

ness also. Thus, improving turfgrass winter hardiness requires a consid¬ 

eration of the above factors. This became evident in field studies ini¬ 

tiated in 1978. Two cultivars of perennial ryegrass were grown in the 

field to determine the effects of rates and ratios of N to K at two cut¬ 

ting heights. Complete winter kill of both cultivars were observed in 

these plots. Ice cover on these plots was extensive during late winter 

whereas perennial ryegrass plots several meters away that were not covered 

by ice had less kill. These observations indicate that N:K ratio may not 

always improve winter survival of perennial ryegrass. More extensive 
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work needs to be conducted on other factors affecting winter injury of 

perennial ryegrass to improve its adaptation and use in New England. 
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Preliminary Experiment 

Determination of temperature and duration to produce a lethal 

temperature where 50% of the field-hardened perennial ryegrass (Lolium 

perenne L.) tillers were killed (LT^) was made. Field-hardened 'Man¬ 

hattan' perennial ryegrass plants were collected in early December from 

the South Deerfield Turfgrass Research Plots. Plants were washed free 

of soil before running experiments and twenty plants were placed in 

water-tight polyethylene bags and submerged in a circulating freezing 

bath containing a 50:50 (v/v) mixture of ethylene-glycol and water. 

Twenty-two polyethylene bags were used in a temperature-course study 

with a freezing rate of -2 C/hour from 0 to -22 C. Two bags were with¬ 

drawn from the freezing bath every two hours and allowed to thaw at room 

temperature. Twenty plants contained in polyethylene bags at room 

temperature for the same duration served as controls. Plants were wat¬ 

ered as needed to prevent wilt and fertilized weekly with half-strength 

Hoagland's (1950) solution. Regrowth was evaluated four weeks later as 

percent survival. 

A second group of plants was used to determine the effects of du¬ 

ration of freezing on plant survival. Twenty-four polyethylene bags 

were immersed in the circulating temperature bath maintained at -10 C. 

Two bags were removed every hour and allowed to thaw at room tempera¬ 

ture, transplanted into flats containing vermiculite, and allowed to 

regrow in the greenhouse as detailed previously. 

Decreasing temperatures (Table 10) and duration (Table 11 ) re¬ 

sulted in greater tiller injury. Injury was observed at -4 C and was 



Table 10. Temperature-course study. 

Temperature (C) % Kill 

0 Of 

-2 Of 

-4 7ef 

-6 20de 

-8 38cd 

-10 52c 

-12 71b 

-14 100a 

-16 100a 

-18 100a 

-20 100a 

-22 100a 

Table 11. Time-course study. 

Duration at -10 C % Kill 

4 29c 

5 31c 

6 48b 

7 95a 

Means within columns followed by unlike letters 
are significantly different at the 5% level by 
Duncan's Multiple Range Test for each experiment. 
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Figure 19. Temperature response curve of 'Manhattan' 
perennial ryegrass survival. 
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Figure 20. The effect of duration of exposure of ’Man¬ 
hattan’ perennial ryegrass to -10 C on plant 

survival. 
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complete at -14 C. Regression analysis studies indicate that the lethal 

temperature (LT^) resulting in 50% tiller mortality of ’Manhattan' 

perennial ryegrass was -10 C for 6 hours in a circulating freezing bath 

(Figure 19 § 20). These results are in agreement with Fuller and Eagles 

(1978) where they observed a LT^ ranging from -5.7 to -12.2 C depending 

on the cultivar of perennial ryegrass. 
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