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ABSTRACT 

EVALUATION OF TRICHODERMA ATROVIRIDE AS A POTENTIAL BIOLOGICAL 

CONTROL AGENT OF CRYPHONECTRIA PARASITICA 

FEBRUARY 1998 

EMILY Y. FERGUSON GONZALEZ 

B.S., UNIVERSITY OF MASSACHUSETTS LOWELL 

M S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Mark S. Mount 

In the search for other methods with which to control the fungus Cryphonectria 

parasitica, which causes chestnut blight on American chestnut (Castanea dentatd) trees 

in North America, the antagonist Trichoderma alroviride was isolated. The study was to 

(1) evaluate the ability of the antagonist to suppress growth and pathogenicity of C 

parasitica', (2) determine the best carrier medium which would enhance the logevity and 

efficacy of T. atroviridc, (3) characterise the mode of suppresive action of T. atroviride 

on C. parasitica. 

Trichoderma atroviride stopped the growth of C parasitica in in vitro tests on 

agar media. The pathogen on dual culture plates was not reisolated when overgrown by 

the antagonist. Later tests on bark and wood tissue and seedlings of American chestnut, 

in and outside of the greenhouse, indicated that prophylactic treatments with a water 

supension of T atroviride spores significantly reduced the development of cankers. Post 

treatment with the antagonist limited canker development in the bark wood test and on 
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potted seedlings treated outside. Severe heat in the greenhouse appeared to have affected 

the antagonist's ability to control the pathogen. 

Enhancement of spore longevity by Wilt I’ruf® and mineral oil over water 

suspensions was not significant. Efficacy of the treatment was not enhanced by either of 

the two media. No conclusions could be made on effectivity of Phyton 50 and lanolin in 

the enhancement of spore longevity efficacy of 7 atroviride. 

Observations by light and scanning electron microscopy showed no coiling 

around or penetration of the hyphae of the pathog.en. Tests for volatile antibiosis were 

negative. However, growth of the pathogen plaojd directly in cell free culture filtrates 

was significantly limited. Heat treatments of the filtrates indicated that some of the 

active metabolites were heat labile and others were heat stable. Well plate tests using the 

same filtrates failed to produce similar results, perhaps because of the lower 

concentration of filtrate used. Possible mode of antagonism may therefore be a 

combination of activity of non-volatile metabolittis when in high concentrations and 

competion for food resources. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Chestnut Trees and the Introduction of the Blight 

The American chestnut {Castanea dentata [Marsh.] Borkh.) played a very 

important role in the lives of North Americans. The chestnut was a major component of 

the hardwood forests of the Eastern United States (Anagnostakis, 1987). The nut was an 

important source of nutrition for people and domesticated animals as well as to the wildlife 

in the eastern forests (Kuhlman, 1978). The wood was used to build homes, bams, 

telephone poles, shipmasts, and railroad ties. Tarjiins extracted from the wood were used 

in the leather industry (Anagnostakis, 1987). The tree was also widely used in shade-tree 

plantings, and it was in this capacity that the chestnut blight disease was first observed on 

American chestnut trees lining an avenue at the New York Zoological Garden 

(Anagnostakis, 1987). In 1905, approximately 98% of the chestnut trees in the New York 

Zoological Garden were infected (Kuhlman, 1978). The fungus causing chestnut blight 

was highly vimlent and resulted in symptoms such as bark cankers which girdled the trees, 

wilting of foliage and the formation of epicormic sprouts below the cankers 

(Anagnostakis, 1987). 

The fungus was first identified and named Diaporthe parasitica by William A. 

Murrill (Murrill, 1906). The genus changed to Endothia in 1913, (Anderson and 

Babcock, 1913; Anderson, 1914), and more recently Cryphonectria (Murr) (Barr, 1979). 

The fungus produces yellow-orange pycnidia which push through the epidermis of the 
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host tissue and exude yellow-orange tendrils of conidia. Red perithecia found pushing 

through the epidermis of the cankers produce ascospores which are shot into the air 

(Griffin and Elkins, 1986; Anagnostakis, 1987). Fungal mycelium of C. parasitica invades 

healthy tissue via a wound and produces enzymes which degrade the phloem and cambium 

tissue (McCarroll and Thor, 1978). The fungus v/as apparently introduced from Asia, and 

this hypothesis has been supported by the fact that Chinese and Japanese chestnut are 

resistant to the disease (Metcalf, 1908). Chestnut blight was also found in China and 

Japan (Shear and Stevens 1913; Shear and Stevens, 1916). 

Despite the large effort to combat the fimgus, C. parasitica moved very rapidly 

out of New York State and by the mid 1940s had spread to all areas of the American 

chestnut range. Dissemination of conidia is facilitated by insects, birds, other mammals 

and splashing rain (Griffin and Elkins, 1986; Agrios, 1988). Ascospores are forcible 

ejected from perithecia and carried by the wind (Griffin and Elkins, 1986; Agrios, 1988). 

The American chestnut tree however, has managed to survive by sprouting from stumps, 

forming understory trees and the cycle repeated. 

The European chestnut, Castanea sativa Mill., is very similar to the American 

chestnut and is very important as a crop plant. In 1938 chestnut blight was found in Italy 

where it occurs on European chestnut and variou:> oak species (Gravatt, 1952). The 

disease also occurs in France, Switzerland, Yugoslavia (Gravatt, 1952), Spain, Turkey, 

Greece, Hungary and USSR (Griffin and Elkins, 1986). The chestnut blight epidemic in 

Europe was similar to that in the United States, though the European chestnut {Castanea 

sativa) is more resistant to the fungus (Berry, 1960). 
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When the disease was found in Europe it was thought that the chestnut population 

would be reduced as it was in North America. However, in Italy in the early 1950s some 

trees with cankers were observed to be healing (Biraghi, 1951). On a closer look Biraghi 

(1953) found that Endothia parasitica was restricted to the outer layer of the tree bark, 

apparently the result of heavy callousing of the hc'St bark in and around cankers. 

However, Biraghi concluded that the decrease in blight symptoms was due to the trees 

accquiring resistance to the fungus (Griffin and Elkins, 1986). The fungal strains of C 

parasitica subsequently isolated by Grente (1965) was demonstrated to have reduced 

virulence and were termed hypovirulent. 

1.2 Hvpovirulence and Fungicides 

Hypovirulence in C parasitica is the result of infection by a cytoplasmic, double- 

stranded ribonucleic acid (dsRNA) virus (Day et al., 1977). This virus is transmitted by 

hyphal anastomosis which allows the virus to move from the infected strains to the healthy 

virulent strains (Day, 1978). To effectively establish hypovirulent populations, 

transmission of the hypovirulent strains was accelerated in Europe by frequent human- 

mediated inoculations (Anagnostakis, 1987). 

The similarity between the chestnut blight epidemics in Europe and North America 

lead scientists to believe that hypovirulence could be an effective method of control in the 

United States. Initial inoculations of European hypovirulent strains on American chestnut 

seedlings (Anagnostakis and Jaynes, 1973) were '/ery promising so field experiments at the 

Connecticut Agricultural Experiment Station farm in New Haven, were begun in 1973 
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using hypovirulent strains from France and Italy (Anagnostakis, 1987). The hypovirulent 

strains were able to control natural infections where the hypovirulent strains were applied. 

However, cankers beginning elsewhere on the trees were not hypovirulent and were able 

to colonize and kill the trees (Anagnostakis, 1987). 

Hypovirulent strains produce low amounts of pycnidia and conidia compared to 

the virulent strains (Elliston, 1978; Griffin et al., 1983), therefore the spread of 

hypovirulence has been slow but successful in Europe. However, hypovirulent strains 

found in the U. S. A. and used in experiments to control chestnut blight have been 

unsuccessful (Tattar et al. 1996; MacDonald, personal communication). Failure of 

hypovirulence to spread in the U. S. A. may be due to several factors including 

environmental conditions, greater susceptibility of American chestnut to the blight, and the 

variation in characteristics of both virulent and hypovirulent strains existing in the U. S. A. 

(Tattar et al., 1996). 

Fungicides were found to give limited protection to American chestnut from the 

blight disease (Jaynes and Van Alfen, 1974; Elkins et al., 1978; Payne et al., 1983). With 

the systemic fungicide methyl-2-benzimidazolecarbamate (MBC), Jaynes and Van Alfen 

(1974) were able to provide limited protection to American chestnut from blight. 

However, to be effective, a large number of applications would be necessary. This would 

be impractical due to cost and possibly phytotoxicity to trees, and induction of fungal 

resistance to the fungicide could occur. Benomyl soil injections were also found to be 

unsuitable (Elkins et al., 1978). 
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1,3 Another Approach to the Biological Control of C. parasitica 

Another approach to the treatment of chestnut blight is the use of antagonistic 

microorganisms. McCabe (1974) applied a compress of compost wrapped in a building- 

paper sleeve, to the canker. The application resulted in the control and healing of the 

canker 6 months after application. Weidlich (1978) showed that use of muddy soil as a 

compress wrapped in a polyethylene sleeve controlled the canker on American chestnut 

after only 3 months. In the same study, autoclaved muddy soil was not effective in 

controlling the progress of the cankers. A total of fifty-three organisms were isolated 

from the muddy soil including bacteria, actinomycetes and a number of fungi, one of 

which was found to be an antagonist and identified as a Trichoderma sp. Magnini (1981) 

and Turchetti and Gemignani (1981) also reported that the use of sphagnum peat and soil 

produced results similar to those of Weidlich (1978) and McCabe (1974) when used on 

graft unions of European chestnut. The control attained by Turchetti and Gemignani 

(1981) on European chestnut was attributed to thermostable antifungal metabolites and 

antagonistic microorganisms such as T. viride. They also showed that C parasitica was 

parasitised by T. viride. In Austria, where the chestnut blight was first reported by 

Donaubauer (1964), hypovirulent forms of C. parasitica have not been found and a search 

for other possible antagonistic organisms was conducted (Wilhelm et al., 1992). Bacillus 

subtilis sp. was extracted from xylem fluid, and shown to be capable of suppressing 

chestnut blight when applied as a prophylactic treatment to the bark. In Europe there is a 

commercially available tree wax containing B. subtilis which is used to protect chestnut 

grafts (Heiniger and Rigling, 1994; Turchetti, 1987). Bacillus subtilis has also been used 

5 



as an antagonist against the fungus Ceratocystis tdmi (Ophiostoma ulmi\ the causal agent 

of Dutch elm disease (Turchetti, 1987). 

Thchoderma spp. are regarded as non-palhogenic saprophytic fungi commonly 

associated with fallen branches, decaying tree stumps and soil (Rifai, 1969). Many species 

of Trichoderma are mycoparasites (Barnett and Binder, 1973) and are known to be 

effective antagonists of Sclerotium rolfsii Sacc. and Rhizoctonia solani Kuhn, (Elad, et al. 

1983; Elad, et al. 1984; Benhamou and Chet, 1993; Benhamou and Chet, 1996), Pythium 

ultimum, (Besnard and Davet, 1993), Armillaria gallica (Dumas and Boyonoski, 1992), 

Polymyxa betae Keskin, (D’Ambra, and Mutto, 1986), Botrytis cinerea (Elad and 

Kirshner, 1992), Chondrostereum ulmi, and Ceratocystis ulmi (Ricard, 1983). The 

antagonistic ability of Trichoderma spp. may be due to one or a combination of several 

factors, such as, antibiosis (Dennis and Webster, 1971), competition, enzymatic 

degradation (13-1, 3-glucanases, chitinases, and proteases), and mycoparasitism (Chet et 

al., 1981; Elad, et al., 1982). Trichoderma spp. have been tested as potential biocontrol 

agents on a number of different crops, including fruits and vegetables, flowers, wheat, and 

nursery trees as well as to protect wooden products from decay, (Chet, 1987; Cook, 1993; 

Duffy et al., 1996; Hagle, et al., 1991; Sutton and Peng, 1993; Bruce and Highley, 1991; 

Bhai et al., 1994. The use of Trichoderma spp. in controlling disease in various crops 

including forest trees suggests a potential use in controlling chestnut blight. Various 

species of Trichoderma have been shown to be able to control C parasitica in vitro 

(Turchetti and Gemignani, 1981; Arisan-Atac et al., 1995). 
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1.4 Objectives 

The specific objectives of this study are: 

1. To evaluate the ability of Trichoderma to suppress growth and pathogenicity of C 

parasitica. 

2. To determine the best carrier medium which would enhance the longevity and efficacy 

of T. atroviride. 

3. To characterise the mode of suppressive action of T. atroviride on C parasitica. 
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CHAPTER 2 

IN VITRO AND IN VIVO STUDIES OF THE INTERACTION BETWEEN 

TRICHODERMA ATROVIRIDE AND CRYPHONECTRIA PARASITICA 

2,1 Introduction 

The most effective control of chestnut blight has been attained with strains of C. 

parasitica which are less virulent or hypovirulent and result in very little damage to the 

cambium of the affected trees. Hypovirulent transformation of the parasite in affected 

trees allows the trees to form callous and close the wounded area (Anagnostakis, 1990). 

Hypovirulent isolates of C parasitica were first described by Grente and Sauret (1969a 

and b) from samples collected in Italy. They subsequently used the hypovirulent isolates 

to control the disease in orchards in France. Hypovirulent C. parasitica isolates differ 

from virulent isolates in containing double stranded RNA (dsRNA). The dsRNA appears 

to affect not only the virulence of C. parasitica isolates, but also hyphal colour, 

sporulation, culture morphology (sometimes reduced growth and lobate margins), and 

enzyme production (Chung et al., 1994). After anastomising with virulent isolates, 

hypovirulent isolates transfer dsRNA to the virulent isolates thus converting them to 

hypovirulent isolates. This phenomenon occurs among closely related isolates such as 

among the European strains or among the North .American (NA) strains of C parasitica. 

(Anagnostakis and Jaynes, 1973). However, European strains were shown to be unrelated 

to NA strains and transferal of dsRNA from the European strains to NA strains was 

restricted (Bradley, H. I. et al., 1992). Although. Anagnostakis and Jaynes (1973) showed 
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that they were able to successfully treat cankers on American chestnut using a French 

hypovirulent strain from France. 

Since the discovery of the naturally occuning hypovirulent (H) strains the disease 

is much less of a problem in Italy and France where H strains have been successfully 

spread by artificial means (Anagnostakis, 1987). The wide use of H strains has been 

hampered in NA because the transmission of hypovirulence is severely restricted by the 

vegetative incompatibility within C parasitica populations (Lee et al., 1992). Since its 

introduction to NA, C parasitica has diversified into a large number of vegetative 

compatibility groups (Milgroom et al., 1991). In contrast, countries in Europe have only 

four or five compatibility groups (Anagnostakis and Waggoner, 1981; D’Aulerio et al., 

1987). Therefore, the search for and the development of other biological agents 

antagonistic to C. parasitica would be an enormous benefit for the successful control of 

chestnut blight on this continent. 

Many saprophytic fungi colonise and coinhabit the bark with C. parasitica (Gloer, 

1995). It is therefore possible, that there are competitive interactions between C. 

parasitica and other organisms (Gloer, 1995). Such interactions could reduce the 

quantity of inoculum on the trees and thus reduce the occurrence of the pathogen (Gloer, 

1995). Currently there is a great interest in developing microorganisms as commercial 

biological control agents and random screening has resulted in the isolation of various 

antifungal agents that inhibit other organisms (Gloer, 1995; Askew and Laing, 1994). At 

this time, two commercial biological fungicides are registered for use. F-stop®, (Kodak), 

contains T. harzianum and is used on various crops (Cook, 1993; Harman et al., 1991). 

The second product is BINAB T®, (Butts International), which is formulated as a pellet 
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and contains T. polysponm and T. harziamm and is used to control Dutch elm disease 

(Ricard, 1981 and 1983). 

In vitro experiments are used to initially screen isolates which are possible 

antagonists against C parasitica. Subsequent greenhouse and field experiments with 

American chestnut seedlings inoculated with C. parasitica and T. atroviride , can 

demonstrate protection from canker formation. The purpose of the following experiments 

was to determine whether the isolate T. atroviride^ found on American chestnut bark 

tissue would be an effective antagonist of C. parasitica. The studies included in vitro 

tests and in planta studies on potted American chestnut seedlings. 

2.2 Materials and Methods 

2 2.1 Sources and Maintenance of the Antagonist and Pathogen 

Samples of outer bark tissues were previously taken from each of ten large, 

apparently healthy American chestnut trees located in Western Massachusetts. The tissue 

samples from each tree were placed onto 2% potato dextrose agar (PDA, Difco), and 

incubated at 25 °C in the dark. After approximately 10 days of growth, individual isolates 

were transferred to new PDA plates. One isolate, besides several isolates of Fusarium and 

Rhizopns which overgrew C parasitica, was kept and identified as Trichoderma. The 

isolate was identified by the American Type Culture Collection (ATCC) as T. atroviride 

(Fig. 2.1). Isolates were maintained on 2% malt extract agar (MEA) and PDA with or 

without finely ground American chestnut bark tissue (5 g/ litre of distilled water). Isolates 

were also stored in 15% glycerol solution at —70 °C. At the start of each experiment, 

isolates stored in glycerol were revived by plating onto MEA and PDA. 

17 



The C parasitica isolate used in these experiments was previously collected in 

Cadwell Forest, Pelham, Massachusetts. The sample was taken from the advancing 

margin of an active canker on an American chestnut tree by using a cork borer. C 

parasitica was isolated by placing the bark samples onto PDA, cambial side facing 

downwards onto the agar. Mycelium growing from the bark onto the agar was transferred 

to new PDA and incubated at 25 °C in the dark. The isolate was maintained on 2% MEA 

and PDA with or without chestnut bark (5 g/litre] and transferred every seven days. 

Stock cultures were kept in 15% glycerol at -70 ‘’C. Every four months the isolate was 

used to inoculate American chestnut stems or seedlings and then reisolated from the active 

cankers. 

222 In vitro Interaction between C. parasitica and T. atroviride 

The experiment was conducted to observe interactions between C parasitica and 

the possible antagonist, an isolate of T. atroviride . Modified methods of Dennis and 

Webster (1971) were used. An agar plug 3 mm in diameter was taken from the edge of a 

five day-old culture with a sterile cork borer and j)laced on the edge of a 9.0 cm petri dish 

of sterile PDA or MEA. The plates were incubated at 25 °C in the dark. Two days later 3 

mm diameter agar plugs of T. atroviride were cut from the edge of a four day-old culture 

and placed on the PDA and MEA approximately 5.0 cm from the plug of C parasitica. 

The plates were then incubated at 25 °C in the dark. To determine whether growth of the 

antagonist or pathogen was stimulated or inhibited, the mycelial growth of the T. 

atroviride isolate and C.parasitica was measured daily as the mean of two measurements 

at right angles. The control plates contained only T. atroviride or C parasitica. The 
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interactions were observed macroscopically to determine if there was cessation of growth 

of the fungi, and or overgrowth of one by the other. There were 10 replicates of the 

pathogen/antagonist combination and 10 replicates of each of the control plates on both 

PDA and MEA. 

2 2.3 American Chestnut Bark Wood Test 

The bark/wood pathogenicity test on American chestnut developed by Lee et al., 

(1992) was modified to determine antagonism of the T. atrovihde isolate against C 

parasitica. American chestnut stems previously harvested and stored in a 4 ®C cold room 

with the top ends wrapped with parafilm and the bottom ends in water, were used. They 

were approximately 1.5 - 2.5 cm in diameter and were cut into 3.0 cm lengths and washed 

twice in a 10% dilute bleach solution and rinsed three times in sterile double distilled 

water. Each stem piece was then split radially in the longitudinal direction under sterile 

conditions and the bark removed. Three pieces of wood and 3 pieces of bark were placed 

onto a 9.0 cm sterile Whatman No. 4 filter paper (Whatman Inc.) in sterile glass petri 

dishes. The dishes were incubated in the dark at 25 °C . One of the following seven 

treatments was applied to bark/wood pieces in each petri dish: 

1) A 3 mm diameter PDA plug of C. parasitica (C) followed 2 days later by sterile 

water (H2O) 

2) C followed 2 days later by T. atroviride spore suspension (T) 

3) H2O followed 2 days later by C 

4) T followed 2 days later by C 

5) T followed 2 days later by H2O 
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6) H2O followed 2 days later by T 

7) H2O followed 2 days later by a 3 mm diameter sterile plug of PDA. 

The T. atroviride suspension was made by washing spores from a seven day-old culture 

and filtering through a sterile piece of miracloth to remove mycelial pieces. The 

suspension contained an average of 2 x 10^ spores/ml sterile water. The 3 mm agar plugs 

of C. parasitica were taken from the leading edges of five day-old cultures maintained on 

2% PDA. The sterile plugs of PDA were similarly prepared. The agar plugs were placed 

onto the inner surface of the bark pieces and on the cut surface of the wood pieces. Two 

hundred and fifty milliliters of the spore suspension was painted onto the entire inner 

surface of the bark tissue and the cut surface of the wood pieces, with a small paint brush. 

The growth of C parasitica and T. atroviride on the tissues was observed for 10 days at 

which time the length of the cankers was measured. Each treatment had 3 replications 

with 3 pairs of bark/wood pieces per plate making a total of 9 bark/wood pieces used for 

each treatment. The experiment was repeated another two times, however, the method of 

inoculating the wood pieces was revised so the cambial surface instead of the cut surface, 

was inoculated. 

2.2.4 Treatment of Chestnut Seedlings 

Two year old American chestnut seedlings obtained from the Bear Creek Nursery 

(Northport, WA) were stored for eighteen months at 4 °C in a cold room. Eighty plants 

were planted on 14 May, 1994 in 7.57 L plastic containers (Nursery Suppliers Inc.) 

containing Metromix 510, (a mixture of vermiculite, sphagnum peat moss, processed bark 

ash, and composted pine bark) (Scotts-Sierra Horticultural Products Company). The 
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chestnut seedlings were placed out-side in a sheltered area at the University of 

Massachusetts-Amherst. The trees were supplemented with 75 ml of 5-10-10 formula 

fertilizer (Sierra General Purpose Green-House Mix, Scotts-Sierra Horticultural Products 

Company) on 31 May, 1994. Two weeks later after completely leafing out, 24 June, 

1994, twenty-one of the seedlings were randomly divided by drawing lots, into groups of 

seven, and assigned one of seven treatments. The experiment was repeated on 16 July, 

1994 and 30 July, 1994. The treatments were as follows: 

1) 7’. atroviride spore suspension (T) followed two days after with C parasitica 

(C) 

2) C followed two days later by T 

3) C followed by sterile (H2O) two days after wounding 

4) H2O and PDA plug of C two days after wounding 

5) T followed two days later by H2O 

6) H2O and T two days after wounding 

7) H2O only 

The wounds on the seedlings were made with a 3 mm diameter cork borer approximately 

mid-way on the main stem. Potato dextrose agar plugs of C. parasitica were cut from the 

margins of five day-old cultures with a 3 mm diameter cork borer. Trichoderma 

atroviride spore suspensions were made by washing spores from seven day-old cultures 

with sterile water and then filtered through a sterile piece of miracloth to remove mycelial 

pieces. The suspensions were adjusted to 2.5 x 10^ spores/ml. For each treatment of T. 

atroviride, 0.3 ml of the spore suspension was painted onto the wound site through 

various sequences of drying (paint-dry, paint-dry etc.). The treatment areas were wrapped 
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with Saran® and sealed at both ends with identification tape (TimeMed Labeling Sytems). 

Each treatment was replicated 3 times and the treatments randomised in three 

experimental blocks. Pots in each block were arranged in completely randomised block 

design (7 pots x 3 pots). Canker lengths and widths were measured at 12 days (8 July and 

30 July, 1994), 21 days (17 July and 8 August, 1994), and 39 days (4 August and 26 

August, 1994) after all treatments had been applied. Canker areas were calculated using 

the formula for the ellipse (!/2 length x !/2 width x ti). Repeated measured analysis of the 

variance of the log transformed canker areas of treatments 1-4 from two blocks was 

calculated using the General Linear Method (GLM) (SAS Institute, Inc., Car, NC). 

Orthogonal polynomial mean comparison using the GLM was used to further analyse the 

treatment means. 

2,2.5 Treatment of Potted Chestnut Seedlings in the Greenhouse 

Two year old American chestnut seedlings obtained from the Bear Creek Nursery 

(Northport, WA) were stored for ten weeks in a 4 °C cold room. In 1995 fifty chestnut 

seedlings on 4 separate occasions, (19 January, 24 February, 17 March, and 15 April), 

were planted in 7.57 L plastic containers (Nursery Suppliers Inc.) containing Metromix 

510 (Scotts-Sierra Horticultural Products Company) and supplemented with 75 ml 5-10- 

10 formula fertiliser (Sierra General Purpose Greenhouse Mix, Scotts-Sierra Horticultural 

Products Company) once a month. Three weeks after the trees had completely leafed out, 

(7 April, 14 April, 13 May, and 5 June), a 3 mm diameter cork borer was used to wound 

the main stem mid way up each one. The seedlings were then randomly assigned a 

treatment by drawing lots and placing the pots in a 7 x 5 arrangement. The seedlings were 
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identified with nursery tags. One of seven treatments was applied randomly to each 

wound. The treatments were as follows: 

1) T. atroviride (T) followed two days later by C parasitica (C) 

2) C followed two days later by T 

3) C followed two days later by sterile water (H2O) 

4) H2O followed two days later by C 

5) T followed two days later by H2O 

6) H2O followed two days later by T 

7) H2O only. 

PDA plugs (3 mm diameter) cut from the margins of actively growing colonies of C. 

parasitica were used in treatments 1 - 4. The T. atroviride inoculum used in treatments 1, 

2, 5, and 6 was a suspension of 3.5 x 10^ spores per ml sterile water, made by washing the 

spores from a seven day-old culture of the antagonist and filtering through a sterile piece 

of miracloth. For each treatment 0.2 ml of the spore suspension was painted onto the 

wound site. The inoculation site was wrapped with Saran® and secured at both ends with 

identification tape (TimeMed Labeling Systems). Inoculations were carried out on four 

occasions three weeks after trees had leafed out in April, May, and June, (7 April, 14 

April, 13 May, and 5 June). Canker lengths and widths were measured at 8, 14, 29, and 

44 days after inoculations were completed. The experiment contained four blocks with 5 

single-plant replicates per treatment. The first of the four blocks (first treated on 7 April) 

was destroyed by spider mites two weeks after the experiment had begun (terminated 24 

April) and data from that block was discarded. Pots in each block were arranged on the 

greenhouse benches in a completely randomised complete block design (7 x 5). Using the 
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canker lengths and widths, the formula for the area of an ellipse (V2 length x V2 width x 71), 

was used to calculate the areas of the cankers. The calloused wound areas were included 

in the calculations because they too had elliptical shapes. Repeated measured analysis of 

variance of the log transformed canker areas of treatments 1-4 from three blocks was 

calculated using the General Linear Method (SAS Institute, Inc., Cary, NC). Orthogonal 

polynomial mean comparison using the GLM was used to further analyse the treatment 

means. 

2.2.6 Field Studies in the Ouabbin 

One hundred and one two year old American chestnut seedlings obtained from 

Bear Creek Nursery (Northport, WA) were stored at 4 °C in the cold room. Fifty of these 

trees were soaked for twenty-two hours in water prior to planting and another fifty-one 

trees were soaked for twenty-two hours in a bath of water containing a 1 L solution of T. 

atroviride spores at a concentration of 2.8 x 10^ spores/ml. The seedlings were planted in 

a recent clear cut area in the north section of the Prescott Penninsula adjacent to the 

Quabbin Reservoir. The site is located in the town New Salem, south-east of the 304.8 m 

high area on the Penninsula alongside the unpaved road leading to gate 20. The fifty-one 

T. atroviride treated seedlings were planted on 27 July, 1994 in the northern portion of the 

site and the untreated seedlings were planted on the same date in the southern portion of 

the site. The trees were planted approximately 3 m apart and the two plots were planted 

with approximately 28 m spacing between them. Tubes were placed around each tree to 

protect them from deer and small mammal predat on. Five days later on 1 August, leaf 

buds and bark pieces were collected from the upper and lower portions of each tree. The 
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leaf buds and bark pieces were placed onto acidified PDA (APDA) and incubated in the 

dark at 25 °C, to determine if the the tissues were colonized by Trichoderma. When all 

the trees had completely leafed out in early September, leaf and stem samples were 

collected (6 September). A 1 xl square cm sample was cut from each of the leaves as 

well as a 0.5 cm from each stem sample. The tissues were placed onto APDA to attempt 

to reisolate T. atroviride. The T. atroviride treated plants were sprayed (approximately 

20 ml/tree) on 6 September, with an aqueous solution of T. atroviride spores (3.5 x 10^ 

spore/ml). The control seedlings were sprayed with tap water. The treated trees were 

again sprayed (approximately 20 ml/tree) on the 24 October with 3.57 x 10^ spores/ml 

spore suspension and the control trees with tap water, after stem and leaf samples were 

collected. 

On 30 May, 1995 when the seedlings had leafed out, stem and leaf samples were 

collected from all the trees and placed onto APDA as described above. The winter 

survival rate of the seedlings was also determined. The treated trees were again sprayed 

(approximately 20 ml/tree) with an aqueous suspension of T. atroviride spores (3.54 x 10^ 

spores/ml) and the untreated trees with tap water. Stem and leaf samples taken from all 

the trees again on 14 October were plated as previously and the treated trees sprayed 

again with 3.0 x 10^ spores/ml T. atroviride suspension and the untreated trees with tap 

water. The surival of transplants was determined 

Sampling was repeated the following year at the end of May (1996) and tree 

viability ascertained. 
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2.3 Results 

2.3.1 7/7 vitro Interaction between C. parasitica and T. atrovihde 

The T. atrovihde isolate grew faster than the C. parasitica isolate on both media 

(Figs. 2.2 and 2.3). The antagonist grew faster on PDA than on MEA. Cryphonectria 

parasitica grew slightly faster on PDA than on MEA. The growth of T. atroviride on 

MEA plates was slower on the interaction plates than when it was grown alone on control 

MEA plates. However, the antagonist grew faster on PDA interaction plates than on PDA 

plates where it was alone. The C. parasitica isolate grew slower in the interaction plate 

on PDA than on MEA. There was no distinct zone of inhibition which would have 

indicated that the antagonist had produced antibiotics. The T. atroviride isolate 

completely overgrew C. parasitica (Fig. 2.4). There were no distinguising effects on the 

colony morphology of C. parasitica. 

Analysis of variance showed that the difference between the media was highly 

significant. On separating the data from the two different media, analysis of variance 

revealed that there was a highly significant difference among the treatments. Mean 

comparison of the treatments showed there was a significant difference between 

treatments 2 and 3 on both PDA and MEA every day that measurements were taken (data 

not shown). Only on the final day of measurements was there a significant difference 

between treatments 1 and 4 on both PDA and MEiA. In the presence of T. atroviride, the 

growth of C parasitica slowed dramatically betw een the second and third day of 

measurements. Measurements taken on the fourth day indicated that there was no further 

increase in growth of the pathogen. On the day of the third measurement, T. atroviride 

had overgrown the pathogen by an average of l.fi cm. The anatagonist continued to 
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overgrow the pathogen. On 88% of the plates containing both the antagonist and the 

pathogen, the antagonist began producing green spores approximately three days after T. 

atroviride was placed on the plates. Spores appeared on the other 12% after the fourth 

day. The antagonist when grown alone did not produce spores until its mycelia had 

reached the edge of the plate (after five days). The pathogen, which had stopped growing 

at approximately the fifth day after it was placed on the media, was not reisolated from the 

interaction plates. 

2.3.2 American Chestnut Bark Wood Test 

Bark and wood pieces treated with only C parasitica followed by water 

developed extensive necrotic areas (Fig. 2.5a); trees treated first with sterile water and 

then C parasitica also had large necrotic area on them (2.5c); those treated first with C 

parasitica and later with T. atroviride had limited necrotic areas (Fig. 2.5b); samples 

treated first with T. atroviride and later with C. parasitica had minor necrotic areas 

extending 0.45 cm (bark) or 0.47 cm (wood) from the plugs of C. parasitica (Fig. 2.5d); 

there were no necrotic areas on samples treated with only the antagonist and or water and 

PDA plug(Figs. 2.5e and f). The canker lengths on bark pieces varied little from those of 

the wood pieces (Fig. 2.6). Analysis of variance of the means indicated that there was a 

significant difference among treatments on both bark and wood pieces (Fig. 2.6). 

Separation of the means further showed that wood and bark pieces treated with T. 

atroviride had significantly smaller cankers than those which had not been treated with 

the antagonist. Prophylactic treatment of the antagonist produced the most significant 

reduction in canker length. The antagonist was isolated on APDA from those wood and 
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bark pieces that were treated with T. atroviride. It was also isolated from samples treated 

with both the antagonist and the pathogen. Cryphonectria parasitica was isolated from 

5% of the wood and 7% of the bark pieces which were treated with both fungi. The 

pathogen was isolated from all samples treated with only C. parasitica. 

2.3.3 Treatment of Potted Chestnut Seedlings 

Canker development began on trees with treatments 2, 3, and 4, within the first 

week of placing C. parasitica on the wound sites (Fig. 2.7). Canker development on trees 

treated with T. atroviride after inoculation with C. parasitica (Figs. 2.7 and 2.8a), was 

significantly smaller than on trees which were not treated with the antagonist after 

inoculation with C.parasitica (Figs. 2.7 and 2.8b). Compared to the control (C-T) (Fig. 

2.8c), canker development was also significantly reduced with the prophylactic treatment 

of T. atroviride (Figs. 2.7and 2.8d). Those seedlings not treated with C parasitica did 

not develop cankers (Fig. 2.8e). Cankers began to develop twenty-one days after the 

pathogen was placed on the wound site of approximately 1% of the trees with treatment 1 

(T-C) (Fig. 2.8d). The pathogen was isolated from those trees. The antagonist was 

isolated from all seedlings treated with both T. atroviride and C parasitica or only T. 

atroviride, whereas in control treatments in which seedlings were treated with only C. 

parasitica, only C. parasitica was isolated. C parasitica was also isolated from 91% of 

the trees treated first with C. parasitica and then T. atroviride. 

Analysis of variance showed that there was no significant difference between the 

blocks but there was very significant difference among treatments on every day of 

measurement (2.7). Mean comparison showed that there was significant difference 
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between treatments 1 and 4 and 2 and 3 on every day of measurement (Fig. 2.7). At the 

thirty-ninth day 65%, 43%, and 18% of trees with treatments 3, 4, and 2 respectively, had 

wilt symptoms. Those trees with treatment 1 and the other controls exhibited no wilt 

symptoms. 

2.3.4 Treatment of Potted Chestnut Seedlings in the Greenhouse 

Canker development began on trees with treatments 1, 2, 3, and 4 within the first 

week of placing C. parasitica on the wound site. Cankers on seedlings with treatments 2, 

3, and 4 developed very rapidly (Fig. 2.9). Analysis of variance revealed that there was 

significant difference among treatments on each day of measurement. Comparison of 

means showed that canker areas on trees with treatment 4 were significantly greater than 

those on trees with treatment 1, on each day of measurements. Canker areas on trees with 

treatments 2 and 3 were found to be significantly different on the first day of measurement 

(Fig. 2.9). 

Trees with prophylactic treatments of T. atroviride (Fig 2.10a), compared to their 

controls which had sterile water (Fig 2.10b), had limited canker development. Post 

treatment with the antagonist did not limit canker development as it had done in previous 

experiments. Trees which had first been treated with C. parasitica and secondly with 71 

atroviride had large necrotic areas comparable to those on control trees, first C. 

parasitica and then sterile water, (Figs. 2.10c and d). 

The antagonist was isolated from seedlings which had been inoculated with 71 

atroviride and C. parasitica or only 71 atroviride Cryphonectria parasitica was isolated 

from seedlings with treatments 1, 2, 3, and 4. At the forty-fourth day, 84%, 70%, 93%, 
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and 12% of trees with treatments 3, 4, 2, and 1 respectively, had wilt symptoms. Cankers 

which developed on trees in the greenhouse were smaller than cankers which had 

developed on trees outside the greenhouse the previous summer (Figs. 2.7 and 2.9). 

2.3.5 Field Studies in the Ouabbin 

The antagonist was isolated from all samples collected from the T. atroviride 

treated trees on 1 August, 1994, five days after the trees were planted. Only one of those 

trees not treated was found to have Trichoderma. All the trees had produced leaves. 

Sampling in September showed that Trichoderma was also isolated from all the trees in 

the treated section and three from the untreated site. 

The trees were not sampled again until 30 May, 1995. The tops of the trees had 

died back but leaf buds along the main stems had opened. All trees survived the winter. 

Plating of samples from the trees showed that Trichoderma was on 37 of the treated trees 

and on 2 of the untreated trees. Trichoderma was found more often on stem samples 

(82%) than on leaf samples (34%). In October, 1995 two trees in the treated section were 

removed because of death due to root rot or damage by a small mammal. Growth of the 

branches on many trees was restricted because of the tubes. Forty-seven trees in the 

treated section and 26 trees in the untreated section were found to have Trichoderma. 

Eighty-seven percent of the stem sections and 91% of the leaves checked had 

Trichoderma. It was not determined in this study which Trichoderma sp. was isolated 

from the trees. 

On 24 May, 1996 when the trees were first visited after the winter, 30 trees in the 

treated section and 23 trees in the untreated section were still alive. Trichoderma was 
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recovered on APDA from 26 of the treated and 18 of the untreated trees. Seventy-three 

percent of the stem sections and 41% of the leaves checked had Trichoderma. 
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Number of days after C parasitica was placed on medium 

Figure 2.2. In vitro interaction between Cryphonectriaparasitica and Trichoderma 
atroviride on malt extract agar (MEA). C = C. parasitica only; C/TC = C. parasitica in a 
petri dish with T. atroviride) T = T. atroviride only; T/TC = T. atroviride in a petri dish 
with C. parasitica. Bars with the same letter within each day grouping are not 
significantly different at p = 0.05. 
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Figure 2.3. In vitro interaction between Cryphonectriaparasitica and Trichoderma 
atroviride on potato dextrose agar (PDA). C = C. parasitica only; C/TC = C. parasitica 
in a petri dish with T. atroviride, T = T. atroviride only; T/TC = T. atroviride in a petri 
dish with C. parasitica. Bars with the same letter within each day grouping are not 
significantly different at p = 0.05. 
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Figure 2.4. Cryphonectriaparasitica (on left) being overgrown by Trichoderma 
atroviride (on right), fourteen days after the plug of T. atroviride was transferred onto the 
PDA containing a two day old plug of the pathogen. The green and yellow spores 
produced by T. atroviride cover C parasitica. 
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Figure 2.5. Bark and wood tissue pieces from American chestnut trees {Castanea 

dentata) with (A) A 3 mm diameter plug of Cryphonectriaparasitica followed by sterile 
water; (B) Plug of C parasitica placed on tissue and followed by Trichoderma atroviride 

spore suspension; (C) Sterile water followed by C. parasitica, (D) T. atroviride spore 
suspension followed by a plug of C parasitica', (E) T. atroviride spores followed by 
sterile water (water followed by T. atroviride was equal in appearance, hence not shown); 
(F) Water followed by a plug of potato dextrose (PDA). Secondary inoculations were 

made two days after the primary inoculations. 
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Treatment 

Figure 2.6. American chestnut bark wood test. C-H = Cryphonectriaparasitica plug 
followed by sterile water. C-T = C parasitica followed by Trichoderma atroviride spore 
suspension. H-C = Sterile water followed by C. parasitica. T-C = T. atroviride followed 
by C. parasitica. T-H = T. atroviride followed by sterile water. H-T = Sterile water 
followed by T. atroviride. Co = Sterile water followed by a plug of potato dextrose agar. 
Secondary inoculations were made two days after the primary inoculations. Bars with the 
same letter are not significantly different at p = 0.05. 
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Figure 2.7. Treatment of potted American chestnut seedlings. (1) Trichoderma 
atrovihde spore suspension followed by Cryphonectria parasitica, (2) C. parasitica plug 
followed by T. atroviride; (3) C parasitica followed by sterile water; (4) Sterile water 
followed by C. parasitica-, (5) T. atroviride followed by sterile water; (6) Sterile 
water followed by T. atroviride-, (7) Sterile water followed by sterile water. Secondary 
inoculations were made two days after the primaiy inoculations. Orthogonal polynomial 
mean comparison: Trt. 1 vs tit. 4, significantly different on day 12 and highly 
significantly different on days 21 and 39; Trt. 2 vs trt 3, significantly different on 
day 12, highly significantly different on day 21 and significantly different on day 39. 
Trt. = treatment, vs = versus. 
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Figure 2.8. Treated potted American chestnut seedlings thirty-nine days after 
inoculations were completed. (A) A small necrotic canker on seedling first treated with 
Cryphonectria parasitica followed by a spore suspension of Trichoderma atroviride. 
The green spores of the antagonist are also visible. (B) Necrotic canker on seedling 
first treated with Cryphonectria parasitica and then with sterile water. (C) Large canker 
on seedling treated first with sterile water and then with C. parasitica. (D) Seedling 
treated first with T. atroviride and then with C. parsitica. (E) Seedling was treated 
only with sterile water. Seedlings treated with T. atroviride and then sterile water were 
similar in appearance. Secondary inoculations were made two days after the primary 

inoculations. 
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Figure 2.9. Treatment of potted American chestnut seedlings in the greenhouse. 
(1) Trichoderma atroviride spore suspension followed by Cryphouectria parasitica\ 
(2) C parasitica plug followed by T. atroviride, (3) C. parasitica followed by sterile 
water; (4) Sterile water followed by C parasitica, (5) T. atroviride followed by sterile 
water; (6) Sterile water followed by T. atroviride, (7) Sterile water followed by sterile 
water. Secondary inoculations were made two days after the primary inoculations. 
Orthogonal polynomial mean comparison: Trt. 1 vs trt. 4, significantly different on day 
12 and highly significantly different on all days; Trt. 2 vs trt 3, no significant difference. 
Trt. = treatment, vs = versus. 
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Figure 2.10. Treated potted American chestnut seedlings in the greenhouse 
fourteen days after inoculations were completed. (A) Seedling treated first with 
Trichoderma atroviride spore suspension then with Cryphonectha parasitica. (B) 
Seedling treated first with sterile water and then with C. parasitica. (C) Seedling treated 
first with C parasitica followed by T. atroviride. (D) Seedling treated with C. parasitica 

and then with sterile water. Secondary inoculations were made two days after the 

primary inoculations. 
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CHAPTER 3 

EVALUATION OF CARRIER MEDIA FOR THE APPLICATION OF 

TRICHODERMA ATROVIRIDE TO AMERICAN CHESTNUT TREES 

3.1 Introduction 

In the pursuit to decrease the use of pesticides, microbial antagonists have become 

an attractive option for the control of plant diseases, particularly disease caused by soil- 

borne pathogens (Goldman et al., 1994). Microbial antagonists found to be effective 

biological control agents in laboratory and greenhouse tests have however been difficult to 

apply to field situations (Kok et al., 1996). These previous studies have shown that the 

introduction of antagonistic microorganisms into the soil, results in improved pathogen 

control if the microorganism is formulated in a carrier. The carrier can serve as a 

protectant and/or a food base, thus allowing the antagonist to survive in greater quantity 

through the establishment stage (Kok et al., 1996). 

Carriers mixed with microbial antagonists have been used with varying degrees of 

success under experimental conditions in both gre enhouse and field situations. Carriers 

used include clay powder, alginate pellets, vermiculite-bran mixture (Kok et al., 1996), 

processed manure pellets, peat (Lo et al., 1996), coffee husk (decomposed and fresh), tea 

waste and neem cake (Bhai et al., 1994), as well as liquid formulations containing an 

aqueous binder such as Pelgel (LiphaTech, Milwaukee, WI) (Taylor et al., 1991) to coat 

seeds. As a part of these formulations, the antagonists were able to establish stable 

populations (Kok et al., 1996). There are very few reports describing the use of earners 
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containing Trichoderma for the treatment of pathogens which attack above ground. 

McCabe (1974) reported that a compost applied as a compress to cankers caused by 

Cryphonectria parasitica on American chestnuts resulted in canker healing after six 

months. Weidlich (1978) also reported control of the cankers caused by C. parasitica 

after three months using muddy soil compresses. From the compresses used by Weidlich 

(1978), Trichoderma was isolated and was thought to be possibly responsible for the 

antagonistic effects. Turchetti and Gemignani (1981), using sphagnum moss, found 

cankers healing as did Magnini (1981) when he applied this media to graft unions and 

cankers. Trichoderma viride was isolated and determined to be the antagonist in the 

sphagnum peat used by Magnini (1981). Liquid coating formulations used by Taylor et 

al., (1991) on seeds to protect them from Pythium and Rhizoctonia, were found to 

provide a conducive environment for T harzianum and allowed the antagonist to be 

distributed uniformly on the seed surfaces. A pellet formulation of T viride was tested for 

a number of years on its ability to control the pathogen {Chondrostereum purpureum) 

which causes silver leaf disease affecting fruit trees (Corke, 1979). Ricard (1983) 

reported antagonism of Ceratocystis ulmi by Trichoderma isolates when a commercial 

formulation, called BINAB T® was used. The study conducted in the field (Sainte 

Adresse near Le Havre, France) with fifteen elm trees, resulted in limited protection from 

the Dutch elm pathogen, Ophistoma ulmi, because the Trichoderma did not grow to new 

areas once the nutrients of the pellet were used up. 

The choice of amendments to be used in formulation of bioprotectants depends on 

their ability to enhance the activity of the antagonist as well as to provide protection. Ease 

of application and cost of the carrier media are also important considerations. In the 
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following described studies, the carrier media used which could possible fulfill the above 

requirements, included lanolin, wax/lanolin wound treatment cream, mineral oil, and Wilt- 

Pruf®. The experiments were done on stems of American chestnut trees in the field and 

stem sections of American chestnuts in the laboratory. 

3,2 Materials and Methods 

3.2.1 Field Studies in Cadwell 

The Cadwell Memorial Forest, the research forest of the University of 

Massachusetts in Pelham, Massachusetts was chosen in 1995 to conduct field testing of 

the carriers containing Trichoderma atroviride. Five sites were selected near the entrance 

area to the forest. Many young American chestnut trees were found among oak and beech 

trees. Fifty-five to sixty American chestnut trees (2.5 to 4.0 cm diameter) were selected 

on five different dates(6 September, 7 September, 8 September, 22 September, and 25 

September) at each site. The main stem of each tree was wounded with a 3 mm diameter 

cork borer. At each wound site an agar plug (3 mm diameter) of C parasitica growing 

on PDA was placed and the area wrapped with approximately 7 cm width strips of 

parafilm. Twelve days after inoculation with C. parasitica (cankers were approximately 1 

cm in width) the trees were tagged and the second treatments applied. The following nine 

treatments were used: 

1) C parasitica (C) only. 

2) C then painted with sterile water (HiO). 

3) C then painted with H2O and wrapped with parafilm. 
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4) C then plastered with lanolin (L) (Sigma Chemical Company, St. Louis, 

MO). 

5) C then plastered with Phyton 50® (W) (a commercially available 

wax/lanolin based cream wound treatment from STB Inc., Minneapolis, 

MN). 

6) C then T. atroviride spore suspension (T). 

7) C then T and then wrapped with parafilm. 

8) C then T spores mixed in L. 

9) C then T spores mixed with W. 

The T. atroviride spore suspension was made by dividing a PDA plate of sporulating T. 

atroviride into thirds and washing the spores from each section individually with sterile 

distilled water into sterile beakers. The spore suspensions were filtered through a sterile 

piece of miracloth and diluted to 3.0 x 10* spores/ml. For each inoculation of T. 

atroviride mixed with lanolin or Phyton 50®, 2 ml of the spore suspension was mixed with 

5 g of sterilized lanolin or Phyton 50®. The lanolin and Phyton 50®, base treatments were 

applied with spatulas while the spore suspension and sterile water were applied with small 

paint brushes. Around the wound sites on each tree four holes 3 mm diameter were drilled 

(approximately 2 mm to 3 mm depth) forming comers of a square with 2.54 cm length 

sides. The area between the drilled holes including inoculation site was treated with the 

control agent (Fig. 3.1). Each treatment per block was replicated 5 times and a total of 

forty-five of the trees inoculated with C parasiticalhXocV. were chosen to be used in the 

experiment. Four of the five blocks initially inoculated with C. parasitica were used 
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because cankers failed to develop on the trees inoculated on 6 September. The canker 

lengths and widths on all trees were recorded sixty-four days after the second inoculation 

was applied (22 November, 23 November, 7 December, and 10 December). The canker 

areas were calculated from the trees of the four blocks with the formula for the area of an 

ellipse (V2 length x V2 width x n). Analysis of variance of the log transformed canker areas 

was calculated using the General Linear Method (GLM) and mean separation by Duncan’s 

Multiple Range test with a level of significance (o.) equal to 0.05. 

3.2.2 Stem Section Inoculations 

American chestnut trees of 2.5 cm to 3.2 cm in diameter were cut and small 

branches removed on 10 October, 1995. The logs were then cut into approximately 30.0 

cm lengths and one end sealed with parafilm and placed into buckets containing a depth of 

5.0 cm of water (unsealed end down). The buckets were filled with stems and covered 

with black garbage bags and then placed into the cooler 

(4 °C) until needed. Water levels in the buckets were checked every two weeks. Stems 

were taken from the cooler and washed in a 10% hypochlorite solution followed by three 

rinses with sterile deionized water. Both ends of each stem were wrapped with parafilm to 

prevent desiccation. Each stem was then randomly (by drawing lots) labeled with a 

treatment type, wounded with a 3 mm diameter cork borer followed by the first 

inoculations. The inoculated site was wrapped with parafilm and the stem sections placed 

in the dark in 25 °C ± 0.1 °C incubators (Fig. 3.2). Two days following the primary 

inoculations the secondary inoculations were applied. The twenty-four treatments were as 

follows: 
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1) Sterile water (H2O) then H2O 13) H2O/7’. atroviride-^^iO (TH2O) 

2) H20/Mineral Oil (MO) 14) H2O/7’. atroviride+MO (TMO) 

3) H20AVilt-Pruf (WP) 15) H2O/7’. atroviride-^V^V (TWP) 

4) C. parasitica (C)/H20 16) C/TH2O 

5) C/MO 17) C/TMO 

6)C/WP 18) C/TWP 

7) H2O/H2O 19) TH2O/H2O 

8) MO/H2O 20) TMO/H2O 

9) WP/H2O 21)TWP/H20 

10) H2O/C 22) TH2O/C 

11) MO/C 23) TMO/C 

12) WP/C 24) TWP/C 

spore suspensions of T. atroviride were made by dividing heavily sporulating, seven day 

old PDA plates containing heavily sporulating into thirds and lightly scraping the spores 

from the plate with a sterile spatula into 40 ml of sterilized water, Wilt-Pruf® (Wilt-Pruf 

Products Inc., Greenwich, CT), or mineral oil (Melville Corp., Woonsocket, RI). The 

spore concentration used in all three experiments was determined to be an average of 2.3 x 

10* spores/ml by counting the spores in the water suspensions. Half a milliliter of the 

liquid inoculum including the sterile water was applied directly to the wounded site with 

pasteur pipettes. Three milliliter diameter PDA plugs of C. parasitica were taken from 

the edges of 5 day old plates. The inoculated stems were placed onto the plastic surface 
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of sorbent paper. The stems were incubated for 40 days. The experiment was repeated 

twice (23 March and 22 May, 1996) with 6 replicates per treatment. The experiment was 

repeated a third time (23 July) using stems cut on 5 April, 1996. However, in this 

experiment the stems were placed onto the plastic surface of sorbent paper inside 

degradable black 113.6 L size, plastic garbage bags (Price Chopper Inc., Schenectady, 

New York) which had one side cut to allow easy access to the stems. The garbage bags 

were used to decrease the loss of moisture from the stems in the incubator. The stems 

were incubated in the dark for thirty days at 25 ®C ± 0.1 °C. Water was added daily below 

the towels to prevent desiccation of the stems; two jars of water were placed on each of 

the shelves in the incubator. Canker widths and lengths were recorded at the end of each 

experiment and the areas calculated using the formula of the area of an ellipse (V2 length x 

V2 width X 7c). Analysis of variance of the log transformed canker areas was calculated 

using the General Linear Method (GLM) and mean separation by Duncan’s Multiple 

Range test with a level of significance (a) equal to 0.05. 

3.3 Results 

3 3.1 Field Studies in Cadwell 

In the first twelve days canker development was very slow on trees in blocks 1 and 

3 (0.5 cm extension from edge of wound) whereas on trees in blocks 2 and 4, canker 

development was more rapid (1.0 cm extension from edge of wound). In the cool 

temperatures of fall, any treatments containing Phyton 50** or lanolin became very hard, 

however on a very warm day they would melt and in a few cases dripped down the side of 

the tree. Analysis of variance of the means indicated no significant difference among the 
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treatments but there was a very significant difference among the plots. The interaction 

between plot and treatment was not significant. Mean separation resulted in the 

treatments being grouped together (Fig. 3.3). There was no correlation of the ranking of 

the treatment means among the plots. Spore viability tests were not done due to the 

difficulty in collecting tissue samples in the cold temperatures prevalent at the time of data 

collection. 

3.3.2 Stem Section Inoculations 

Plot 3 was analysed separately from plots 1 and 2 which were analysed together. 

Significant effects of treatment on canker area in plots 1 and 2, were identified by analysis 

of variance (Fig. 3.4). Mean separation grouped all the prophylactic T. atroviride 

treatments (22, 23, and 24) separately from their corresponding controls (10, 11, and 12) 

in plots 1 and 2. Secondary treatments with T. atroviride (treatments 16, 17, and 18) 

were significantly different from stems with prophylactic treatments. Treatment 16 was 

significantly different from its control (treatment 4) but not significantly different from the 

controls treatments 17 and 18. Both treatments 17 and 18 were significantly different 

from their controls (5 and 6 respectively). All controls without C parasitica were not 

significantly different and were therefore grouped together. The combined spore viability 

in blocks 1 and 2 on stems with prophylactic treatments TMO, TWP, and TH2O after 

forty days were on average 3.2 x 10^ spores/cm^, 3.4 x 10^ spores/cm^, and 2.8 x 10*^ 

spores/cm^ respectively. 

Plot 3 also showed significant difference among treatments (Fig. 3.5). Two 

prophylactic treatments (23 and 24) were grouped together but treatment 23 also shared 

50 



grouping with treatments which had not been inoculated with C parasitica and with the 

prophylatic treatment 22. Treatment 22 was not significantly different from those which 

had not been inoculated with C parasitica. Treatments 17 and 18 were significantly 

different from their controls (5 and 6 respectively) and treatment 16. Treatment 16 was 

was not significantly different from its control (4). The areas recorded for those controls 

without C. parasitica were calculated from measurements taken of callous tissue formed, 

they did not represent canker areas (Figs. 3.4 and 3.5). In block three the average spore 

viability after thirty days on stems with prophylactic treatments TMO, TWP, and TH2O 

were 4.0 x 10^, 3.2 x 10^, and 3.0 x 10^ spores/cm^ respectively. 
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Figure 3.1. Treatments at the Cadwell forest in Pelham, Massachusetts. All wounds 
were inoculated with a potato dextrose agar plug of C parasitica twelve days before 
secondary inoculations were made. (A) Treated with only sterile water and left 
unwrapped. Other trees similar in appearance (not shown) were treated with T. atroviride 
and not wrapped. (B) Treated with Phyton 50® alone. (C) Treated with lanolin alone. 
(D) Treated with sterile water and wrapped with parafilm. Other trees (not shown) were 
similarly treated with T. atroviride. (E) Treated with a mixture of T. atroviride and 
Phyton 50®. (F) Treated with a mixture of T. atroviride and lanolin. 
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Figure 3.2. Stem sections were placed on sorbent paper and incubated in the dark at 

25 X. 
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Treatment 

Figure 3.3. Cadwell forest treatments following sixty-four days after the second 

inoculation. Secondary inoculations were made twelve days after the primary 

inoculations. (1) Cryphonectriaparasitica only; (2) C parasitica followed by sterile 

water; (3) C. parasitica followed by sterile water and wrapped with parafilm; (4) C. 

parasitica then lanolin; (5) C. parasitica followed by Phyton 50®; (6) C. parasitica 

followed by Trichoderma atroviride spore suspension; (7) C. parasitica followed by T. 

atroviride\ (8) C parasitica followed by T. atroviride mixed with lanolin; (9) C 

parasitica followed by T. atroviride mixed with Phyton 50®. Bars with the same letter 

are not significantly different at p = 0.05. 
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Treatment 

Figure 3.4. Efficacy of three carrier types in the control of canker development on stem 

sections of American chestnut trees. (1) Sterile water (H2O) then H2O; (2) H20/Mineral 

Oil (MO); (3) HiOAVilt-Pruf® (WP); (4) C. parasitica (C)/H20; (5) C/MO; (6) CAVP; (7) 

H2O/H2O; (8) MO/H2O; (9) WP/H2O; (10) H2O/C; (11) MO/C; (12) WP/C (13); H2O/7: 

atroviride+HiO (TH2O); (14) II2O/T. atroviride+MO (TMO); (15) II2O/T. 

atroviride+W? (TWP); (16) C/TH2O; (17) C/TMO; (18) C/TWP; (19) TH2O/H2O; (20) 

TMO/H2O; (21) TWP/nH[20; (22) TH2O/C; (23) TMO/C; (24) TWP/C. Secondary 

inoculations were made two days after the primary inoculations. Data was obtained from 

the combination of observations from blocks 1 and 2, forty days after inoculations were 

completed. Bars with the same letter are not significantly different at p = 0.05. 
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Figure 3.5. Efficacy of three carrier types in the control of canker development on stem 

sections of American chestnut trees. 1) Sterile water (H2O) then H2O; (2) H20/Mineral 

Oil (MO); (3) H20AVilt-Pruf® (WP); (4) C parasitica (C)/H20; (5) C/MO; (6) C/WP; (7) 

H2O/H2O; (8) MO/H2O; (9) WP/H2O; (10) H2O/C; (11) MO/C; (12) WP/C (13); H2O/7: 

atroviride-^WiO (TH2O); (14) H2O/I atroviride^MO (TMO); (15) H2O/7’. 

atroviride+WP (TWP); (16) C/TH2O; (17) C/TMO; (18) C/TWP; (19) TH2O/H2O, (20) 

TMO/H2O; (21) TWP/H2O; (22) TH2O/C; (23) TMO/C; (24) TWP/C. Secondary 

inoculations were made two days after the primary inoculations. Data was obtained from 

only block 3, thirty days after inoculations were completed. Bars with the same letter are 

not significantly different at p = 0.05. 
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CHAPTER 4 

ANTAGONISTIC PROPERTIES 

4,1 Introduction 

Possible mechanisms involved in the pathogen/antagonist interaction include 

my coparasitism (Dennis and Webster, 1971c), production of non-volatile antibiotics 

(Dennis and Webster, 1971a), and the production of volatile antibiotics (Dennis and 

Webster, 1971b). In vitro studies used by researchers (Dennis and Webster, 1971 a, b, 

and c; Elad et al., 1971; Chambers and Scott, 1995) have been successful in elucidating 

some mechanisms of biocontrol used by antagonists, particularly, several species of 

Trichoderma, 

Dennis and Webster (1971 a, b) showed that Trichoderma spp. produce both 

volatile and water-soluble antibiotics during periods of active growth. Mycelial growth 

of Rhizoctonia solani, Pythium ultimum, Fomes annosus, Fusarium oxysporum, 

Pyronema domesticum and Mucor hemalis were all noted to be affected by the 

antibiotics in cell free culture filtrates. Spore germination was also noted to be inhibited. 

Work presented by Bruce et al. (1984) on the control of the wood rotting basidiomycete, 

Lentinus lepideus, by Trichoderma spp., indicated that water-soluble antibiotics produced 

by the antagonists were effective against the pathogen. They however concluded that 

volatile metabolites alone may have resulted in the inhibition and lysis of the pathogen’s 

mycelium. The antibiotics of this study were unidentified. Characterization of cell free 

extracts of two strains of Trichoderma harzianum by Claydon et al. (1987) showed that 
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two alkyl pyrones inhibited the growth of R. solani. Claydon et al. (1987) also noted 

finding a patent which described the alkyl pyrone, 6-pentyl-pyrone, as being produced by 

the spores of Trichoderma which together with several biologically active peptides, 

Trichozianines (also produced by the antagonist) inhibited the growth of the pathogens 

Creationistis tdmi and Botrytis cinerea. 

Trichoderma spp. also produce various hydrolytic enzymes such as cellulases, 

chitinases, proteinases, glucanases, and xylanases (Goldman et al., 1994; Lorito et al., 

1993). Some species of Trichoderma have higher enzyme activity than others and this 

may depend on what type of substrate they are grown on (Elad et al., 1982). Chitinase 

and P-l,3-glucanase have been shown to degrade the cell walls of Sclerotium rolfsii, 

Rhizoctonia solani, and Pythium aphanidermatum (Elad et al., 1982). Lipases and 

proteases from T harzianum are believed to also dissolve certain sections of cell walls of 

S. rolfsii (Elad et al., 1982). Chitinolytic enzymes produced by T harzianum inhibited 

spore germination of Fusarium graminearum, F. solani, Botrytis cinerea, Ustilago 

avenae,md Uncinula necator. These same enzymes did not inhibit sporangia 

germination nor the mycelial growth of Pythium ultimum which as an oomycete contains 

no chitin in its cell walls (Lorito et al., 1993). Glucanase enzymes and chitinolytic 

enzymes were also noted to work synergistically (Lorito et al., 1993). 

Mycoparasitism appears to play an important role in the control of S. sclerotiorum 

by T harzianum (Inbar et al., 1996). Many researchers (Elad et al., 1982, 1983; 

Benhamou and Chet, 1993, 1996; Camporota, 1985; Dumas and Boyonoski, 1992; 

Chambers and Scott, 1995; Askew and Laing, 1994) have described parasitic interactions 

between Trichoderma and soil borne plant pathogens using light and electron 
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microscopy. Inbar et al. (1996) found T. harziamm hyphae growing along the hyphae of 

S. sclerotiorum, forming branches and coiling around the pathogen’s hyphae. The 

Trichoderma also penetrated and grew inside the hyphae of sclerotiorum. Turchetti 

and Gemignani (1981) after conducting experiments on using soil packs to treat chestnut 

blight cankers, isolated and showed the mycelium of T. viride penetrating and growing 

inside the mycelium of C. parasitica. 

The following experiments were therefore conducted to determine if the 

antagonistic mechanisms found to operate in other Trichoderma spp. would also be found 

to function in the isolate T. atroviride. 

4.2 Materials and Methods 

4.2.1 Volatile Antibiosis Test 

One half of each Gray dish containing 2% malt extract agar (MEA, Difco) was 

inoculated with a 3 mm diameter plug of C. parasitica taken from the edge of a five day- 

old culture. The dishes were incubated in the dark at 25 °C for two days. After two days 

the other half of the Gray dish was inoculated with a 3 mm diameter plug of T. atroviride 

taken from the edge of a three day-old culture. The dishes were sealed with parafilm and 

replaced in the incubator. For six days, daily measurements of colony diameters were 

determined and recorded as the mean of two measurements at right angles. The 

experiment was repeated 3 times with 10 replicates of the pathogen/antagonist 

combination and 10 of each control, containing only C parasitica or T. atroviride plugs. 

Repeated measured analysis of the variance of the means of mycelial growth was 

calculated using the General Linear Method (GLM) and the separation of means was 
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carried out by Scheffe’s test with a level of significance (a) equal to 0.05 (SAS Institute, 

Inc., Cary, NC). 

Volatile antibiosis was also checked using the method of Dennis and Webster 

(1971). A3 mm diameter plug of the T. atroviride isolate was placed in the centre of a 

90 mm diameter petri dish containing 2% ME A (Difco) or PDA (Difco) and incubated in 

the dark at 25 °C for two days. Plates of 2% ME A and PDA were inoculated similarly 

with a 3 mm diameter plug of C parasitica. The bases of these newly inoculated plates 

were inverted and taped to the base of the plates of the 2-day old antagonists. The plates 

were incubated in the dark at 25 °C and the colony diameters determined daily for five 

days as the mean of two measurements at right angles. Ten replicates of each 

pathogen/antagonist combination and 10 replicates of each control which consisted of 

plates of either C. parasitica or T. atroviride inverted over plates of non-inoculated 2% 

MEA and PDA were made. This experiment was only run for a total of seven days, after 

T. atroviride was first placed onto the medium, because spore production by the T. 

atroviride isolate thereafter, would contaminate the plates of C parasitica. Repeated 

measured analysis of the variance of the means of mycelial growth was calculated using 

the General Linear Method (GLM) and the separation of means was carried out by 

Scheffe’s test with a level of significance (a) equal to 0.05 (SAS Institute, Inc., Cary, 

NC). 

4.2.2 Preparation of Cell Free Culture Filtrates 

Cell free culture filtrates were prepared using a modification of methods used by 

Bertagnolli et al. (1996). Two hundred millilitre Erlenmeyer flasks containing 50 ml of 
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one of the following growth media; 

1) Potato dextrose broth (PDB, Difco) supplemented with 1 mM 3-[N- 

morpholino] propanesulfonic acid (MOPS, Sigma Chemical Company, 

St. Louis, MO) buffer, pH 5.0 

2) PDB supplemented with 1 mM MOPS, pH 7.0 

3) PDB broth, pH 5.0 

were inoculated under sterile conditions with a 3 mm diameter PDA plug of mycelium 

taken from a four-day old plate of T. atroviride grown at 25 ®C in the dark. Six flasks of 

each medium, not containing the antagonist, were prepared. Twelve flasks of each of the 

three different media containing the antagonist were prepared so that the filtrates from six 

of the flasks could be used as heat controls. Cultures were shaken in the dark at 110 rpm 

at room temperature (22 °C) and harvested after 7 days of incubation by vacuum filtering 

in 115 ml Nalgene Disposable Sterilization Filter Units (Nalge Company, Rochester, NY) 

(Fig. 4.1). Control cell free filtrates were made similarly, with the same growth media 

but contained no T. atroviride. From each flask, 10 ml of each cell free culture filtrate 

were transferred under sterile conditions to 50 ml glass tubes. Eighteen tubes of each 

filtrate type including the control filtrates were prepared. From the remaining filtrates, 20 

ml of each filtrate were set aside for agar well-plate-assays. 

4 2 3 Interaction of Culture Filtrates with Growth of C parasitica 

To each of the glass tubes containing filtrates, 10 ml of new media (PDB/MOPS, 

pH 5.0, PDB/MOPS, pH 7.0, or PDB, pH 5.0) were added. To all the tubes containing 20 

ml of media, a 3 mm diameter PDA plug of C. parasitica was added. The plates of C. 
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parasitica were prepared with the same buffers (1,2, and 3 as stated above) used in the 

preparation of the filtrates, the plates were poured to 0.5 cm thickness. The heated 

control filtrates were prepared by autoclaving (temperature of 120 °C and pressure of 1.0 

kg/cm ) the filtrates from six flasks of each of th<; different cultures containing the 

antagonist for 15 minutes. The test filtrates were as follows: 

1) PDB/MOPS, pH 5.0- no antagonist 

2) PDB/MOPS, pH 5.0- antagonist-autoclaved 

3) PDB/MOPS, pH 5.0- antagonist 

4) PDB, pH 5.0- no antagonist 

5) PDB, pH 5.0- antagonist-autoclaved 

6) PDB, pH 5.0- antagonist 

7) PDB/MOPS, pH 7.0- no antagonist 

8) PDB/MOPS, pH 7.0- antagonist-autoclaved 

9) PDB/MOPS, pH 7.0- antagonist. 

The tubes were placed into test tube racks and shaken at 120 rpm in the dark at room 

temperature (22 ®C). After seven days of incubation each fungal mat of C. parasitica was 

poured out onto a sterile Whatman No. 1 filter paper (Fisher Scientific, Pittsburgh, PA) 

folded into a cone over a beaker. When most of the filtrate was removed the mat was 

washed twice with 10 ml sterile water. The mat was then placed onto preweighed 

Whatman No. 1 filter paper and weighed. The mat was left on the Whatman paper and 

dried to a constant weight for 18 hours at 80 °C and reweighed. The dry weight of 

mycelial plugs of C. parasitica grown on the three media, which had not been incubated 

in filtrate, were also recorded. The experiment contained 18 replicates of each filtrate 
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type, including the heated and the control plugs of C parasitica. The analysis of 

variance of dry weights was calculated using the General Linear Method (GLM) and 

mean separation was done by Duncan’s Multiple Range test with a level of significance 

(a) equal to 0.05 (SAS Institute, Inc., Cary, NC). 

4.2.4 Agar Well-Plate Assays 

One milliliter of each of the filtrates put aside for the agar well-plate assay was 

pipetted into corresponding 0.5 cm diameter wells in the center of PDA agar plates. The 

agar plates contained one of the following media 

1) PDA with MOPS buffer, pH 7.0 

2) PDA with MOPS buffer, pH 5.0 

3) PDA, pH 5.0. 

A heat treatment was used for this experiment as described in the above experiments. 

The plates were incubated in the dark for 24 hours at room temperature (22 °C) to allow 

for diffusion of the compounds. Three millimeter five-day old agar plugs of C parasitica 

grown on the three PDA media types mentioned above, were placed 3 cm away from the 

well on either side. The plates were sealed with parafilm and incubated in the dark at 25 

°C for a period of eight days. The diameter of mycelial growth was recorded daily as a 

mean of two measurements at right angles. Twenty plates of each treatment were 

prepared. The analysis of variance of colony diameter was calculated using the General 

Linear Method and mean separation was done by Duncan’s Multiple Range test with a 

level of significance (a) equal to 0.05 (SAS Instiiute, Inc., Cary, NC). 
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4,2.5 Light and Scanning Electron Microscopy 

In order to study the interaction of the two fungi, a 3 mm diameter five day-old 

plug of C. parasitica grown on 2% MEA and 2% PDA, was placed on one side of a 8 cm 

diameter disk of autoclaved cellophane (Kodak). The cellophane had previously been 

autoclaved and under sterile conditions placed into 10 petri dishes containing MEA and 

10 containing PDA, 24 hours before the first inoculation. The petri dishes were sealed 

with parafilm and incubated in the dark at 25 ®C for 2 days. After two days of incubation, 

the T. atroviride isolate was placed 5 cm away from the C. parasitica isolate on the 

cellophane. The petri dishes were resealed with parafilm and incubated in the dark at 25 

°C. Controls were prepared by inoculating MEA and PDA with only T. atroviride or C 

parasitica. After 3 to 5 days when the fungal colonies had grown together, pieces of 

cellophane (1x1 cm) with mycelium from the interaction zone, were cut and mounted on 

slides and stained with lactophenol blue or simple mounted with sterile water. The 

samples were observed using phase contrast microscopy at a magnification of 40 with 

Nikon opti-phot. 

To study samples by scanning electron microscopy (SEM), cultures were 

prepared as above and 2-3 mm^ pieces of cellophane containing mycelium from the 

interaction zone or advancing edges of cultures of T. atroviride and C parasitica were 

cut and removed. The samples were vapour fixed with 2% (w/v) osmium tetroxide for 24 

hours at room temperature (22 °C). The samples were stored under vacuum and sputter- 

coated with gold palladium when needed. Other samples were prepared for viewing by 

freeze etching at —90 °C for forty-five minutes using cryo SEM techniques. All samples 

were viewed with the JEOL 5400 JSM, located in the Central Microscopy facilities at the 
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University of Massachusetts-Amherst, with an accelerating voltage of 20 kV. Eight 

samples per sampling time were examined. 

4,3 Results 

4.3.1 Volatile Antibiosis Test 

Mycelial growth of C. parasitica in the Gray dishes was not restricted. Analysis 

of variance of the mean distances of mycelial growth showed no difference among 

treatments on each day of measurement (Fig. 4.2). Significant difference was recorded 

among the experimental blocks on day 5 of measurement (data not shown). However, 

there was no significant difference recorded in the interaction of block and treatment 

(data not shown). Mean separation grouped the means of the growth of C. parasitica 

alone and C. parasitica with T. atroviride, together on each day of measurement (Fig. 

4.2). 

Mycelial growth of C. parasitica on the inverted plates was not restricted. 

Analysis of variance of the means showed no difference among treatments for each day 

of measurement (Fig. 4.3). Significant difference among the experimental blocks was 

recorded on day 2 of measurements. However, there was no significant difference 

recorded in the interaction of block and treatment. Mean separation grouped the growth 

of C. parasitica alone and with T. atroviride (inverted plates), together on each day of 

measurement (Fig. 4.3). 
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4 3.2 Interaction of Culture Filtrates with Growth of C parasitica 

Fungal mats grew in tubes containing heated filtrates and in media which had not 

contained the antagonist (Figs. 4.4 and 4.5). There was very little growth if any on plugs 

incubated in filtrates which had contained the antagonist (Figs. 4.4 and 4.5). Very sparse 

mycelia grew on 33% of the plugs placed in PDB/MOPS pH 5.0, in which the antagonist 

had grown. Those plugs in filtrates PDB pH 5.0 and PDB/MOPS pH 7.0 which had 

contained the antagonist, had no extra mycelial growth. Cryphonectria parasitica grew 

more in PDB/MOPS pH 5.0 than in the other two media, with the growth in PDB/MOPS 

pH 7.0, being the least (Fig. 4.4). Analysis of variance showed that there was a 

significant difference among treatments. Mean separation resulted in 5 groupings (Fig. 

4.4). The weights of plugs which had been incubated in filtrates 3, 6, and 9 were 

significantly different the the control plugs which had not been incubated (10, 11, and 

12). They were however significantly less than the weights of plugs which were 

incubated in filtrates which had no antagonist and those that had had the antagonist but 

had been heat treated. The weights of those plugs in heated filtrates, PDB/MOPS pH 5.0, 

and PDB ph 5.0 were significantly less than those which had been in filtrates had no 

antagonist. However, those plugs in PDB/MOPS pH 7.0 were not significantly different 

from its control PDB/MOPS pH 7.0 - no antagonist. 

4.3,3 Agar Well-Plate Assays 

There was no inhibition of growth of the pathogen. Analysis of variance showed 

no significant difference on the first 3 days of measurement but there was a slight 
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difference on the fourth day of measurement (Fig. 4.6). Mean separation resulted in only 

treatments 8 and 1 on the third and fourth days being grouped alone (Fig. 4.6). 

4.3.4 Light and Scanning Electron Microscopy 

Samples of the interaction zone viewed with the light microscope at a 

magnification of 40, showed the hyphae of C. parasitica were not easily distinguished 

from the hyphae of the antagonist by virtue of hyphal diameter, because they were similar 

(Fig. 4.7 and 4.8). Only at the time of phialid production by T. atroviride did it become 

easier to distinguish the two fungi (Fig. 4.8). The hyphae of T. atroviride grew over and 

entwined with hyphae of the pathogen (Fig. 4.9). Scanning electron micrographs showed 

hyphae of the antagonist tightly pressed to C. parasitica as it crossed over the pathogen 

(Fig. 10). T. atroviride produced many chlamydospores among the hyphae of the 

pathogen, from which a number of hyphae emerged (Fig. 4.1 la and b). The antagonist 

also produced a large number of spores which sporulated among the hyphae of C 

parasitica (Fig. 4.12). There was no noticeable my coparasitism or damage by antibiotics 

of the pathogen by T. atroviride. 
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Figure 4.1. Preparation of Trichoderma atrovihde cell free culture filtrate using a 
Nalgene disposable sterilization filter. 
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Number of days 

Figure 4.2. Observations following an eight day test of possible effect on mycelial 

growth of Cryphonectria parasitica by volatile metabolites produced by Trichoderma 

atroviride in Gray dishes. Mycelial growth of C. parasitica is recorded for six days 

beginning after the inoculation of the dishes with T. atroviride. Bars with the same letter 

on each day of measurement are not significantly different at p = 0.05. 
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Figure 4.3. The effect on mycelial growth of Cryphonectriaparasitica by volatile 

metabolites produced by the antagonist Trichoderma atroviride. Colony grovvih was 

recorded for five days following the inoculation of C parasitica on potato dextrose agar 

and the subsequent inversion of the base of the plate onto the base of the dish containing 

the antagonist. Bars with the same letter on each day of measuement are not significantly 

different at p = 0.05. 
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Treatment 

Figure 4.4. The effect of Trichoderma atroviride cell free culture filtrate on the mycelial 

growth of Cryphonectria parasitica. Weights were recorded after seven days of 

incubation in the filtrates. 1) PDB/MOPS, pH 5.0- no antagonist; (2) PDB/MOPS, pH 

5.0- antagonist-autoclaved; (3) PDB/MOPS, pH 5.0- antagonist; (4) PDB, pH 5.0- no 

antagonist; (5) PDB, pH 5.0- antagonist-autoclaved; (6) PDB, pH 5.0- antagonist; (7) 

PDB/MOPS, pH 7.0- no antagonist; (8) PDB/MOPS, pH 7.0- antagonist-autoclaved; (9) 

PDB/MOPS, pH 7.0- antagonist; (10) Plug of C. parasitica on PDA/MOPS pH 7.0; (11) 

Plug of C parasitica on PDA pH 5.0; (12) Plug of C parasitica on PDA/MOPS pH 5.0. 

Bars with the same letter are not significantly different at p = 0.05. PDB = potato 

dextrose broth. PDA = potato dextrose agar. MOPS = 1 mM 3-[N-morpholino] 

propanesulfonic acid. 
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Figure 4.5. The effect of Trichoderma atroviride cell free culture filtrate on the mycelial 

growth of Cryphonectria parasitica. Mycelia of C. parasitica were removed after seven 

days from filtrate containing tubes, which were shaken at 120 rpm. The mycelia was 

dried to constant weight and weighed. 1) PDB/MOPS, pH 5.0- no antagonist; (2) 

PDB/MOPS, pH 5.0- antagonist-autoclaved; (3) PDB/MOPS, pH 5.0- antagonist; (4) 

PDB, pH 5.0- no antagonist; (5) PDB, pH 5.0- antagonist-autoclaved; (6) PDB, pH 5.0- 

antagonist; (7) PDB/MOPS, pH 7.0- no antagonist; (8) PDB/MOPS, pH 7.0- antagonist- 

autoclaved; (9) PDB/MOPS, pH 7.0- antagonist; (10) Plug of C. parasitica on 

PDA/MOPS pH 7.0. PDB = potato dextrose broth. PDA = potato dextrose agar. 

MOPS = 1 mM 3-[N-morpholino] propanesulfonic acid. 
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A B 

C 

Figure 4.7. (A) Hyaline hyphae of Cryphonectriaparasitica as seen under the light 

microscope at a magnification x40. (B) Hyaline hyphae and conidiophores of 

Trichoderma atroviride as seen under the light microscope at a magnification x40. 

(C) The two fungi in an interacting zone, magnification x40. The fungi were grown in 

dual culture or alone on cellophane on potato dextrose agar. (T) = T. atroviride. (C) = C. 

parasitica. 
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Figure 4.8, Interacting hyphae of Cryphonectriaparasitica (C) and Trichoderma 

atroviride (T). Fungi were grown on cellophane on potato dextrose agar. A 3 mm piece 

of cellophane from the interacting zone was vapour fixed with 2% (w/v) osmium teroxide 

for 24 hr at room temperature (22 °C). The sample was sputter coated with gold 

palladium before viewing. The sample was viewed with the JEOL 5400 JSM at an 

accelerating voltage of 20 kV. Magnification x2000. -5 pm. 
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Figure 4.9. Scanning electron micrograph of a possible chlamydospore within a hypha of 

Trichoderma atroviride. The fungus was grown on cellophane on potato dextrose agar. 
A 

A 3 mm piece of cellophane from the growing edge of T. atroviride was prepared by 

vapour fixing with 2% (w/v) osmium teroxide for 24 hrs at room temperature (22 °C). 

The sample was sputter coated with gold palladium before viewing. It was viewed with 

the JEOL 5400 JSM at an accelerating voltage of 20 kV. Magnification x2000. -5 

pm. 
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Figure 4.10. Scanning electron micrograph of a germinating Trichoderma atroviride 

spore on a hypha of Cryphonectria parasitica. The fungi were grown on cellophane on 

potato dextrose agar. A 3 mm^ piece of cellophane from the interacting zone, was 

prepared by vapour fixing with 2% (w/v) osmium teroxide for 24 hrs at room temperature 

(22 °C). The sample was sputter coated with gold palladium before viewing. It was 

viewed with the JEOL 5400 JSM at an accelerating voltage of 20 kV. Magnification 

x5000. -2 pm. (TS) = T. atroviride spore. (G) = Germination tube. 
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CHAPTER 5 

DISCUSSION AND CONCLUSION 

Trichoderma spp. can detect a host from a distance and will branch and grow 

towards it (Goldman et al., 1994). This behaviour is believed to occur because of trophic 

responses induced by nutrient gradients from the host (Chet et al., 1981). It was not 

observed that the antagonist on either potato dextrose agar (PDA) or malt extract agar 

(MEA) produced any atypical branching in interaction plates as opposed to growth alone 

on the same media. Although Trichoderma atroviride was able to overgrow 

Cryphonectria parasitica on MEA interaction plates, both T. atroviride and C. parasitica 

grew slower than on PDA. The slowed growth on MEA when compared to its growth on 

PDA, may be explained by the difference of carbon source and its amount. It has been 

shown that some pathogenic fungi have varying ability to repel the advancement of an 

antagonist when cultured on different glucose sources (Tokimoto and Komatsu, 1979; 

Tokimoto and Ushiyama, 1980; Tokimoto, 1982). Although there was no distinct zone of 

inhibition, the slowed growth of C parasitica before being overgrown by T. atroviride 

could have been associated to inhibition by small amounts of fungistatic/fungicidal 

metabolites produced by the antagonist. NutrienI impoverishment of the media may also 

have slowed its growth . 

Dual culture experiments involving Trichoderma spp. showed various species 

capable of completely overgrowing Phytophthora parasitica f. sp. nicotiane (Bell et al., 

1982), P. cinnamoni and P. citricola (Chambers and Scott, 1995), Rhizoctonia solani and 
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Pythium spp. (Chet et al., 1981), and C parasitica (Turchetti and Gemignani, 1981; 

Arisan-Atac et al., 1995). Mycoparasitism was usually shown to occur after contact the 

the Trichoderma antagonist. Mycoparasitism was however not seen to occur in the 

interaction of T. atroviride and C parasitica. Light and scanning electron microscopy 

showed no coiling and penetration of hyphae of the pathogen. There was also no apparent 

degradation of the pathogen fungus. It appeared therefore that the main mode of 

antagonistic action was competition. The antagonist grew very fast, produced many 

conidia which germinated on C. parasitica hyphae, thus very quickly outcompeting the 

pathogen. Although the cell free filtrate tests later showing possible enzyme and 

antibiotic activity may have been the primary source of inhibition, the microscopy work 

showed no evidence of direct action of metabolites on the hyphae of C. parasitica. Elad 

et al., (1983) applied fluorescein isothiocyanate conjugated lectins to determine possible 

locales of Trichoderma spp. that produced lytic activity. A similar experiment could also 

be used to better determine if there is any enzymatic degradation of C parasitica hyphae. 

The rapid screening technique using inoculated bark and wood pieces showed that 

the antagonist was able to significantly reduce canker development by C. parasitica in 

comparison with controls. The results of the bark and wood experiment led to the 

experiments with the seedlings. Results from these experiments were similar to the rapid 

screening experiment, showing that prophylactic treatment with the antagonist produced 

significantly reduced cankers. Application of T. atroviride spores after inoculation with 

the pathogen resulted in reduced canker growth cn the bark and wood pieces as well as 

on seedlings treated outside the greenhouse. However, post treatment of the antagonist 

did not work in the greenhouse, perhaps for a number of reasons corresponding to high 
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temperatures existing in the greenhouse throughcut the summer of 1995. Widden (1984) 

showed that temperatures above 30 resulted in a significant reduction in the growth 

rates of various Trichoderma spp.. Petri plate tests at 35 °C, (data not presented) showed 

that T. atroviride grew an average of 3.1 cm in 5 days whereas at 25 °C it grew to 8 cm in 

the same time period. Several authors (Schoenevv^eiss, 1975; Appel and Stipes, 1984; 

Madar et al., 1989; Gao and Shain, 1995) have shown that canker expansion on woody 

plants is greatest when host plants are under water stress. Therefore, water stress may 

have been a factor in the production of cankers on all the trees treated with C parasitica. 

The cankers on the trees in the greenhouse were noticeably smaller than those on the 

seedlings of the previous summer. A possible explanation for this phenomenon is one 

given by Russin and Shain (1984) and Gao and Shain (1995). They both reported that 

increased bark moisture hindered the enlargement of chestnut blight cankers. They noted 

that if the stems were allowed to gain water directly after inoculation, canker expansion 

would almost cease. Rapid drying of the medium in which the trees were grown, 

necessitated watering the trees at least twice a day and this may have contributed to the 

overall decrease in canker sizes as compared to those of the previous summer. The 

seedlings used the previous summer were neither subjected to very high ambiental 

temperatures or to very frequent watering. 

Experiments using the seedlings showed I hat after 21 days (outside greenhouse) 

and 14 days (in greenhouse) cankers began to develop on many of the trees. The marked 

difference in canker sizes between trees with prophylactic treatment and their controls, 

indicate that the antagonist was able to provide limited protection from the pathogen. 

The eventual increase in cankers after the afore mentioned days, suggest that there was a 
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breakdown in the antagonist's ability to provide this protection. It is possible that there 

was no longer a nutrient supply for the antagonist on the trees. It is equally possible, that 

environmental conditions such as heat stress, water stress, and wind may have played a 

role in reducing its population on the bark. The establishment of antagonists is therefore 

the main difficulty to overcome in the application of antagonists to soil or plants. The 

environment to which antagonists are introduced is usually not conducive to their 

establishment and eventually their population decreases (Cook and Baker, 1983). Several 

forms of carriers have been used, Papavizas and Lewis (1989) reported using with 

success clay powder mixed with fermented biomass, Travel et al. (1985) used alginate 

pellets, and Lewis et al., (1991) used vermiculite -bran mixture. The carriers allowed the 

antagonists to establish and multiply in soil environments. Ricard (1983) reported the 

successful use of the formulated BINAB T® to control Dutch elm disease for 3 years. 

The experiments in the Cadwell forest failed to provide evidence as to the enhancement 

of effectivity of the antagonist with the use of the two carriers. Cankers on trees treated 

with the antagonist were similar in size to cankers left untreated. The results indicated 

that the antagonist was not able to control the ad^'ancement of C parasitica. The 

Cadwell experiments were begun at the end of the summer and the temperature in Pelham 

and the surrounding area dropped early in fall. Widden (1984) reported that at 5 °C the 

growth rate of several Trichoderma spp. was significantly lowered. We can therefore 

postulate that the low temperatures existing in the Cadwell forest at the time of the 

experiment hindered the antagonistic activities of T. atroviride. Perhaps if the data were 

collected the following spring we would have been able to make specific conclusions as 

to the efficacy of the treatments. 
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The experiment on the stem sections to test possible carriers showed that all the 

prophylactic treatments containing T. atroviride spores significantly hindered the 

development of cankers. The Wilt Pruf^ and the Phyton 50® did not appear to enhance 

the effectivity of the antagonist compared to the effectivity of the water spore suspension. 

Spore viability was very similar on stems for each of the three treatments (TMO, TWP, 

and TH2O) we can therefore conclude that the three carriers worked equally well with the 

spores. It must be noted, however, that the physiology of cut stems is very different from 

the physiology of live seedling stems. It was observed in the 40 day experiment that the 

ends of some stems had wood decay and in those areas there was a proliferation of 

Trichoderma spores hence perhaps the difference in the number of viable spores between 

blocks 1 and 2, and block 3. It would have been best to have had environmental 

conditions similar to those in the previous seedling experiments. 

Several species of Trichoderma are known to produce volatile antibiotics in vitro 

(Dennis and Webster, 1971b; Hutchinson and Cowan, 1972; Bruce et al., 1984). Results 

presented by the authors mentioned above, suggested that volatile antifungal metabolites 

played a role in the antagonism. This was not the case in the antagonism of C. parasitica. 

Tests showed that the organisms, despite any gases that T. atroviride may have been 

producing, grew as well as the controls. 

Many more studies have been done on the production of non-volatile antibiotics 

by Trichoderma species (Dennis and Webster, 1971a; Elad et al., 1982; Tokimoto, 1982; 

Bruce and Highley, 1991; I.x)rito et al., 1993; Chambers and Scott, 1995). Several 

different hydrolytic enzymes such as cellulases (Nakari-Set^a and Penttil^ 1995), 

chitinases, glucanases proteases, and xylanases (Elad et al., 1982), from various 
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Trichoderma species have been purified and characterised. The well plate experiments 

produced no significant differences among the treatments but growing the pathogen 

directly in the cell free culture filtrates produced very different results. The T. atroviride 

filtrates significantly inhibited hyphal extension of C. parasitica. Autoclaving 

significantly reduced the inhibitory effect of the filtrate. The antagonist may have 

produced a small quantity of degradative enzymes and denaturation of those enzymes 

may account for the reduced levels of inhibition. Any remaining inhibitory effect may 

have been a result of toxicity of other more stable metabolites. 

Results of dual culture, biocontrol bark/wood and seedling bioassays, and 

antibiosis experiments, indicated that T. atroviride has potential as a biological control 

agent of chestnut blight. The in vitro antibiosis experiments reported here also indicate 

that the possible mode of action of the antagonist. Characterization of the heat stable and 

heat sensitive metabolites of the T. atroviride filtrate should be conducted. As described 

by Hankin and Anagnostakis (1975), enzyme production can be detected by various types 

of solid media. A series of chromatographic analyses as well as mass spectrometry could 

be used to perhaps determine what other antibiotic compounds may be present in the 

filtrate. 

Further experimentation in the evaluation of T. atroviride should be based on a 

comprehensive study of the various treatment methods on chestnut seedlings planted as in 

the Quabbin. The experiments should be conducted for an extended period of two to 

three years. 
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Such experiments should include extensive data collection pertaining to ambient 

temperature as temperature effects appeared to play a significant role on the activity of 

the fungi. Spore population and viability are also important parameters to consider. 

Being able to correctly identify the isolate placed on the plants would produce 

valuable data pertaining to the isolate's longevity and effectivity in protecting the plant 

from the blight. A method such as DNA-fingerprint analysis could be used to better 

determine that the test fungus, T. atroviride, is indeed the fungus reisolated from the test 

plants. Gilly et al. (1994) and Arisan-Atac et al. (1995) using the restriction amplified 

polymorphic DNA (RAPD) technique, and Bowen et al. (1996) and Meyer et al. (1992), 

using the restriction fragment length polymorphism (RFLP) technique, were able to 

differentiate specific biological control agents from closely related Trichoderma species. 

Experiments pertaining to the the testing of carriers could also be done with 

grafted trees. Application of the isolate with a carrier such as mineral oil, lanolin, or 

wax/lanolin, may better protect graft areas from infection. 
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