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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Each winter, in New England and the northern United States, substantial 

turf losses occur due to injury resulting from freezing temperatures. In addition, 

35 to 75% of all energy input associated with turf management is in the 

preparation for, and recovery from, winter (Rossi, 1997). Nevertheless, extensive 

losses occurred as a result of the winters of 1992-93 in the midwest and 1993-94 

in the northeast (Rossi, 1997). Turf injury and losses that result from freezing 

temperatures can have an economic and environmental impact on the functional 

quality and aesthetic value of turf areas (DiPaola and Beard, 1992). Turf loss 

results in increased weed pressure and herbicide cost, increased soil erosion, 

decreased use, and the need for extensive re-establishment procedures 

(DiPaola and Beard, 1992; Rossi, 1997). 

Turfgrass species and varieties vary widely in their tolerance to freezing 

stress (Beard, 1973; Gusta et al., 1980). Perennial ryegrass (Lolium perenne L.) 

has been reported to have the poorest low temperature tolerance among cool- 

season turfgrass species (Beard, 1973; Gusta et al., 1980). Despite having a 

poor low temperature tolerance, perennial ryegrass is still one of the most widely 

used species in the northern United States (Meyer and Funk, 1989; Watson et 

al., 1992; Young and Baker, 1995). The ability of perennial ryegrass to establish 

quickly makes it a popular choice of turf managers for over-seeding fairways, 
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institutional grounds, parks, home lawns, and in lawn care operations (Beard, 

1973). It is expected that the popularity of perennial ryegrass will increase in the 

northeast and elsewhere with the release of new and improved turf-type 

cultivars. 

Turf grass Freezing Stress 

Turfgrass freezing stress occurs at 0° C and colder temperatures 

( DiPaola and Beard, 1992). As pointed out by Levitt (1980), the term freezing 

stress is technically a misnomer. In actuality, freezing is a strain resulting from a 

low-temperature stress. However, the term freezing stress has been accepted 

due to its general use in the literature (Levitt, 1980). 

Injury to turfgrass due to freezing temperatures involves the formation of 

ice crystals in and around the cells of the regenerative region of the plant 

(Beard, 1973; Levitt, 1980; Rossi, 1997). The regenerative region of a turfgrass 

plant, also known as the crown, is the region that includes the stem apex, the 

unelongated intemodes, and the lower nodes from which the adventitious roots 

are initiated (Beard, 1973). Since the adventitious roots, lateral shoots (tillers, 

rhizomes, and stolons), and leaves all initiate from this region, the crown tissue 

is considered the most vital portion of a turfgrass plant (Beard, 1973). If 

temperatures drop quickly, intracellular freezing will occur in tissues having a 

high hydration level (Beard, 1973; Levitt, 1980; DiPaola and Beard, 1992; 

Rossi, 1997). The ice crystals cause a mechanical disruption to the protoplasm 

which usually results in death of the tissues (Beard, 1973; Levitt, 1980). 
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In nature, temperatures generally change slowly (1 to 2°C per hour) 

(Levitt, 1980; Rossi, 1997). Therefore, care must be taken with the use of 

simulation chambers in controlled environment studies to ensure that freeze- 

thaw conditions are realistic. The slow temperature change causes ice crystals 

to form first in the large vessels of the plant and then proceed to the intercellular 

spaces using the available water vapor and water film on cell walls (Levitt, 

1980). This causes the vapor pressure in the intercellular space to drop below 

the vapor pressure within the cells (DiPaola and Beard; 1992). The differential 

in vapor pressure causes cell water to diffuse from the cells to the intercellular 

space, causing the ice crystal to grow, and the cells to dehydrate (Levitt, 1980; 

DiPaola and Beard, 1992; Palta and Weiss, 1993). It is this dehydration of the 

cells due to the extracellular freezing that causes freezing injury (Levitt, 1980; 

DiPaola and Beard, 1992). 

The ability of turfgrass to survive is a function of the severity of injury and 

location of injury within the crown (DiPaola and Beard, 1992). If a sufficient 

number of cells within the crown of turfgrass plants are injured, the grass may 

not recover (Beard, 1973; Rossi, 1997). It has been reported that the lower 

portion of annual bluegrass crown is more likely to be injured, due to freezing 

stress, than the upper portion (Beard and Olien, 1963; Beard, 1973). Therefore, 

the lower apical meristem, responsible for root initiation, can be injured more 

easily than the upper apical meristem (Beard, 1973; Olien and Marchetti, 1976). 

This type of injury to turfgrass can be further exacerbated by desiccation in early 

spring when transpiration, resulting from warming temperatures and resumed 
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growth, can exceed the water uptake capability of the degenerating, injured, root 

system and lower crown tissue (Beard, 1973; DiPaola and Beard, 1992). The 

water absorption capability of a plant is predicated on the severity of injury to the 

lower portion of the crown and root system (Beard, 1973). Tanino and McKersie 

(1985) stated that in winter wheat, survival to freezing stress was limited by the 

tolerance of a relatively small number of cells in the basal region (transition 

zone) of the crown rather than the apical meristem (shoot apices and lateral 

buds). Shibata and Shimada (1986) also showed greater susceptibility, to 

freezing-stress injury, of the transitional zone than the shoot apical meristem 

in orchardgrass (Dactylis glomerata L.). Whole-plant survival of bunch type 

turfgrass depends on the production of tillers and therefore, the improved 

survival of hardened perennial ryegrass depends on the ability to establish 

viable regrowth from lateral tiller buds (Eagles et al., 1993). 

Turfgrass Freezing-Stress Resistance 

Freezing-stress resistance as defined by Palta and Simon (1993) is the 

ability of the plant to survive freezing temperatures and maintain its functions 

which include its genetic potential for growth, development, and productivity. 

The ability of turfgrass to survive freezing stress is based on two survival 

mechanisms, avoidance and tolerance (Levitt, 1980; DiPaola and Beard, 1992). 

Avoidance 

Avoidance to freezing stress results when either the exposure is 

prevented or when it is reduced (DiPaola and Beard, 1992). In cold climates, 
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warm-season turfgrass growing near heat sources like buildings, heat vents, and 

underground pipes used for heating or ventilation is an example of freezing- 

stress exposure prevention. 

Supercooling is an important freezing-stress avoidance mechanism used 

by many woody plants (Levitt, 1980). However, DiPaola and Beard (1992) have 

stated that freezing-stress avoidance by supercooling has no known significance 

to turfgrass. The depression of the freezing point in cells, due to the 

accumulation of carbohydrates and other solutes during the cold acclimation 

period, reduces a plant’s exposure to freezing stress (Beard, 1973; Levitt, 1980). 

However, other researchers have observed only a slight (to -4°C) depression in 

the freezing point and, therefore, by itself, the concentration of solutes is not 

viewed as an important freezing-stress-avoidance mechanism in turfgrass 

(Levitt, 1980; Williams, 1980; Thomas and James, 1993; Rossi, 1997). 

Tolerance 

The ability of a plant to survive a freezing stress can be defined as its 

tolerance to the stress. Hardiness is a commonly used term to imply tolerance 

or acclimation (DiPaola and Beard, 1992). It is the ability of the plant to survive 

an unfavorable internal environment (Levitt, 1956). Turfgrasses used in cold 

climates must possess cold hardiness in order to survive periods of low - 

temperature stress (DiPaola and Beard, 1992). Since intracellular freezing in 

turfgrass almost always results in death to the plant, freezing-stress tolerance 

then implies tolerance to extracellular ice formation and the resulting 

dehydration (Levitt, 1980). 
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Cold Acclimation 

A plant’s capacity to cold acclimate and then deacclimate has long been 

considered to be significant in determining freezing tolerance (Carroll, 1943; 

Gay and Eagles, 1991; Fry et al., 1993; Rossi, 1997). The degree of cold 

hardiness varies throughout the winter (Beard, 1966). Although peak hardiness 

is generally achieved in early winter, it typically begins to decrease in February 

and is drastically reduced by late winter (Beard, 1973). Investigation into cold 

tolerance of four species of turfgrass including Kentucky Bluegrass (Poa 

pratensis L.), perennial ryegrass, creeping red fescue (Festuca rubra L.), and 

creeping bentgrass (Agrostis palustris Huds.) in Minnesota (White and 

Smithberg, 1980), indicated that the acquisition of cold tolerance started as early 

as July and peaked in January. By February, the loss of acclimation had begun, 

and as ambient temperatures approached the freezing mark, the ability to 

tolerate freezing stress was rapidly being lost (White and Smithberg, 1980). 

Cold acclimation was lost at a faster rate in the spring. It is during the spring 

transitional period that the majority of low-temperature injury to turf occurs 

(Beard, 1973; Rossi, 1997). At this time, wide fluctuations in temperature can 

stimulate growth and cause an increase in the hydration level of crown tissue, 

then, if temperatures drop below the tolerance level of the plant, serious injury 

can result (Beard, 1973; White and Smithberg, 1980; Rossi, 1997). 

Factors Influencing Low-Temperature Hardiness 

Cold acclimation (hardiness) in turfgrass involves physiological changes 

within the plant. As fall soil temperatures approach 7°C, turfgrass shoot growth 
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slows and eventually stops (Beard, 1973). Carbohydrate levels increase and 

protoplasm hydration levels decrease, resulting in the tissue achieving a 

maximum level of low-temperature hardiness (Beard, 1973; Levitt, 1980; Rossi, 

1997). Low-temperature hardiness is inversely correlated with the seasonal 

changes in crown tissue hydration levels (Beard, 1973; Levitt, 1980). A period of 

3-4 weeks of average daily air and soil temperatures between 1°C to 5°C are 

optimum to harden cool-season turfgrasses (Beard, 1973). 

Cultural Influences On Winter Hardiness 

The plant growth process uses up stored carbohydrates and increases 

the hydration level of cells, therefore, actively-growing plants have a minimum 

low-temperature tolerance (Beard, 1973). Accordingly, cultural practices that 

stimulate growth reduce the low-temperature hardiness of turfgrass (Beard, 

1973). Some cultural practices that decrease the cold-temperature-tolerance 

level include (i) failure to provide proper drainage, (ii) nitrogen applied in excess 

or in late fall, (iii) inadequate applications of potassium, (iv) excessive late fall 

irrigation, (v) lack of thatch control, and (vi) a close cutting height (Beard, 1973). 

Relationship Between Freezing-Stress Tolerance and 
Turfgrass Quality Performance 

Freezing-stress tolerance is a major factor limiting the adaptation of 

turfgrass to northern climates (Beard, 1973). For species with marginal low - 

temperature hardiness, such as perennial ryegrass, this may be an especially 

important limitation. Studies to determine both the extent of freezing-stress 

tolerance as a limiting factor to the adaptation of perennial ryegrass in northern 
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New England and the northeast, and its contribution to turfgrass quality 

performance, is limited. Turfgrass quality is a subjective measurement of 

aesthetic appeal and functional value and includes characteristics such as color, 

shoot density, uniformity, and texture (Turgeon,1980). Turfgrass shoot density 

is the single most important component of turfgrass quality (NE 57 Technical 

Research Committee, 1977). Hence, a significant correlation between turfgrass 

quality and shoot density has been reported (NE 57 Technical Research 

Committee, 1977). In grass, whole-plant survival to freeze-stress temperatures 

depends on tiller production for regrowth (Eagles et al., 1993). The vegetative 

shoot (tiller) consists of a short central stem of unelongated internodes with 

leaves borne alternately at successive nodes (Beard, 1973). Eagles et al. 

(1993) have suggested that superior tillering could have a beneficial effect on 

the recovery from low-temperature stress, because more tiller buds are available 

for regrowth, thus influencing winter survival. Superior turfgrass performers 

could have improved freeze-stress recovery and survival because of more 

profuse tillering compared to poor turfgrass performers. Accordingly, there is a 

potential link between turfgrass quality and the capacity to recover from freeze- 

stress injury. It is important to recognize, however, that low-temperature kill 

(freeze stress) is only one of several potential mechanism of injury operating that 

may limit turfgrass survival. Other mechanism of injury of cool-season turfgrass 

include low-temperature disease, ice encasement (suffocation), desiccation, and 

traffic (Beard, 1973; Blum, 1988; Humphreys, 1989). 
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CHAPTER 2 

RELATIONSHIP BETWEEN TURFGRASS PERFORMANCE 

AND LOW-TEMPERATURE TOLERANCE IN PERENNIAL RYEGRASS 

Abstract 

Turf losses from freeze-stress injury result in costly re-establishment 

especially with turfgrass species such as perennial ryegrass (Lolium perenne L.) 

having poor low-temperature tolerance. Research studying the relative 

importance of low-temperature tolerance and its contribution to turfgrass quality 

performance in northern climates is limited. The objectives of this research were 

to compare critical freezing temperature thresholds of ten perennial ryegrass 

cultivars representing contrasting turfgrass quality types (5-high and 5-low 

performance cultivars). The criteria for cultivar selection was based on the 

relative turfgrass quality rank (top and bottom five) from a National Turfgrass 

Evaluation Program (NTEP) trial conducted at the Maine (Orono) location (the 

most northern NTEP location in New England). Ten freeze-stress temperatures 

(-3, -5, -7, -9, -11, -13, -15,-17, -19, and -21 °C) and a non-frozen control (+5°C) 

were evaluated including acclimated (AC) plant material that was acclimated 

outside in an unheated polyhouse during the fall and winter in Massachusetts 

and non-acclimated (NA) plant material (greenhouse grown). Low-temperature 

tolerance was assessed using whole-plant, freeze-shock survival and electrolyte 

leakage (EL) methods. Lethal killing temperatures LTso, derived from fitted EL 
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and survival curves were determined. The high-performance (HIGH) cultivars 

were able to tolerate significantly lower freeze-stress temperatures, indicated by 

less EL and superior whole-plant survival, compared to low-performance (LOW) 

cultivars. Based on survival, LTsohigh for AC tissues ranged from -9.3 (Prelude 

III) to -14.7°C (LRF-94-C8), and LT50 low ranged from -3.0 (Linn, SR-4010) to 

-11,8°C (Pennfine). Based on EL, LT50 high for AC tissues ranged from -3.4 (Top 

Hat) to -6.7°C (LRF-94-C8), and LTsolow ranged from -0.5 (SR-4010) to -5.8°C 

(Pennfine). The lowest cultivar LT50 for NA tissues was only -4.2°C (Prelude III) 

and was based on survival. The EL method was shown to have good predictive 

value (r=0.80, p < 0.01) for whole-plant survival in AC tissues. Slope estimates 

from EL curves indicated that significantly lower slopes (lower mortality rates) 

were detected with AC tissue (compared with NA) and with HIGH cultivars 

(compared with LOW cultivars). These results underscore the importance of 

selecting low-temperature tolerant perennial ryegrass because superior low- 

temperature survival is associated with superior turfgrass performance in 

adapting to northern New England. 

Introduction 

Turf losses due to freezing injury result in costly re-establishment, 

increased weed pressure and related herbicide cost, increased soil erosion, and 

a general reduction in the aesthetic value and function of turf areas (DiPaola and 

Beard, 1992). Turfgrass species and cultivars within species vary widely in their 

tolerance to freezing stress (Beard, 1973; Gusta et al., 1980). The cold 
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tolerance among nine cool season turfgrass species to lethal temperatures, as 

reported by Gusta et al. (1980), ranged from -35°C for creeping bentgrass 

(Agrostis palustris Huds.) to -5 to -15°C for cultivars of perennial ryegrass. 

Freezing-stress tolerance is an important factor limiting the adaptation of 

turfgrass to northern regions of the United States (Beard, 1973). This may be an 

especially important limitation for those species, such as perennial ryegrass, 

having only marginal low-temperature hardiness. Despite perennial ryegrass 

having the poorest low-temperature tolerance among cool-season turfgrass 

species, it is still one of the most widely used species in the northern United 

States (Meyer and Funk, 1989; Watson et al., 1992; Young and Baker, 1995). 

The popularity of perennial ryegrass for over-seeding fairways, institutional 

grounds, parks, home lawns, and in lawn care operations is due largely to its 

ability to establish quickly (Beard, 1973). It is expected that this popularity will 

continue to increase with the release of improved turf-type cultivars. 

Studies to determine the extent of freezing-stress tolerance as a limiting 

factor to the adaptation of perennial ryegrass in northern New England and its 

contribution to turfgrass quality performance are limited. In a review of 

temperature stress (DiPaola and Beard, 1992), 85% of the cited research was 

based on work done with cereal grains and forage grasses, plants related to, but 

perhaps not comparable to, turfgrass species (Rossi, 1997). There are no 

published reports relating low-temperature hardiness to turfgrass performance. 

In grass, whole-plant survival to freeze-stress temperatures depend on 

tiller production for regrowth (Eagles et al., 1993) from lateral tiller buds. It has 
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been suggested by Eagles et al. (1993), that superior tillering could have a 

beneficial effect on plant recovery from low temperature because more tiller 

buds are available for regrowth, thus influencing winter survival. Superior 

turfgrass performers could have improved freeze-stress recovery and survival 

because of greater capacity for tillering compared to poor turfgrass performers. 

Accordingly, there is a potential link between turfgrass quality and the capacity 

to recover from freeze-stress injury. It is important to recognize, however, that 

low-temperature kill (freeze stress) is only one of several potential winter 

stresses operating that may limit turfgrass survival. Winter kill is the result of a 

combination of factors including low-temperature desiccation, low-temperature 

diseases, ice encasement (suffocation), and cultural factors (Beard, 1973; Blum, 

1988; Humphreys, 1989). 

Evaluation of recovery (survival) after low-temperature exposure is a 

reliable method for assessing low-temperature tolerance (Steponkus, 1978). 

However, this procedure is time consuming when dealing with plants that require 

a lengthy period for re-establishment before they can be assessed, and normally 

does not provide information regarding the mechanisms that cause death of the 

freeze-stressed plant (Cardona et al., 1997). To assess the level of cell injury 

due to low-temperature stress, the electrolyte leakage technique is commonly 

used (Palta, 1980; Cardona et al., 1997). The technique has been used 

extensively with woody species (Furmanski and Buescher, 1979; Lu and Rieger, 

1990), succulent plants (King and Ludford, 1983; Sulc et al., 1991; Manley and 

Hummel, 1996), and cool and warm season grasses (Gusta et al., 1980; 
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Rajashekar et al.,1983; Cohen and Wood, 1986; Fry et al., 1993). The 

electrolyte leakage method has been shown to have good predictive value for 

lethal low temperatures based on whole-plant, freeze-shock survival and has 

been suggested as a method to screen for freeze-stress tolerance in turfgrass 

(Gusta et al., 1980; Murdoch et al., 1990; Fry etal., 1991; Maieret al., 1994; 

Cardona et al., 1997). However, a high leakage level may not always equate to 

higher membrane injury when plants are allowed to acclimate (Uemura and 

Steponkus,1994; Uemure et al. 1995). Therefore, survival evaluations should be 

included with electrolyte leakage to provide a more reliable assessment of low- 

temperature survival. 

The objectives of this research were to compare critical freezing 

temperature thresholds of ten cultivars of perennial ryegrass representing 

contrasting turfgrass quality types, under acclimated and non-acclimated 

conditions, using whole-plant survival and EL methods. 

Materials and Methods 

Plant Material Selection 

The criteria for cultivar selection was based on the relative ranking from 

the most recent (1997) National Turfgrass Evaluation Program (NTEP) field trial 

conducted at the Maine (Orono) location (the most northern NTEP location in 

New England) (USDA; 1997). Five cultivars: LRF-94-C8, Palmer III, Prelude III, 

Repell III, and Top Hat, representing the high performers, and five cultivars: 

DSV NA 9401, DSV NA 9402, Linn, Pennfine, and SR-4010 representing the low 
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performers were selected. Accordingly, genotypes representing “HIGH” and 

“LOW’ performance types were one of the treatment factors evaluated. 

The average January air temperature for Maine during the period from 

1994 to 1997 (the NTEP evaluation period on which the selection was based) 

was -10.3°C (NRCC report). Air temperature is less important to crown survival 

than soil temperature since crowns are located near or below the soil surface 

and are protected by the warmer soil temperatures (Beard, 1973). The 

temperature data indicates, however, that the average temperature for January 

in Maine is within the critical lethal temperature for some perennial ryegrass 

cultivars. 

Pure (authentic) seed from each cultivar was obtained directly from the 

breeder. Plants were established from seed (seeding rate, 439 kg ha'1), under 

mist in the greenhouse, beginning 23 Sep. 1998 through 2 Oct. 1998. Seed was 

sown in 5 cm diameter by 17.8 cm deep pots filled with a commercial planting 

mix consisting of peat, perlite, and vermiculite (Sierra Customblen Bale Mix, 

Scotts, Marysville, OH). A control release fertilizer (Osmocote 14-6.2-11 

[N-P-K], Scotts, Marysville, OH) was incorporated at a rate of 146 kg N ha'1 into 

the planting mix at planting time. Soil pH of the potting mix was 5.9 out of the 

bag. Nutrient levels (macro and minor elements) were normal based on soil test 

results. 

Acclimation Conditions 

Once plants reached the 4th leaf stage (between 13 Oct. 1998 and 19 Oct. 

1998), half of the containers of each cultivar were moved to a cool greenhouse 
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(14 to 17°C average daily temperature). This environment allowed the plants to 

grow and develop and to begin to acclimate to a cooler temperature before being 

placed in the field. The second half of the containers were moved to a warm 

greenhouse (18 to 22° C average daily temperature) representing “Non- 

Acclimated” conditions. Genotypes representing “LOW” and “HIGH” 

performance levels were also evaluated under two environments representing 

“Acclimated” and “Non-Acclimated” tissue. All plants were watered as needed 

and “mowed” weekly to approximately 5 cm above soil level. The greenhouse 

temperatures were monitored hourly using an air/gas thermocouple attached to a 

printing thermometer (model 422314, Extech Instruments, Cole Palmer, Vernon 

Hills, IL). 

On 9 Dec. 1998, container plants from the cool greenhouse were 

transferred to the field and placed in a cold frame in a covered but open-ended 

polyhouse at the University of Massachusetts Turfgrass Research Farm in South 

Deerfield, Massachusetts. Containers were placed directly on the soil surface, 

configured as a block by cultivar, and placed as close to each other as possible. 

Corning, 3!4”, home building thermal insulation (R13) was wrapped around the 

periphery of the containers in order to maintain the root-zone temperatures as 

close to natural in-ground temperatures as possible. The plants were kept here, 

and maintained for the remainder of the fall season into winter, in order to 

simulate field-acclimation conditions as closely as possible. Air, crown, and 

root-zone temperatures were monitored using copper-constantan thermocouples 

connected to a datalogger (21X, Campbell Scientific, Inc., Logan, UT). 
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Thermocouples were also placed outside the polyhouse on the soil surface and 

2.5 cm into the soil. Figure 2.1 shows the mean daily air temperature for both 

acclimated and non-acclimated environments for the duration of the experiment 

and Fig. 2.2 shows the mean daily soil temperature vs. the plant container media 

temperature at the surface and 2.5 cm into the media. 

Light conditions were measured on a bright, cloudless day at the 

beginning of the experiment (1 Oct. 1998) and at the end of the experiment 

(17 Mar. 1999) using an Integrating Quantum/Radiometer Photometer (LI-188B, 

LI-COR Inc. Lincoln NE). The mean value of measurements made across the 

plants in the greenhouse (NA material) in October was 2119 ±347 (mean ±SD, 

n- 8) //mol m'2 s'1 Photosynthetically Active Radiation (PAR) and in March was 

2737 ±633 (mean ±SD, n = 8) //mol m'2 s'1 S.D. PAR. A measurement made 

outside the greenhouse was 3840 //mol rrf2 s'1 PAR in October and 3570 //mol 

m'2 s’1 PAR in March. 

Freeze-Shock Recovery (Survival) Evaluation 

Freezing shock and subsequent recovery of plant material was 

evaluated by first submitting samples to a range of 11 decreasing treatment 

temperatures consisting of a non-frozen control (+5°C), and 10 freeze-stress 

temperatures: -3, -5, -7, -9, -11, -13, -15,-17, -19, and -21 °C. Treatment 

temperatures were applied using a ScienTempTM freezer (Scientemp Corp. 

Adrian, Ml). 

Eleven randomly-selected replicates (container plants) from each of the 

10 genotypes of acclimated and non-accli mated plants (total of 220 containers) 
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were evaluated together. Samples from one replicate from each cultivar- 

environment combination (total of 20 containers) were prepared for each 

treatment temperature. The temperature of the plant material was cooled to the 

desired treatment level at a rate of 2°C h'1 maximum. The material was then 

allowed to remain (soak) at that temperature for a minimum of 1h. After 

temperature exposure the plant material being evaluated were removed from the 

freezer and assessed for survival as a percentage of viable-green shoots. The 

temperature at which 50% of the crown tissue survive based on regrowth 

recovery was determined, and expressed as LT50. This procedure was repeated 

for a total of four replications. 

There were 880 experimental units corresponding to 10 (cultivars) x 2 

(environments) x 11 (temperatures) x 4 (replications) used for the freeze-stress 

survival evaluation. Acclimated plant samples were taken from plant material 

maintained outside, at the South Deerfield farm, during early February and 

March. 

Plant material was washed free of soil, using cold water, and separated 

into individual plants. Ten individual plant samples from each replicate plant 

container were prepared for treatment at each temperature. Shoots and roots 

were trimmed to 2 cm each. To ensure ice nucleation, samples were wrapped in 

paper toweling moistened with deionized water and placed into poly freezer 

bags for freeze stress treatment. During sample preparation all plant material 

was temporarily stored at 5°C, non-frozen control temperature. 
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Freezing schedule and Freeze-Shock Recovery. After preparation was 

completed, all the freezer bags containing the samples were placed in the 

freezer at the same time and left overnight at -2°C in preparation for the freeze- 

stress temperature schedule. Non-frozen control samples remained overnight at 

+5°C. Treatment temperatures were adjusted manually and monitored using six 

copper-constantan thermocouples, attached to a datalogger (CR10X, Campbell 

Scientific, Inc., Logan, UT). The thermocouples were placed in freezer bags 

containing left over plant material and then selectively placed in the freezer 

adjacent to plant tissue under evaluation. Treatment temperatures -3 to -11°C 

were applied the first day. The freezer was then left at -11°C overnight and the 

remainder of the freezing schedule was completed the following day. After each 

treatment-temperature exposure, freezer bags containing samples from each 

cultivar-environment combination (total of 10 acclimated and 10 non-acclimated 

bags per treatment temperature) were removed from the freezer and allowed to 

thaw slowly, for a minimum of 12 h, at +5°C. Samples were then replanted in cell 

trays, and placed in the greenhouse for a four week recovery period (i.e. survival 

evaluation). Plants with any green surviving tissues or any new growth from 

even one shoot were counted as survivors. All others were considered as 

having been killed by the treatment temperature. Percent survival was 

calculated as: Survival (%) = (no. of plants survived -r total no. of plants) x 100. 

Electrolyte Leakage Evaluation 

Electrolyte leakage evaluation was conducted to assess the level of 

crown tissue injury caused by freezing stress. Methods similar to those 
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described by Cardona et al. (1997) were used. Acclimated and non-acclimated 

container plants from each of the ten genotypes were evaluated together at each 

of the temperature levels as described above in the freeze-shock recovery 

evaluation. After temperature exposure the samples were removed from the 

freezer and an initial electrical conductivity (EC) of crown tissue was measured. 

The tissue was then killed at -40°C and a final EC measurement made and 

compared with the initial EC for the same tissue. The ratio of the two readings, 

expressed as a percentage, serves as an index of electrolyte leakage and cell 

integrity in response to temperature stress. The procedure was repeated for a 

total of three replications. The temperature at which 50% leakage occurred was 

expressed as LT50. This was compared with the LT50 determined from the 

regrowth evaluation. 

There were 660 experimental units corresponding to 10 (cultivars) x 11 

(temperatures) x 2 (environments) x 3 (replications) used for the electrolyte 

leakage assay. Acclimated plant samples were taken from plant material 

maintained outside, at the South Deerfield farm, during early February and 

March. 

Plant material was washed free of soil, using cold water, and separated 

into individual plants. Fifteen individual plant samples from each replicate plant 

container were prepared for treatment at each temperature. Leaves and roots 

were removed leaving only crowns. Five crown samples were placed into each 

of three test tubes and stoppered. To ensure ice nucleation, test tubes were pre 

filled with 4 ml deionized water, frozen, and held at -2°C before plant material 
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was added. Crowns were then placed in the test tubes in contact with the ice 

and an additional 1 ml deionized water was added. During sample preparation 

all plant material was temporarily stored at +5°C, non-frozen control temperature. 

Freezing schedule and Electrolyte Leakage Assay. After preparation 

was completed, all the test tubes containing the crown samples were placed in 

the freezer at the same time, and left overnight at -2°C, in preparation for the 

freeze-stress temperature schedule. Non-frozen control samples remained 

overnight at +5°C. Treatment temperatures were adjusted manually and 

monitored using six copper-constantan thermocouples, attached to a datalogger 

(CR10X, Campbell Scientific, Inc., Logan, UT). Thermocouples were placed in 

test tubes containing left over crown tissue, and selectively placed in the 

chamber adjacent to crown tissue under evaluation. Treatment temperatures -3 

to -11°C were applied the first day. The freezer was then left at -11°C overnight 

and the remainder of the freezing schedule was completed the following day. 

After each treatment-temperature exposure three test tubes, each containing five 

crown tissues from each cultivar-environment combination (total of 30 acclimated 

and 30 non-acclimated test tubes per treatment temperature), were removed 

from the freezer and allowed to thaw slowly, for a minimum of 12 h, at +5°C. 

Samples were then subjected to infiltration (test tubes uncovered) under partial 

vacuum for 20 min, then incubation (test tubes covered) at +5°C for 12h, and 

then placed on a shaker table (approximately 150 rpm) at room temperature for 

8h. Initial conductivity (1C) of the extract of each test tube was measured, using 

a conductivity bridge (Model 1054, VWR Scientific, Boston, MA). Crowns were 
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then killed by way of overnight exposure to -40°C. Samples were thawed at 

room temperature for 4h minimum and placed on the shaker table for 2h at room 

temperature after which the final conductivity (FC) of the extract was measured. 

Electrolyte leakage (EL) is expressed as a relative percentage: 

EL (%) = (IC h- FC) x 100 

Scheduling Freeze-Shock Recovery and 
Electrolyte Leakage Evaluations 

It takes five days plus a day for preparation to complete a freeze-shock 

recovery assessment and seven days plus a preparation day to complete an 

electrolyte leakage assay. Due to the shear number of samples, the number of 

replications, and the physical size of the freezer and support equipment, it was 

necessary to partition the testing work load by method and replication. The total 

time from start to finish for the assessment of all replications of freeze-shock 

recovery and electrolyte leakage was seven weeks. It would have been 

preferred to evaluate both freeze-shock recovery and electrolyte leakage 

simultaneously rather than separately. Time delay between assessment 

methods could introduce potential differences in acclimation (or de-acclimation), 

that may occur in the plant material being maintained outside as the source of 

acclimated material. In order to minimize this effect, the replications (blocks) of 

the individual assessments were alternated between survival and EL 

evaluations. Consequently, time was used as a blocking variable. 
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Statistical Analysis 

Analysis of variance (ANOVA) was performed by MINITAB (State College, 

PA) and non-linear regression using SPSS Advanced Statistic (SPSS Inc., 

Chicago, IL). Cultivar sum of squares were partitioned into single degree of 

freedom (df) contrast to test for the difference between the combined means 

comparing HIGH vs. LOW turfgrass performance types (Tables 2.1 and 2.2). 

Additionally, contrast among HIGH and LOW cultivar types were compared to 

test for difference within turfgrass performance cultivars. Ten cultivars, two 

environments, and eleven temperature levels were analyzed as fixed effect 

treatment factors using a complete factorial arrangement in a randomized 

complete block design. No serious departures from the assumptions of ANOVA 

were detected in homogeneity of variance or normality of errors. 

A curve was fitted using non-linear regression to mean EL by cultivar 

(Fig. 2.3 through 2.12) and turfgrass performance type (Fig. 2.13 and 2.14) 

using a similar method as described elsewhere (Ingram, 1985; Anderson et al., 

1988; Cardona et al., 1997). The general equation was: 

Elp = El, + [(Elm - El,)/(1 + e'S(T'rm))] Eq. [1 ] 

where Elp = predicted EL; Eli = lower bound EL value; Elm = upper bound EL 

value; e = 2.714; B is the rate of increase of the slope of the curve; T is the 

absolute value of the treatment temperature, and Tm = inflection point of the 

curve and is defined as the midpoint between the lower and upper asymptote of 
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the curve (Zhu and Liu, 1987). The inflection point of the curve is closely 

correlated to the lethal killing temperature of the tissue. However, Tm frequently 

overestimates actual low temperature tolerance (von Firks and Verwijst, 1993; 

Fry et al.,1993; Maier et al., 1994; Cardona et al., 1997) and will not be reported 

here. The parameter of special interest was the slope of the curve (B), which 

has been described as an important indicator of mortality resulting from low- 

temperature stress (Gudleifsson et al., 1986; Zhu and Liu, 1987; Cardona et 

al., 1997). Absolute values of temperature were used in curve fitting to estimate 

B. To avoid introducing two values for 5°C (+5°C non-frozen control and the 

-5°C treatment temperature) the non-frozen control was omitted, consequently 

-3°C was the highest temperature evaluated using Eq. 1. Given that T ranged 

from -3 to -21 °C, only a portion of the EL curve corresponding to the slope could 

be estimated, consequently the slope estimates are approximations. 

Lethal temperatures at which 50% survival and EL occurred (i.e., LT50) 

was determined mathematically by curve fitting using a four parameter sigmoid 

model (Sigma Plot, SPSS Inc., Chicago IL). Specifically, parameter estimates 

were substituted back into the non-linear equation and the temperature where Y 

(survival or EL) is 50% was determined for each cultivar (Fig. 2.3 through 2.12 

and Tables 2.3 and 2.4) and turfgrass performance type (HIGH vs. LOW) 

(Fig. 2.13 and 2.14) for acclimated and non-acclimated tissues. Curves shown 

in all figures were fitted accordingly to mean EL or survival with eleven treatment 

temperatures. Equivalently, a dashed line where Y equals the 50% response 

level is included with all EL and survival curves, with vertical lines intersecting 
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the 50% level to estimate the lethal temperature (LT50) for each cultivar and 

performance group. The survival and EL data shown in all figures (2.3 through 

2.14) followed a sigmoidal response, typical for this type of experiment (Zhu and 

Liu, 1987; Anderson et al., 1988; von Fircks and Verwijst, 1993; Anisko and 

Lindstrom, 1995; Cardona et al., 1997). Simple correlation coefficients 

(Snedecor and Cochran, 1989) were computed for cultivar LT50 (Table 2.5) to 

compare the relative agreement and predictive value between acclimated and 

non-acclimated tissue types. 

Results and Discussion 

Based on accumulated clippings, it was observed that plants placed in the 

cool greenhouse grew at a slower rate than the plants growing in the warm 

greenhouse. This may have signaled the beginning of acclimation due to cooler 

day-night temperatures. Once the plants from the cool greenhouse were moved 

to the cold frame in the field, measurable growth ceased. Over the following 

weeks a change in leaf color of the AC plants was observed, first to yellow then 

by the end of the testing period brown, indicating that dormancy had set in or 

injury had occurred. For several days between the time when the plants were 

first set out (on 9 Dec. 1998) and 1 Jan. 1999, the average daily air 

temperature, measured 30 cm above the plants, was below -3°C (Fig. 2.1). The 

potentially short acclimation period (only 14 days before temperatures fell below 

freezing) used in this experiment tested the ability of perennial ryegrass cultivars 
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to acclimate quickly. The average air temperature for the first three days in 

January, just three weeks after plants were set out, was between -9.0°C and 

-12.1°C and on 15 January the average temperature for the 24-h period was 

-14.8°C. The average daily media temperature, just at the surface, was between 

-5.2°C and -7.4°C for the first three days in January respectfully and -12.6°C on 

15 January (Fig. 2.2). Such cold temperatures, before the plants had sufficient 

time to fully harden (Beard, 1973), was cause for concern. 

As noted previously, time was used as a blocking variable. Blocking was 

shown to have a significant effect within each method of assessment (Tables 

2.1 and 2.2) so blocking was effective in accounting for variation due to time. 

Cultivars (HIGH vs. LOW), environment (AC and NA), and temperature were 

important main effects affecting low-temperature hardiness based on survival 

(Table 2.1) and EL (Table 2.2) evaluations. Differences between cultivars in 

whole-plant freeze-shock recovery and leakage were dependent on environment 

(AC and NA), as indicated by a significant cultivar (C) by environment (E) 

interaction (Tables 2.1 and 2.2.) Accordingly, the relative ranking of cultivars in 

freeze-stress tolerance (survival and EL) varies with environment and was 

dependent on whether plants had been allowed to adjust to low temperature 

through acclimation. 

The acclimated cultivars exhibited greater freezing-stress tolerance than 

the non-acclimated cultivars, as indicated by significantly lower LT50 estimates 

(Tables 2.3 and 2.4). For survival data, AC tissues had a mean LT50 of -8.4°C 

compared to NA plants which had a mean LT50 of only -1.8°C (Table 2.3). The 
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range in cultivar LT50 was greater for AC plants (-3.0 to -14.7°C) compared to NA 

(+3.9 to -4.2°C). Gusta et al. (1980) reported a similar range (-5 to -15°C) in LT50 

for acclimated perennial ryegrass cultivars based on regrowth-survival studies. 

The outcome of regrowth was visually dramatic. After four weeks of regrowth for 

each replication, a visual count of the acclimated plants showed that some 

plants from a few cultivars had survived after exposure to temperatures as low 

as -21 °C. However, there were no survivors of the non-acclimated plants 

exposed to temperatures lower than -7°C. Based on EL evaluations, AC plants 

also tolerated significantly lower freezing temperatures compared to NA tissue 

(Table 2.4). For example, AC plants had a mean LT50 of -4.4°C compared to 

mean estimates of -0.6°C for NA tissue. The range in cultivar LT50 estimates 

based on EL evaluations were smaller for AC (-0.5°C to -6.7°C) and NA (1.6°C to 

-2.6°C) tissues compared to those observed for freeze-shock survival. The LT50 

estimates based on survival were lower (more negative) compared to those 

implied based on LT50 estimates derived from fitted EL curves. Hence, EL may 

underestimate actual survival. In paspalum (Paspalum vaginatum Swartz), 

Cardona et al. (1997) also observed lower LT50 estimates based on regrowth 

survival compared to membrane leakage assays. While low-temperature 

tolerance suggested from LT50 estimates for perennial ryegrass survival and EL 

methods differ substantially in their absolute values, there was some agreement 

in cultivar LT50 estimates between survival and EL results. Specifically, for AC 

plants, the EL50 estimates derived from EL curves were correlated with those 

determined based on survival (r = 0.80, p < 0.01; Table 2.5). Consequently, EL 
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derived LT50 estimates of AC material have good predictive value for cultivar 

low-temperature survival. Accordingly, EL has been suggested as a potential 

screening method for improved low-temperature tolerance (Gusta et al., 1980; 

Murdoch et al., 1990; Fry et al., 1991; Maieret al., 1994; Cardona et al., 1997). 

As a group, the high-performance cultivars were able to tolerate 

significantly lower freeze-stress temperatures than low-performance cultivars. 

Based on LT50 estimates the high-performance cultivars had less leakage and 

superior whole-plant survival, compared to the low-performance cultivars as 

indicated by significantly lower LT50 temperatures (Table 2.3 and 2.4). For AC 

plants, the HIGH performance cultivars had a mean LT50 of -10.9°C compared to 

LOW cultivars which had a mean of -6.0°C based on survival (Table 2.3). Also, 

visual differences between cultivar groups were stricking after four weeks of 

regrowth. No difference between performance groups was detected in survival 

for NA plants. These results suggest that differences in survival between 

contrasting turf quality types may only be detected when cultivars are allowed to 

adjust to low temperature through acclimation. 

Based on survival, LTsohigh for AC tissues ranged from -9.3 (Prelude III) 

to -14.7°C (LRF-94-C8), and LT50 low ranged from -3.0 (Linn, SR-4010) to 

-11.8°C (Pennfine). The cultivars Linn and SR-4010 experienced high mortality 

rates (low survival) at +5°C (the non-frozen control) following acclimation in the 

cold frame. Specifically, low survival rates corresponding to 34 and 42% were 

observed for Linn and SR-4010 (Fig. 2.10 and 2.12, respectively). As a result, 

LT50 values could not be calculated, so these cultivars were arbitrarily given LT50 
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temperatures corresponding to the highest freeze stress treatment (-3.0°C). The 

low temperatures recorded in the cold frame during January (Fig. 2.1 and 2.2) 

probably were approaching critical lethal temperatures for these two cultivars. 

Linn perennial ryegrass has been reported to be susceptible to low-temperature 

injury based on its high LT50 temperature of -6.0°C (Gusta et al.,1980) following 

acclimation. The soil media temperatures in January, in this study, (Fig. 2.2) of 

-12.6°C probably exceeded Linn’s critical threshold and consequently high 

mortality rates were observed during regrowth studies. Interestingly, Linn and 

SR-4010 perennial ryegrass are members of the LOW performance group and 

were the only cultivars which suffered mortality rates greater than 50%, even at 

the non-frozen control temperature. These results underscore the superior low- 

temperature survival associated with HIGH performance cultivars, indicated by 

the significant (p < 0.001) single df contrast (comparing HIGH and LOW 

cultivars) for whole-plant survival (Table 2.1). 

Based on EL, LTsohigh for AC tissues ranged from -3.4 (Top Hat) to -6.7°C 

(LRF-94-C8) and LTsolow ranged from -0.5 (SR-4010) to -5.8°C (Pennfine). The 

low-performance cultivar Pennfine had LT50 values (i.e. low-temperature 

tolerance) similar to cultivars from the HIGH group based on results from AC and 

NA plants (Tables 2.3 and 2.4). This departure in freeze-stress tolerance (i.e., 

cultivar ranking, Tables 2.3 and 2.4) associated with Pennfine contributed to the 

significant differences observed among LOW cultivars that was detected in 

survival (Table 2.1) and EL (Table 2.2). For example, Pennfine AC plants had a 

mean LT50 for survival of -11.8°C and ranked 2nd to LRF-94-C8 (a High cultivar) 
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in low-temperature survival. Gusta et al. (1980) reported an LT50 value of -9.0°C 

for Pennfine following acclimation. The difference observed in the LT50 values 

point out the difficulties in extrapolating results between experiments because of 

physiological differences (von Fircks and Verwijst, 1993; Anisko and Lindstrom, 

1995). The lack of consistency may be due to a number of physiological 

differences relating to the stage of development (age) of the plant material, 

cooling rate, the duration of acclimation and thawing, the method of ice 

nucleation as well as other factors (Alberdi and Corcuera, 1991). 

It is important to recognize that turfgrass quality (the basis for selection of 

HIGH and LOW groups) is an integration of several quality components 

including density, color, texture, and uniformity. The loss in shoot density due to 

direct low-temperature kill (i.e. winter mortality) is only one of many biotic and 

abiotic stresses operating during the year affecting turfgrass quality. Recent 

research has shown that improved disease resistance is closely associated with 

superior turfgrass performance in perennial ryegrass varieties (Ebdon and 

Gauch, 199_), and Pennine’s poor (low) performance rating in variety trials is in 

part due to its susceptibility to leaf spot (Bipolahs spp.) and brown patch 

(Rhizoctonia solani) disease. Consequently, Pennfine shares some of the 

attributes in common with high performing cultivars (i.e. superior freeze-stress 

resistance) important in adapting to northern climates, but its susceptibility to 

disease is an obvious limitation. Therefore, improved low-temperature survival 

alone does not necessarily equate to superior turfgrass performance, but rather 

may be an important consideration in breeding programs along with improved 
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insect and disease resistance, environmental-stress tolerance, and reduced 

mowing, fertilizer, and irrigation requirements. Ebdon and Gauch (199_) 

reported significant genotype by environment interactions in analyzing the 1990 

NTEP perennial ryegrass variety trial (1991 through 1994). They found large 

changes in cultivar rank order from location-to-location in the cool-season 

turfgrass growing region. Consequently, the differences detected here between 

top (HIGH) and bottom (LOW) ranked turfgrass performers in low-temperature 

hardiness (EL, survival) from Maine (Orono NTEP location) may not necessarily 

hold for a different set of cultivars from locations (environments) with different 

biotic and abiotic stresses. 

Slope estimates from predicted EL (using Eq. 1, shown in Table 2.6) allow 

for comparison among cultivars based on the 90% confidence interval (Cl) from 

non-linear regression analysis. The Cl values shown in Table 2.6 indicated no 

differences were detected in the curve of the slope among individual cultivars. 

However, differences were detected between tissue type (AC vs. NA) and 

between performance type (HIGH vs. LOW). For example, NA plants had a 

significantly steeper slope (corresponding to 0.63) compared to AC tissue 

(mean slope corresponding to 0.42). The flatter slope associated with AC 

crowns compared to NA, indicate that AC plants had reduced EL levels 

compared to NA tissues. The slope of the EL curve is an important indicator of 

mortality resulting from freeze stress (Gudleifsson et al., 1986; Zhu and Liu, 

1987). The difference in slope between AC and NA tissues and its relationship 

to mortality is apparent in the EL-survival curves for individual cultivars (Fig. 2.3 
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to 2.12). For example, it can be seen from the individual EL and survival curves 

when considered jointly, as freeze-stress temperatures decrease, EL increases 

with corresponding decrease in survival (increase mortality). This rate of 

increase is faster (indicated by steeper slope estimates, B) for NA plants. A 

difference in slope implies that acclimation affected the rate of membrane 

leakage in these cultivars. Differences in slope (from EL curves) between 

hardened and non-hardened perennial turfgrasses (Rajashekar et al., 1983) and 

forage grasses (Gudleifsson et al., 1986) suggest that most hardy species have 

smaller slopes (flatter curves) while non-hardy species are associated with EL 

curves having steep slopes. 

The slope of the curve is generally correlated with the lethal killing 

temperature of the tissue (Zhu and Liu, 1987). Recall, with AC plants, the HIGH 

group had significantly higher freeze-stress tolerance (lower LT50 values, Table 

2.3) based on freeze-shock survival evaluations. Furthermore, the HIGH group 

had significantly smaller (flatter) slopes (p <0.10, Table 2.6, corresponding to 

0.39) compared to the LOW group with a mean slope of 0.45. This indicated 

that AC crowns for the HIGH group had reduced EL compared to their LOW 

group counterpart. For NA tissue, no difference in survival (LT50 value) and 

slope were observed. Therefore, differences in survival and slope (mortality) 

between contrasting turf performance groups were detected only after tissues 

adjusted to low temperature through acclimation. 

By tracing a vertical line at the LT50 temperature (shown in the EL-survival 

curves, Fig. 2.3 through 2.12, for AC-survival) until the line intersects the AC-EL 
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curve, the corresponding EL level at 50% survival can be obtained. This allows 

comparing cultivar EL at identical survival levels. Using this method, individual 

cultivar LT50 derived from regrowth-survival of AC crowns on average 

corresponded to an EL level near 77% for the HIGH group (Fig. 2.3 through 2.7), 

while cultivars from the LOW group (Fig. 2.8 through 2.12) averaged near 60% 

EL. This difference in EL between groups was significant (at p < 0.10, data not 

shown). These results suggest that greater membrane leakage was occurring 

with the high performance cultivars at equivalent survival levels compared to the 

LOW group. This leakage level for high performance cultivars may be too high 

based on the assumption that a leakage level near 50% or more is lethal (Fry et 

al.,1993). However, Cardona et al. (1997) suggested that intraspecific 

differences may exist (for certain species) in the amount of irreversible damage 

to crown tissue. Furthermore, a high leakage level may not always equate to 

higher membrane damage when plants have been allowed to acclimate to low 

temperatures (Uemura and Steponkus, 1994; Uemure et al., 1995). For 

example, Uemura et al, (1995) reports EL levels in Arabidopsis thaliana as high 

as 90% (corresponding to 50% survival). In this present study, leakage levels as 

high as 88% were observed for the cultivar LRF-94-C8 (Fig. 2.3), a high 

performance cultivar. Similar EL levels (at 50% survival) for HIGH and LOW 

groups was observed for NA plants. The HIGH and LOW groups averaged 63 

and 65% EL, respectively. Accordingly, the nearly 20% difference in EL at 

equivalent survival levels reported here between turfgrass quality groups were 

the results of physiological adjustments associated with acclimation. In 
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acclimated plants, 50% survival does not necessarily equate to 50% leakage 

because regrowth survival is a distinctly different phenomenon from leaked 

electrolytes. 

Whole plant survival to freezing temperature depends on tiller production 

in bunch type grasses such as perennial ryegrass. Improved survival of 

hardened perennial ryegrass to lower freezing temperatures is depended on the 

ability for regrowth from lateral tiller buds during recovery, and is not attributed 

to improved hardness of the main apex (Eagles et al., 1993). Furthermore, the 

growth apex of the main tiller of perennial ryegrass is killed at higher 

temperatures than other regions of the crown. Thus, differential hardening of 

perennial ryegrass crown tissues may be occurring. Consequently, high leakage 

rates can occur from crown tissues and regrowth may still be possible providing 

critical crown regions remain viable. In orchardgrass (Dactylis glomerata L.) 

Shibata and Shimada (1986) also observed greater damage in the main shoot 

apices than in lateral tiller buds. This type of differential hardening observed 

between species may also occur between cultivars, however, differential 

hardening studies at the intraspecific level have not been conducted. 

Differential hardening has also been identified in winter wheat crowns (Tanino 

and McKersie, 1985) where survival to freezing stress was limited by the 

tolerance of a relatively small number of cells associated with the vascular 

transition zone in the basal region. Similarly, the lower portion of annual 

bluegrass (Poa annua L.) crowns was found to be more susceptible to freezing 

injury than the upper region (Beard and Olien, 1963). 
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Eagles et al. (1993) suggested that the release of apical dominance after 

death of the main apex was the method of recovery in perennial ryegrass. They 

also reasoned that profuse tillering could have a beneficial effect on recovery by 

providing more tiller buds as potential sites for regrowth. In this present study, 

no tiller counts were made to allow comparing the relative tillering capacities of 

HIGH and LOW groups. However, shoot density measurements obtained from 

NTEP reports (USDA, 1997) indicate that the high performance cultivars had 

significantly more shoots (based on field observations) compared to the LOW 

group, and this implies the potential for greater tillering and, therefore, winter 

survival with the high performance cultivars as suggested by Eagles et al. 

(1993). 

Figure 2.13 (showing AC tissues) and 2.14 (showing NA tissues) reveal 

differences in EL and survival comparing HIGH and LOW groups. The scatter 

points shown in these figures are the corresponding mean response (EL or 

survival) of individual cultivars from the HIGH group (Fig. 2.3 through 2.7) and 

LOW group (Fig. 2.8 through 2.12) by tissue type (AC and NA) and temperature 

(+5 through -21 °C). The lethal temperature (LT50) were computed 

mathematically as previously described for individual cultivars. There was good 

agreement between the LT50 estimates derived directly from the EL-survival 

curves corresponding to HIGH and LOW groups (Fig. 2.13 and 2.14) with the 

mean of the LT50 estimates derived from the individual cultivar EL-survival 

curves shown in Tables 2.3 and 2.4. The exception to this was AC-survival for 

the LOW group (Fig. 2.13). Specifically, the LTsolow estimate for AC-survival 
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was -7.3°C while the mean of the individual LT50 estimate derived from survival 

curves corresponding to the five LOW cultivars was -6.0°C (Table 2.3). This 

discrepancy of 1.3°C however, was due to Linn and SR-4010 cultivars which 

were arbitrarily given LT50 estimates of -3.0°C (Table 2.3) because they did not 

survive the AC conditions (i.e., -14.8°C minimum air temperature and -12.6°C 

minimum media surface temperature, Fig. 2.1 and 2.2 respectively). 

Based on freeze-shock survival evaluations, the HIGH group had 

significantly higher survival ratings compared to the LOW group for both AC and 

NA tissues. For AC plants, HIGH cultivars were associated with greater survival 

compared to the LOW group at freeze-stress temperatures as low as -13°C (Fig. 

2.13). Even at the non-frozen control temperature (+5°C) the HIGH cultivars 

afforded significantly higher survival compared to the LOW group. This most 

likely was due to the low temperatures associated with the AC treatment in 

January that may have approached the critical lethal thresholds for some of the 

LOW cultivars. However, this does not explain the superior survival ratings with 

the HIGH group for NA tissue at the non-frozen control temperature (Fig. 2.14). 

For example, the HIGH group had a mean survival of 80.5% while the LOW 

group had a mean survival of 64%, a 16.5% greater survival rating associated 

with the HIGH group. It is important to recognize however, that the difference in 

survival between the two groups increased significantly (p <0.10) by another 

10.5% at -3°C when compared to the control temperature, indicating superior 

survival with the HIGH group. No difference in survival for NA plants was 
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detected between the two performance groups at freeze-stress temperatures 

lower than -5°C. 

Similarly, the HIGH group also had significantly less leakage loss (hence, 

less membrane damage) compared to the LOW cultivars. However, group 

differences in EL were detected over a small range of freeze-stress 

temperatures compared to regrowth-survival evaluations. For example, with AC 

plants, significantly lower EL was detected with HIGH cultivars only down to 

-7°C (compared to -13°C for survival), while with NA tissue less leakage was 

observed with the high performance cultivars only to a temperature of -3°C 

(compared to -5°C for survival). Like NA-survival evaluations, differences 

between groups were detected for NA-EL at the non-frozen control temperature. 

The high group had a mean EL of 25.3% compared to 33.6% for the LOW group, 

or equivalently 8.3% less leakage with the high performance cultivars. However, 

differences in EL increased significantly (at p < 0.001) by another 8.1% at -3°C 

when compared to the non-frozen control indicating superior low-temperature 

tolerance for the HIGH group. 

Significant acclimation and cultivar effects of perennial ryegrass occurred. 

Perennial ryegrass cultivars that consistently performed well (ranking in the top 

5%) in turfgrass variety trials conducted at the Maine-Orono NTEP location 

(most northern NTEP location in New England) shared similar freeze-stress 

characteristics in common and were different from their poor performing 

counterparts (ranking in the bottom 5%). Compared to low performance 

cultivars, high performance cultivars exhibited higher freeze-stress survival, less 
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membrane leakage with EL curves having smaller slopes (lower mortality), and 

lower LT50 values based on EL and regrowth-survival methods. The ultimate 

goal of a turfgrass breeding program is to develop cultivars that are well adapted 

to a wide range of management and environmental stresses. In perennial 

ryegrass, winter hardiness is a heritable trait (Waldron et al., 1998), suggesting 

that the potential exists to develop improved perennial ryegrass cultivars with 

increased low-temperature tolerance through breeding. This study indicated that 

improved low-temperature tolerance is an important selection criteria for 

developing perennial ryegrass with superior quality when targeting genotypes to 

northern climates. As a point of reference, the January air temperature for 

Maine averaged -10.3°C during the period of evaluation on which the cultivar 

selections used in this study were based. Other cool-season turfgrass locations 

with winter conditions similar to Maine may also find a strong relationship 

between turfgrass performance and low-temperature tolerance, and therefore, 

may also benefit from low-temperature assessment studies. To that end, 

screening for superior low temperature survival using electrolyte leakage 

methods may be useful along with whole-plant regrowth-survival evaluations (a 

more reliable indicator of plant winter hardiness) and where ranking of cultivars 

is the goal. In these studies, cultivar LT50 values based on EL evaluations were 

comparatively narrow, while cultivar survival was variable (broad) thus allowing 

greater potential to develop screening protocols. 

High membrane leakage rates in these studies did not necessarily equate 

to permanent injury as indicated by total death of the tissue (crown). In fact, 
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cultivars representative of the highest in turfgrass quality exhibited higher 

leakage levels than poor performing cultivars when compared at equivalent 

survival levels. Further studies are required to investigate the specific 

mechanism allowing differential hardening during acclimation within the crown 

region (main apical meristem, lateral tiller buds, and transitional zone) between 

these two contrasting performance groups. Specific research needed at the 

intraspecific level in perennial ryegrass includes; (i) the pattern of recovery by 

crown region after artificial freezing as suggested by Eagles et al. (1993), (ii) 

microscopic examinations for freezing-stress injury in the crown region which 

have been useful at the interspecific level (Beard and Olien, 1963) and may be 

needed at the genotypic level, and (iii) vital staining techniques (Tanino and 

McKersie, 1985) of crown tissue after artificial freezing to identify critical regions 

important in regrowth survival. 
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Table 2.1 Mean squares from ANOVA of freeze-shock recovery (survival) of ten 
perennial ryegrass cultivars representing high and low performance 
types evaluated at 11 freeze-stress temperatures and two 
environments (acclimated and non-acclimated). 

Source of variation df MS 
Total 879 

Block 3 6131.6*** 
Cultivar (C) 9 3871.7*** 

High vs. low 1 18456.0*** 
Among high performers 4 316.3 
Among low performers 4 3781.3*** 

Temperature (T) 10 34439.3*** 
Environment (E) 1 143310.1*** 
C x T 90 365.3 
CxE 9 2708.6*** 
TxE 10 8280.9*** 
CxTxE 90 408.0 
Error 657 387.6 

Significant at the 0.001 level. 

Table 2.2 Mean squares from ANOVA of crown electrolyte leakage of ten 
perennial ryegrass cultivars representing high and low performance 
types evaluated at 11 freeze-stress temperatures and two 
environments (acclimated and non-acclimated). 

Source of variation df MS 
Total 659 

Block 2 235.4** 
Cultivar (C) 9 346.8*** 

High vs. low 1 1742.3*** 
Among high performers 4 126.7* 
Among low performers 4 218.0*** 

Temperature (T) 10 26104.7*** 
Environment (E) 1 38218.2*** 
C x T 90 51.2f 
CxE 9 136.8*** 
TxE 10 3372.0*** 
CxTxE 90 43.0 
Error 438 42.2 

, * **, *** Significant at the 0.1, 0.05, 0.01, and 0.001 levels, respectively. 
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Table 2.3 Comparison of LT50 estimates from fitted crown freeze-shock survival 
curves. 

LTsoby Environment 
Perennial Ryegrass Cultivar Acclimated (AC) Non-Acclimated (NA) 
High Performance Group Rank LT50 LT50 Rank 

LRF-94-C8 1 -14.7* -3.7 2 
Palmer III 5 -10.0 -2.9 3 
Prelude III 6 -9.3 -4.2 1 
Repell III 3 -10.2 -2.7 4.5 
Top Hat 4 -10.1 -1.8 7 

Mean-High Group - -10.9 -3.0 - 

Low Performance Group 
DSV NA 9401 8 -3.9 -2.2 6 
DSV NA 9402 7 -8.3 -1.2 8 
Linn 9.5 -3.0 3.9 10 
Pennfine 2 -11.8 -2.7 4.5 
SR-4010 9.5 -3.0 -1.1 9 

Mean-Low Group - -6.0 -0.7 - 

Grand Mean (by Environment) - -8.4 -1.8 - 

Significance (p-value) 
Mean High vs. Low* - 0.05 NS - 

Mean AC vs. NA§ - 0.001 - 

* Lethal temperature in0 C. 
* Comparison between group means within environment (AC and NA). 
§ Comparison between environment means. 
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Table 2.4 Comparison of LT50 estimates from fitted crown electrolyte leakage 
curves. 

LT50 by Environment 
Perennial Ryegrass Cultivar Acclimated (AC) Non-Acclimated (NA) 
High Performance Group Rank LT50 LT50 Rank 

LRF-94-C8 1 -6.7* -0.8 5 
Palmer III 2 -6.0 -2.1 3 
Prelude III 6 -5.2 -2.2 2 
Repell III 5 -5.5 -2.6 1 
Top Hat 8 -3.4 -1.4 4 

Mean-High Group - -5.3 -1.8 - 

Low Performance Group 
DSV NA 9401 7 -4.7 0.1 6 
DSV NA 9402 4 -5.6 0.3 7 
Linn 9 -1.2 0.4 8 
Pennfine 3 -5.8 1.0 9 
SR-4010 10 -0.5 1.6 10 

Mean-Low Group - -3.6 0.7 - 

Grand Mean (by Environment) - -4.4 -0.6 - 

Significance (p-value) 

Mean High vs. Low* - 0.1 0.05 - 

Mean AC vs. NA§ - 0.001 - 

* Lethal temperature in 0 C. 
* Comparison between group means within environment (AC and NA). 
§ Comparison between environment means. 
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Table 2.5 Correlation between 10 perennial ryegrass cultivar LT*** derived 
from crown electrolyte leakage (EL) and freeze-shock survival 
evaluations using acclimated (AC) and non-acclimated (NA) tissue. 

EL Survival 
AC NA AC NA 

EL-NA 0.50 - - - 

Survival-AC 0.80** 0.48 - - 

Survival-NA 0.72* 0.46 0.66* - 

*, **, Significant at the 0.05 and 0.01 levels, respectively. 

Table 2.6 Comparison of slope estimates from fitted crown electrolyte leakage 
curves. 

Perennial Ryegrass Slopes Estimate ±90% Cl* by Environment 
High Performance Group Acclimated (AC) Non-Acclimated (NA) 

LRF-94-C8 0.38±0.21 0.64±1.01 
Palmer III 0.42±0.22 0.69±0.81 
Prelude III 0.41 ±0.22 0.49±0.33 
Repell III 0.40±0.24 0.81±1.38 
Top Hat 0.36±0.28 0.68±0.60 

Mean-High Group 0.39 0.66 
Low Performance Group 

DSV NA 9401 0.50±0.29 0.52±0.47 
DSV NA 9402 0.35±0.13 0.56±0.23 
Linn 0.43±0.25 0.74±2.17 
Pennfine 0.54±0.33 0.72±0.66 
SR-4010 0.45±0.31 0.40±0.29 

Mean-Low Group 0.45 0.59 
Grand Mean (by Environment) 0.42 0.63 
Significance (p-value) 

Mean High vs. Low* 0.1 NS 
Mean AC vs. NA§ 0.001 

* No difference in slope between individual cultivars and environments based on 
90% confidence intervals (Cl). 

* Comparison between group means within environment (AC and NA). 
§ Comparison between environment means. 
NS = not significant. 
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Fig. 2.1. Mean daily air temperature comparison between acclimated 
(polyhouse) and non-acclimated (greenhouse) environments 
during the experimental period. 
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Fig. 2.2. Mean daily soil temperature comparison between actual soil 
and plant container media at various depths during the 
experimental period. 

Daily Means: 1998/1999 
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Fig. 2.3. LRF-94-C8 perennial ryegrass fitted LT5Q derived from 

crown electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
response (EL, survival). 

• Survival-AC 
O Survival-NA 
T EL-AC 
V EL-NA 
- Fitted-Survival: AC, R2=0.79** 

-Fitted-Survival: NA, R2=0.99*** 

-Fitted-EL: AC, R2=0.99*~ 

- Fitted-EL: NA, R2=0.99*~ 
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Fig. 2.4. Palmer III perennial ryegrass fitted LT50 derived from 

crown electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
response (EL, survival). 

• Survival-AC 
O Survival-NA 
▼ EL-AC 
v EL-NA 

- Fitted-Survival: AC, R2=0.95*** 

-Fitted-Survival: NA, R2=0.99*** 

-Fitted-EL: AC, R2=0.99*~ 

- Fitted-EL: NA, R2=0.99~* 
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Fig. 2.5. Prelude III perennial ryegrass fitted LT^q derived from 

crown electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
response (EL, survival). 

• Survival-AC 
O Survival-NA 
▼ EL-AC 
v EL-NA 

- Fitted-Survival: AC, R2=0.91*~ 

-Fitted-Survival: NA, R2=0.99~* 

-Fitted-EL: AC, R2=0.99*** 

- Fitted-EL: NA, R2=0.99*~ 
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Fig. 2.6. Repell III perennial ryegrass fitted LT50 derived from 

crown electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
response (EL, survival). 

# Survival-AC 
O Survival-NA 
▼ EL-AC 
V EL-NA 

Fitted-Survival: AC, R2=0.80** 

Fitted-Survival: NA, R2=0.99*** 

-Fitted-EL: AC, R2=0.99*~ 

-Fitted-EL:NA, R2=0.99*~ 
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Fig. 2.7. Top Hat perennial ryegrass fitted LT5Q derived from 

crown electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
response (EL, survival). 

• Survival-AC 
O Survival-NA 
▼ EL-AC 
V EL-NA 

- Fitted-Survival: AC, R2=0.86** 

-Fitted-Survival: NA, R2=0.98*~ 

-Fitted-EL: AC, R2=0.98~* 

- Fitted-EL: NA, R2=0.99~* 
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Fig. 2.8. DSV-NA-9401 perennial ryegrass fitted LT50 derived from 

crown electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
response (EL, survival). 

# Survival-AC 
O Survival-NA 
▼ EL-AC 
V EL-NA 

- Fitted-Survival: AC, R2=0.87** 

-* Fitted-Survival: NA, R2=0.97*** 

-Fitted-EL: AC, R2=0.98*~ 

- Fitted-EL: NA, R2=0.99*** 
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Fig. 2.9. DSV-NA-9402 perennial ryegrass fitted LT5q derived from 

crown electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
response (EL, survival). 

• Survival-AC 
O Survival-NA 
T EL-AC 
V EL-NA 

- Fitted-Survival: AC,R2=0.93*** 

-- Fitted-Survival: NA, R2=0.99*** 

-Fitted-EL: AC, R2=0.99~* 

- Fitted-EL: NA, R2=0.99*~ 
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Fig. 2.10. Linn perennial ryegrass fitted LT50 derived from crown 

electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
responses (EL, survival). 

• Survival-AC 
O Survival-NA 
▼ EL-AC 
V EL-NA 

- Fitted-Survival: AC, R2=0.90*** 

-* Fitted-Survival: NA, R2=0.96*** 

-Fitted-EL: AC, R2=0.98*~ 

-Fitted-EL: NA, R2=0.99*** 
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Fig. 2.11. Pennfine perennial ryegrass fitted LT50 derived from 

crown electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
responses (EL, survival). 

• Survival-AC 
O Survival-NA 
T EL-AC 
V EL-NA 
- Fitted-Survival: AC, R2=0.92*** 

-* Fitted-Survival: NA, R2=1.00*** 

-Fitted-EL: AC, R2=0.97*** 

- Fitted-EL: NA, R2=0.99*** 
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Fig. 2.12. SR-4010 perennial ryegrass fitted LT50 derived from 

crown electrolyte leakage (EL) and freeze-shock survival 
evaluations for acclimated (AC) and non-acclimated (NA) 
tissues. LSD (0.05) bars are shown for comparison within 
responses (EL, survival). 

• Survival-AC 
O Survival-NA 
T EL-AC 
v EL-NA 
- Fitted-Survival: AC, R2=0.82** 

-- Fitted-Survival: NA, R2=0.99*** 

-Fitted-EL: AC, R2=0.98~* 

- Fitted-EL: NA, R2=0.99*~ 
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Fig. 2.13 Fitted LT^ derived from acclimated crown electrolyte leakage 

(EL) and freeze-shock survival evaluations for high and low 
performance cultivars of perennial ryegrass. LSD (0.05) bars 
are shown for comparison within response (EL, survival). 

• Survival-High Performance Group 
O Survival - Low Performance Group 
▼ EL-High Performance 
v EL-Low Performance Group 

-Fitted-Survival: High Performance Group 
-- Fitted Survival: Low Performance Group 
-Fitted EL: High Performance Group 
-Fitted EL: Low Performance Group 
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Fig. 2.14 Fitted LT^ derived from non-acclimated crown electrolyte 

leakage (EL) and freeze-shock survival evaluations for high 
and low performance cultivars of perennial ryegrass. LSD (0.05) 
bars are shown for comparison within response (EL, survival). 

# Survival - High Performance Group 
O Survival - Low Performance Group 
▼ EL - High Performance Group 
v EL - Low Performance Group 
- Fitted-Survival: High Performance Group 
-- Fitted-Survival: Low Performance Group 
-Fitted-EL: High Performance Group 
-Fitted-EL: Low Performance Group 
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APPENDIX A 

LOCATION OF THERMOCOUPLES 

One thermocouple was positioned 25-30 cm above the containers and centered 

in the cold frame in order to measure air temperature over the turf. Two other 

thermocouples were positioned at container soil level at approximately the one 

quarter and three quarter positions in the cold frame in order to measure the 

temperature of representative container soil surfaces near the turf crowns. Two 

other thermocouples, used to measure root-zone temperatures, were inserted 

approximately 5 cm into the soil of two containers at approximately the one 

quarter and three quarter positions in the cold frame. One thermocouple was 

inserted approximately 5 cm into the surrounding ground outside the poly house 

but near the cold frame and a last thermocouple was placed on top of the 

ground, in the same area, to measure surrounding soil temperatures. 
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APPENDIX B 

FREEZE-SHOCK RECOVERY (SURVIVAL) EVALUATION PROTOCOL 

Roger Gagne - University of Massachusetts 24 January 1999 

Freezing Tolerance Evaluation of Contrasting Perennial Ryegrass (Lolium 
perenne L.) Performance Groups Using Freeze-Shock Recovery 
(PRYEFRZSR1) 

Objective: 
To test the freezing tolerance characteristics, under acclimated and non- 

acclimated conditions, of 5 genotypes representing high performance perennial 
ryegrass and 5 genotypes representing low performance perennial ryegrass 
based on turfgrass performance and quality results obtained from the Maine 
(Orono) National Turfgrass Evaluation Program (NTEP) location. 

Experimental material: 
• Acclimated and non-acclimated cultivars representing high performance 

perennial ryegrass: 
- Repell III 
- Prelude III 
- Palmer III 
- Top Hat 
- LRF-94-C8 

• Acclimated and non-acclimated cultivars representing low performance 
perennial ryegrass: 
- Linn 
- DSV NA 9402 
- DSV NA 9401 
- Pennfine 
- SR-4010 (SRX 4010) 

• 220 poly freezer bags for plant samples. 

• 5 poly freezer bags for thermocouples. 

Acclimated plant material was maintained in containers (5 cm in diam. by 17.8 
cm deep) in a cool greenhouse (55-60°F) from 19 Oct 1998 to 9 Dec 1998. On 9 
December, the material was transferred to the South Deerfield farm and placed 
in an unheated (poly) hoop house with the ends opened for air circulation. Plant 
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containers were placed on the floor of the hoop house in blocks by cultivar and 
all wrapped together with Corning 3.5” house insulation (R13). 

Non-acclimated plant material was maintained in containers 5 cm in diam. by 
17.8 cm deep in a greenhouse (61-68 0 F). Containers were placed on a wire 
shelf, approximately 50 cm off the floor, in blocks by cultivar. 

Test temperatures: Non-frozen control (+5°C), -3, -5, -7, -9, -11, -13,-15, 
-17, -19, and -21°C. 

Replication: 10 plants per replicate container 

Protocol: 

Pre Day 1 (preparation): 

1. Label 220 poly freezer bags for plant material using the following code: 
2 environments A - acclimated 

N - non-acclimated 
lOcultivars Cl-CIO 
11 temperatures Non-frozen control (+5°C), -3, -5, -7, -9, -11, 

-13,-15, -17, -19, -2T°C 

Example: Acclimated, 
cultivar Cl, +5°C 

2. Consecutively number 5 poly freezer bags for thermocouples. 

Day 1 (Harvesting of material & Preparation of samples): 

Harvesting of material: 

1. Harvest 12 containers (includes 1 extra if needed) of each cultivar of 
acclimated material and 12 containers (includes 1 extra if needed) of each 
cultivar of non-acclimated material. 

2. Starting with the acclimated material (handle one container at a time), wash 
soil from roots of turf material in cold tap water, wrap in moist toweling, place in 
properly labeled zip-lock bag (leave unzipped), and refrigerate (+5°C). Repeat 
using the non-acclimated material. 

A Cl +5° 
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Preparation of samples: 

1. Starting with acclimated material (handle one zip-lock bag at a time), 
separate material into individual plants, trim shoots and roots of 10 plants to 2 
cm each, wrap in moist paper toweling, and place in properly labeled poly 
freezer bags. Close bags and place temporarily in refrigerator. Complete 
preparation of all acclimated material. 

2. When all acclimated material has been prepared, place the bags labeled -3 
through -21 in the freezer at - 2°C. Leave the non-frozen control samples, 
labeled +5, in the refrigerator (+5°C). 

Day 2 (continue Preparation of samples): 

3. Repeat step 1 and 2 using non-acclimated material. Complete preparation 
of all non-acclimated material. 

4. From excess plant material, wrap 5 groups of 10 plants in moist toweling and 
add one group to each of the 5 freezer bags marked for the thermocouples. 

5. Place a properly marked thermocouple in each bag (making contact with the 
plant material) and randomly place the bags among the samples. 

6. Leave samples overnight with freezer set-point at -2°C. 

Day 3 (begin freezing schedule): 

1. Visually examine tissue samples to ensure freezing has occurred. Lower 
freezer set-point to the first scheduled test temperature (-3°C). Once tissue 
temperature has reached -3°C, as measured by the thermocouples, maintain 
sample temperature for one hour. 

2. Remove all -3 samples (20 bags) from the freezer and place immediately in 
the refrigerator (+5°C) to thaw overnight. 

3. Lower freezer set-point to the next scheduled test temperature (-5°C). Allow 
tissue temperature to reach -5°C, as measured by the thermocouples, and 
maintain sample temperature for one hour. 

4. Remove all -5 samples (20 bags) from the freezer and place immediately in 
the refrigerator (+5°C ) to thaw overnight. 

5. Repeat steps 3 and 4 until all scheduled test temperatures up to and 
including -11°C have been completed. Leave freezer set at -11°C overnight. 
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Day 4 (continue freezing schedule, begin Freeze-Shock Recovery Evaluation): 

6. Lower freezer set-point to the next scheduled test temperature (-13°C). Allow 
tissue temperature to reach -13°C, as measured by the thermocouples, and 
maintain sample temperature for one hour. 

7. Remove all -13 samples (20 bags) from the freezer and place immediately in 
the refrigerator (+5°C) to thaw overnight. 

8. Repeat steps 6 and 7 until the remaining scheduled test temperatures have 
been completed. 

Freeze-Shock Recovery Evaluation: 

1. Unwrap the non-frozen control samples and the samples thawed overnight 
from Day 3 freezing (step 5). Re-pot each group of 10 plants in individual cells 
of 72 cell trays, carefully labeling each cell, and place in the greenhouse ( 61- 
68°F) for a 3 to 4 week recovery period (survival evaluation). 

Day 5 (continue Freeze-Shock Recovery Evaluation): 

2. Unwrap the samples thawed overnight from Day 4 freezing (step 8). Re-pot 
each group of 10 plants in individual cells of 72 cell trays, carefully labeling each 
cell, and place in the greenhouse ( 61-68°F) for a 3 to 4 week recovery period 
(survival evaluation). 

3. Plants that recover will be scored as survivors, all others will be scored as 
having been killed by the temperature treatment. 

% Survival = (number of plants survived / total number of plants) x 100 
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APPENDIX C 

ELECTROLYTE LEAKAGE ASSAY PROTOCOL 

Roger Gagne - University of Massachusetts 9 February 1999 

Freezing Tolerance Evaluation of Contrasting Perennial Ryegrass (Lolium 
perenne L.) Performance Groups Using Electrolyte Leakage Assay 
(PRYEFRZELA1) 

Objective: 
To test the freezing tolerance characteristics, under acclimated and non- 

acclimated conditions, of 5 genotypes representing high performance perennial 
ryegrass and 5 genotypes representing low performance perennial ryegrass 
based on turfgrass performance and quality results obtained from the Maine 
(Orono) NTEP location. 

Experimental material: 
• Acclimated and non-acclimated cultivars representing high performance 

perennial ryegrass: 
- Repell III 
- Prelude III 
- Palmer III 
-Top Hat 
- LRF-94-C8 

• Acclimated and non-acclimated cultivars representing low performance 
perennial ryegrass: 
- Linn 
- DSV NA 9402 
- DSV NA 9401 
- Pennfine 
- SR-4010 (SRX 4010) 

• 660, 14 ml polypropylene test tubes (FALCON 17X100 mm) for plant 
samples. 

• 5, 14 ml polypropylene test tubes (FALCON 17X100 mm) for thermocouples. 

Acclimated plant material was maintained in containers (5 cm in diam by 17.8 cm 
deep) in a cool greenhouse (55-60°F) from 19 Oct 1998 to 9 Dec 1998. On 9 
December, the material was transferred to the South Deerfield farm and placed 
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in an unheated (poly) hoop house with the ends opened for air circulation. Plant 
containers were placed on the floor of the hoop house in blocks by cultivar and 
all wrapped together with Corning 3.5” house insulation (R13). 

Non-acclimated plant material was maintained in containers 5 cm in diam. by 
17.8 cm deep in a greenhouse (61-68°F). Containers were placed on a wire 
shelf, approximately 50 cm off the floor, in blocks by cultivar. 
Test temperatures: Non-frozen control (+5°C), -3, -5, -7, -9, -11, -13,-15, 

-17, -19, and -21 °C. 

Replications: 3 groups of 5 crowns per replicate container 

Protocol: 

Pre Day 1 (preparation): 

1. Label 660 test tubes for plant material using the following code: 
2 environments A - acclimated 

N - non-acclimated 
lOcultivars Cl-CIO 
11 temperatures Non-frozen control (+5°C), -3, -5, -7, -9, -11, 

-13, -15, -17, -19, -21 °C 
3 test tubes/cv/env/temp 1,2,3 

Example: Acclimated, 
cultivar Cl, +5°C, test 
tube 1. 

A Cl +5° 1 

Place test tubes in test tube holders by temperature, grouping acclimated 
cultivars in one holder and non-acclimated cultivars in another holder. That is, 
each test tube holder should have 3 test tubes of each acclimated cultivar or 3 
test tubes of each non-acclimated cultivar for a total of 30 test tubes in each 
holder. All test tubes in any one holder should be marked with the same 
temperature value. 

2. Consecutively number 5 test tubes for thermocouples. 

3. Fill non-frozen control test tubes, labeled +5, with 5 ml deionized water 
and place in the refrigerator (+5°C) uncovered. Fill test tubes labeled -3 through 
-21 and the 5 test tubes marked for thermocouples with 4 ml deionized water 
and place in the refrigerator uncovered. 

4. The day before Day 1 place all test tubes, except non-frozen control, in the 
freezer at -20°C until frozen, then ramp freezer temperature to -2°C and leave 
over night. Leave non-frozen control test tubes in the refrigerator. 
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5. Place 1000 ml of deionized water in a beaker in the refrigerator to cool. 

6. Label 20 petri dishes with acclimation (non-acclimation) and cultivar code. 

Day 1 (Harvesting of material & Preparation of samples): 

Harvesting of material: 

1. Harvest 12 containers (includes 1 extra if needed) of each cultivar of 
acclimated material and 12 containers (includes 1 extra if needed) of each 
cultivar of non-acclimated material. 

2. Starting with the acclimated material (handle one container at a time), wash 
soil from roots of turf material in cold tap water, wrap in moist toweling, place in 
properly labeled zip-lock bag (leave unzipped), and refrigerate (+5°C). Repeat 
using the non-acclimated material. 

Preparation of samples: 

1. Starting with acclimated material (handle one zip-lock bag at a time), 
separate material into individual plants, remove roots and stems from the crowns 
of 15 plants of approximately the same size, and place crowns in the properly 
labeled petri dish lined with moist filter paper. Loosely cover and keep 
refrigerated until all crowns have been prepared. Complete preparation of all 
acclimated material. 

2. Once all acclimated crowns are prepared and the frozen test tubes are at 
-2°C, pull one test tube holder (30 test tubes marked A) at a time from the 
freezer and place 5 crowns from the properly labeled petri dishes into each test 
tube. Making sure samples are in direct contact with the ice, add 1 ml cool 
(from the refrigerator) deionized water to the test tubes and return them to the 
freezer. Work as quickly as possible to avoid thawing of the ice. Start and 
complete this step on the same day. 

3. From excess crowns, place 5 crowns in each of the 5 test tubes marked for 
the thermocouples, add 1 ml cool (from the refrigerator) deionized water to each 
test tube, insert a properly marked thermocouple into each test tube, cover to 
hold thermocouple in place, and randomly place the test tubes among the 
samples. 

4. DO NOT PLACE NON-FROZEN CONTROL SAMPLES IN TEST TUBES AT 
THIS TIME. Maintain material in the petri dishes in the refrigerator (+5°C). 
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Day 2 (continue Preparation of samples): 

5. Repeat step 1 using non-acclimated material. Complete preparation of all 
non-acclimated material. 

6. Once all non-acclimated crowns are prepared and the frozen test tubes are 
at -2°C, pull one test tube holder (30 test tubes marked N) at a time from the 
freezer and place 5 crowns from the properly labeled petri dishes into each test 
tube. Making sure samples are in direct contact with the ice, add 1 ml cool 
deionized water (from the refrigerator) to the test tubes and return them to the 
freezer. Work as quickly as possible to avoid thawing of the ice. Start and 
complete this step on the same day. 

7. DO NOT PLACE NON-FROZEN CONTROL SAMPLES IN TEST TUBES AT 
THIS TIME. Maintain material in the petri dishes in the refrigerator (+5°C). 

8. Leave frozen samples overnight with freezer set-point at -2°C. 

Day 3 (begin freezing schedule): 

1. Visually examine tissue samples to ensure freezing has occurred. Lower 
freezer set-point to the first scheduled test temperature (-3°C). Once tissue 
temperature has reached -3°C, as measured by the thermocouples, maintain 
sample temperature for one hour. 

2. Remove all -3 samples (2 test tube holders, 30 test tubes each) from the 
freezer and place immediately in the refrigerator (+5°C) to thaw overnight. 

3. Lower freezer set-point to the next scheduled test temperature (-5°C). Allow 
tissue temperature to reach -5°C, as measured by the thermocouples, and 
maintain sample temperature for one hour. 

4. Place 5 crowns (non-frozen control samples) from the properly labeled petri 
dishes in the refrigerator into the control test tubes (60 test tubes) and hold in 
the refrigerator (+5°C). 

5. Remove all -5 samples (2 test tube holders, 30 test tube each) from the 
freezer and place immediately in the refrigerator (+5°C) to thaw overnight. 

6. Repeat steps 3 and 5 until all scheduled test temperatures up to and 
including -11°C have been completed. Leave freezer set at -11°C overnight. 
Day 4 (continue freezing schedule, begin Electrolyte Leakage Assay): 
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7. Lower freezer set-point to the next scheduled test temperature (-13°C). 
Allow tissue temperature to reach -13°C, as measured by the thermocouples, 
and maintain sample temperature for one hour. 

8. Remove all -13 samples (2 test tube holders, 30 test tubes each) from the 
freezer and place immediately in the refrigerator (+5°C) to thaw overnight. 
9. Repeat steps 7 and 8 until the remaining scheduled test temperatures have 
been completed. 

Electrolyte Leakage Assay: 

1. Using the non-frozen control samples and the samples thawed overnight 
from Day 3 freezing (step 6), infiltrate the tissue under partial vacuum for 20 m. 

2. Incubate the samples overnight in the refrigerator. 

Day 5 (continue Electrolyte Leakage Assay): 

3. Shake (approx. 150 rpm) samples incubated overnight (step 2) for 8 h at 
room temperature. 

4. Using the samples thawed overnight from Day 4 freezing (step 9), infiltrate 
the tissue under partial vacuum for 20 m. 

5. Incubate the samples overnight in the refrigerator. 

6. Remove samples from the shaker (step 3) and measure the Initial 
Conductivity (1C) of the leachate in each test tube. 

7. Place samples (step 6) in the freezer at -40°C overnight to kill tissue. 

Day 6 (continue Electrolyte Leakage Assay): 

8. Remove samples from -40°C freezer and let thaw at room temperature 
(approx. 4 h). 

9. Shake (approx. 150 rpm) samples incubated overnight (step 5) for 8 h at 
room temperature. 

10. Shake (approx. 150 rpm) killed samples (step 8) for 2 h at room temperature. 

11. Read Final Conductivity (FC) of leachate of killed samples (step 10). 

12. Remove samples from the shaker (step 9 ) and measure the Initial 
Conductivity (1C) of the leachate in each test tube. 
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13. Place samples (step 12) in the freezer at -40°C overnight to kill tissue. 

Day 7 (finish Electrolyte Leakage Assay): 

14. Remove samples from -40°C freezer and let thaw at room temperature 
(approx. 4 h). 

15. Shake (approx. 150 rpm) killed samples (step 14) for 2 h at room 
temperature. 

16. Read Final Conductivity (FC) of leachate of killed samples (step 15). 

% Electrolyte leakage EL (%) = (IC/FC) x 100 
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