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ABSTRACT 

MYCORRHIZAL INTERACTIONS OF SELECTED SPECIES 

OF ENDANGERED NEW ENGLAND FLORA 

FEBRUARY 1997 

JEFFREY M. LERNER 

B.A, NEW SCHOOL FOR SOCIAL RESEARCH 

M S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Dir^ted by: Professor Haim B. Gunner 

Current strategies geared towards the conservation of endangered plant species call 

for increased emphasis on research, oflfsite propagation, and subsequent reintroduction of 

endangered flora. The success of these efforts can be significantly enhanced through the 

utilization of vesicular-arbuscular mycorrhizae (VAM). VAM are symbiotic associations 

formed between the roots of the vast majority of herbaceous plant species and several genera 

of soil-borne zygomycetous fungi in the order Glomales. Numerous greenhouse and field 

trials have demonstrated that mycorrhization of a wide range of plant hosts with effective 

VAM isolates enhances virtually all plant functions, particularly growth, uptake of 

phosphorus and other nutrients, stress tolerance, pathogen resistance, and transplant survival. 

In this study, a mycorrhizal pot-cultured inoculum containing a non-indigenous 

VAMF isolate {Glomus etunicatum UT-316), when incorporated into a compost-based 

germination and transplant medium, proved effective at enhancing growth and transplant 
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survival and reducing root and crown disease in three endangered species during greenhouse 

cultivation - Penstemon hirsutus L., Gentiana clausa Raf. (Closed gentian), and 

Gentianopsis crinita Froel. (Fringed gentian). This disease-suppressive effect was confirmed 

using this same inoculum against Rhizoctonia solani in radish {Raphanus sativus) and 

Fusarium oxyspomm f. sp. basilicum in basil. A soil dilution and plating series revealed that 

the mycorrhizal inoculum had a general suppressive effect on soil microflora, particularly soil 

fungi. While increased survival was the result of suppression of soil-borne fungal pathogens, 

the mechanism of growth enhancement in Fringed Gentian and the other test plants remained 

undefined, though it may have been due to the suppression of saprophytic microflora which 

were competing with the plants for scarce nutrients, as well as the suppression of root- 

infecting pathogenic fungi. VAM pot culture inoculum significantly enhanced the growth and 

survival of Fringed gentian and the other test plants by conferring to the growing medium a 

suppressive influence on soil microflora in general and soil-borne fiingi and fungal pathogens 

in particular. These beneficial effects occurred despite the lack of mycorrhizal root 

colonization in the test plants during the growing season, suggesting that the underlying basis 

of lower disease incidence and enhanced growth was the suppressive influence of 

mycorrhizally-associated microflora fi'om the inoculum rather than the direct influence of 

mycorrhizal colonization of the plant hosts. 

Gentians in nature as well as those grown for this study formed unusual mycotrophic 

relationships with both mycorrhizal and so-called "pseudomycorrhizal” (dark-septate 

endophytic, or DSE) fungi. In Fringed gentian, which was the focus of this investigation. 
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DSE's cx)lonized roots throughout the growing season, but VA mycx)rrhizae formed after the 

onset of dormancy in late autumn and remained throughout the overwintering period. The 

timing and morphology of mycorrhization in G. crinita indicates that mycorrhization is a 

phenologically-based and functionally-defined symbiosis which is largely under the control of 

the gentian host. The resulting association is not the classic symbiosis seen in most plants, 

which typically involves nutrient exchange during active growth. Rather, this association is 

one whose function is relegated to root development in preparation for dormancy, temporary 

symbiosis, phosphorus embodiment and storage, and finally, the dissolution of the intraradical 

portion of the mycorrhizal symbiont for its phosphorus reserves, to meet the specific needs of 

the gentian host at various phonological stages throughout this portion of the gentian's life 

cycle. This suggests that the gentian is living mycoheterotrophically off of its fungal 

symbiont, at least for a portion of the symbiosis, obtaining both carbohydrates and 

phosphorus. Mycorrhizae, and the phosphorus mycorrhizae provide, appear to play an 

integral role in perennialization, dormancy, overwintering survival, and reemergence of the 

gentian host. Fringed gentian developed these alternative mycotrophic strategies as a means 

of survival in the highly-stressed, resource-limited habitats in which this plant species evolved. 

This study has demonstrated that VAM inoculum, when incorporated into a 

compost-based germination and growing medium, has capabilities which can significantly 

enhance the propagation of greenhouse-grown plants. VAM inoculum shows great potential 

as a biologically active pathogen-suppressant and plant enhancement agent in sustainable, 

ecologically-based horticultural production systems. 
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CHAPTER I 

INTRODUCTION 

A. Rationale 

This research addresses two environmental challenges - the preservation of plant 

species biodiversity and the need for environmentally-sustainable plant production 

technologies. Current strategies adopted to address the first issue emphasize habitat 

preservation in conjunction with conservation horticulture. This is a branch of horticulture 

concerned with research, offsite propagation, germplasm banking, and reintroduction of 

endangered plant species into native habitats for the purpose of reestablishing wild 

populations. The second issue has focused attention on ecologically-based pest and disease 

management (EBPM) which uses an integrated approach to manage insects and pathogens, 

incorporating natural processes, naturally-derived compounds, and biologically-based agents 

wherever possible. Vesicular-arbuscular mycorrhizae (VAM) have been explored as one 

such agent to enhance growth and protect plants from disease. The ultimate goal is to 

reduce chemical inputs such as fertilizers and fungicides in plant production. 

VAM are ubiquitous and essential symbionts of the vast majority of herbaceous plant 

species worldwide, integral components of the constellation of ecological interactions in the 

rhizosphere of plants in nature and, at least in some cases, critical to their survival. 

Intentional mycorrhization of a wide range of plant hosts with effective VAM isolates has 

demonstrated enhancement of virtually every plant fionction and therefore has enormous 

potential for sustainable plant production. The use of VAM as a growth-promoting, disease- 
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suppressing biological control and nutritional agent as an alternative to hazardous and 

increasingly ineffective chemical pesticides and fertilizers currently in widespread use has 

generated much interest and study. 

The preservation of plant biodiversity is widely regarded as a fundamental 

cornerstone of life on earth. Not only is such diversity vital to the ecological health of 

natural systems, but diversity can also be considered a form of planetary wealth for 

humankind which remains largely untapped. Many of these plant species and mycorrhizal 

symbionts have yet to be explored for their potential applications to horticulture, agriculture, 

forestry, land reclamation, bioremediation, biotechnology, industry, and medicine. 

Unfortunately, habitat degradation and environmental contamination are putting tremendous 

pressures on New England's floral biodiversity, having imperiled over 28% of the region's 

native plant species (over 560 of2,000), a situation echoed throughout the U.S. and the rest 

of the world (Falk and Olwell, 1992). The ecological implications of this situation are not 

fiilly known, but there is widespread concern about potentially negative impacts on 

ecosystems, habitats, and other plant and animal species (Wilson, 1992). Conservation 

horticulture, which seeks to remedy this situation, demands an increased understanding of 

the ecology, physiology, reproductive strategies, distribution patterns, and rhizosphere 

dynamics of native plants. Such efforts will prove critical to the success of endangered 

species propagation and restoration, and thus to the preservation of floral biodiversity. 

One of the principles of conservation horticulture is that native endangered plant 

species, which are often among the most difScult to grow, should be cultivated under 

conditions that are as close as possible to their natural environment, including the 
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incorporation of indigenous mycorrhizal and other fungal endophytes. Unfortunately, 

information on rare and endangered plant species and their mycorrhizal symbionts is scant. 

(Falk and dwell, 1992). One of the goals of this study was to gain knowledge about the 

role and function of mycorrhizal symbiosis in the selected plant species. An added benefit of 

this research was the exploration of indigenous VA mycorrhizae from the roots, rhizosphere, 

and surrounding soils of endangered species and their habitats. This has yielded several new 

VAM isolates not only adapted to the region's climate, soil, and plants, but perhaps effective 

at enhancing one or more plant functions. Prior to this study, the International Culture 

Collection of Arbuscular and VA Mycorrhizal Fungi (INVAM) in West Virginia did not 

possess VAM isolates from any inland habitats in New England, despite having over 700 

isolates from other regions of the U.S. in their collection. INVAM now has four new 

isolates from this region (Bentivenga, 1995). 

The main purpose of this research, however, was to investigate the use of VAM in 

conservation horticulture. The original hypothesis was that VAM was the missing 

component which made propagation of these selected endangered species difficult. Due to 

the unexpected observations and results of this research, however, several new hypotheses 

could be formulated to explain what had been seen. In the process, it is hoped that some 

light has been shed on several heretofore unexplored functions and effects of VAM, thereby 

expanding their potential uses and benefits to conservation horticulture. These benefits may 

be applicable to commercial horticultural production as well, thereby encouraging the 

industry to explore the use of VAM and other environmentally-sustainable plant production 

technologies. 
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B. Vesicular-arbuscular mvcorrhizae 

Vesicular-arbuscular mycorrhizae (VAM) are a root-fungus association resulting 

from the colonization of plant roots by a group of soil-borne fungi in the class Zygomycetes, 

order Glomales. The fungi which are responsible for this association are known as vesicular- 

arbuscular mycorrhizal fungi (VAMF). These fungi live in symbiotic association with the 

roots of the majority of land plants, and are ubiquitous in soils and plants throughout the 

world. VAMF are obligate symbionts, meaning that they cannot complete their life cycle, or 

reproduce, in the absence of a living plant host. VAMF reproduce asexually through the 

formation of chlamydospores and azygospores, which are the largest fungal spores known 

(30 - 800 and function as reproductive and resting structures (Fig. 1, p. 7). These 

spores germinate in soil in the presence of plant roots and produce hyphae which penetrate 

roots, enter cortical cells, and form structures known as vesicles and arbuscules (Figs. 2-4, 

pp. 8-10). Vesicles are storage organs, and arbuscules function mainly as the site of nutrient 

transfer and exchange; the fungus provides nutrients, especially phosphorus, to the plant, in 

exchange for a small amount of photosynthate (carbohydrates) from the plant. The fungal 

hyphae also grow out from the root into the rhizosphere or "mycorrhizosphere”. It is at the 

end of these extra-radical ("outside root") hyphae that the reproductive spores are usually 

borne (they are sometimes formed inside the root as well). The benefits of mycorrhizal 

development to the host plant have been extensively documented, and will be further 

explored in the literature review section of this paper (pp. 13-37). 
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C. Fringed gentian {GeiitianopsiscrimtaVroeX^ 

Description: G. crinita is a native herbaceous annual or biennial, depending on its habitat. 

Sev'eral ecotypes of this species exist; this is also attributed to habitat (Karlsson, 1974). The 

plant has an upright habit, and can be anywhere from 6” to 3' tall. Bright violet-blue tubular 

flowers, each with four deeply fiinged lobes, are borne singly from September to November 

(Fig. 5,p. 11). 

Habitat: Wet meadows and thickets, seepage banks, brooksides, calcareous fens and 

hillsides, and other wetland-associated habitats. 

Range: From Central Maine south throughout New England. 

Endangerment Status: The Center for Plant Conservation and the Nature Conservancy place 

G. crinita in the G3/G4 category', which means that the species is considered to be restricted 

in range and locally rare (CPC, 1990). The Natural Heritage programs in each of the New 

England states list the species in either the "watch-listed” or "special concern” categories, 

with populations in decline throughout its range (MNHESP, 1992). Massachusetts gives 

Fringed gentian a "special concern” status, which is the third highest level of endangerment 

after "endangered” and "threatened”. There are currently about 25 extant populations 

reported throughout Massachusetts (Fig. 6, p. 12). Due to the elusive nature of this species, 

the smaller populations (under 10 individuals) disappear and reappear sporadically, thus 

making a definitive assessment of population and endangerment status diflScult. 

Propagation: Fringed gentian seeds are sown in late fall and need to be stratified at 2° C for 

two months They do best in a compost-based germination medium. After stratification. 
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they are placed under mist and germinate in about a month. Approximately three months 

later (early spring), they are transplanted and moved to a cool greenhouse for two months, 

until they can be put outside in a partially shaded cold-frame for the summer. They are 

usually transplanted a second time in early autumn, and then outplanted or overwintered in a 

cold frame during the first year. Fringed gentian is considered a horticulturally recalcitrant 

plant, meaning that it is very difificult to grow and maintain in cultivation (Brumback and 

Curtis, 1986). 

Mycorrhizal status: G. crinita is a facultative mycotroph, with low to moderate levels of 

mycorrhizae in nature. Higher levels are possible in cultivation with efifective VAMF 

isolates. Mycorrhizae formation appears to correspond with certain phenological events in 

the plant's life cycle; namely, dormancy and bloom. This, coupled with the unusual nature of 

mycorrhizae in gentians (Neumann, 1934; Jacquelinet-Jeanmougin, et al, 1987) suggest that 

they may function in ways other than those normally attributed to mycorrhizae (e.g., nutrient 

uptake). In fact, G. crinita has been described as an "ecologically-obligate" mycotroph 

(Janos, 1995), meaning that it may, under certain circumstances, depend on its mycorrhizal 

symbiont to fulfill just such an unusual role (namely, perennialization, dormancy, 

reemergence, and in some cases, mycoheterotrophy; this is presented in greater detail in the 

discussion section, pp. 147-172). 
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Figure 1. Indigenous VAMF spores extracted from soil collected from field site 
5. Note the germinating spore and hyphal extension (center). Diameter of 
spores pictured here range from 60-150 yum, which falls within the average size 
range of most VAMF spores. 
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Figure 2. Vesicles and intra-radical ("inside root") hyphae formed by VAMF. 
(Photo courtesy of Dr. Robert Wick. Used by permission.) 
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Figure 3. Hyphae and arbuscules from VAMF in root cortical cells. Note the 
resemblance to a "little tree", which is the literal translation of the word 
"arbuscule". This morphology represents the more common "Arum" type of 
mycorrhizae. (Photo courtesy of Dr. Robert Wick. Used by permission.) 
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Figure 4. Vesicular-arbuscular mycorrhizae (VAM) in root tissue. The 
distribution of hyphae and arbuscules throughout the root cortex represents a 
moderately high level of mycorrhizal colonization. (Photo courtesy of Dr. Robert 
Wick. Used by permission.) 
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Figure 5. Fringed Gentian {Gentianopsis crinita Froel). 
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CR\PTER n 

LITERATURE REVIEW 

A The importance of VAVf in plant ecology 

The vast majority of terrestrial plants in nature are mycorrhizal - that is, their roots live 

in mutualistic symbiotic association with one or more species of mycorrhizal fungi. 

Mycorrhiza (plural = mycorrhizae) is the term used to describe the root-fungus structures. 

Harley and Smith (1983) have described mycorrhizae as a "super-organism", much like lichens 

and root nodules in legumes. This relationship is such an integral part of the plant kingdom 

that it has been suggested that one cannot fully understand the physiology and ecology of most 

plants without studying their mycorrhizal associations as well (Jackson and Mason, 1984). 

Mosse (1975) suggests that mycorrhizae be considered a plant-fungus-soil partnership. Several 

researchers believe that for most plant species in natural ecosystems, mycorrhiza formation is at 

least as important as the other two primary root functions - water absorption and mineral 

uptake (Brundrett and Kendrick, 1988; Allen 1991). 

Vesicular-arbuscular mycorrhizae (VAM), which are the most prevalent type of 

mycorrhizae in nature, is also the type found in most herbaceous plants. The fungi which form 

VAM (VAMF) are Zygomycetes in the order domales and have non-septate hyphae which 

penetrate the root cell wall (not the cell membrane) and occupy the cortical cells, forming 

structures known as vesicles and arbuscules, and extending out into the surrounding soil (see 

Harley and Smith, 1983). As mentioned, the benefits of this mycorrhizal association to plants 

have been well documented. These include enhancement of the following functions: growth 
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(Harley and Smith, 1983; Powell and Bagyaraj, 1988), reproduction (Bryla and Koide, 1990), 

uptake of nutrients (Cooper, 1984) especially phosphorus (Sanders, et al., 1974), drought 

tolerance (Nelson and SafiBr, 1982; Sylvia, et al., 1988), pathogen resistance (Jalali and Jalali, 

1991), water uptake (Ange, et al., 1986), and photosynthesis (Levy and Krikun, 1980, Paul 

and Kucey, 1981). Other indirect benefits include stimulation of nitrogen fixation in legumes 

(Hayman, 1987), actinorhizal associations (Gardner, et al., 1984), fi-ee-living bacterial 

associations (Pacovsky, et al., 1985; Azcon, et al, 1989), and the creation of a beneficial 

rhizosphere microflora (Linderman, 1994). Mycorrhizae have also been shown to play a role in 

plant resistance to heavy metal toxicity (Dehn and Schuepp, 1990), and to effect positive 

changes in plant morphology (Huang, et al., 1985; Krishna, 1981) which help increase survival, 

especially under stressful conditions. In addition, VAM appear to lessen injury and enhance 

survival rate of transplants, both in field experiments (Menge, et al., 1980) and in habitat and 

degraded land restoration (Allen and Friese, 1990). 

Mycorrhizae have been shown to function in plant population biology as well, in 

several ways. First, by allowing greater access to resources, they insure competitive advantage 

and thus survival of individuals within a particular habitat. Second, some studies have indicated 

that there is a correlation between abundance of mycorrhizae in the soil and increasing 

herbacous plant species diversity (Grime, et al., 1987; Newman and Reddell, 1988). 

Furthermore, mycorrhizae appear to be a critical component of ecosystem dynamics in many 

different biomes around the world. It has been demonstrated that they play a major role in 

nutrient and carbon cycling, breakdown of organic matter, species succession and diversity, soil 

structure and aggregation, plant-plant and plant-animal interactions, and colonization of harsh 
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environments ( St. John, 1990; Allen, 1991). It is now well-established that mycorrhizal 

symbiosis is an integral part of plant physiology and ecosystem ecology, and its applications to 

land reclamation and reforestation (Carpenter, et al, 1987; Allen and Friese, 1990; Wood, et al, 

1991) and to agriculture (Sylva, et al., 1987) have been exhaustively documented. 

Research into the distribution of mycorrhizae in natural ecosystems around the world 

has been less extensive (see Allen, 1991, and Harley and Harley, 1987), and is generally 

considered to be incomplete from a scientific standpoint (Torrey and Berliner, 1989, St. John, 

1990). Further work in this area is warranted in light of the fact that these studies have 

consistently shown the great majority of plant species to be mycorrhizal (Allen and Friese, 

1990), and due to the importance of mycorrhizae in natural ecosystems (Allen, 1991). There is 

a lack of information regarding North American flora, and a compelling need for a 

comprehensive list of the mycorrhizal associations of this continents' plant species, much like 

the list for British flora compiled by Harley and Harley (1987). 

B. Investigations of VAM in Eastern North American flora 

There is good reason to believe that the great majority of New England plant species 

are mycorrhizal. Several studies which have explored the mycorrhizal status of various 

herbaceous species of eastern North American forests have found consistently high rates of 

mycorrhization. Virtually all of the species looked at in the Canadian forests are indigenous to 

New England as well, and so are included here. Based on the following studies, it is reasonable 

to conclude that 80-90% of New England's herbaceous flora is mycorrhizal at least at some 

point in its life cycle. 
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Torrey and Berliner (1988) examined the roots of 45 species of common understory 

plants in Harvard Forest, Massachusetts, and found 91% of them to be mycorrhizal. Brundrett 

and Kendrick (1988, 1990) examined 55 common herbacous species in a sugar maple forest in 

Ontario, Canada and found a 93% rate of VA mycorrhization. Malloch and Malloch (1981, 

1982) came up with an 80% VAM infection rate in their two studies encompassing a total of 

35 herbaceous species in a boreal forest in Northeastern Ontario. Other studies of New 

England coastal areas yielded similar findings (Gemma, et al., 1989, Cooke and Lefor, 1990). 

Clearly, a pattern of mycorrhization throughout the natural ecosystems of New England 

emerges fi'om this research, and this has significant implications for endangered species 

conservation throughout the region. 

C. Plant biodiversity conservation: Current strategies 

The preservation of floral biodiversity was one of the main motivations behind this 

research. The importance of preserving plant biodiversity is still widely under-recognized, by 

society in general, by the scientific community in particular, and by governmental organizations 

around the world as well as in the United States. There is evidence, however, that the U.S. 

government began to realize its significance in the early 1990's and shift its environmental 

priorities and funding accordingly (Falk and dwell, 1992; Schneider, 1993). In the most basic 

sense, plant life, in all its diversity, is fundamental to the survival of the animal life on earth, 

including human beings. More specifically, rare species are indicators of environmental change 

or stress within ecosystems, of rare and unique biotic communities, and of natural biodiversity 

(Longland, 1992 ). Gentianopsis crinita is considered to be an indicator of rare or unusual 
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wetland-associated habitats in New England, such as calcareous fens and seepage banks, which 

often contain many uncommon or endangered plant species (Weatherbee, 1991). Rare plant 

species are part of what is often called the "web of life", building blocks for a biological 

hierarchy of more complex communities upon which many other organisms depend (Falk and 

Holsinger, 1991). Science has yet to explore many of these species for their potential uses in 

horticulture, agriculture, forestry, industry, medicine and biotechnology (Longland, 1992). 

Furthermore, there are the moral, ethical and aesthetic aspects to be considered. The loss of 

these rare plants, many of which are beautiful, would deprive future generations the 

opportunity to know, study and appreciate them. Also, protecting, restoring, or enhancing 

native flora and fauna implies a healthy and productive relationship between human beings and 

the natural world which is all too uncommon in this day and age (Jordan, 1986). Finally, 

involvement with one's natural heritage and surroundings makes life richer and more rewarding 

(Jordan, 1986, Longland, 1992). 

The current approach to endangered species preservation emphasizes an integrated 

conservation strategy (Falk and dwell, 1992). This strategy proposes that the traditional 

approaches of habitat preservation through legal protection, land acquisition, and habitat 

management be combined with more recent strategies, collectively known as conservation 

horticulture - propagation and research, habitat restoration, and species reintroduction. It is 

likely, given current trends of habitat destruction and subsequent endangerment patterns, that 

conservation horticulture will come to play a crucial and ever-increasing role in plant 

conservation in the coming decades (Falk, 1990, Edwards, 1990; lUCN, 1992). 
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As pressures on biodiversity in New England increase, and more species become more 

highly imperiled, it is just such an approach that is being highlighted by the predominant 

conservation organizations throughout New England and the rest of the United States. Federal 

land management agencies as well as the Nature Conservancy and other conservation 

organizations are increasingly involved in various forms of restoration (Falk and dwell, 1992). 

The formation of the Center for Plant Conservation (CPC) in 1985 was a significant step in 

creating scientifically credible plant conservation programs, by organizing a network of over 

20 U.S. botanic gardens and arboreta to maintain offsite collections of endangered plants to use 

for conservation purposes. Various methods of conservation horticulture are employed by 

these network organizations - horticultural propagation, seed and germplasm banks, living 

collections, research, and re-establishment of depleted wild populations, as well as 

development of conservation policy (McMahan, 1990). In New England, NEPCOP (New 

England Plant Conservation Program) emerged in 1991 as a consortium of 65 organizations 

devoted to conserving endangered plants in the region (Longland, 1992). The New England 

Wildflower Society (NEWFS) headquartered at Garden in the Woods, Framingham, MA, 

developed the concept and practice of conservation horticulture, and has spearheaded these 

efforts. NEWFS maintains a sophisticated endangered species production and preservation 

facility, including a seed bank, a living collection garden of endangered New England flora, a 

45-acre botanic garden, and a fully functioning greenhouse and nursery operation. 

Despite the considerable progress that these efforts represent, there are still significant 

obstacles to be overcome in the production and restoration arm of the plant conservation 

community. Given the urgency of the task of maintaining plant biodiversity in New England 
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and elsewhere, and the primary role that conservation horticulture will play in these efforts, it is 

imperative that these issues be addressed. 

D. VAM and conservation horticulture 

While research into native plant propagation and reintroduction has progressed in 

recent years, there remains a surprising scarcity of scientific knowledge, as well as a lack of 

readily available information, on native plant species (McMahan, 1991). This is especially true 

for rare and endangered flora. Scientific data on the genetics, population biology, physiology, 

life history and ecological interactions of these species in their natural state is inadequate or 

absent altogether (Falk and Olwell, 1992). This lack of information has negative implications 

for rare plant conservation - that is, reintroductions of endangered plants involve species 

whose developmental, reproductive, and ecological characteristics, including mycorrhizal 

status, are little known, even though such information is often critical to the success of 

reintroduction efforts. One of the major principles of conservation horticulture is to replicate in 

cultivation the plant's natural environment. Falk and Olwell (1992) take this concept one step 

further, and assert that one of the major biological considerations in rare plant propagation and 

reintroduction is inclusion of the species' essential symbionts: pollinators, seed dispersants, and 

mycorrhizal and other endophytic fungi. Without such information, rare plant reintroductions 

will remain a hit-or-miss affair, based largely on informed speculation and anecdotal 

information rather than empirical knowledge, and involving a substantial element of trial and 

error (Griffith, et al., 1989). This is a serious concern, given the limited resources available to 

the plant conservation community, who can ill-affbrd such uncertainty. 
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This current situation can be remedied with basic and applied research into the 

mycorrhizal status of endangered species in the wild, and investigations into the use of 

mycorrhizae (mycorrhization) in the propagation and restoration of these species. At present, 

studies on the mycorrhizal status of rare New England plants is virtually non-existent, with two 

notable exceptions involving orchid and ericaceous species, which form a distinct, non-VA 

mycorrhizae (Zettler and Mclnnis, 1992; Ling, 1993). Accordingly, the potential utilization of 

mycorrhizae in native plant production in general, and conservation horticulture in particular, 

remains untried. There was not a single citation in the literature involving the use of 

mycorrhizal inoculation in the production or restoration of non-orchidaceous, non-ericaceous 

endangered or rare native plant species. This despite the fact that there is a very high 

probability that most, if not all, of these species are mycorrhizal, and that mycorrhization at the 

greenhouse level very well may determine the success or failure of such undertakings. 

Mycorrhization of endangered species during propagation makes sense on many 

levels. Herbaceous plants growing in temperate deciduous forests and fields are exposed to 

seasonal extremes in environmental conditions, including low temperatures in the spring and 

autumn, periods of drought in the summer, and extreme cold during the winter months (Hicks 

and Chabot, 1985). Many of these plants have adapted to these environmental constraints by 

adapting various survival strategies (Brundrett and Kendrick, 1988), one of the most important 

being mycorrhization. 

As mentioned earlier, mycorrhizal association would give the reintroduced plant a 

competitive advantage by allowing it greater access to resources, thus increasing its chances of 

survival under environmental pressures. Subtle and little-understood functions which contribute 
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to fitness and survival, such as rhizosphere ecology or perennialization, may be enhanced by 

mycorrhizal fungi. Increased phosphorus uptake (Mosse,1975), positive changes in root 

morphology (Schenck, 1981; Brundrett and Kendrick, 1990a and 1990b), enhanced drought 

resistance (Nelson and Safi5r, 1982), and increases in lipid and carbohydrate storage (Maronek, 

et al., 1981) may also contribute to increased survival of herbaceous perennials during 

dormancy and overwintering periods. Maronek, et al (1981) concluded that low temperature 

tolerance by mycorrhizal fungi may be of critical importance in plant cold hardiness. In fact, 

mycorrhizal fungi may play a role in the perennialization of certain plant species (Magrou, 

1921; Waksman, 1932), a hypothesis which is supported by the observations of this researcher. 

If this is so, it may contribute to the survival of these species in temperate environments, as well 

as aiding in the maintenance in living rare plant collections of some diflScult- to-maintain 

species. 

Other studies have noted that the roots of many herbaceous woodland perennials have 

root systems that are very ineflBcient at absorbing nutrients fi'om the soil directly, and may 

therefore be dependent on their VA mycorrhizal symbiont to supply necessary nutrients. This 

is especially true regarding phosphorus, which is tightly conserved by living organisms in forest 

soils (Brundrett and Kendrick, 1988). The above evidence indicates that the symbiotic 

relationship with VAM is of vital importance to herbaceous plant survival in natural 

ecosystems. This information, coupled with the evidence that mycorrhization increases both 

transplant and restoration survival (St. John., 1990; Allen and Friese, 1990, Menge, et al., 

1980) leads to the conclusion that mycorrhization during horticultural production can play a 

pivotal role in the successful reestablishment of endangered species in their natural habitats. 
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Some of the practical problems encountered by conservationists involved in the 

propagation and reintroduction of endangered species may be solved by the use of VAM. 

First, mycorrhization might confer survival advantages to reintroduced transplants, which have 

more difficulty establishing themselves under stressful environmental conditions than their 

natural counterparts. These transplants need to be cared for and maintained for at least the first 

year following reintroduction, which is often difficult or impossible, given the lack of 

accessibility and shortage of manpower (McMahan, 1990). Mycorrhization might enable these 

transplants to survive without care. Second, mycorrhization would better enable propagators 

to recreate, in the greenhouse, nursery, or living collections garden, the natural conditions 

under which the plant grows in the wild (Brumback and Curtis, 1986; Phillips, 1985; 

Brumback, 1989), which is very often a necessary prerequisite for endangered species 

propagation. Third, many of these plants have difficulty reproducing in the wild (Falk and 

Holsinger, 1991), and this difficulty usually carries over into greenhouse propagation. Even 

those species that reproduce adequately in the wild are often notoriously difficult to propagate 

or maintain in cultivation (Brumback, 1989, 1993, Carlock, 1991). 

E. Gentians. VAM and other root-associated fungi 

Plants from the Gentianaceae, collectively known as gentians, are notable for their 

rather unusual and wide-ranging ecological, physiological, and biotrophic characteristics. 

Foremost among the latter are the gentians' mycotrophic relationships, that is, their aflSliation 

with root-associated fungi. Gentians inhabit a remarkably diverse array of habitats, from 

wetlands to deserts, tropical rainforests to alpine tundra, and so have adapted an equally 
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diverse range of mycotrophic "lifestyles". These mycotrophic relationships run the gamut from 

mycorrhizal symbiosis to a saprotrophic or even parasitic relationship of the gentian host upon 

its frmgal associate, and may be related to the particular habitat in which the plant resides 

(Karlsson, 1974, Weber, 1984). 

This makes the cultivation of gentians quite challenging; many growers have found that 

plants in this family (Gentianaceae) are often difiScult to maintain in cultivation (Phillips, 1985, 

Brumback, 1993). In the case of Asclepias, another member of the same order (Gentianales) 

with some endangerment status (MNHESP, 1993; Somers, 1993), seedlings often die shortly 

after germination for no apparent reason (Phillips, 1985). The same holds true for Centaiirium, 

another species in the Gentianaceae; Mcgee (1985) attributed the mortality of his C. erythraea 

seedlings to a lack of mycorrhizae. Gentians, many of which have some endangerment status 

in New England (MNHESP, 1992; CPC, 1990) are known to be mycorrhizal in their natural 

state (Read and Haselwandter, 1981; Weber, 1984; Heymons, et al., 1986, Harley and Harley, 

1987). 

There have also been reports of other non-pathogenic endophytes both in and on the 

surface of gentian roots. These have been given the generic name DSE, or dark-septate 

endophytes, which refer to their color and morphology. Several investigators (Read and 

Hasselwandter 1981; Lesica and Antibus, 1985; Currah and Van Dyck, 1986; Bledsoe, et al, 

1990) have reported the presence of these DSE's in gentians and other species in habitats 

whose soils contain insignificant levels of VAM fimgi (as indicated by few spores and low 

levels of mycorrhizal root colonization), such as deserts, wetlands, heathlands, and alpine 

tundra. Some researchers believe that these root endophytes may be of ecological importance. 
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serving some of the same functions in these habitats as VAM fungi serve in most other habitats, 

e.g., uptake of scarce nutrients and stress and disease resistance for their plant hosts (Stoyke 

and Currah, 1990; Seeliger, 1996). DSFs have been reported to increase the growth of some 

host plants (Haselwandter and Read, 1982; Wang and Wilcox, 1987), but this phenomenon 

needs further investigation. 

It is possible that the difficulties encountered in propagating gentians may be related to 

both their unusual mycotophic affiliations and the lack of indigenous mycorrhizal or other 

fungal endophytes which are involved in these associations. Incorporation of these root- 

associated fungi during the cultivation of gentians and other difficuit-to-grow native plant 

species may contribute to their successful propagation, maintenance, reintroduction and 

survival. Native mycorrhizal endophytes have already been shown to substantially increase the 

successful outplanting of native trees and shrubs (St. John, 1990; Allen 1991), so there is 

reason to believe that the same results could be achieved with herbaceous plants. Other 

conservationists agree with this proposition (Falk and dwell, 1992; Brumback, 1993; Somers, 

1993). 

F. VAM in commercial horticulture 

The non-utilization of mycorrhizae in plant production is by no means limited to the 

plant conservation community. Predictions by Maronek et al. (1981), Linderman (1978), 

Verkade and Hamilton (1980) and others that the use of mycorrhizae would become a part of 

standard horticultural plant production have not been realized. Its use is very uncommon in 

commercial horticulture (Johnson, 1987; Linderman, 1993), though work is currently being 
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done to develop and refine the technology to identify, isolate, and characterize mycorrhizal 

fungi for horticultural production (Linderman, 1993). Thus far, use of mycorrhizae has largely 

been confined to the following; a) investigations into horticultural production of agricultural 

crops, such as strawberry (Kieman, et al., 1984), citrus (Edriss, et al., 1984), apples (Geddeda, 

et al., 1983), and cereal grains (Sylva, et al., 1987; McGonigle, 1988, Bagyaraj, 1991); 

b) investigations into horticultural production of woody plant material (Maronek, 1981, 

Johnson, 1987; Wood, et al., 1991); c) production of woody material for reforestation (Wood, 

et al., 1991, St. John, 1990, Allen, 1991), and d) production of plant material for land 

reclamation (Maronek, et al., 1981; Allen and Friese, 1990; Wood, et al, 1991). Scientific 

experiments involving greenhouse trials have been extensive, and examples can be found in 

nearly every relevant citation at the end of this paper. However, this has not translated into its 

intentional use in either commercial or non-commercial horticultural production of herbaceous 

species. 

According to Maronek, et al. (1981), mycorrhizal fungi may already be a factor in 

horticultural production, albeit unintentionally, but its contribution has yet to be acknowledged 

or explored. He goes so far as to say that if the mycorrhizal state is the normal one for 

horticultural crops, then much if not most of the investigative information on plant production 

is based on research into abnormal plants. The limited number of studies that have been done 

on the intentional use of mycorrhization for horticultural crops have consistently turned up 

positive results. Substantial growth increases were noted for such standard horticultural crops 

as geranium (Bierman and Linderman, 1983a, 1983b), chrysanthemum (Linderman, 1978), 

Easter lily (Ames and Linderman, 1978), and poinsettia (Barrows and Roncadori, 1977). 
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Linderman (1978) also found that VAM inoculation hastened the rooting as well as the growth 

of chrysanthemum cuttings. Ericoid mycorrhizae had the same beneficial effect on cuttings of 

Arcoskjphylos ttva-ursi and rhododendron, both of which are difficult to root (Holden, 1978; 

Linderman, 1978). 

Research findings also indicate that mycorrhizae can be used as a biological control 

agent against various soil-borne pathogens in horticulturally-produced plants (Jalali and 

Jalali,1991; Feldman, et al., 1990), and this certainly warrants further study (Avidson, et al., 

1990) . Many of the fungicides normally used for this purpose are potentially toxic, particularly 

in the enclosed space of a greenhouse, and are often rendered ineflfective due to the 

development of pathogen resistance (Olkowski, et al., 1991; Jarvis, 1992). The use of 

mycorrhizae as a nutrient-enhancement agent to increase phosphorus uptake (Bagyaraj, 1991), 

alone and in tandem with nitrogen-fixing bacteria (Punj and Gupta, 1988), has been proposed 

numerous times and is being actively investigated. Exploring alternatives to chemical fertilizers 

and pesticides seems especially important given the environmental contamination and 

degradation that has been associated with their production and use (Johnson, 1987; Olkowski, 

1991) . Furthermore, the wide availability and ready supply of cheap phosphorus may be 

coming to an end in the near future, due to expected declines in phosphate mining (Maronek, et 

al., 1981). Recent studies have indicated that an estimated 25% savings would be possible 

through utilization of VAM in a current commercial horticulture operation (Johnson, 1987). 

These factors may make the use of mycorrhizae in plant production economically feasible. 
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G. VAM and the control of soil-bome root pathogens 

1. Introduction 

The protection offered by VAM to the plant host from root-infecting pathogenic fungi 

can be characterized in three ways; a) induced resistance, b) pathogen suppression, and c) 

enhanced plant health. Induced resistance occurs when VAM colonization elicits a host 

response consisting of one or more resistance mechanisms which may inhibit subsequent 

infection by fungal pathogens (Lewis, et al, 1988). Pathogen suppression involves VAM 

induced alterations in both the root and the mycoirhizosphere which help to create a "zone of 

protection” by inhibiting the development or reproduction of the fungal pathogen, thereby 

suppressing subsequent infection. 

The overall enhancement of plant health as a result of VAM colonization in and of itself 

confers protection to the host plant. Increased uptake of nutrients will most certainly 

contribute to a healthier plant, better able to resist or tolerate root disease. A mycorrhizal 

seedling whose root tissue is growing and developing faster will be less susceptible to root 

disease than its smaller, more vulnerable non-mycorrhizal counterpart. Improved phosphorus 

uptake decreases root cell membrane permeability (via the production of phospholipids). 

Enhanced nutrient status leads to a strengthened cell membrane and wall structure. In addition, 

VAM colonization results in enhanced growth linked to elevated phytohormone production 

levels (Linderman, 1994). 

The relationship between VAM and root-infecting pathogens appears to be, at least in 

some instances, one of competitive exclusion. If VAMF are allowed to fully colonize the roots 

of its plant host, then in many cases the development of the pathogenic fungi will be inhibited 
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or reduced (Powell and Bagyaraj, 1984). The VAMF will essentially out-compete the pathogen 

for available infection sites in the root tissue, and in doing so will exclude the pathogen and 

prevail in the "race" for photosynthate and nutrients. Conversely, if the pathogen is allowed the 

upper hand in this rivalry for sustenance, it will predominate and suppress the mycorrhizal 

fungi. Because pathogenic fungi are generally much faster and more aggressive colonizers of 

roots, protection of plant roots by VAM against pathogens is generally much more effective 

where the host roots were pre-inoculated with VAMF and allowed to become fully colonized 

before exposure to the pathogen (Jalali and Jalali, 1991). 

2. Physiological changes in the root tissues 

The specific VAM-induced morphological and biochemical changes in roots as well as 

the related chemical and microbial changes in the mycorrhizosphere comprise the second major 

mechanisms of disease resistance and suppression. Plant roots are endowed with the ability to 

respond to invading organisms in a variety of ways aimed at limiting infection by the invading 

organism (Bonfante-Fasolo and Spanu, 1992). While colonization by VAM fungi does not 

elicit a defense response per se, the arbuscules formed within the root cells are eventually 

degraded (and the nutrients therein digested) by the plant host through the production of 

chitinase within the roots. The arbuscules are eventually reformed by the VAM fungi in the 

same and other root cells in an ongoing process which reflects the delicate symbiotic balance 

between the fungal symbiont and its plant host. The presence of chitinase also serves to create 

a protection zone both within and around the roots, which inhibits and in some cases attacks 
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pathogenic fungi (Campbell, 1989), whose cell walls are comprised mainly of chitin and 

polysaccharides. 

Other VAM-induced anti-fungal compounds produced by plants include isoflavinoids, 

compounds which appear to stimulate VAMF spore germination and subsequent root 

colonization (Safir, 1992). These phytoalexin-like compounds have been implicated in 

enhanced disease-resistance capabilities in the plant host (Bonfante-Fasolo and Spanu, 1992), 

and disease suppression of pathogens in the mycorrhizosphere (Linderman, 1994). The 

increased production of amino-acids, especially arginine, in VAM-colonized roots has been 

shown to inhibit chlamydospore formation by both Fusarium and Thielaviopsis, resulting in a 

lower disease incidence in subsequent crops (Campbell, 1989). 

Morphological changes in roots brought about by VAM appear to have a significant 

influence on enhancement of plant host disease resistance. As mentioned earlier, increased P 

uptake results in reduced root cell membrane permeability. Root growth and function, and 

subsequent cell wall development, increases overall as a result of improved nutrition and 

stimulation of growth hormones by VAM. Specific changes include increased production of 

lignin and other insoluble polysaccharides in VAM- colonized root cell walls (Dehne, 1982b), 

increased wound barrier formation in mycorrhizal roots challenged by Thielaviopsis basicola 

(Wick and Moore, 1984), and a greater transmembrane potential in mycorrhizal roots, which 

contributes to pathogen resistance (Bonfante-Fasolo and Spanu, 1992). 

Decreased exudation of carbohydrates fi'om VAM-colonized roots is a function of 

decreased membrane permeability brought about by enhanced P nutrition (Campbell, 1989); in 

any case, it robs pathogenic fungi of much of their nutrient base. This coupled with the diflfering 
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compounds that are released from mycorrhizal roots significantly alter the chemical and 

microbial environment of the mycorrhizosphere, which in turn influences the development of 

pathogens in the surrounding soil. 

3. VAM-induced changes in the mycorrhizosphere 

There is a profound difference between the structure, chemical constituents, and 

microflora of the mycorrhizosphere and the rhizosphere of non-mycorrhizal roots. Changes in 

root exudations, consisting of both a reduction of carbohydrates and the addition of VAM- 

specific secretions, contribute to these differences. The presence of a network of extra-radical 

VAM hyphae, which serves as an added substrate for differing microflora, further alters the 

micro-ecological makeup of this zone. Some of the VAM-related secretions are the anti-flingal 

compounds discussed earlier, which will obviously affect the populations of fungal pathogens. 

Also, the mycorrhizosphere has been shown to possess bacteria which are found only in 

association with VAM (Meyer and Linderman, 1986). Populations of nitrate-reducing, 

phosphate-solubilizing, and starch-hydrolyzing bacteria increase as well, possibly contributing 

to a greater availability of nutrients for the plant host and its fungal symbiont. Fluorescent 

pseudomonads, which have biocontrol potential, increased in number on the rhizoplane of 

mycorrhizal roots and hyphae, and were found on VAM spores (Powell and Bagyaraj, 1984). 

Populations of fungal antagonists, such as Trichoderma, Actinomyces, and Rhizobacter (all of 

which are currently being used or investigated as biological control agents) are greater in 

mycorrhizosphere soils than in non-mycorrhizal soils (Secilia and Bagyaraj, 1987), which may 

help to supplement the disease suppression activities of VAM. 
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The extra-radical VAM hyphae also have a profound influence on the soil structure and 

subsequently on the soil microflora as well. Increased aggregation has been observed near 

these hyphae, and these aggregates support a flourishing microbial community, including some 

of the previously noted antagonists. Studies indicate that VAM fungi are not only tolerant of 

such antagonists, but may actually function in compatible and even synergistic ways with them 

(Linderman, 1994). As mentioned, the altered root exudations and secretions of both 

mycorrhizal roots and hyphae may serve to stimulate the populations of these beneficial 

microorganisms. 

4. Survey and analysis 

Approximately 85% of the studies reviewed showed increased disease resistance or 

suppression by VAM (Table 1, following page). In a series of investigations by Caron and his 

colleagues (1986), ihs Fusarium population in the mycorrhizosphere of tomato roots was 

significantly reduced by the VAM fungus Glomus intraradices, demonstrating the principle of 

pathogen suppression. In studies by Wick and Moore (1984), Japanese holly roots which were 

colonized by Glomus mosseae or a "cocktail" of Glomus species exhibited increased wound 

barrier formation, effectively halting the progress of Thielaviopsis basicola within the cortex. 

This is an example of induced disease resistance stimulated by VAM. 

Studies by Ross (1972) and Davis et al (1978) revealed increased incidence of 

Phytophthora cinnamomi in mycorrhizal soybean; however, this was probably due to the fact 

that these crops were inoculated with both the pathogen and VAMF simultaneously. Because 

Phytophthora is a much more aggressive root colonizer than VAM (as are most root-invading 
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fungal pathogens), it predominated under these circumstances and proceeded to exclude and 

actually suppress the VAMF. Davis and his colleagues (1978) reported similar results with 

soybean and alfalfa. 

Table 1. Survey of investigations into VAM and disease suppression with various plant hosts. 

+ = positive effect; reduced incidence of disease and/or increased yield 
- = negative effect; increased incidence of disease and/or decreased yield 

Pathogen Host Result Author 

Pythium ultimum poinsettia + Chou and Schmitthenner (1974) 

P. ultimum cucumber + Rosendahl and Rosendahl (1990) 

Phytophthora cinnamomi soybean - Ross (1972) 

P. cinnamomi alfalfa - Davis, et al (1978) 

P. megasperma soybean + Chou and Schnitthenner (1974) 

P. parasitica citrus + Davis and Menge (1980) 

Fusarium oxysporum cucumber + Dehne (1977) 

F. oxysporum tomato + Caron, et al (1986) 

F. vasinfectum cotton + Zhengjia and Xiangdong (1991) 

Thielaviopsis basicola tobacco + Baltruschat and Schoenbec (1972) 

T. basicola Japanese holly + Wick and Moore (1984) 

Verticillium dahliae cotton - Davis, et al (1979) 

Rhizoctonia solani, F. cauliflower + Iqbal, et al (1988) 

Rsolani, Fusarium, Pythium tomato + Nemec, et al (1991) 

As mentioned earlier, the relationship between VAMF and pathogenic fiingi is often 

one of competitive exclusion. It became clear in the course of this review that early 
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establishment of the mycorrhizaJ symbiosis was vital if this system is to be employed effectively 

against root disease. The negative results reported by Davis et al (1979) when mycorrhizal 

cotton was exposed to Verticillium were attributed to increased P uptake in the mycorrhizal 

plants; added fertilizer P also increased the incidence of disease. There were several studies in 

which disease complexes were employed to challenge mycorrhizal and non-mycorrhizal plants. 

Nemec, et al (1991) used a combined inoculum Rhizoctonia, Fiisarium, and Pythhim, 

replicating circumstances that are often found in natural or artificial growth environments, 

including those in the present investigation. The study yielded positive results; mycorrhizal 

tomatoes exhibited a lower incidence of disease than non-mycorrhizal tomatoes. Iqbal, et al 

(1988) attempted to use pre-inoculation of cauliflower seedlings with VAM fungi as a 

biological control against damping-off caused by Rhizoctonia and Fitsarmm spp., and found 

that pre-inoculation caused a significant reduction in pathogenic infection of the seedlings. 

Another important point to note is that enhanced disease resistance in mycorrhizal 

plants appears to be mostly a localized phenomenon; the morphological and biochemical 

changes in the roots which contribute to pathogen resistance are generally restricted to the 

colonized roots, which strengthens the argument for pre-inoculation with VAMF made earlier. 

In many cases, VAM colonization encompasses a significant portion of the root system, and 

colonization levels of 70-85% are not uncommon (Powell and Bagyaraj, 1984), thus affording 

protection to the greater part of the root complex. However, changes in the mycorrhizosphere 

attributed to VAM which may contribute to disease control are generally not localized, and 

occur throughout the entire zone of soil around the root/hyphae matrix. There are studies that 
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have found a systemic response, in which the entire root system exhibited protective 

mechanisms even if only one portion was colonized by VAM (Rosendahl and Rosendahl, 1990). 

5. Summary 

In general, mycorrhizal plants appear to exhibit a lower incidence of root disease, 

show greater resistance to infection by pathogens, inhibit or reduce pathogen 

development, and suffer less damage or have greater yield than non-mycorrhizal plants. 

While many researchers have implicated increased uptake of phosphorus (and subsequent 

decreased permeability in the root cell membranes and decreased carboydrate exudation) 

as the main mechanism of disease control, this has been largely speculative. In studies 

where the effects of P were excluded or controlled for, there was still disease suppression, 

suggesting the involvement of other mechanisms (see Jalali and Jalali, 1991, and Smith, 

1988, for a review of these studies). Furthermore, many of the specific changes in root 

tissues attributed to VAM are direct responses to the fungal symbiont and are not related 

to P uptake (Bonfante-Fasolo and Spanu, 1992). 

It is apparent that VAM induces significant changes in both the root physiology 

and the mycorrhizosphere of the host plant; while many of these changes result in an 

overall enhancement of plant health, many can be linked directly to disease control, 

particularly those involved in enhancing root tissue integrity and stimulating antagonistic 

microflora. Clearly the interactions between plant host roots, VA mycorrhizal fungi, plant 

pathogens, and mycorrhizosphere microflora, in conjunction with abiotic factors, are 

exceedingly complex, precluding the possibility of making straightforward predictions or 
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drawing simple conclusions regarding the results of thes studies. Wide variations in 

growth systems and environments, experimental design, VAM fungal symbiont, 

pathogens, and host plant warrant caution in drawing any definitive conclusions about the 

relationship between VAM and root-infecting fungal pathogens. However, it seems 

reasonably certain that VAM and associated antagonistic microorganisms can and should 

be part of a stable and effective biological control strategy in resource-sustainable plant 

production systems when such systems are managed properly to insure predominance of 

the VAM fimgi and enhancement of the mutual symbiosis. 

H. Other considerations 

There are other facets of endangered plant production that are compatible with 

mycorrhization, and additional factors to consider in its utilization. Already mentioned is 

the necessity for increased knowledge and understanding of endangered plant species. 

Also mentioned was the necessity to artificially recreate in the greenhouse the conditions 

of the plant in its natural state, which includes its mycorrhizal associations. Another 

important point to note is that studies have indicated that pre-inoculation in the 

greenhouse, preferably at the germination stage before the plant has been transplanted into 

the field or reintroduced into its native habitat, has been shown to be the most efficient and 

most effective way to insure mycorrhization (Menge and Timmer, 1982; Biermann and 

Linderman, 1983; St. John, 1990). Furthermore, because mycorrhizae are already an 

unrecognized part of horticultural production, low-input practices currently being employed by 

many native plant propagators (Clark, 1993, McCargo 1994, Phillips, 1985), such as organic 

35 



and integrated pest management techniques and the use of pre-sterilized media, tend to 

augment naturally-occuring as well as non-indigenous introduced mycorrhizae (Maronek, et 

al., 1981, Verkade and Hamilton, 1980). 

This distinction is significant because it is now well-established that indigenous VAM 

fungi may not always be the most eflfective or eflScient at conferring the desired benefits. There 

are hundreds of isolates of VA mycorrhizal fungi (see Schenck and Perez, 1987, Allen, 1991, 

and INVAM, 1992), and they differ in their ability to colonize or infect their host (referred to 

as infectivity or eflSciency), as well as in the benefits they provide (referred to as eflfectivity). 

Some non-indigenous VAM isolates have proven to be much more infective than their 

indigenous counterparts (Gianninazzi, et al., 1990). Likewise, some introduced strains of 

mycorrhizae have "performed" much better than indigenous types in terms of benefits provided 

to their host (Abbott and Robson, 1981; Harley, 1989). This is another reason why pre¬ 

inoculation is preferred over field inoculation; the VAMF isolate found to be the most eflfective 

for a particular plant host species can be chosen and introduced. Such information is currently 

not available for any endangered species, demonstrating that further research is needed to make 

these determinations. 

I. Summation of literature review 

The benefits of mycorrhization to plant growth and health is an established fact. That 

this has not translated into its utilization in commercial or conservation horticulture is clear. 

The intentional use of mycorrhization in the propagation and reintroduction of rare and 

endangered species is virtually non-existent, although the preservation of plant biodiversity is 
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becoming an increasingly urgent matter. This apparent lapse on the part of conservationists is 

not at all surprising, and is in fact reflective of an overall lack of knowledge regarding both the 

biology and ecology of native plants (especially endangered species) and the use of VAM in 

horticultural production. Given the importance of the task at hand, the limited resources and 

lack of information available to the conservation community, and the practical problems that 

conservationists face in pursuit of rare species reintroduction, coupled with the compatibility of 

mycorrhization with the biological considerations of current conservation strategies, further 

research into the mycorrhizal status of imperiled plants and its applications to propagation and 

reintroduction efforts is warranted. 
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CHAPTER III 

OBJECTIVES 

To advance the preservation of New England's floral biodiversity. 

• Develop efficient, cost-effective production of vigorous, healthy greenhouse stock of 

Fringed gentian and other endangered plant species for botanical gardens, native plant 

preserves, reestablishment projects, and possible commercial horticultural production. 

• Contribute to the knowledge of endangered plant species, including the elucidation of 

previously unknown plant/fungus interactions. 

To promote the use of sustainable plant production technologies as an alternative to high- 

input, chemically-based methods, particularly in the greenhouse/nursery industry. 

• Encourage and expand the potential uses of VAM in sustainable plant production, by 

a) gaining information about the "behavior" of VA mycorrhizal fungi throughout plant 

production cycles (stratification, germination, overwintering, reemergence, etc.), and 

b) discovering, cultivating and testing effective indigenous VAM isolates for 

applications in New England plant production. 

• Contribute to the knowledge of how rhizosphere interactions influence the growth of 

cultivated plants and how these can be manipulated or augmented for maximum 

benefit. 
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CHAPTER IV 

1993-94 FIELD RESEARCH AND INOCULUM PRODUCTION 

A. Field Research 

1. Materials and Methods 

Field investigations were undertaken to confirm the natural mycorrhizal status of 

G. crinita and to acquire propagules (indigenous soil) for VAM inoculum production. Three 

representative specimens of G. crinita were dug up in October 1993 fi-om five field sites, each 

fi-om within a different "eco-zone” of Massachusetts (Fig. 7, p. 46). This served to increase 

the diversity of sampled VAMF species, thus improving the chances that an effective 

indigenous isolate would be found via the pot culturing process (see Table 2, p. 45, for a list 

of the field sites, and Figs. 8-11, pp. 47-50, for field site photographs). Roots of excavated 

specimens were washed several times, cleared in 8% KOH, stained in aniline blue, destained 

in 50% glycerol and mounted on slides in lactoglycerol for assessment of root colonization by 

VAMF. Spores were extracted by a wet-sieving, decanting and centrifuge process, vacuum- 

filtered onto gridded filter paper, and counted in a petri dish under a dissecting microscope. 

Spores were seperated by color and morphology, fi’om five to twenty-five spores of each 

morphological type were mounted on slides for VAMF species identification (Schenck and 

Perez, 1990). (The entire procedure for investigating VAM, including root preparation, 

spore extraction, and observation is provided in detail in the Appendix, pp. 187-190). 
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2. Results and Discussion 

The field data was collected fi-om excavated soil and plants from the five Fringed 

gentian field sites (Table 2, p. 45). There was a significant correlation (R} = .84, p = 05) 

between spore density at a given field site and the percentage of root colonization of the 

Fringed gentian samples excavated fi-om that site. This has been seen in other native plants in 

other similar field studies (Vijayalakshmi and Rao, 1988; Koske and Halvorson, 1989). Also, 

wet meadow habitats had a significantly higher average spore density than calcareous fens 

(2417 vs. 1625), and subsequently supported a higher level of mycorrhizal colonization on 

average in gentian roots, 13% vs. 6%. In addition, wet meadows had a very different VAMF 

species composition than the fens; this was so pronounced that it can be seen in photographs 

of spores extracted directly fi-om those habitats (Figs. 12 and 13, pp. 51-52). Glomus 

geosporum dominated the fen sites, while a range of isolates inhabited the wet meadows. 

Although Glomus etunicatum proved to be the most widespread isolate, inhabiting all five 

sites to varying degrees, it was only predominant at site 3. Nevertheless, it proved to be the 

most prolific VAM fungi in both its natural habitat and subsequently in the pot culturing 

process as well. 

The gentians at site 3 (Field Farm), which had the highest spore density and rate of 

colonization of any site, were also by far the tallest and most vigorous field plants observed, 

reaching heights of 3V2 ft. (The average height of the remaining field plants sampled was 

about 1.5 ft.). As mentioned, the predominant VAMF species from that site. Glomus 

etunicatum, which was the most prolific field isolate, emerged as the most prolific in pot 
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cultures. The second most prolific isolate, G. geospomm, fi-om site 4, was also relatively easy 

to culture. Unfortunately, both pot cultures eventually proved to be contaminated with 

pathogens and were therefore ultimately inconsequential as far as data on their potential 

benefit to plants was concerned. 

B. Inoculum production 

1. Materials and Methods 

In addition to the excavated plant samples, five soil subsamples were collected 

throughout each site (including fi'om the root zone of the excavated specimen) during the 

first-year sampling (1993), batched, mixed 1:1 (v/v) with sterilized coarse sand, set up 

11/1/93 in five 2-liter pot cultures, and seeded with a sorghum/sudan grass hybrid (Sudex) as 

a nurse plant to bait and trap the indigenous mycorrhizal fungi. The pot cultures, after five 

months of regular greenhouse care (with minimum fertilization), were dried down for one 

month (4/1 - 5/1/94) and sampled with a 25cc soil probe from each pot to examine for the 

type and number of VAMF spores. Only three of the five pot cultures (from sites 2, 3, and 4) 

resulted in mycorrhizal production. A lOOcc sample from each of these '’successful" pot 

cultures was sent to INVAM for VAMF species identification and to attempt to set up isolate 

cultures. The remaining pot culture inocula was stored away for future use. Also, fifty 

spores of each of the two predominant VAMF isolates from these three pot cultures were 

extracted from 5/1 - 5/15/94, separated by morphology, and used to set up sk "isolate" 

cultures (each consisting of a single VAMF isolate) via the same pot-culturing process. 
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These isolate cultures were grown from 5/15 to 10/15/94, and dried down to 11/15/94. They 

were tested shortly thereafter for mycorrhizal activity (none was found). 

Although Fringed gentian was found to be mycorrhizal in its natural habitat, this does 

not always translate into mycorrhization in the greenhouse. A highly infective "cocktail" 

starter culture (Morton, 1993), consisting primarily of a non-indigenous Glomus etunicatiim, 

with lesser amounts of G. clarum and G. claroides (UT-316) was obtained from INVAM in 

August 1993 for use as a test inoculum for preliminary growth trials to ascertain whether 

Fringed gentian was able to undergo mycorrhization during greenhouse cultivation. In order 

to increase the volume of inoculum 15-20 fold for greenhouse experiments, this starter 

culture was used to inoculate six 2-liter pot cultures, which were then grown out as described 

above. The inoculum (referred to as "bulked-up inoculum) was ready for use by February of 

1994, in time for the preliminary trials. 

2. Results and Discussion 

While three of the original five pot cultures (from sites 2, 3, and 4) started from field 

soils developed mycorrhizal activity, none of the isolate cultures grown from those three 

yielded any usable inoculum. It should be noted that the only isolate found in the pot culture 

from site 3 was G. etunicatum, despite the presence of several other VAMF isolates in the 

field soil; this was the only pot culture of the three which yielded only one isolate (Fig. 14, p. 

53, is a picture of G. etunicatum spores after being extracted from a pot culture and 

separated out for isolate culture inoculation). Nevertheless, attempts to grow it as an isolate 

culture failed. However, INVAM had more success. Two of the three samples sent to them 
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did yield isolate cultures (MA 103 - G. etunicatum, and MA 104 - G. geosponim, from sites 

3 and 4, respectively) which had spores and colonized roots, indicating mycorrhizal activity 

(Fig. 15, p. 54, is a photographs of vesicles in roots, which is typical of what would be seen 

from a successful and infective pot culture). 

Neither of the indigenous isolate cultures grown here or by ESTVAM were ready at 

the start of the 1994 preliminary trials, so a portion of the "bulked-up” inoculum started from 

the INVAM cocktail starter culture was incorporated into the transplant medium. The 

remainder was stored under refrigeration for future use. This inoculum did eventually prove 

to be effective at enhancing gentian transplant survival in the 1994 preliminary trials (Table 5). 

It was therefore included in the 1995 growth and survival experiments for comparison to the 

indigenous isolate culture inocula which INVAM had grown (MA 103 and 104) as well as 

the two original pot culture inocula from which these isolate cultures were started. 

The indigenous isolate cultures which INVAM grew out were received in late 1994, 

and stored along with the original pot culture inoculum produced from sites 3 and 4 until their 

use in the 1995 growth and survival experiments. These four inocula were used in 

experiment 2, transplant media 6-9 (TM 6 and 7 were the original stored pot cultures, TM 8 

and 9 the INVAM isolate cultures from those), but 98% of the plants transplanted into these 

media died within three months after transplant and so were not used in data collection. 

Experiment 1 (TM 1-5) simply incorporated soil from the five field sites into the transplant 

media, but this also resulted in a 97% mortality rate, so neither of these experiments yielded 

usable data. TM 10-14 (experiment 3), which incorporated the bulked-up, non-indigenous G. 

etunicatum inoculum from INVAM, turned out to be the only "effective" transplant media. 
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and so provided most of the data for the 1995 growth and survival experiments (Table 6, p. 

88, is a complete list of the treatment media used in the 1995 experiments). 

The mycorrhizal pot culture inoculum produced in 1993-94 from the non-indigenous 

cocktail starter culture obtained from ESTVAM (lJT-316) was tested for mycorrhizal activitity 

by counting extracted spores and assessing sampled Sudex roots for mycorrhizal 

colonization. High spore #'s (~ 20/cc'^ soil) and extensive root colonization (>70%) indicated 

significant mycorrhizal activity and a potentially infective inoculum (Fig. 15, p. 54). One of 

the purposes of the 1994 preliminary trials was to test the eflScacy of the VAMF isolates in 

the inoculum regarding their ability to form mycorrhizae with the test plants. The cocktail 

starter culture originally contained three VAMF species {Glomus etunicatum, G. clarum, and 

G. claroides) but only one fungal species, G. etunicatum, was found in the final "bulked-up" 

inoculum. This paralleled the results seen in the original indigenous pot culture inoculum 

from site 3 as well, where G etunicatum emerged as the predominant VAMF species, 

apparently out-competing the other fungal isolates. While not necessarily reflecting processes 

always found in nature, it was clear that G. etunicatum, as the most prolific field isolate and 

the one best adapted to the Sudex pot-culturing production process, was the best isolate to 

use in subsequent growth trials. 
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Table 2. Gentianopsis crinita (Fringed gentian) field sites in MA. 

1) Women's Fed. State Forest, New Salem 

2) Mt. Hope Park, South Williamstown 

3) Field Farm, Williamstown 

4) Powerline, Cheshire 

5) North Common Meadow, Petersham 

Table 3. Field data fi-om soil and plant excavations at five fields sites, October-November, 1993. 

Field 
site 

Habitat 
type 

Mycorrhizal 
colonization 

(%)* 

Spore density** 
(per 100 cc soil) 

Predominant 
VAMF 
species 

%of 
total 

Plant 
height'*’ 

1 wet 
meadow 

7 1750 Glomus 
clarum 

35 1.25 

2 calcareous 
fen 

5 1275 G. geosponm 40 1.25 

3 wet 
meadow 

17 3200 G. etunicatum 65 3.5 

4 calcareous 
fen 

7 1975 G. geosporum 60 1.5 

5 wet 
meadow 

15 2300 Scutellospora 
reticulata 

30 1.75 

*mean of roots fi'om three plants (gridline intersect method - Giovanetti and Mosse, 1980) 
**mean of three extractions (fi’om batched sample of five subsamples per site) 
^ mean of three plants, measured in feet. 

Table 4. VAMF species extracted from field sites or pot cultures and identified. 

Predominant speciesMOO/lOOcc'l Secondarv species ('<20/100 cc) 

Glomus etunicatum Glomus horeale 

G. geosporum G. canadensis 

G. clarum G. radiatum 

Entrophospora infrequens^ G. pubescens 

Scutellospora reticulata* Gigaspora sp 

*Difl5cult to grow in pot cultures 
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Figure 8. Fringed Gentian and associated vegetation in a calcareous fen, field 
site 2, Mt. Hope Park, South Williamstown, MA. Surrounding vegetation 
consists mostly of Equisetum scirpoides and Potentilla fruticosa. Gentian 
flower can be seen in the lower left hand section of the photograph. 
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Figure 9. Fringed Gentian in a wet meadow at the edge of a pond, field site 5, 
North Common Meadow, Petersham, MA. 
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Figure 10. Field site 1, Women’s Federated State Forest, New Salem, MA. 
Body of water is part of the Quabbin Reservoir. 
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Figure 11. Field site 3, wet meadow at Field Farm, Williamstown, MA. 
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Figure 12. VAMF spores extracted from field site 5, North Common Meadow, 
Petersham, MA. "Donut-shaped" spores are Scutellospora reticulata, the 
predominant VAMF species at this site. The threadlike objects are free-living 
(non-pathogenic) nematodes. 
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Figure 13. VAMF spores extracted from field site 4, a calcareous fen in 
Cheshire, MA. Dark brown to black spores are Glomus geosporum, the 
predominant VAMF species at this site. 
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Figure 14. Glomus etunicatum spores extracted from a pot culture started with 
soil from field site 3, Field Farm, South Williamstown, MA. The spores were 
separated out on filter paper and viewed through a dissecting microscope 
before being used to inoculate an isolate culture. 
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Figure 15. Vesicles from a Sudex (sorghum/sudangrass hybrid) pot culture, 
indicating a successful and potentially infective mycorrhizal inoculum. 
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CHAPTER V 

1994 PRELIMINARY TRIALS 

A. Materials and Methods 

Preliminary greenhouse trials were undertaken to assess the infectivity and 

effectivity of the bulked-up INVAM inoculum and to establish basic cultural, fertility, 

and medium requirements for the cultivation of Gentianopsis crinita in the greenhouse. 

Gentian seeds were collected from field site 3 (Field Farm, Williamstown) and were dried 

and stored at 4°C until 1/2/94, when they were sown into sterile germination media and 

stratified for two months at 2°C. On 3/2/94, the trays were removed from refiigeration, 

uncovered, and placed in a mist house. Germination commenced approximately one 

month later. The germinated seedlings remained in the mist house for another two 

months (until 6/1/95) and were then transplanted and moved to a cool greenhouse (55- 

65 °F) for use in preliminary growth trials. 

Two other plant species were tested in these pilot studies in addition to G. 

crinita. Penstemon hirsutus (L.) Willd. and Gentiana clausa Raf Penstemon hirsutus is 

easily started from seed (no stratification necessary), and seed was readily available 

(supplied by the New England Wildflower Society). This species, which is an 

endangered species in MA (MNHESP, 1992), is sometimes difficult to maintain in 

cultivation (Brumback, 1993) and has an unusual relationship with its mycorrhizal 

symbiont, much like gentians (Mcgee, 1995). G. clausa, which has Special Concern 

status in some of the New England States (CPC, 1990) is closely related to G. crinita. 
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both in terms of physiology and habitat, but is much easier to grow. It was chosen as a 

backup test plant in the event that no results were obtained from G. crinita. GetUiana 

clausa was measured and then harvested to test the validity of the longest leaf span as a 

correlative measure of total shoot biomass. This was necessary because the subsequent 

1995 experiments with G. crinita would involve repeated measurements over time of the 

same leaves on the same plants, and so required a valid non-destructive measure of plant 

growth. 

A portion of the inoculum produced from the "cocktail" supplied by INVAM (a 

non-indigenous G. etunicatum, UT-316) was subsequently used in 1994 preliminary 

growth experiments to determine whether this known infective VAM isolate would 

actually form mycorrhizae with G. crinita and the other test plants (indigenous isolate 

culture inoculum was not yet ready for use at this time). The remaining inoculum was 

stored under refrigeration until its use in the 1995 experiments. Initial fertilizer and 

media treatments for preliminary tests were derived from a combination of mycorrhizal 

research, gentian research, and low-input native plant production protocols (Giersbach, 

1937; Brumback and Curtis, 1986; Millner and Kitt, 1992). 

Penstemon hirsutus seed was sown into sterile germination medium in March 

1994. One month later (April) a total of 60 seedlings were transplanted into 4" plastic 

pots containing either mycorrhizal or non-mycorrhizal medium (30 per treatment). The 

transplant medium consisted of 1.1; 1; 1 (v/v) unsterilized compost, sand, vermiculite, and 

commercial growing mix (Fafard II™ - Fafard, Inc. Agawam, MA). The mycorrhizal 

medium also had mycorrhizal pot culture inoculum containing the non-indigenous 
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Glomus etunicatum isolate mentioned above, incorporated at a 1:7 (v/v) ratio of 

inoculum to medium. In July, after twelve weeks of growth, leaf area measurements 

were taken and disease incidence was assessed. One month later the percentage of 

surviving plants was tallied and compared. Gentiana clausa underwent the same 

treatment as G. chnita except that the G. clausa plants were harvested twenty weeks 

after transplant so that they could be weighed for the leafspan/shoot biomass correlation. 

The G. chnita seedlings were transplanted a second time in early November to grow on 

and overwinter, G. chnita roots from both treatments were sampled during this 

transplant to assess mycorrhizal colonization. 

B. Results and Discussion 

1, Penstemon hirsutus 

The overall beneficial influence of the mycorrhizal transplant medium on the 

growth and survival of P. hirsutus can be seen in Fig. 16 (p. 63). The data presented in 

Fig. 17, p, 64, demonstrates that the mycorrhizal transplant medium increased the 

growth and survival of P. hirsutus over the non-mycorrhizal medium. Average leaf area 

of the three largest leaves from each plant, which was the parameter used to assess 

growth, was significantly greater in plants from the mycorrhizal medium. Differences in 

growth, vigor, and survival between the two treatments can clearly be seen in Figs. 18 

and 19 (pp, 65-66), which are photographs of the test plants three months after 

transplant into the treatment media. 

57 



The disease incidence and subsequent fatality were also significantly lower in the 

mycorrhizal transplant medium (Fig.20, p. 67). The disease which killed some of the 

transplants in the non-mycorrhizal transplant medium was a leaf and stem blight caused 

by Sclerotinia spp., a fairly common and widespread soil-borne fungal pathogen with a 

wide host range. 

2. Gentiana clausa 

The transplant medium used in preliminary trials with G. clausa was the same 

used for P. hirsutus. Results are summarized on p. 69, Fig. 22. As with P. hirsutus, the 

mycorrhizally-inoculated transplant medium increased the growth of G. clausa, as 

measured by longest leaf span (Fig. 23, p. 70). Fig. 24 (p. 71) shows the difference in 

shoot biomass between the two treatments; the mycorrhizal treatment yielded a 

significantly higher biomass than its non-mycorrhizal counterpart. In addition, the 80% 

correlation between the longest leaf span and the shoot biomass of G. clausa (Fig. 25, p. 

71), which closely resembles G. crinita in growth and habit, indicated that leaf span was 

in fact a valid non-destructive correlative measure of plant growth and thus could be 

used as a legitimate parameter by which to compare the effects of different treatments on 

G. crinita in the subsequent 1995 experiments. 

3. Gentianopsis crinita 

Based on the results of the 1994 preliminary trials with this species, some basic 

cultivation guidelines were established. To begin with, the highest germination rate was 
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achieved by a two-month stratification (cold) period at 2° C in a controlled environment 

such as a refrigerator, rather than outside in a cold frame. Gentianopsis crinita does 

best in a germination and transplant medium containing about 25% organic matter in the 

form of compost. This had been noted and used by previous researchers (Giersbach, 

1937; Phillips, 1985) and was confirmed in these pilot trials. The medium ultimately 

chosen as both germination and transplant medium consisted of a 1.1:1; 1 (v/v) 

compost/commercial growing mix/sand/vermiculite mix, hereafter referred to as "gentian 

medium" . 

This plant species does not require high fertility levels; in fact, standard 

fertilization with a number of different fertilizers resulted in decline and death. The 

optimal nutritional regime was found to be fertilization once per month with a water 

soluble "fish" fertilizer at 1/3 strength (2-1-1). The low phosphorus levels (5-11 ppm) of 

the compost-based medium used in these and subsequent experiments approximated 

naturally-occuring P levels found in field site soils. Higher P levels inhibit mycorrhizal 

colonization, and therefore should be avoided (Powell and Bagyaraj, 1984). 

G. crinita had to be transplanted from its germination tray within 4 months of 

germination or it died. However, transplantation also resulted in high mortality. 

Mortality was reduced when care was taken to transplant the entire root/soil mass into 

the new container, which was accomplished by transplanting the plants in groups of 3-5 

as opposed to individually. This has also been noted by other researchers (Phillips, 

1985). Plants were moved outdoors into a partially shaded cold frame for the summer 

season (June -September), as they did not respond well to the intense heat and sun in the 
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greenhouse. Gentianopsis crinita is a cool-weather plant, putting on most of its growth 

from September to November. Plants were transplanted a second time in November. 

Not a single G. crinita from these 1994 trials survived more than two months beyond 

this second transplant, although some of the transplants in the mycorrhizal medium 

survived several weeks longer than their non-mycorrhizal counterparts (data not shown). 

These pilot studies revealed the non-indigenous Glomus etunicatum to be an 

infective isolate for G crinita and the other test plants. Roots randomly sampled during 

the second transplant in early November revealed significant mycorrhizal development 

(25 - 40%). This was thought at the time to be related to the length of post-tranpslant 

time in the mycorrhizal medium. As a result, the test plants for the 1995 experiments 

were started three months earlier, so mycorrhization would occur while the plants were 

still actively growing, before the onset of dormancy. However, despite this earlier start, 

the 1995 test plants still formed mycorrhizae at the same time of year, early to mid- 

November. It was then hypothesized that mycorrhization in G. crinita was tied to 

phonological events in the plant’s life cycle, such as the onset of dormancy, rather than 

the length of post-transplant time in the mycorrhizal medium. This is discussed in 

greater detail in the discussion section (pp. 147-172). 

The 1994 results revealed that a light fertility regime in a compost-based gentian 

medium supported both healthy plant growth and significant mycorrhizal symbiosis. 

Furthermore, the viability of the mycorrhizal component of the gentian medium was 

maintained throughout the greater portion of the growing season, as the late 

mycorrhization demonstrates. This is significant in so far as mycorrhizal inoculum, when 
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incorporated into a growing medium for growth experiments, is usually "used up" by the 

third month, the point at which the vast majority of host plants would have formed 

mycorrhizae. In this case, the inoculum potential of the mycorrhizal component of the 

transplant medium remained viable into the fifth and sixth month after transplant. Based 

on these results, the mycorrhizal inoculum and the cultural techniques established in the 

1994 trials were the same ones adopted for use in subsequent 1995 growth and survival 

experiments with G. crinita. 



Table 5. Results of the 1994 preliminary experiments; Establishment of cultural guidelines 
for the propagation of Gentianopsis crinita. Seedlings were transplanted into gentian 
medium in 2" cubes twelve weeks after germination in a sterile medium, and were grown in a 
lightly shaded greenhouse. There were 15 plants per treatment, unless otherwise noted. 

Treatment Survival % (20 weeks after transplant) 

1. Fertilization 

FI (no fertilization) 36* 

F2 (Osmocote™)t 6 

F3 (organic fertilizers**) 0 

F4 (Peter's™ liquid soluble 5-10-5)t 0 

2. Growth medium 

G1 (with compost) 38 

G2 (without compost) 5 

3. Mvcorrhizal inoculum GO plants per treatment') 

Ml (with mycorrhizal inoculum) 41 

M2 (without mycorrhizal inoculum) 29 

4. Transplanting 

T1 (not tranplanted) 0 

T2 (transplanted individually)! 8 

T3 (transplanted in groups of 3-5)J 35 

*Bold text indicates a significant difference from the other treatments within the group, 
as per Z-test (p=.05). 
**Combination of blood meal, rock phosphate, and greensand (12-6-4). 
fW.R. Grace, Fogelsville, PA. 
JPlants roots were gently pulled apart for individual transplant. For group transplant, 
entire cells containing 3-5 plants were transplanted as a whole unit. 
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Figure 18. Penstemon hirsutus three months after transplant into a 
mycorrhizally-inoculated transplant medium. 
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Figure 19. P. hirsutus three months after transplant into a non-mycorrhizal 
transplant medium. The disease-causing fungal pathogen in these plants was 
Sclerotinia spp. Note the differences in size, vigor, and survival between these 
plants and those pictured in Fig. 18 (previous page). 
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CHAPTER VI 

1995 GROWTH AND SURVIVAL EXPERIMENTS 

A. Materials and Methods 

Due to the realization that Gentianopsis crinita was extremely slow-growing, as 

well as the initial but ultimately incorrect assumption that mycorrhizal formation was 

based on length of post-transplant time, plants used in the 1995 experiments were started 

several months earlier than the previous year's crop. In addition, based on the observation 

that the incorporation of this infective mycorrhizal pot culture inoculum into the transplant 

medium (at a 1:7 v/v ratio) benefitted G. crinita as well as the other plant species that 

were being tested at the time {Gentian clausa and Penstemon hirsutus), it was realized 

that incorporating mycorrhizal inoculum into the germination medium might actually 

increase these enhancement effects by allowing them to begin from the outset rather than 

from the point of transplantation. Also, by using this approach, it was thought that useful 

information could be obtained about the behavior of mycorrhizal inoculum throughout the 

production life-cycle of perennials that require a stratification period after seeding. 

Seeds that had been collected the previous year were sown on 10/1/94 into two 

separate cube trays - one with a mycorrhizally-inoculated gentian germination medium and 

the other a non-inoculated control. These were stratified and removed to the mist house 

on 12/7/94. Seedlings germinated approximately one month later. Three months after 

germination, these seedlings were large enough to be transplanted. Prior to transplant in 

April, germination data was collected. This seed-sowing, stratification and germination 

procedure was repeated again in 1996 to confirm the 1995 results. 

73 



Three-month-old G. crinita seedlings were randomly transplanted in April, 1995 

from two germination media treatments (GM 1 = mycorrhizal, GM 2 = non-mycorrhizal) 

into one of 14 transplant media (TM 1-14), which had been categorized into three 

separate experimental sets. Seedlings were transplanted in groups of three from 

germination cubes with the root ball intact so as to minimize damage to their delicate 

roots. Only those cubes with at least three seedlings were used in the actual experimental 

measurements of growth and survival. The remainder were transplanted to separate pots 

containing same treatment media, to be used as sampling replicates for the purpose of 

monitoring mycorrhizal activity during the course of the experiment without disturbing the 

test plants themselves. 

All treatment media ^germination and transplant media are collectively referred to 

as "treatment" media) with the exception of TM 12, consisted of 7 parts gentian medium 

to 1 part inoculum (v/v); the inoculum portion of the media comprised the only difference 

between each treatment (Table 6, p. 89), The first set, referred to as experiment 1, 

consisted of five transplant media, inoculated with field soil from each site (TM 1- 5), The 

second set, experiment 2 (TM 6-9), consisted of inoculum from the two active pot 

cultures that were grown at UMass (TM 6-7), and the two isolate cultures grown by 

INVAM (TM 8-9) from these pot cultures (named MA 103 and 104, respectively). 

Experiment 3 (TM 10-14) utilized the effective non-indigenous Glomus etunicatum isolate 

(UT-316) mentioned earlier, plus two control media (sterilized and commercial 

greenhouse media). Samples of TM 7-14 were submitted for nutrient analysis prior to use 

and found to be virtually identical with regard to nutrient levels. 

74 



TM 14 was essentially the same as GM 1, the mycorrhizal germination medium; 

the gentian seedlings were simply transplanted back into the same medium from which 

they germinated. TM 10 is similar to TM 14, except that TM 10 did not undergo 

stratification (cold-period) as TM 14 had. The three remaining media (TM 11-13) were 

included as non-mycorrhizal controls, and TM 12 and 13 were steam-sterilized. 

Throughout the experiments, soil and root samples from extra non-test replicates 

were harvested periodically and examined for mycorrhizal activity, via spores and root 

colonization, or for other fungal activity (including pathogens). The mycorrhizal activity 

was correlated with plant growth , assessed by measuring leaf span of the longest leaves 

once per month, to discern any differences among treatments, and to see if such 

differences were related to mycorrhizal formation. In addtion, dead and diseased plants 

were periodically removed, and their roots sampled and observed for mycorrhizae and/or 

plant pathogens. 

Experiments had a randomized complete block design. Post-transplant survival 

data was collected throughout the 7-month growing season (April - November), and was 

statistically analyzed using repeated measures ANOVA, followed by a Z-test for 

proportions, which compared the P-value of each treatment. Duncan's MRT was also 

used where appropriate, to compare mean survival percentages across treatments. 

The growth rate of G. crinita was determined by non-destructive repeated 

measurement of the span of longest leaf couplet. This data will be referred to heretofore 

as "growth rate". Growth data was collected monthly beginmng the day after transplant 
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until dormancy in November. However, only the data collected subsequent to the initial 

two-month period following transplant were used for comparison and analysis. This was 

the point at which the downward slopes, representing post-transplant survival (Figure 26, 

p. 95), levelled off and the survival rate stabilized. This allowed statistically viable 

growth data to be collected from that point on. Before this stabilization point, growth 

data would have been confounded by the non-quantified (and non-quantifiable) pathogen 

effect, and differences could therefore not have been definitively attributed to growth 

stimulation per se. 

Growth data, beginning two months after transplant, was analyzed using repeated 

measures ANOVA to discern the presence of treatment differences. The mean growth 

rate from each treatment was plotted on regression lines, which were then compared using 

a Z-test for slopes. Data collection for the experiment ended with the onset of dormancy 

in early November. 

B. Results 

1. Germination 

Germination of G. crinita seedlings was significantly higher in the mycorrhizal 

germination medium (GM 1) than in the non-mycorrhizal germination medium (GM 2) 

for both 1995 and 1996 (Fig. 27, p. 96). In January 1995, 88% of the GM 1 seedlings 

emerged and survived the 3-month "incubation" period in the mist house prior to 

transplant, as opposed to 49% of those seedlings in the non-mycorrhizal GM 2. The 
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following year, in 1996, more G. crinita seeds from the same batch, which had been 

stored for one year at 3°C, were sown into the same two germination treatments in order 

to replicate and confirm the differences in germination. There was only a slight reduction 

in seed viability, but the results were similar; 75% of the GM 1 seedlings emerged and 

survived the 3-month incubation in the mist-house compared to only 23% of those from 

GM 2 (Figs. 28 and 29, pp. 97-98). 

2. Survival and pathogen contamination 

During the two-month period following the first transplant of G. crinita seedlings 

in April 1995, plants were dying off at a very high rate, and root and crown-rot pathogens 

were at least partly responsible for this high mortality (Fig. 30, p. 99). Microscopic 

examination of the roots and crowns of dead and dying plants from all transplant media 

during this time revealed the presence of root disease and crown rot in over 80% of the 

roots (Fig. 31, p. 100). Various soil-borne fungal pathogens were found and identified in 

74% of diseased tissue (Table 7, p. 90, and Figs. 32-37, pp. 101-106), Pythium and 

Rhizoctonia were found in the majority of diseased roots in the first month after 

transplant, and Rhizoctonia continued to be a problem throughout the experiment (Figs. 

32-34). Altemaria and Fusarium were also associated with mortality, though they were 

more numerous in diseased root tissue during the second and third month after transplant 

and appeared to be associated primarily with crown rot after that (Figs. 35 and 36). Also 

observed were the chlamydospores of an unidentified dematiaceous fungi (Fig. 37) which 
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was present in the roots at low levels during the early stages, but was more prevalent 

towards the end of the experiment and during the overwintering period, where it was 

associated with most of the overwintering losses (Fig. 39, p. 108). 

The prevalence of these pathogens, including their presence in the roots of 

transplants from the control transplant media (commercial and sterilized, TM 12 and 13), 

suggests that the germination media (GM 1 and 2) was the source of contamination. This, 

coupled with the observed correlation between the presence of these pathogens and 

diseased tissue, implicate these pathogens as the main causal agent of transplant mortality 

of G. crinita during this experiment; in effect, these experiments became de facto, albeit 

non-quantifiable, pathogen suppression bioassays. 

The high post-transplant mortality rate, conversely referred to as survival rate, 

began to stabilize in June, approximately two months after transplant (Fig. 26, p. 95). The 

second transplant (10/6/96, six months after the first transplant) did not appear to affect 

the survival rate, which remained essentially unchanged for the subsequent month, until 

the onset of dormancy in November. During the subsequent overwintering period 

(November to March), there was a decrease in the survival rate (Fig. 39, p. 108). This was 

due to improper cultural conditions, such as excess warmth and humidity, in the 

greenhouse in which the plants overwintered. These conditions were conducive to disease 

development. The unidentified dematiaceous fungi mentioned earlier (Fig. 37) may have 

played a major role in overwintering mortality, as the chlamydospores of this fungus were 

found in the roots and crown of virtually every dying plant during this period. 
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Table 9 and Fig. 26 (pp. 91 and 95, respectively) compare the survival of 

transplanted gentian seedlings at monthly intervals throughout the 1995 growth and 

survival experiment, and are the only chart and table which include data from all three sets 

of transplant media (TM 1-14). From the period shortly after transplant to the final survey 

in November, just prior to dormancy, plants from the mycorrhizal germination medium 

(GM 1) achieved a higher survival rate than their non-mycorhhizal counterparts (GM 2). 

Especially significant is the decreased mortality rate in the first two months after 

transplant; this is reflected in the sharp divergence of the slopes of the two lines from 4/21 

to 6/15 (Fig. 26). After 6/15, both lines level off, and the slopes are relatively equal from 

that point on, indicating that the disease pressure from root -infecting fungal pathogens 

began to wane by the third month after transplant. 

The higher survival rate established soon after transplant translated into a greater 

percentage of surviving gentians at the end of the first growing season. Almost 25% of 

the mycorrhizally-germinated transplants from the original treatment set survived, as 

compared to only 6% of those from the non-mycorrhizal germination medium (Table 9). 

This was the time when these plants would normally have been outplanted, either into a 

cold frame, preservation garden or back into their native habitat as part of a 

reestablishment project. With about four times as many plants available from the 

mycorrhizal treatment set as from the non-mycorrhizal set, the chances are greatly 

increased that at least some of the fiinged gentians would have survived the subsequent 

dormancy and overwintering period outside. 

79 



The transplant media used in experiment 3 (TM 10-14), referred to as "effective" 

media, supported a much higher survival rate overall than the media from experiments 1 

and 2. Apparently, the field soil and mycorrhizal inoculum used in experiments 1 and 2 

were contaminated with pathogens. Root-infecting pathogens are a common problem in 

mycorrhizal pot cultures started from field soil inoculum, and often cause disease and 

mortality in growth experiments. As a result, the focus turned to experiment 3 

exclusively, which, due to this lower mortality rate, could be measured and surveyed for 

survival and growth in subsequent months. The results presented from this point on will be 

from experiment 3, TM 10-14. 

Table 10 and Fig. 40 (pp. 91 and 109, respectively) include data from TM 10-14, 

spanning the first growing season from April to November. Once again, the survival rate 

was significantly greater in mycorrhizally-germinated plants, but the difference between 

the survival rates of the two germination treatment sets, as represented by the slope of the 

lines, is even greater in the TM 10-14 subset than it was when all transplant media were 

included. The difference between the slope of the lines in Fig. 40 (TM 10-14), 3.26, is 

much larger than the difference between the corresponding slopes seen in Fig. 26, p. 95 

(all media) which is .96. Also, the slope of the lines in Figs. 26 and 40 diverge sharply in 

the two-month period after transplant, and then level off. In both cases, this resulted in a 

significantly higher number of plants from the mycorrhizally-germinated treatment for 

outplanting in November. Once again, the difference between the two germination 

treatments was much greater in TM 10-14 than it was when all transplant media were 
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included: 68.5% to 31.6%, a 37% difiference, vs. 24.7% to 6.4%, an 18.3% difference 

(compare the bottom lines in Table 9 and Table 10). 

If the survival data from TM 10-14 is broken down further, the influence of the 

mycorrhizal inoculum can be more finely discerned. Figs. 41 and 42 (pp. 110-111) 

represent the survival rate of transplants within each germination medium treatment set, 

differentiated by transplant medium . The two mycorrhizal transplant media, TM 14 and 

10, supported a higher survival rate in both mycorrhizal and non-mycorrhizal germination 

treatment sets; when final survival was surveyed in November, TM 10 and 14 

outperformed their non-mycorrhizal counterparts. This can be seen in Fig. 43 (p. 112), 

which is a bar chart showing the percentage of surviving plants just prior to dormancy 

from all ten treatment combinations (GM 1+2 x TM 10-14, 2 x 5 =10). This chart, as well 

as Table 11, p. 92 (the same data in tabular form) demonstrates that plants from GM 1 

survived at a significantly higher rate than plants from GM 2 regardless of the medium into 

which they were transplanted. Among the set of plants germinated in the mycorrhizal 

germination medium, the transplant medium with the lowest survival percentage, TM 12 

(50%), was still higher than the transplant media which supported the highest survival 

percentage (TM 10 and 14) among the non-mycorrhizally-germinated plants. It can be 

seen in the chart in Fig. 12 (p. 92) that the two mycorrhizal transplant media, TM 10 and 

14, significantly increased survival of gentians from both mycorrhizal and non-mycorrhizal 

germination treatments. 
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If the means of the two survival percentages within each TM (one from each GM 

treatment set) are compared, a clearer picture emerges of the influence of transplant 

medium on final survival. Plants transplanted into the mycorrhizal transplant media (TM 

10 and 14) emerged with much higher survival percentages than those transplanted into 

the non-mycorrhizal transplant media (TM 11-13). Fig. 44 (p. 113) and Table 12 illustrate 

this difference. 

3. Growth 

Fringed Gentian is a cool-weather species. The phenology of Fringed gentian , 

including the growth rate, is genetically controlled and dictated by decreasing day length 

and not air temperature. Most of its vegetative growth occurs in autumn, followed by 

either rosette formation or flowering in late September to mid-November. In these 

experiments, it followed the same growth pattern as well. The growth rate averaged 

approximately .5 cm/month from mid-April to mid-July, and then increased to slightly over 

1 cm/month from mid-July to November. 

The plants began to show signs of dormancy in early November (Fig. 30, p. 99), as 

indicated by several phenological events. Some of the lower foliage began to senesce, 

while the remaining foliage formed a rosette, as is typical of many biennials preparing to 

overwinter after their first season of growth. Also, a compact, thick-leaved apical bud 

structure began to form at the growing tip (Fig. 45, p. 114). At the same time, the stem 

and crown began to thicken, as did the tap root extension. Finally, leaf growth stopped. 
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Fig. 46 (p. 115) displays the cumulative differences in growth rate between the two 

germination treatment sets, GM 1 and GM 2, just prior to transplant in April 1995. This 

chart is presented to illustrate that the mycorrhizal germination medium had an effect on 

growth at the seedling stage as well as post-transplant. Seedlings from the mycorrhizal 

germination medium (GM 1) were larger than their non-mycorrhizal counterparts even at 

this early stage of growth (Fig. 28, p. 97). Once transplanted, the mycorrhizally- 

germinated plants continued to sustain a higher growth rate than plants from GM 2, as 

indicated by the slope of the lines in Fig. 47 (p. 116), which are significantly different from 

each other as per a Z-test for slopes (p=.05). 

The next four graphs. Figs. 48-51 (pp. 117-120), represent the same growth data 

used to plot the lines in the previous graph (Fig. 47), but the data are further delineated. 

Each germination treatment set is represented by two graphs; each graph has five lines 

plotting growth in the five transplant media (TM 10-14). The blue and pink lines 

previously seen in Fig. 47 representsthe means of the five lines in Figs. 48 and 50, 

respectively. The first graph (Fig. 48) shows the growth of plants which were germinated 

in the mycorrhizal germination medium (GM 1) and transplanted to the five transplant 

media (TM 10-14). Fig. 49 is the same graph, but includes trendlines and their 

corresponding regression equations, which represent the growth rates of the various 

transplant media for purposes of comparison. Table 13 (p. 93) is a comparison of the 

slope of the growth lines in Fig. 49 using a Z-test for slopes. Of the two mycorrhizal 

transplant media (TM 10 and 14), only TM 10 supported a significantly higher growth rate 
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than the remaining three non-mycorrhizal media, TM 11-13; TM 14, though slightly 

higher, was not significantly so. 

The second set of graphs (Figs. 50 and 51) contain the growth data of plants from 

the non-mycorrhizal germination medium (GM 2), which were transplanted into the same 

five transplant media (TM 10-14). Once again, trendlines and regression equations were 

included in the latter graph (Fig. 51) to compare the various growth rates; Table 14 (p. 

93) compares the slopes of these trendlines. In this case, TM 10 and 14, as well as TM 

13 (sterilized, non-mycorrhizal control) supported a significantly higher growth rate that 

the remaining two non-mycorrhizal media (TM 11 and 12). 

Table 15 (p. 94) compares the growth rates of GM 1 plants vs. GM2 plants for 

each of the five transplant media. In three of five, there was a significant difference 

between mycorrhizally and non-mycorrhizally germinated plants. Furthermore, the overall 

growth rate, as represented by the mean of each of the two sets of plants, was significantly 

higher for plants from GM 1 than those from GM 2. 

In addition to differences which were discernible through data collection and 

analysis, many of the differences were either not measurable or were seen in the second 

year of growth and therefore were not included in the growth data just presented. Figs. 

52-55 (pp. 121-124) illustrate some of these differences. For example, plants from the 

mycorrhizal germination medium (GM 1) generally looked healthier and more vigorous 

than those from the non-mycorrhizal GM 2 (Fig. 52) throughout the course of the 1995 

experiments. Fig. 53 shows examples of plants from each germination treatment set 
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emerging from dormancy in late February 1996, the mycorrhizal plant on the right 

reemerged from dormancy and "bolted" more quickly than its non-mycorrhizal counterpart 

of the left. After reemergence, the mycorrhizal plants continued to show stronger and 

more vigorous growth, as seen in Fig. 54, taken in May, 1996, which clearly illustrates this 

difference. Fig. 55 pictures a nearly full-grown Fringed gentian taken about one month 

later, with what appeared to be the beginnings of a flower bud forming at the growing tip. 

This plant went on to flower in October of 1996 in the greenhouse, about the same time as 

its counterpart in nature. 

4. Mvcorrhization 

Mycorrhizal colonization levels were assessed by randomly sampling plant roots 

from the four mycorrhizally-inoculated media treatments, GM 1 + 2, TM 10 and 14. 

Differences in mycorrhizal colonization between these treatments was not discerned, and 

mycorrhization data represents estimated means from all four treatments. 

Appressoria, which are pads from which fungal infection pegs develop, occur 

where the mycorrhizal fungus first penetrates the root endodermis. Appressoria were first 

observed in the roots of Fringed gentian from the four mycorrhizal treatments in July and 

August. However, these were not accompanied by any mycorrhizal colonization. In fact, 

there were no mycorrhizae observed during the entire course of the growth and survival 

experiments, from mid-April to early November, despite the apparent infectivity of the 

mycorrhizal treatment media. Infectivity was confirmed by sorghum pot cultures set up 
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with excess treatment media; the same process was used on non-mycorrhizal treatment 

media to confirm a lack of infectivity. The first appearance of mycorrhizae was in early 

November, concurrent with the onset of dormancy, beginning with low levels of 

colonization (1-2%), and reaching levels of 25-40% by late November and early December 

(timeline. Fig. 30). The beginning and peak of mycorrhizal colonization in gentian roots 

can be seen in Figs. 56 and 57, pp. 125 -126. In addition, it was observed that 

mycorrhizal roots often swelled to more than two times their normal diameter (Fig. 58, p. 

127), from an average of 330 ixm to more than 700 iu.m. In addition, roots of plants from 

the four mycorrhizal treatments sampled throughout the overwintering period, as well as 

those emerging from dormancy in late February and early March, 1996 had mycorrhizae as 

well, though the arbuscules at this point had a different appearance than those observed in 

the early dormancy period. They were difficult to distiguish in the cortical cells, and took 

on a dense, amorphous appearance, as opposed to the more finely discernible arbuscules 

seen in December, 1995. 

5. Other root/fungus associations 

Periodic plating of washed roots (both diseased and healthy) on culture media 

yielded Pythium, Fusarium, Rhizoctonia, Alternaria, Trichoderma, Cladosporium, 

Mucor, Aspergillus, Penicillium, Geotrichum, Helminthosporium, and other unidentified 

and assorted fungi, yeasts and bacteria, including so-called "black yeasts" (Summerbell, 
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1987). This data was qualitative only, but does indicate the presence of a wide range of 

fungal organisms associated with gentian roots. 

Other unusual, apparently non-pathogenic root-inhabiting fungi were observed in 

Fringed gentian throughout the 1995 experiments (Table 8, p. 90, and Figs. 59-61, pp. 

128-130). Unlike VA mycorrhizal fungi, these fungi colonized the roots and root surfaces 

throughout the active growing season, from May-October (timeline. Fig. 30, p. 99). They 

were found in the roots of healthy and diseased plants, but were never actually associated 

with diseased tissue, as the pathogenic fungi were. Most were endophytic, i.e., occupying 

the internal root tissue, but some, referred to in the literature as dark septate fungi, or 

DSF, were found on the surface of roots. Altogether, these non-mycorrhizal root- 

associated fungi were found in nearly 60% of the roots sampled during this period, and 

more than half of those had more than one type of fungus. 

Nearly half of the root-inhabiting fungi were protoctistan fungi, with the majority 

resembling chytrids, or chytrid-like organisms. A small percentage of these were 

unidentified oomycetes characterized by fine, hyaline, aseptate mycelia (the latter may 

have been pathogenic in some cases; see Fig. 32, p. 101). The chytrid-like fungi had a 

holocarpic, endobiotic morphology, characterized by a lack of hyphae and one or multiple 

thalli occupying individual root cortical cells. These were observed in roots sampled 

throughout the experiment, and were often seen occupying a significant portion of the 

root tissue (up to 25%). 
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The remainder consisted of dematiaceous septate endophytes, but these were 

observed largely in the latter half of the growing season (July - October). For example, a 

Rhizoctonia-^t fungus which formed pseudo-parenchymatous or sclerotia-like structures 

within the cortical cells was observed colonizing the roots of plants sampled in July and 

August of 1995 (Fig. 59). These were seen in healthy root tissue as well, unaccompanied 

by any rot or necrosis, suggesting a non-pathogenic or neutral relationship. They 

resembled the description of dematiaceous endophytic fungi seen by Neumann (1934), 

who identified them as Mycelium radicis atrovirens Melin. These and other similar fungi 

have been described in the literature as dark-septate endophytes (DSE) and dark septate 

fungi (DSF), found inside and outside the roots, respectively. This group of fungi were 

eventually identified and re-assigned the new species names P. dimorphospora by Richard 

and Fortin (1973) and Phialocephala fortinii by Wang and Wilcox (1985). Attempts at 

isolating these fungi from the roots were unsuccessful. These fungi, as well as a similar 

grey sterile fungus with dark, septate hyphae (Fig. 60), have been observed by other 

researchers in the roots of gentians and other plant species both in cultivation (Neumann, 

1934) and from the habitats noted above (Read and Hasselwandter, 1981; Currah and Van 

Dyck, 1986; Stoyke and Currah, 1990). 
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Table 6. Treatment media used in 1995 growth and survival experiments. 
All treatment media (except TM 12) consisted of a base medium (1:1:1:1 v/v 
compost/sand/vermiculite/T'afard H™) mked 7; 1 (v/v) with the listed component. This l/8th 
component comprised the only difference between the treatment media. AH media were tested and 
found to be identical in nutrient composition, except TM 12, which had a higher level of nutrients. 

A. Germination media (GM) 

1. Base medium with Glomus etunicatum (INVAM UT-316) inoculum (mycorrhizal) 

2. Base medium without mycorrhizal inoculum (non-mycorrhizal) 

B. Transplant media (TM) 

Experiment 1 - Field site soils 

1. Women's Federated State Forest - New Salem (wet meadow) 

2. Mt. Hope Park - South Williamstown (calcareous fen) 

3. Field Farm - Williamstown (wet meadow) 

4. Powerline - Cheshire (calcareous fen) 

5. North Common Meadow - Petersham (wet meadow) 

Experiment 2 - Indigenous pot and isolate cultures 

6. Field Farm pot culture (started with soil from site #3) 

7. Powerline pot culture (started with soil from site # 4) 

8. Field Farm isolate culture - Glomus geosporum (cultured by INVAM - MA-103) 

9. Powerline isolate culture - Glomus etunicatum (cultured by INVAM - MA-104) 

Experiment 3 - Non-indigenous isolate cultures ('"effective media") 

10. Glomus etunicatum (INVAM UT-316) isolate culture - same as GM 1 above 

11. Base medium (referred to as "non-mycorrhizal gentian medium" - same as GM2 above) 

12. Commercial growing mix (Fafard n™) 

13. Sterilized non-mycorrhizal gentian medium 

14. Mycorrhizal gentian medium (same as GMl and TMIO, but underwent stratification) 
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Table 7. Incidence of pathogenic fungi in roots or crowns of diseased G. crinita from the 
1995 growth and survival experiments. 

Pathogenic fungi 
(associated with diseased tissue) 

Diseased tissue* % of samples with 
pathogen 

Pythium^* root 39 

Rhizoctonia spp. root and root surface 28 

Unidentified dematiaceous fungi root and crown 24 

Fusarium spp. root and crown 16 

Altemaria spp. crown 13 

More than one pathogen root 40 

Unidentified or absent root and crown 26 

*81% of tissue samples from dying plants had diseased root or crown tissue. 
Samples were taken from aU transplant media (TM 1-14). 

** Originally identified as P. irregulare, a common contaminant of greenhouse media. 

Table 8. Incidence of non-pathogenic fungi in roots of healthy and diseased G. crinita 

from the 1995 growth and survival experiments. 

Non-pathogenic fungi 
(associated with healthy tissue) 

Tissue % of samples with 
fungi 

Chytrids root 36 

Unidentified protoctistan fungi root 9 

DSE* root 13 

DSF** root surface 31 

More than one fungi root and root surface 53 

Note; 58% of tissue samples from all plants had non-pathogenic root-associated fungi. 
Samples were taken from all transplant media (TM 1-14). 
*Probably Phialocephala fortinii Wang and Wilcox. 
**Probably non-pathogenic Rhizoctonia or Phialocephala dimorphospora 

Richard&Fortin i^oxmQxXy Mycelium radicis atrovirens Melin). 
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Table 9. Influence of germination medium on survival of all transplanted G. crinita 
(TM 1-14) from the 1995 experiments. Data represents survival percentages and 
corresponds to data in Fig. 26, p. 95. 

Germination medium 

Date mycorrhizal non-mycorrhizal Z-test* 

4/21/95 100 100 0 

5/18/95 72 60.5 3.3 

6/15/95 45.9 22.8 5.6 

7/13/95 41.7 16.4 7.4 

8/10/95 29.5 9.5 6.1 

9/7/95 26.1 8.1 5.6 

10/5/95 25.2 6.9 5.6 

11/2/95 24.7 6.4 5.8 

Table 10. Influence of germination medium on survival of G. crinita in "effective" 
transplant media (TM 10-14) from the 1995 experiments. Data represents survival 
percentages and corresponds to data in Fig. 40, p. 109. 

Germination medium 

Date mycorrhizal non-mycorrhizal Z-test* 

4/21/95 100 100 0 

5/18/95 94.8 60.8 6.4 

6/15/95 89.9 45.8 7.3 

7/13/95 81.4 41.7 6.4 

8/10/95 78.8 38.3 6.4 

9/7/95 74.0 35.8 6.0 

10/5/95 73.2 33.3 6.2 

11/2/95 68.5 31.6 5.7 

*A11 Z-test scores (except 0) indicate a significant difference between 
mycorrhizal and non-mycorrhizal germination media (p=.01). 
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Table 11. Influence of germination medium and transplant medium (TM 10-14) 
on survival of G. crinita. Data represents survival percentages as olf 11/2/95, after 
the first season of growth, and corresponds to data in Fig. 43, p. 112. 

Germination medium 

Transplant medium mycorrhizal non-mycorrhizal Z-test 

14 95.8 45.8 4.23** 

10 87.5 45.8 3.06** 

13 54.2 25 2.08* 

12 50 29.1 1.65* 

11 58.3 12.5 3.32** 

10 - gentian medium (M)t 11 - gentian medium (NM) 
14 - germination medium (M) 12 - sterilized gentian medium (NM) 
13 - commercial mix (NM) 

fM = mycorrhizal, NM = non-mycorrhizal 
*p=.05 **p=.01 

Table 12. Influence of transplant medium (TM 10-14) on survival of G. crinita. 
Data represents mean survival percentages of plants from both mycorrhizal and 
non-mycorrhizal germination media as of 11/2/95, after the first season of growth. 
Data corresponds to data in Fig. 44, p. 113. 

Transplant medium Mean survival (%) Duncan's grouping* 

14 (M) 72.9 A 

10 (M) 66.6 A 

13 (NM) 39.6 B 

12 (NM) 39.6 B 

11 (NM) 35.4 B 

10 - gentian medium (M)t 11 - gentian medium (NM) 
14 - germination medium (M) 12 - sterilized gentian medium (NM) 

13 - commercial mix (NM) 

fM = mycorrhizal, NM = non-mycorrhizal 
*Means with same letter not significantly diflferent (p=.05). 
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Table 13. Growth of G. critiita transplanted into TM 10-14 from mycorrhizal 
germination medium (GM 1). Data is from 1995 experiments, and corresponds to data 
in Figs. 48 and 49, pp. 117 and 118. Slopes represent relative growth rates from two 
to seven months after transplant. 

Transplant medium Slope Z-test grouping* 

10 (M) 1.087 A 

14 (M) .87 A 

13 (NM) .84 B 

11 (NM) .83 B 

12 (NM) .80 B 

10 - gentian medium (M)t 11 - gentian medium (NM) 
14 - germination medium (M) 12 - sterilized gentian medium (NM) 
13 - commercial mix (NM) 

t M = mycorrhizal, NM= non-mycorrhizal. 
* Z-test for slopes. Means with the same letter are not significantly different 
(P = 05). 

Table 14. Growth of G. crinita transplanted into TM 10-14 from non-mycorrhizal 
germination medium (GM 2). Data is from 1995 experiments, and corresponds to 
data in Figs. 50 and 51, pp. 119 and 120. Slopes represent relative growth rates from 
two to seven months after transplant. 

Transplant medium Slope Z-test grouping* 

14 (M) .88 A 

10 (M) .87 A 

13 (NM) .85 A 

11 (NM) .71 B 

12 (NM) .68 B 

10 - gentian medium (M)t 11 - gentian medium (NM) 
14 - germination medium (M) 12 - sterilized gentian medium (NM) 
13 - commercial mix (NM) 

t M = mycorrhizal, NM = non-mycorrhizal. 
* Z-test for slopes. Means with the same letter are not significantly different (p =.05). 
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Table 15. Comparison of growth of G. crinita from mycorrhizal and non-mycorrhizal 
germination media in the "effective" transplant media (TM 10-14). Data is from the 
1995 experiments. Slopes represent relative growth rates from two to seven months 
after transplant. 

Germination medium 

Transplant medium mycorrhizal non-mycorrhizal Z-test 

10 1.09 0.88 3.28* 

14 0.87 0.87 — 

13 0.84 0.85 — 

11 0.83 0.71 1.72 

12 0.80 0.68 1.88 

mean 0.86 0.78 \ 97** 

10 - gentian medium (M)t 11 - gentian medium (NM) 
14 - germination medium (M) 12 - sterilized gentian medium (NM) 
13 - commercial mix (NM) 

fM = mycorrhizal, NM = non-mycorrhizal. 
*p=.01 **p=.05 
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Figure 28. G. crinita seedlings approximately eleven weeks after germination, 
March, 1995. Note higher number of germinated seedlings in the mycorrhizal 
germination medium on the right. 
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Figure 29. G. crinita seedlings approximately eleven weeks after germination, 
March, 1996. Note higher number of germinated seedlings in the mycorrhizal 
germination medium (top right). 
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Figure 31. Diseased G. crinita root (unstained) sampled June, 1995. This is 
typical of what was observed In the dead and dying plants from the 1995 
growth and survival experiments. No identifiable pathogen was found in this 
root. 
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Figure 32. Fungal root pathogens invading a damaged G. crinita root (stained) 
sampled May, 1995. The darker, thicker fungal hyphae (along the top and 
center of root) was identified as Rhizoctonia, plasmolyzed by the clearing and 
staining procedure. The thinner, lighter mycelium belongs to an unidentified 
fungi, possibly an oomycete. 
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Figure 33. Pythium oospores in a diseased G. crinita root (unstained), sampled 
May, 1995. 
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Figure 34. Pythium oospores in the root of G. crinita. This plant was sampled 
in May, 1995, shortly after it had died. Note the presence of fungal hyphae, 
made visible by staining. 
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Figure 35. Conidia of Fusarium from diseased root tissue of G. crinita 
(unstained), collected June, 1995. Conidia can be seen in the top right portion 
of the picture. 
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Figure 36. Conidia of Alternaria in diseased crown tissue of G. crinita, collected 
June, 1995. 
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Figure 37. Chlamydospores of an unidentified dematiaceous fungus from the roots 
of G. crinita shortly after it had died in November, 1995. This pathogen was first 
observed shortly after transplant (May) and did not become prevalent until late in 
the season, where it was found in the roots and crowns of almost every diseased 
plant. Circumstantial evidence suggests that it may have been responsible for 
significant losses during the overwintering period. 
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Figure 38. Close-up of VAMF spores from site 5, North Common Meadow, 
Petersham, MA, showing nematode eggs and nematodes (center). Nematodes 
were found in all of the indigenous pot cultures, and subsequently 
contaminated the growing media into which these cultures were Incorporated. 
The "comma-shaped" nematodes may be Paratylenchus, though it is unlikely 
that they were pathogenic in greenhouse culture. 
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Figure 45. Gentianopsis crinita in early November during onset of dormancy. 
Note the rosette formation of the leaves and the thick-leaved bud at the apical 
meristem. 
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Figure 52. Gentianopsis crinita plants approximately four months after 
transplant (August 1995) from each of the germination treatment sets. The 
plants from the mycorrhizal germination medium (GM 1) on the right are larger 
and more vigorous than those from the non-mycorrhizal germination medium 
(GM 2). 
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Figure 53. G. crinita emerging from dormancy in late February, 1996. Note that 
the non-mycorrhizal plant (on left) still has the thickened apical bud at its 
growing tip, and has not yet reemerged from dormancy, while the mycorrhizal 
plant on the right is reemerging faster and more vigorously. 
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Figure 54. Mycorrhizal G. crinita plants three months after reemergence (May, 
1996). Mycorrhizal plants (on left) continued to exhibit more vigorous growth 
than their non-mycorrhizal counterparts (on right) throughout the second-year 
growing season. 
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Figure 55. A nearly full-grown G. crinita, June, 1996. A flower bud is beginning 
to form at the growing tip. These greenhouse-grown gentians went on to 
flower in October of that year. 
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Figure 56. The beginning of mycorrhizal colonization in the roots of G. crinita, 
early November, 1995. Note appressorium, or infection peg (arrow), where the 
extra-radical VAM fungal hyphae first penetrates the root endodermis. 
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Figure 57. The peak of mycorrhization in G. crinita root, mid-December, 1995. 
Note VAM fungal hyphae (stained purple), and heavy colonization of root 
cortex by arbuscules. 
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Figure 58. Swollen G. crinita root in response to heavy mycorrhizal 
colonization, mid-December, 1995. Mycorrhizal roots swelled to slightly 
more than 2x their normal diameter, from an average of 330 /^m to more 
than 700 /^m. 
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Figure 59. A dark-septate endophytic (DSE) fungus, probably Phialocephala 
fortinii, inhabiting the roots of a healthy G. crinita, August, 1995. Note the 
sclerotia-like structures. The absence of root disease suggests a non- 
pathogenic relationship with its plant host. 
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Figure 60. A dark-septate endophyte (DSE) inhabiting the roots of a healthy G. 
crinita, August, 1995. This fungus resembles the descriptions of a "grey-sterile 
endophyte" observed in gentian roots extracted from natural habitats by other 
field investigators. 
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Figure 61. Non-pathogenic chytrids in the roots of a healthy G. crinita. Dark 
areas are actually comprised of dozens of tiny circular bodies (not clearly 
visible in this photograph) packed together in the cortical cells. A DSE similar 
to the one pictured in Fig. 60 can be seen in the lower right portion of the root, 
just below the chytrids. 
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CHAPTER VII 

1996 EXPERIMENTS 

A. Pathogen suppression experiments 

1. Materials and Methods 

The hypothesis behind this series of experiments was that mycorrhizal fungi and 

the soil microflora associated with mycorrhizal pot cultures suppresses soil-borne fungal 

root pathogens, thus reducing incidence of damping-off disease among plants grown in a 

commercial growing mix into which pot culture inoculum has been incorporated. In order 

to test this h)^othesis, a series of experiments were undertaken in December 1995 with 

root-infecting fungi found in the gentian experiments {Rhizoctonia, Fusarium, and 

Pythinm spp.). Because of the long generation time of Fringed gentian, radish, basil, and 

lettuce were used as hosts. The purpose of this series of experiments was to confirm and 

elucidate, under controlled conditions, possible pathogen-suppressive properties of VAM 

inoculum as observed during the 1995 experiments. 

Three different plant/pathogen combinations were used: Radish cv. Rabano White 

\c\c\dRhizoctonia solani (isolated fi’om infected radishes). Lettuce cv. Black-seeded 

Simpson/Py//?/w/77 spp. (isolated from infected lettuce seedlings), and Basil cv. 

GtnovdJFusarium oxysporum f sp. basilicum (isolated from basil seeds). All seeds used 

were hot-water treated, and were not treated with fungicides. The four treatment media 

(Ml-4) used in the experiments were as follows: 
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• Ml) Sterilized commercial growing mix - Fafard II™ , referred to as SM (sterilized 

medium) 

• M2) SM + sterilized pot culture inoculum 

• M3) SM + non-mycorrhizal pot culture inoculum 

• M4) SM + mycorrhizal pot culture inoculum 

Of these, only M4 contained mycorrhizal inoculum; the remaining three did not. 

The mycorrhizal pot culture inoculum was the same used in the 1995 experiments, 

INVAM UT- 316, containing Glomus etunicatum. The base media used was a sterilized 

commercial growing mix (Fafard 11™); Ml was simply this base media with no additions. 

This, along with M2, were both sterilized by steam-sterilization, and were included as 

positive controls to test the pathogenicity of each pathogen. The pot culture in M2-M4 

was incorporated into the growing mix at a 1:4 (v/v) ratio. Therefore, the treatment 

component of the media consisted of pot culture comprising 1/5 (or 20%) of the mix, 

slightly higher than the 1/8 (12.5%) used in the 1995 trials. This was an attempt to obtain 

a stronger and less ambiguous treatment effect. Treatment M3, which incorporated a non- 

mycorrhizal pot culture inoculum, was used as a contol to assess the effects of what was 

essentially a rhizosphere inoculum without its mycorrhizal component, in order to 

determine if there was something in the pot culture inoculum itself, apart from its 

mycorrhizal component, that was at least partially responsible for disease suppression. 

The general procedure followed involved sowing five seeds into each of the 48 

(2 square inch) cells per tray, at a depth of 1 cm. The trays were then placed in a mist 

house, where they remained until germination. In approximately twenty days, the test 
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plant seedlings germinated, and the appropriate cells were subject to the various 

inoculation treatments. 

KdifXish/Rhizoctoma inoculation treatments: 

• No inoculation 

• Inoculation with one rice grain/plant colonized by Rhizoctonia solani 

• Inoculation with rice grain without Rhizoctonia (rice grain control) 

Inoculum was prepared by inoculating one autoclaved jar of brown rice (250 cc) 

with Rhizoctonia solani. This was incubated at room temperature in darkness for 14 days, 

until mycelia was visible throughout the jar. One autoclaved jar of non-inoculated brown 

rice was simultaneously prepared, for use as a control. Each cube which was inoculated 

received five grain of rice, one per seed, planted at a depth of two cm., .5 cm fi-om each 

radish seedling (5 seedlings per cube). 

hQWMcdPythium inoculation treatments; 

• No inoculation 

• Inoculation with .5 cm. plug of Pythium culture on V8 medium 

• Inoculation with .5 cm. plug of V8 media without Pythium 

Five 0.5 cm plugs were placed into the appropriate cells at a depth of 1 cm., 0.5 

cm from each lettuce seedling (5 seedlings per cube). 

B?LS\yFusarium inoculation treatments: 

There was only one inoculation treatment in this experiment; the entire tray (48 

cubes) was inoculated with Fusarium oxysporum f sp. basilicum. The inoculum was 

prepared by transferring the original Fusarium maintenance culture to Komeda medium 
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and incubating it at 23°C until the fungal culture filled the entire plate. The Fusaritim 

culture was then put into solution by scraping it from the Komeda medium with a sterile 

knife and mixing the fungus with sterilized water. This was mixed vigorously, until the 

culture was evenly dispersed throughout the water, and then poured directly over the basil 

seedlings. Each cell (2 square inch) received 30 ml of solution, @ 300,000 conidia per 

milliliter. 

After inoculation, which was carried out under a flowhood, the trays were returned 

to the mist house until the conclusion of the experiments. Seedlings were germinated and 

grown in same treatment medium and were not transplanted. Seedling survival in the 

KdidiishlRhizoctonia and hotXuQdPythium experiments was measured 20 days after 

pathogen inoculation. For the 'BdiSiMFusarium experiment, seedling survival was measured 

four months after inoculation (April 1996), as the Fusarium did not become actively 

pathogenic until that time. 

The experimental design for the 'Rai^ish/Rhizoctoma solani and hQtXucdPythhim 

experiments was a randomized complete block, with a 4x3 factorial of media and 

pathogen inoculation (4x3 = 12 treatments); this included pathogenicity and inoculation 

controls. The experimental unit consisted of one cube (each cube had five seedlings). 

There were four replications of each treatment, and twelve treatments (4x12=48 cubes 

per experiment). Because each tray had 48 cubes, there was one tray for each 

plant/pathogen combination. Inoculation treatments for the radish and lettuce experiments 

were randomly administered within each media block. The Fusarium experiment 

used a split plot, rather than randomized block design, meaning that all the seedlings in all 
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four treatment media (each containing 12 replications) received the same pathogen 

inoculation. Pathogenicity and host susceptibility had already been established in previous 

greenhouse trials (Trueman, 1995), so non-pathogen controls were omitted. 

2. Results 

The lettuce plants inoculated with Pythium failed to result in disease, and so did 

not produce any usable data. The results of the other two experiments, using 

xdid\^hlRhizoctonia and basil/Fw^ar/w/w, are presented here. 

Table 16 and Fig. 62 (pp. 139 and 141, respectively) show the results of the 

KdidA^hJRhizoctonia experiment, and list the four different media which were tested. Both 

M3 and M4 (the two media containing active pot culture inoculum, non-mycorrhizal and 

mycorrhizal, respectively) demonstrated a significantly enhanced disease suppression 

capability over the control media. Ml and M2. This was assessed by surveying the 

survival of radish seedlings twenty days after pathogen inoculation (Duncan's MRT, 

p=.05). The strain of Rhizoctonia solani used was a known pathogen of radish, causing a 

"collar" or lower stem rot, manifested as damping-ofifin newly-germinated seedlings. M3, 

which contained active non-mycorrizal pot culture inoculum, still exhibited a significantly 

greater disease-suppression capability than either of the two controls (Ml and M2), 

though it was still significantly less than that shown by M4, which contained mycorrhizal 

inoculum. 

The second experiment tested basil inoculated with Fusarhim oxysporum f sp. 

basilicum in the same four treatment media. It took four months for the disease to 
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manifest itself, most likely because Fusarium is only pathogenic at soil temperatures 

greater than 60°F (16°C); it was not until the fourth month after germination (April 1996) 

that the greenhouse in which this experiment took place warmed up enough to sustain that 

soil temperature. 

Table 17 and Fig. 63 (pp. 139 and 142, respectively) show the results of this 

experiment. The medium containing active non-mycorrhizal pot culture inoculum, M3, 

exerted a greater supressive effect on the pathogen than either of the controls (Ml and 

M2), but not nearly as much as M4, which contained mycorrhizal inoculum (Figs. 64 and 

65, pp. 143-144, are photographs of the basil four months after pathogen inoculation; M4 

is in the upper left comer of Fig. 64). 

B. Soil dilution and plating experiment 

1. Materials and Methods 

The purpose of this experiment was to assess and compare microbial populations 

from mycorrhizal and non-mycorrhizal treatment media used in the 1995 experiments. 

The protocol involved a standard dilution and plating of the mycorrhizal medium which 

supported the highest percent survival of Fringed gentian (TM 14), the non-mycorrhizal 

medium which supported the lowest (TM 11), and a commercial growing mix as a control 

(TM 12 ). Three different selective culture media were used to isolate fungi, bacteria, and 

actinomycetes. Each dilution was plated onto three petri plates containing the particular 

culture medium, for a total of 9 plates per TM (9x3 TM = 27 plates total). Soil fungi 

were isolated on Rose Bengal, and a 1; 10,000 (10*^) dilution from that culture was plated 
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out. sc A (starch-casein agar) was used to isolate actinomycetes, and a 1:100,000 (10'^) 

dilution was plated. For bacteria, TSA (trypticase-soy agar) was used, and was plated 

out at a 1:1,000,000(10'^) dilution. After several weeks in an incubator (23 °C), the 

colony forming units were counted and the results statistically analyzed using ANOVA, 

Duncan's MRT, and t-tests (p=.05). Data was log-transformed for analysis. 

2. Results 

The overall population of soil microflora from the different treatment media, as 

reflected in the soil dilution and plating, can be seen in Table 18 (p. 140) and Fig. 66 (p. 

145). The mycorrhizal medium, TM 14, represented by the blue bar on the right of the 

chart, had lower populations of soil microorganisms, indicating a suppression of soil 

microflora when compared to the other two non-mycorrhizal media (TM 11 and 12). 

When this data is separated by type of microorganism (Fig. 67, p. 146), it is revealed that 

the only significant suppressive effect (as per t-test, p=.05) was on soil fiingi (important 

since pathogens in the 1995 experiments were soil-borne ftmgal pathogens). The bacterial 

populations were suppressed in Ml4, though not significantly so, and the actinomycete 

population remained relatively unaffected. 

One additional observation should be noted which may have had an influence on 

the outcome of the 1995 experiments, though this data was not counted or statistically 

analyzed. The TSA culture medium used for the isolation of soil bacteria contained 

potassium phosphate (K2HPO4), which resulted in a medium with a cloudy appearance. 

Surrounding several of the bacterial colonies on the dilution plate from TM 14, the 

137 



growing medium containing mycorrhizal inoculum, were "zones of clearing" in the cloudy 

medium, which resulted from phosphate-solubilization and is indicative of the presence of 

phosphate-solubilizing bacteria. These zones of clearing were not seen on the dilution 

plates from the other two non-mycorrhizal growing media, TM 11 and 12. 
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Table 16. Survival of radish (Raphanus sativus) seedlings in various media 20 days after 
inoculation with Rhizoctonia solani. Only data from Rhizoctonia inoculation treatment 
is shown; remaining inoculation treatments had no effect on survival. Data corresponds 
to data in Fig. 62, p. 141. 

Media Survival (%) Duncan's grouping* 

0 A 

2** 0 A 

3 15 B 

4 20 C 

1 (NM) Sterilized commercial growing mix (SM) 
2 (NM) SM + sterilized pot culture inoculum 
3 (NM) SM + non-mycorrhizal pot culture inoculum 
4 (M)t SM + mycorrhizal pot culture inoculum 

*Letters indicate significant differences between percentages as per Duncan's 
MRT, percentages with same letter not significantly different (p=.05). 

**Media 1 and 2 were included as controls to test for pathogenicity of 
Rhizoctonia strain. Zero percentage indicates that all of the plants died as a 
result of pathogen inoculation. 

Table 17. Survival of basil {Ocimum basilicnm) seedlings in various media four months 
after inoculation with Fusarium oxysporum f sp. basilicum. Data corresponds to data 
in Fig. 63, p. 142. 

Media Survival (%) Z-test grouping* 

4 67.9 A 

3 48.2 B 

2 27.8 C 

1 9.1 D 

1 (NM) Sterilized commercial growing mix (SM) 
2 (NM) SM + sterilized pot culture inoculum 
3 (NM) SM + non-mycorrhizal pot culture inoculum 
4 (M)t SM + mycorrhizal pot culture inoculum 

*Letters indicate significant differences between percentages as per Z-test; 
percentages with same letter not significantly different (p=.05). 
fM = mycorrhizal, NM = non-mycorrhizal. 
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Table 18. Influence of mycorrhizal inoculum on soil microorganism populations in 
various transplant media from the 1995 growth and survival experiments. Data 
represents colony forming units (CPU's) two weeks after plating, and was log- 
transformed for ANOVA and Duncan's MRT (p=.05). Letters indicate significant 
differences between media for each type of soil organism listed. Data corresponds 
to data in Figs. 66 and 67, pp. 145 and 146. 

Type of soil microorganism (CPU's) 

Media Fungi* Actinomycetes** Bacteriaf mean 

11 3.56a 4.63a 6.98a 5.06a 

12 3.36a 4.42a 6.54a 4.78a 

14 2.00b 4.10a 5.69ab 3.93b 

11 - Gentian medium (NM) - compost-based potting mix 
12 - Commercial mix (NM) - used as a control 
14 - Gentian medium (M)J - compost based potting mix + mycorrhizal inoculum 

*CFU's per 10*^ gram of growing medium. 
♦ ♦CPU’s per 10'^ gram of growing medium, 
t CPU's per 10'^ gram of growing medium. 
JM = mycorrhizal, NM = non-mycorrhizal. 
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Figure 64. Basil from the 1996 disease suppression experiments, four months 
after inoculation with the pathogenic fungus Fusarium oxysporum f.sp. 
basilicum, April, 1996. The plants in the upper left hand block were grown In 
the medium containing the mycorrhizal pot culture inoculum; the remaining 
three blocks are various non-mycorrhizal controls. 



Figure 65. A close-up of a diseased basil plant inoculated with the Fusarium 
pathogen. This fungus enters through the roots, eventually causing a vascular 
wilt leading to the death of the plant. 
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CHAPTER Vm 

DISCUSSION 

A. 1995 growth and survival experiments 

Although mycorrhizal inoculum enhanced the germination, growth and survival of G. 

crinita, interpretation of these findings was complicated by the unintentional contamination of the 

treatment media by root and crown infecting fiingal pathogens, and the unusual timing of 

mycorrhization. Mycoirhizae were absent throughout the growing season, but mycorrhization 

finally occured at the onset of dormancy and persisted throughout the overwintering period. 

Gentians have long had a reputation for being difficult to grow. This is especially tme for 

Fringed gentian, which has fiiistrated growers and researchers from at least the turn of the century 

(Weiss 1933; Giersbach, 1937) to the present day (Brumback, 1993, Jacquelinet-Jeanmougin, 

1996). While several researchers have looked into the possibility that this difficulty is due to a lack 

of mycorrhizal fimgi (Weiss, 1933; Mcgee, 1985), none has reported the presence of root 

pathogens as a cause of their Mure in culture, though one grower eailier in this century mentioned 

that transplanted gentians were highly vulnerable to "rot'* (Hedden, 1931). Results reported here 

showed G. crinita to be susceptible to several more soil-borne pathogens than had been previously 

reported (see Farr, et al, 1989), including Rhizoctonia, Altemaria, and several 

unidentified fungal pathogens. Because it is widely understood that G. crinita appears to have a 

requirement of at least some organic matter in the growing mix (Giersbach, 1937; Phillips, 1985, 

Brumback, 1986), the idea of growing them in a completely sterile medium is something of a 

contradiction. As could have been expected, efibrts in this direction have not met with success 
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(Bmmback, 1993; McCargo, 1994), nor have efforts at sowing or distributing Fringed gentian 

seeds directly into the soil at various habitat sites (Somers, 1993; Clark and Woolsey, 1995). 

Weatherbee (1994) has speculated that germination and survival of G. crinita in nature may rely to 

some degree on snow cover, and subsequent snow melt, the former of which is sometimes present 

when the seeds are released in late December. This may account for this species' irregular 

distribution and reproductive patterns. At present, offsite propagation remains the only viable 

method of insuring a healthy stock of this elusive and increasingly endangered plant. 

1. Effect of mvcorrhizal inoculum on growth and survival 

Results from both the 1994 preliminary trials and the 1995 growth and survival 

experiments clearly indicate a beneficial effect from incorporation of myconrhizal pot culture 

inoculum into the growing medium. Despite the lack of mycorrhizal colonization in the roots of G. 

crinita during the course of the 1995 experiments (which will be discussed later in greater detail), 

plants that were germinated and grown in the mycorrhizally-inoculated medium showed 

significantly higher transplant survival and growth rates than those from the non-mycorrhizal 

medium. When it was discovered that many of the gentians had died as a result of invasion by soil- 

borne root-infecting pathogens, and the roots of those gentians that had survived exhibited no 

mycorrhizal colonization, it was realized that something other than mycorrhizae in the gentian roots, 

some component in the mycorrhizal inoculum itself was offering some degree of protection from 

these pathogens. 

Because transplant mortality was attributed to root-infecting fimgal pathogens, it is likely 

that the incorporation of mycorrfiizal inoculum into the germination and growing medium 
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contributed to an overall reduction in disease incidence by creating a disease-suppressive medium in 

which pathogen populations were reduced, and/or a disease-resistance capability was conferred to 

the gentian host (systemic acquired resistance). In light of the absence of mycorrhizal formation in 

these gentians during the growing season, it is likely that the reduced disease incidence, as well as 

the enhanced growth, can be attributed to mycorrhizally-associated microflora in the pot culture 

substrate used as inoculum. It appears that the incorporation into the growing medium of what is 

essentially a beneficial rhizosphere microflora, present in compost, and perhaps even augmented or 

amplified by a mycorrhizal component (such as a pot culture inoculum), may have been responsible 

for enhancing the survival of G. crinila under these circumstances. This was achieved either by 

suppressing populations of soil-borne pathogenic fungi, or by inducing a systemic defense response 

in the gentian roots. 

The existence of a rhizosphere microflora beneficial to specific plants is a well-recognized 

phenomenon, and has been for many years (Timonin, 1940 a, 1940b, 1941; Newman, 1978; 

Rovira, 1991). Recent attention has been paid to the enhancement of this beneficial microflora by 

mycorrhizal roots, hyphae and spores, particularly during the pot-culturing process (Linderman 

1982,1991, Garbaye, 1991). Other researchers have noted increased levels of potentially 

antagonistic microflora in the ’'mycorrhizosphere" of mycorrhizal pot cultures (Secilia and 

Bagyar^, 1987, Paulitz and Linderman, 1991, Linderman, 1994), in conjunction with a general 

suppressive eflfect on soil microorganism populations (George,et al, 1996). 

There is circumstantial evidence that riiizosphere microflora played a significant role in 

enhancing the growth and survival of Fringed gentian. First, this plant species seems to require at 

least some non-sterilized compost or organic matter in its growing medium, and does very pooriy 
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without it. Second, transplant survival was significantly increased when seedlings were transplanted 

in groups as opposed to individually, implying a possible benefit fi-om the increased concentration of 

rhizosphere activity which would accompany an increased root matrix (Table 5, p. 62). Third, 

when the transplant medium containing VAM inoculum was sterilized (TM 13), it provided no 

greater benefit than the sterilized commercial transplant medium (TM 12) used as a control (Table 

12, p. 92, and Fig. 44, p. 113) indicating that the benefits conferred to Fringed gentian in the 

mycorrhizally-inoculated treatment media were associated with the biotic or microbial component 

of the VAM inoculum. Finally, mycorrhizally-inoculated germination medium provided the 

greatest protection fi-om root pathogens in the first three months after transplant (Fig 39, p. 108), a 

benefit which appeared to level off after that and throughout the remainder of the first growing 

season. This may have reflected the strong initial influence of a beneficial rhizosphere microflora 

which was transferred in the soil of the root ball when the seedlings were first transplanted. As 

would be expected, these effects waned. One possible explanation is that the populations of these 

beneficial microflora levelled off and reached an equilibrium in relation to the extant microflora of 

the transplant media, a phenomenon which is known to occur in these situations (Jalali and Jalali, 

1991). Nevertheless, the initial benefits conferred during this period continued to express 

themselves in terms of enhanced growth and survival throughout the course of the first growing 

season, as detailed below. 

The mycorrhizal germination medium also increased the growth of the gentian seedlings 

during the initial three month '’incubation" period in the mist house (Fig. 46, p. 115), suggesting an 

enhancement effect from beneficial microflora even at this eariy stage. Once the seedlings were 

transplanted into the various transplant media, the germination medium from which the plants 
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originated continued to exert beneficial eflfects on plant growth and survival. Although the positive 

effect on growth was observed throughout the course of the first-year growing season (4/21 - 

11/2/95), it was during the three-month period after transplant that the germination medium exerted 

its greatest effect on survival. The gennination medium was transfeired intact during transplant as a 

cube-shaped root ball, creating a "zone of protection" around the root. If, as the evidence 

suggests, pathogen contamination and root and crown disease were primarily responsible for the 

steep decline in survival seen during this post-transplant period, then the protection conferred by the 

mycorrhizal inoculum to the gentian roots was at its peak during this time. It is important to note 

that the difference between the two treatments was even greater when the seedlings were 

germinated and incubated in the mycorrhizal medium (as in 1995) rather than simply transplanted 

into one (as in 1994), as reflected in the 20% increase in survival rate in 1995 (68.5% vs. 41% - see 

Table 10, p. 91 and Table 5, p. 62). Furthermore, in 1995 the difference between the survival rates 

of plants from the two germination treatments when all transplant media were included (TM 1-14), 

compared to the corresponding survival rates of the subset of effective media only (TM 10-14), 

indicate that under less disease pressure from soil-borne pathogens (\\ftich is presumably closer to 

normal growing conditions) the myconbizal germination medium conferred an even greater 

beneficial effect on survival. 

As mentioned, growth enhancement in Fringed gentian was also most likely attributable to 

the associated microflora from the VAM inoculum, although the mechanisms may have been 

different than those involved in disease suppression. Enhanced growth may have been due to the 

suppression of m^or or minor plant pathogens. Altemately, it may have been due to the overall 

suppressive effect of the mycorrhizal inoculum on the rhizosphere microflora, hinted at by the 
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results of the 1996 disease suppression and soil dilution experiments (see pp. 135-138). This same 

phenomenon may have suppressed competitive saprophytic microflora in the rhizosphere of Fringed 

gentian and the other test plants, which would almost certainly have made a difference in a low- 

nutrient substrate such as the one in which these plants were growing. The last possibility is that 

VAM inoculum selected for certain beneficial rfiizosphere microflora at the expense of other 

competitive or detrimental microorganisms (including pathogens). Other researchers have observed 

the emergence of a unique mycorrhizally-associated microflora fi’om the pot-culturing process, 

which includes plant growth promoting ibizobacteria (PGPR), urea- and starch-hydrolizing 

bacteria, and phosphate-solubilizing bacteria (Barea, et al, 1975; Ames, et al, 1984; Secilia and 

Bagyaraj, 1987; Paulitz and Linderman, 1991). There was in feet some circumstantial evidence for 

this on the dilution plates in the 1996 experiments. On the starch-casein agar plates (which were for 

isolating actinomycetes, and which were "cloudy" fi'om potassium phosphate) several bacterial 

colonies fi’om the mycorrhizal transplant medium (TM 14) were surrounded by zones of clearing 

indicative of phosphate solubilization; these were absent fi-om the SCA plates of the two non- 

mycorrhizal media (TM 11 and 12). There is some evidence that mycorrhizal fiingj interact with 

phosphate-solubilizing organisms in ways which benefit the host plant (Barea, et al, 1974). This may 

have been a fector in the outcome of the 1995 experiments, though these e?q)eriments were not 

designed to answer these questions or elucidate these mechanisms, and a definitive assessment is 

beyond the scope of this project. Nevertheless it is clear that some component of the mycorrhizal 

inoculum other than nutrients (which were identical in the two germination media) stimulated 

growth and had a significant influence on the survival of Fringed gentian. 
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Growth difference were relatively small, albeit significant, amounting to approximately .5 

cm of leaf span between the two germination treatments (Fig. 46, p. 115). A large stimulation of 

growth may not necessarily be advantageous for Fringed gentian during the growing season. G. 

crimla is a cool-weather species, putting on most of its growth towards the end of the growing 

season. Also, it is a plant which only grows under low nutrient conditions, both in cultivation and in 

nature, and has adapted to this scarcity of resources. In greenhouse culture, G. crimla was a 

biennial. As such, the plant's resources during its first year are directed towards root growth in 

preparation for dormancy and overwintering, with very little allocated for foliar development, as can 

be seen in the small size, relative to the full-grown plant, of the foliar rosette just prior to dormancy 

(Fig. 45, p. 114). Practically all of the foliar growth is exhibited during the second growing season 

as the plant develops towards flowering and reproduction (Fig. 55, p. 124). Too much leaf growth 

in the first year may be disadvantageous to the Fringed gentian, "stealing" fi-om the pool of already 

scarce resources those necessary for root development and dormancy. Seen in the light of this 

particular phonological strategy, lack of mycorrhizal formation in the roots during the first year's 

growth makes ecological sense, as does the eventual development of mycorrhizae after dormancy. 

The parameter used to measure success regarding the use of VAM with plants such as 

Fringed gentian would be survival rather than growth. Therefore, despite the lack of a strong 

growth response, the results of this experiment regarding survival can still be considered a 

successful application of VAM. The presence of VAM may increase growth or yield in crop plants 

(the parameter often used to measure success in VAM research), but increases in survival rate have 

a greater ecological significance for native plants, particularly endangered species. Although this 

may not be relevant or given much consideration in crop plant production, survival is clearly the 
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essential criteria for the success of any plant species in nature. Although mature gentians in the wild 

do not appear to be susceptible to pathogen attack, and no data is available regarding the 

vulnerability of gentian seedlings under these circumstances, the seedling stage is generally 

considered to be the most critical time in the life cycle of any plant species in nature (Swain, 1996). 

This is certainly the case with gentian seedlings in cultivation; there is no doubt after this study that 

greenhouse-grown gentian seedlings, once transplanted, are highly vulnerable to pathogens. Under 

greenhouse conditions, there are apparent as well as subtle benefits other than growth that 

mycorrhizal inoculum may confer to the gentian seedlings which result in protection from 

pathogens and increased survival. Janos (1988) addresses and elucidates these issues in the 

following statement: 

"In the natural habitats in which host and mycorrhizal fijngi evolved, success is the 

avoidance of extinctioa Success demands fitness, the capacity of individuals to survive 

and reproduce. In a competitive milieu, successfiol reproduction is not always correlated 

with growth, but humans often focus on biomass production.... the abilites of hosts and 

mycorrhizal fiingi engendered by natural selection may not be consistent with human 

production goals.Moreover, if host demand for mineral nutrients is greatest at the 

onset of reproduction, mycorrhizae might improve reproduction without stimulating eariy 

vegetative growth (McGraw and Schenck, 1980); such fimgi would not seem efifective in 

seedling trials. This disparity between human and natural selection contributes to the 

apparent "ineflficiency" of mycorrhizal fungus species; all mycorrhizal fungi may favor 

host fitness in the appropriate environment. The diflBculty of finding effective mycorrhizal 

fiingi for introduction is increased in direct proportion to deviation of production systems 

from native hosts and soil environmental conditions. Several investigators.have felt 

that survival is as important an index of mycorrhizal inoculation success as growth, 

expecially in highly stressed habitats. Fertilization likely can not substitute for protection 

from pathogens. Mycorrhizal inoculation that significantly improves host survival beyond 

that possible by other means can be judged a success." (p. 140). 
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2. Pathogen contamination of growing media 

In the 1995 experiments, plants were dying in huge numbers after the first transplant. 

Experiments 1 and 2 (TM 1-9) were nearly a total loss due to plant pathogens, while 

experiment 3 (TM 10-14) was comparatively successful, achieving survival rates averaging 

61%, which is very high for this particular plant species under cultivation. It is difficult to 

determine the source of contamination, or to quantify pathogen inoculum among the various 

media, but evidence points to the the unsterilized compost component of the germination 

medium as the likely source of contamination. In any case, diseased and infected roots were 

found in every transplant medium, indicating that pathogen contamination was widespread 

throughout the media. In light of these circumstances, it is safe to assume that survival data 

was in fact reflecting, at least to some extent, pathogen suppression, rather than differences in 

pathogen exposure between treatment media. This is demonstrated in the fact that 

approximately 80% of the roots sampled from dead and dying plants from both mycorrhizal 

and non-mycorrhizal germination media showed evidence of root disease (brown areas and 

necrosis) and in 74% of these, one or more of the crown or root-infecting fijngal pathogens 

previously mentioned was observed and identified (Table 7, p. 90). 

Analysis of the roots of dead and dying plants revealed the presence of pathogens and 

root disease, indicating contamination of the growing mix by soil-borne root-infecting and 

crown-rotting fungal pathogens {Pythium, Rhizoctonia, Fiisarium, Altemaria, an unidentified 

dematiaceous fungi, and nematodes - see Table 7, p. 90, and Figs. 31-37, p. 100-106). The 

presence of diseased roots so soon after transplant into the sterilized transplant media used as 

controls (TM 12 and 13) provided evidence that the germination medium was the source of 
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pathogen contamination. Given these events, the 1995 experiments can be interpreted as 

pathogen-suppression bioassays which tested the suppressive capabilities of the mycorrhizal 

inoculum. 

The primary evidence for the germination medium as the source of pathogen 

contamination was the consistent presence of these pathogens (in all fourteen transplant media) 

as well as in the two sterile control transplant media (TM 12 and 13). In addition, under the 

circumstances described above, plants from non-mycorrhizal germination medium (GM 2) 

transplanted into TM 11 (which was same as GM 2) would have been exposed to the highest 

level of pathogen contamination without the suppressive benefit of the VAM inoculum. In 

fact, this turns out to be the case, as this treatment set had the lowest survival rate of any of the 

'’eflfective*' media. Conversely, those plants from the mycorrhizal germination medium (GM 1) 

which were transplanted back into the same medium would presumably been exposed to the 

lowest level of pathogens or had the highest level of protection from them, and this was also 

true (Fig. 43, p. 112). 

It is likely that the combination of improper cultural conditions and the fine root 

morphology of the cultivated gentians contributed to this situation. The relative warmth and 

moisture in the greenhouse during the winter months, compared to natural conditions, were 

conducive to the development of root and crown rot. Furthermore, it is likely that the finer 

roots of the cultivated gentians, not having developed a more rhizomatous morphology in 

preparation for dormancy as the roots of gentians in nature would have, were more vulnerable 

to these diseases, resulting in a steady dieoflf throughout this period. 
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Given the extended period of time which the seed flats spent in mist house during the 

pre- and post-germination periods, it is not surprising that pathogens emerged to cause root 

and crown disease. Both flats, which were rotated once a week to insure equal treatment, 

were subject to three to four months of moist, warm, waterlogged conditions, on a poorly 

drained bench-covering fabric which supported pools of water highly conducive to the 

emergence and spread of soil-borne fungal root pathogens which may have been in the mist- 

house or in the germination medium. There were other seed flats in the mist-house with 

damping-ofif disease, it is possible that some of these pathogens would have found their way to 

the G. crinita seed flats. It is also possible that under different conditions, with a less 

vulnerable plant host, these naturally-occurring soil-borne fungi would have been less 

pathogenic. 

A comprehensive investigation into a wide range of gentians, including Fringed gentian, 

fi'om natural habitats reported virtually no pathogenic infection in the roots, though there was 

fi-equent and widespread colonization by mycorrhizal and other root-associated fungi (Weber, 

1984). It seems that it is only the broken gentian roots resulting fi'om transplant during 

cultivation which are vulnerable to root-infecting fungal pathogens; the intact roots in nature 

appear to be impervious to pathogen invasion. Differences in root morphology between 

natural and cultivated plants only serve to underscore this dichotomy. Gentian roots in nature 

are sparse, thick and rhizomatous; in cultivation, they are thin, fibrous, delicate, and more 

plentiful. It is apparent that the cultivation of G. crinita has a detrimental influence on it's root 

morphology, rendering it more vulnerable to pathogen invasion. Many researchers have noted 

how easily these roots break during transplant, which by itself may result in high mortality 
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(Giersbach,1937; Phillips, 1985); however, none have noted that it may be opportunistic 

infection by widespread fungal pathogens that is the cause of their demise. 

The second transplant in October 1995 did not result in the devastating effect on 

survival as the first tranplant had. Gentians which had survived up to that point were 

apparently less vulnerable to broken roots and subsequent pathogen invasion. It is possible that 

disease pressure in the growing media (fi-om reduced pathogen populations) had been 

diminished, or that the gentian roots had undergone biochemical and/or morphological changes 

suflScient to protect them, such as suberization or the production of anti-fungal compounds. In 

fact, Neumann (1934) reported on the development of an outer "rind" layer (perhaps the 

periderm) in gentian roots after several months of growth in cultivation. In addition, the main 

alkaloid extracted from gentian roots, gentiopicrin, has anti-fiangal activity (Van der Sluis, et al, 

1983), and the concentration of this alkaloid increases in response to mycorrhizal colonization 

and as the plant matures (Heymons, et al, 1986). 

Despite these factors, overwintering in the greenhouse had a detrimental effect on 

survival regardless of treatment (Fig. 39, p. 108), due in large part to the unidentified 

dematiaceous root and crown-infecting fungal pathogen mentioned previously (Fig. 37, p. 

106). The survival rate during the overwintering period was approximately the same for plants 

from both germination treatments, indicating that the germination medium from which the 

plants originated was not exercising the influence that it had in the earlier part of the 

experiment, in the months following transplant. 

Nevertheless, the only plants which actually survived overwintering to any significant 

degree were those germinated in mycorrhizal germination medium. At the end of the 
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overwintering period, approximately 20% of the mycorrhizally-germinated plants survived, 

compared to only about 3% of the non-mycorrhizally germinated plants. This was due to the 

larger number of plants going into the overwintering period from the mycorrhizal treatment, 

which was a fimction of the greater survival rate exhibited in that treatment set during the 

active growing season. From a conservationist point of view, the number of surviving gentians 

at the end of the growing season was the most important result of the experiment. The final 

survival survey was done just prior to the onset of dormancy (November), and under normal 

circumstances, this is when these plants would have been outplanted, either into a cold frame, 

preservation garden, or back into their natural habitat at a reintroduction site as part of an effort 

to reestablish natural populations of this species. 

The 1996 disease suppression and soil plating experiments, which are discussed 

later (pp. 173-181), were conceived and implemented in order to further explore the apparent 

disease-suppressing capabilities of the VAM inoculum under more controlled conditions. 

Experiments to test VAM inoculum for disease suppression capabilities against three genera of 

fungal root pathogens seen in the 1995 experiments were carried out with susceptible (and 

easier to grow) plant host in an attempt to confirm and elucidate the results of the 1995 

experiments. The results of the 1996 disease suppression and soil plating experiments did in 

fact demonstrate these capabilities. 

3. Mycorrhizal activity in Fringed gentian 

G. crinita is mycorrhizal in its natural state, and the plants sampled from the field sites 

had low to moderate levels of mycorrhization, suggesting facultative mycotrophy (Table 3, p. 45). 
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Higher levels were achieved in greenhouse cultivation with an effective non-indigenous 

VAM isolates {Glomus etuuicatim, UT-316), though this may have altered the 

mycotrophic relationship between the gentian host and its mycorrhizal symbiont. Actual 

mycorrhization seems to correspond to certain phenological events in the plant's life cycle, 

and occurs towards the end of each growing season (G. crinita is an annual or biennial, 

depending on its habitat or culture). In nature, mycorrhizal formation coincides with bud 

formation and flowering (September - November). In culture, it occured at the onset of 

perennialization and dormancy in early November. Mycorrhization lasted throughout 

dormancy, though the mycorrhizae observed in roots sampled during the latter part of the 

dormancy period (late February-early March) had a distinctively different appearance than 

those sampled at the beginning. The arbuscules had a more amorphous, non-defined structure, 

and the finger-like hyphae seen in the arbuscules in November and December were 

indistinguishable fi’om eachother at this later date. 

During the first part of the growing season (April - June), Fringed gentian is extremely 

slow-growing, almost dormant, and it follows that there is no mycorrhizal activity during this 

period, as slow growth precludes the need for mycorrhizae during this time. During the more 

active vegetative growth phase of the plant (July - October), growth rates rise slightly. 

External hyphae and appressoria were observed in roots sampled fi'om the mycorrhizal 

treatment media in July and August at the start of this more active phase, but these were not 

accompanied by mycorrhizal colonization. This suggests that mycorrhizal fungi were 

suppressed once they entered the gentian root, a phenomenon noted by other researchers 

(Mcgee, 1985, Jacquelinet-Jeanmougin and Gianinazzi-Pearson, 1983). 
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The occurrence of mycorrhization at the onset of and throughout dormancy suggests 

that VAM play a role in the perennialization and dormancy of G. crinita. There are several 

possible explanations for why Fringed gentian would form mycorrhizae at this phenological 

stage of its life cycle. One possibility is that its roots continue to grow after the above-ground 

parts of the plant have ceased growth. This phenomenon is not unusual for native herbaceous 

biennials and perennials in temperate zones. Brundrett and Kendrick (1988) observed that 

many of the biennial and perennial species they investigated had peak periods of mycorrhizal 

development, and in some cases, root growth, in late autumn. Some of these species produced 

mycorrhizae after leaf growth had ceased, or even after they had lost their foliage. They 

attributed this to the competitive ecological advantage it gives these plants in their quest for 

scarce nutrients. Different root phenology and mycorrhization patterns, by staggering periods 

of nutrient uptake within a given plant/soil community, may reduce competition for limited 

resources, namely phosphorus, the main nutrient supplied by mycorrhizae (Mosse, 1973), and 

one which is almost always limited in these habitats (St. John and Coleman, 1983). This 

ultimately encourages higher species diversity in plant communities. 

Late-season mycorrhization is an elegant adaptive strategy for G. crinita. It may be the 

only way that gentians (which lack root hairs) and other associated perennial plants can obtain 

sufficient phosphorus for perennialization and reemergence in resource-limited habitats. Janos 

(1988) refers to species which utilize this strategy as "ecologjcally-obligate" mycotrophs, 

distinguishing them from fiiUy obligate mycotrophs which require mycorrhizae for all of their 

basic growth functions, and cannot survive without them. As with all biennials, G. crinita 

spends most of its resources in the first year of growth preparing its roots for perennialization. 
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During the normal growing season, when the majority of plant species adopt a mycorrhizal 

posture to obtain the phosphorus necessary for growth, foliar growth is restricted in Fringed 

gentian, and phosphorus would not be necessary at this time. Instead, it is needed more at the 

onset of dormancy and during reemergence in the spring. Mycorrhizae and the phosphorus 

they provide are required towards the end of the growing season, shortly after the onset of 

shoot dormancy, when starches, phospholipids and other materials necessary to the 

overwintering root are being formed. 

Gentianaceae is one of only a few plant families whose members do not manufacture 

starch in their leaves (Miller, 1957), instead relying exclusively on roots and stems for its 

production. Phosphorus is required for the synthesis of starch compounds (Dodd, 1962) and 

starch is a necessary precursor for roots which are forming perenniating storage structures such 

as rhizomes in preparation for dormancy. Therefore, plants entering into dormancy would 

require a mechanism during this period for the acquisition of P, and mycorrhizae serve just such 

a function. It is reasonable to assume that gentians rely on late-season mycorrhization to 

supply phosphorus for the buildup of starch necessary for the formation of rhizomes crucial to 

overwintering survival. 

There are several other ways in which mycorrhizae, both directly through physiological 

changes and indirectly through the acquisition of phosphorus, might benefit gentians entering 

into and reemerging fi-om dormancy. According to Weber and Heymons (1987), mycorrhizal 

gentians produced three times more root dry weight than their non-mycorrhizal counterparts. 

In addition, root swelling, a phenomenon which was seen in the roots of mycorrhizal G. 

crinita in both the 1994 and 1995 experiments, was also observed by these and other 
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researchers (Neumann, 1934; Jacquelinet-Jeanmougin and Gianinazzi-Pearson, 1983). Both 

physiological changes would give mycorrhizal gentians a definite advantage going into 

dormancy. 

4. The unusual nature of gentian mycorrhizae 

The mycorrhizal symbiosis in Fringed gentian, as in other gentians, is unique. In 

G. crinita, as well as some other species in the Gentianaceae (Mcgee, 1985), mycorrhization is 

suppressed during the growing season, as evidenced in the present study by the appearance of 

appressoria in the root endodermis without actual root colonization. Eventually, towards the 

end of the growing season, mycorrhization occurs during the onset of and throughout the first 

part of dormancy, when the plant roots are preparing for overwintering. The mycorrhizae that 

are formed have a very unusual morphology. This is followed by the degradation of the fungal 

symbiont prior to reemergence, which was reflected in the dense grainy appearance of the 

mycorrhizae observed in roots sampled in late February, 1996. 

The unusual nature of mycorrhizae in gentians have made it the focus of several 

investigations, some of which have attempted to elucidate the underlying basis for and 

mechanisms behind this symbiosis. Perhaps it can be partially accounted for by the peculiar 

qualities of the gentians themselves. Many species in the Gentianaceae have been shown to live 

mycotrophic lifestyles ranging fi'om symbiotic to saprophytic to semi-parasitic (Neumann, 

1934; Weber, 1984, Knobel and Weber, 1988). In addition, many gentians alter their 

morphology and life cycle (whether annual, biennial, perennial, etc.), exhibiting different 

ecotypes in response to habitat and the presence and type of mycotrophy established within 
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that habitat (Karlsson, 1974). Mycoheterotrophy and semi-parasitism, which is considered a 

rare occurrence in the plant kingdom, is actually a fairly common arrangement in the 

Gentianaceae. 

Mycorrhizae in the Gentianaceae have a distintive morphology, which represents an 

extreme example of the more unusual "Paris" type of mycorrhizae. This type of mycorrhizae is 

characterized by thicker, periodically septate intra-radical hyphae, intracellular hyphal coils, 

gnarled finger-like arbuscule, and very infi-equent vesicles, rather than the aseptate hyphae, 

typical tree-like arbuscules and fi'equent vesicles seen in the "Arum" type commonly observed 

in the majority of plant species (Fig. 3, p. 9). These two morphologically distinct mycorrhizae 

were first recognized and differentiated by Gallaud (1905); recently these distinctions have 

received renewed attention (Smith and Smith, 1986). Jacquelinet-Jeanmougin and Gianinazzi- 

Pearson (1983) demonstrated that the same VAM fungus. Glomus mosseae, which formed a 

typical "Arum" type of mycorrhizae in the roots of onion {Allium cepa L), formed a "Paris" 

type of mycorrhizae in gentian roots. 

The distinctive morphology of the "Paris" mycorrhizae, exemplified by the hugely 

reduced surface interface area between fungus and host, suggests more of a storage and 

embodiment function, and less of the nutrient exchange function which is so elegantly 

expressed by the typical tree-like arbuscular structure found in the majority of mycorrhizal plant 

species. The "Paris" morphology is thought by some researchers to indicate a 

mycoheterotrophic rather than mutualistic relationship, one in which it is likely that the fungus 

benefits little, if at all, or for a very limited period of time (Knobel and Weber, 1988, Smith and 

Smith, 1996). 
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Several researchers have noted that gentian mycorrhizae begin to degrade, or senesce, 

one to several months ailer the initial colonization (Neumann, 1934; McGee, 1985, 

Jacquelinet-Jeanmougin, et al, 1987). Jacquelinet-Jeanmougin and her colleagues observed 

that although there was a slight increase in the metabolism of the colonized gentian root cells 

during the initial phase of root colonization (most typical VAM colonization causes greatly 

increased metabolism at this initial stage of colonization; see Powell and Bagyaraj, 1984), 

metabolic activity was greatly enhanced during and after fungal senescence, as indicated by the 

presence of enlarged nuclei and numerous mitochondria, plastids, endoplasmic reticulum, and 

other organelles in the cytoplasm of the gentian host. When the VAM fungi is degraded, its 

contents are evacuated, releasing phophate-rich polyphosphate granules into the host 

cytoplasm, which is characterized at this point by high alkaline phosphatase activity, indicating 

a breakdown of these substances for use by the gentian host. 

These investigators eventually reached the same conclusion as Smith and Smith (1990, 

1996) and others, namely, that the morphology of the structures involved in root-fungus 

interactions evidence the nature of the symbiosis, and that the "Paris" type of VA mycorrhizae 

implies host control over the mycorrhizal symbiont. If this is the case, then this control reaches 

its apex in the Gentianaceae, which as mentioned contains the most extreme form of the "Paris" 

type of mycorrhizae. In fact, Weber and Heymons (1987), both of whom have done 

considerable work with gentians, consider Gentianaceae to be an excellent plant family with 

which to demonstrate the phylogenetic tendencies of mycorrhizae; i.e., how mycorrhizal 

morphology and functioning are under the genetic control of the host plant. Smith and Smith 

(1996) conclude that under this arrangement, the gentian host is living mycoheterotrophically, 
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even semi-parasitically, oflf of the fungal symbiont, at least for a portion of the symbiosis. The 

gentian host, by controlling the morphology of the mycorrhizal association, also seems to be 

exercising control over the nature and function of the symbiosis to its maximum advantage. 

Smith and Smith (1996), in discussing what amounts to a parasitic relationship by 

certain plant species (including gentians) on their fungal symbiont, refer to these plants as 

’’cheaters". The gentians engage in a symbiotic relationship with the mycorrhizal fungus for a 

short while, but ultimately "cheat" the fungus out of its expected benefit, parasitizing it in the 

end (at least the intraradical portion; the external hyphae remain viable, and the VAM fiingi 

may even go on to recolonize the roots of other plant species and complete its life cycle, 

producing reproductive spores - see Mcgee, 1985). This "cheating" is precisely what appears 

to take place in the gentian roots. One possible explanation for the ability of gentians to 

exercise this kind of control over their fungal partner is the presence of anti-fungal compounds 

such as gentiopicrin and gentiopicrosidase in gentian roots (Van der Sluis, et al, 1983). As 

previously noted, the concentration of these alkaloids is greater in mycorrhizal roots, perhaps 

as an induced response to mycorrhizal colonization (Heymons, et al, 1986). These compounds 

may help to explain the unusual "Paris" morphology that typifies mycorrhizae in gentian roots, 

characterized by reduced surface area interface between the plant host and its fungal symbiont, 

and perhaps reflecting a defensive response on the part of the mycorrhizal fungus to these 

compounds. 

The variations in this mycorrhizal interaction and the accompanying metabolic activity 

seem to correspond to various phonological stages in the gentian life cycle and to the 

physiological requirements of the gentian host at different points during and after dormancy. 
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Mycorrhization is initially suppressed, coinciding with little to no growth in the gentian host. 

Finally, towards the end of the season, mycorrhizal colonization occurs, precisely when the 

gentian can benefit fi'om the materials which mycorrhization provides, in preparation for 

dormancy. The plant host then accomodates a mutualistic relationship for a short period of 

time; the gentian is most likely receiving phosphorus in exchange for some photosynthate 

(carbohydrates) proferred to the fungus. Finally, the intraradical portion of the fungus is 

suddenly and completely degraded, and the contents are released into the host cytoplasm. This 

is accompanied by the presence of alkaline phosphatase, indicating that the host is breaking 

down the released polyphosphates for use in biosynthesis just prior to the plant's reemergence 

in the spring. 

5. The role of phosphorus in dormancy and reemergence 

One of the primary functions of mycorrhizae is to supply phosphorus to the plant host. 

Phosphorus is vital to the entire perennialization and overwintering process, fi’om dormancy in 

autumn to reemergence in the spring. The importance of phosphorus throughout dormancy 

and reemergence has been investigated by several researchers. Phosphorus has been shown to 

play an integral role in the following processes: a) the synthesis and function of abscisic acid 

(ABA) (Wareing, et al, 1983); b) the formation of starch in roots (Miller, 1957); c) the 

production of phospholipids, which fionction in root cell membranes; d) the protection of roots 

fi’om fi’eezing; and e) biosynthetic processes involved in new tissue development during 

reemergence. 
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Phosphorus is necessary for the synthesis and function of abscisic acid (ABA) 

implicated in the precipitation and maintenance of dormancy in virtually all herbaceous 

perennial plants (Wareing, et al, 1983). ABA production starts with pyrophosphate (Hirai, 

1986); in addition, ABA fimctions by inhibiting the action of growth hormones and stimulating 

the production of storage proteins, a process which is catalyzed by phosphate kinases. 

Subsequently, there is a buildup of P and P compounds in root storage organs during the onset 

of dormancy, in the form of sugar phosphates, phytin, nucleoside phosphorus, and 

phospholipids (Appleman, 1914, Villiers, 1975). Another major process in preparing for 

dormancy is the build up of carbohydrates in the form of starch. Starches in perennial root 

structures such as rhizomes function primarily as a souce of stored energy to be tapped by the 

reemerging plant in the spring. In addition, starch formation in roots is essentially a 

condensation reaction which removes excess water from root cells, a critical step in the 

protection of roots from freezing temperatures (Dodd, 1962). Phosphorus is crucial to the 

formation of starch; the actual method of starch synthesis consists of a phophorylation process 

(Miller, 1957) involving the bridging of glucose-1-phosphate molecules and the removal of 

water and phosphoric acid by the enzyme alpha-glucosan phosphorylase. 

Phosphorus is also involved in other physiological and biochemical processes which 

occur in perenniating roots. Phosphorus increases the strength and decreases the permeability 

of root cell membranes by augmenting phospholipids in these membranes (Raven, 1987). 

Phospholipids, along with glycogen and other lipids, may also help protect perennial roots from 

freezing by acting as a sort of anti-freeze (ViUiers, 1975). It is possible that mycorrhizae, which 

consist largely of polyphosphates, glycogen, and phospholipids (Jacquelinet-Jeanmougin et al. 
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1987), and as such are tolerant of sub-zero temperatures, may actually embody these 

phosphorusreserves and anti-freeze compounds in the host plant roots, providing P as needed 

and helping to protect colonized root tissue from freezing. There is in fact some evidence that 

mycorrhizal roots play a role in herbaceous plant cold hardiness and overwintering survival 

(Hayman, 1979; Maronek, et al, 1981). 

Perhaps the most important role of phosphorus is in the reemergence of the dormant 

plant in spring. Phosphorus is a fundamental part of the biosynthetic, tissue-building processes 

inherent in new spring growth. Phosphorus-based compounds such as ATP and NADPH2 

undergo phosphorylation reactions which provide the large amounts of energy necessary to fuel 

these biosynthetic processes. The pentose phosphate pathway (PPP), which is the main energy- 

yielding pathway in new tissue reemerging from dormancy (Raven, et al, 1987), produces 

NADPH2, which provides energy directly to the cell for biosynthesis, and is also oxidized by 

mitochondria in the cell to yield ATP. The PPP also produces five-carbon sugars such as 

ribose-5-P and erythrose-4-P which, along with nucleoside phosphates, are precursors in the 

synthesis of nucleotides and the nucleic acids RNA and DNA. These nucleic acids are essential 

building blocks of life and function in the storage, transcription and translation of genetic 

information for cell reproduction and development integral to the production of new tissue. 

6. Mycorrhizae and its role in the perennialization of root tissue 

Mycorrhizae may also play a role in the formation of tubers, rhizomes and other 

perenniating structures in plants. This has been widely observed in orchidaceous species, 

but less so in non-orchid species. Magrou (1921, 1929) and Waksman (1929) reported 
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this phenomenon in several non-orchidaceous plant species, including Lathyrus, Solarium, 

and Mercurialis. Roots of these species which were normally fine and hair-like would 

thicken and form rhizomes in the presence of symbiotic fungi; conversely, plants that were 

rhizomatous formed fine roots in sterile soil in the absence of fungal symbionts. Neumann 

(1934) observed a similar phenomenon, and noted that in response to fungal infection, the 

root tissues of gentian "undergo an increase in growth so sudden and irregular that the 

position of the various elements is changed and an abnormal development of cambial 

tissue takes place." This may actually refer to the formation of perennial structures, which 

it seems to resemble; it also corresponds to the significant enlargement and thickening of 

G. crinita roots which were observed in response to mycorrhizal infection in late autumn 

of 1994 and 1995. As mentioned, these enlarged roots and their mycorrhizae may actually 

enhance overwintering survival of perennial plants (Hayman, 1979). The additional root 

growth observed by Weber and Heymons (1987) would almost certainly increase the 

survival of overwintering gentians, as some perennial roots invariably succumb to freezing 

temperatures, and a greater number of roots improves the chances that at least some will 

survive the overwintering period intact. 

7. Fringed Gentian and other root-associated fungi 

The non-glomalean , non-mycorrhizal endophytes found associated with the 

roots of Fringed gentian during the 1995 experiments were not anticipated, and were 

therefore not correlated with any survival or growth data. Other researchers have 

reported the presence of these unusual non-pathogenic root-inhabiting fungi in the roots 
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of gentians, variously referred to as dark-septate endophytes, or DSE (Read and 

Haselwandter, 1981; Stoyke and Currah, 1990), grey-septate or grey-sterile endophytes 

(Neumann, 1934; Harley, 1969), dark-septate fungi, or DSF (Currah and Van Dyck, 

1986), and even pseudo-mycorrhizal fungi (Wang and Wilcox, 1985). Some of these 

fungi, which occur both inside and on the surface of roots, have been cultured and 

identified as various species of Phialocephala and Phialophora, formerly known 

collectively dis Mycelium radicis atrovirens (Richard and Fortin, 1973, Wang and 

Wilcox, 1985). Experimental inoculations of indigenous plant hosts with these 

endophytes were shown to increase their growth (Hasselwandter and Read, 1982; Wang 

and Wilcox, 1987), but more research is needed to verify this phenomenon. It is not 

known what effect they may have on gentians. 

These fungi are present in the roots of many alpine, wetland, heathland and desert 

species which live in habitats with low levels of VAM. In some of these habitats, such as 

alpine tundra, up to 75% of the plant species surveyed, including gentians, exhibit some 

form of mycotrophy other than VA mycorrhizal associations (Read and Haselwandter, 

1981; Currah and Van Dyk, 1986; Stoyke and Currah, 1990). These other endophytic 

associations appear to be non-pathogenic, as they are rarely accompanied by diseased 

tissue. This suggests a possible ecological role; perhaps these fungi fill the niche in 

low-VAM habitats that would otherwise be occupied by VA mycorrhizal fungi. Many 

gentians, including Fringed gentian, originated in alpine floristic regions (Weatherbee and 

Crow, 1990) and evolved in conjunction with these fungal endophytes. As such, it is 

possible that these endophytes may play an ecological role in the growth and 
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development of gentians. Coincidentally, these root inhabiting fungi were found in G. 

crinita roots from July to October during the 1995 experiment (most likely originating 

from the unsterilized compost component of the growing medium) which represents the 

more active growth phase of the Fringed gentian. This suggests that these fungi may 

play some role in the growth of the gentian host, though these experiments were not 

designed to address this question.. 

Many of these endophytic fungi form sclerotia-like resting structures in the 

cortical cells of gentians, indicating a fungal response to an inhospitable environment. 

The presence of constituent and induced anti-frmgal compounds in roots of gentians 

may elicit this response. These and other flingitoxic compounds often elicit similar 

hyphal distortions and the production of pseudoparenchymatous tissues in culture 

(Campbell, 1989). The unusual "Paris" formation of gentian mycorrhizae - thick, finger¬ 

like arbuscules and intracellular hyphal coils in contrast to the more common finely- 

branched arbuscular structure - reduces hyphal surface area, thereby minimizing contact 

with these anti-fungal compounds. It is possible that hese structures may reflect a 

defensive morphology in these fungal endophytes much as they do in the mycorrhizae. 

It may be the lack of these root-associated fimgi that accounts for the difficulties 

encountered during cultivation of Fringed gentian. The incorporation of these 

indigenous fungal endophytes may enhance the propagation and transplant survival of 

this and other plant species. This proposition , which has also been advanced by other 

researchers and conservationists (Falk and Olwell, 1992; Brumback, 1993; Somers, 

1993), certainly deserves further study. 
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B. 1996 Experiments 

1. Disease suppression experiments 

The purpose of the 1996 experiments was to investigate, under controlled 

conditions, the possible pathogen-suppressive properties of the VAM inoculum used in 

the 1994 and 1995 experiments, and to confirm and elucidate the results obtained in 

those experiments. The underlying hypothesis was that some component of the 

mycorrhizal inoculum, perhaps a suppressive rhizosphere microflora associated with the 

pot-culturing process which produced the inoculum, had reduced the incidence of root 

and crown disease in P. hirsutiis (1994) and G. crinita (1995). It was believed that the 

mechanisms behind this phenomenon might be further discerned through a series of 

disease suppression and soil dilution and plating experiments. 

Several important features distinguished the 1996 disease suppression 

experiments from the 1995 trials. First, the three predominant genera of pathogenic 

fungi found infecting the roots of the 1995 transplants {Rhizoctonia, Fusarium, and 

Pythiiim) were paired with easy-to-grow plant hosts (radish, basil, and lettuce, 

respectively) known to be susceptible to these same pathogens. Second, the experiments 

were designed to test the effect of mycorrhizal inoculum without actual mycorrhizal root 

colonization of the plant hosts. This was attempted by using at least one plant host which 

was known to be non-mycorrhizal (radish) and surveying the plants ten to twenty days after 

pathogen inoculation, before mycorrhizal colonization could occur (as it turned out, the basil 

was measured four months after inoculation, but had little to no mycorrhizae at the time of 

survey). Third, the host plants were germinated and grown in the same medium (i.e., they 
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were not transplanted), to eliminate the eflfects of transplantation on the outcome, and to 

minimize the possibility of contamination. Fourth, the inoculum component of the treatment 

media was increased to l/5th, or 20%, from the l/8th, or 12% used in 1995, in an attempt to 

obtain less ambiguous results. Fifth, the remaining base component of the various treatment 

media, which was a commercial growing mk (Fafard H™), was steam-sterilized in order to 

eliminate other soil microflora, including pathogens, which could have potentially influenced 

the outcome of these experiments. 

Finally, and perhaps most important, a non-mycorrhizal pot culture inoculum was 

included in one of the treatment media (M3). This is a relatively rare event in mycorrhizal 

research, and is considered by this author to be a significant oversight. Almost all mycorrhizal 

research is carried out with inoculum created via the pot-culturing process, a production 

system which involves a living plant host (known as a "nurse" plant) in an inherently non- 

sterile growing medium. The result is a product which is essentially a mycorrhizosphere- 

based inoculum, composed of a thick matrix of mycorrhizal roots, hyphae, spores and 

medium. Root exudates, as well as associated rhizosphere and mycorrhizosphere microflora 

(those found with non-mycorrhizal and mycorrhizal roots, respectively) are an integral and 

active component of this pot culture inoculum. When this inoculum is incorporated into a 

growing medium for mycorrhizal growth experiments, the entire array of components, 

including microflora, are transferred with the inoculum. However, the influence of this 

associated microflora is rarely considered in the outcome of these investigations, and it 

remains largely unaccounted for. While mycorrhizal pot culture inoculum may indeed exert a 

strong influence on test plants, the vast majority of studies focus only on the effects on the 
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host plant once it is mycorrhizal, and generally disregard the effects on host plants prior to 

mycorrhization, when the influence of this associated microflora would most likely 

predominate. Even after mycorrhization has occurred, associated microflora transferred fi-om 

the pot culture inoculum could conceivably continue to influence the makeup of the 

microflora in the mycorrhizosphere. In any case, without treatments which control for this 

eflfect, the researcher can not be sure what portion of the results obtained is due to actual 

myconrhizal colonization, to mycorrhizally-associated microflora, or to the root 

exudate/microflora component of the inoculum itself 

This is particularly true when Sudex (a sorghum/sudangrass hybrid) is used as the 

"nurse” plant in the pot culture, as was the case in the present study. The use of Sudex as a 

pre-plant cover crop has been associated with a reduced incidence of black root rot in field- 

grown strawberries (Cooley, 1995). Black root rot is a disease complex involving root 

infection by Pythium, Rhizoctonia, and nematodes, the first two of which also happened to be 

the two major fungal pathogens infecting G. crinita in the 1995 experiments. The 

mechanisms behind this disease reduction phenomenon in strawberries are not known. One 

possibility is that the Sudex, a highly mycorrhizal plant, forms mycorrhizae with the 

indigenous VAMF in the field, thereby creating a suppressive mycorrhizosphere microflora. 

Another possibility is that Sudex root exudates directly suppress these pathogens or do so 

indirectly by influencing the microflora towards this end. This phenomenon certainly 

warrants further investigation. In any case, it was important for the present study that a non- 

mycorrhizal pot culture inoculum was included as a control, in light of the fact that Sudex 
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was the nurse plant used and Pythium and Rhizoctonia were two of the pathogens being 

tested. 

The inoculation of lettuce with Pythium failed to produce any disease, and so could 

not be used for data collection and analysis. However, the Rhizoctonia and 

hdisAJFusarium experiments yielded interesting results. In both experiments, the growing 

medium containing active pot culture inoculum (M3 and M4) exhibited a suppressive effect 

against their respective pathogens, as indicated by the enhanced survival of the pathogen- 

inoculated seedlings. Thus, the inclusion a non-mycorrhizal pot culture inoculum as one of 

the media (M3) would appear to be justified. This inoculum actually exhibited some 

suppressive effect, although suppression was significantly augmented by the mycorrhizal 

component included in M4 (Figs. 62 and 63, pp. 141-142). 

In the Tdi^Ash!Rhizoctonia experiment (Table 16, p. 139, and Fig. 62), both M3 and 

M4 resulted in significantly greater survival than the two sterilized control media (Ml and 

M2). The pathogenicity of the particular Rhizoctonia strain being used was apparent in Ml 

and M2, where every seedling germinated in these media and inoculated with this pathogen 

was killed. The fact that M3 exhibited some suppression of Rhizoctonia suggests that the 

Sudex root/media matrix that comprised the inoculum was responsible for at least a 

significant portion of the suppressive effect. However, when the same inoculum was 

mycorrhizal, i.e., contained mycorrhizal roots, spores and associated mycorrhizosphere 

microflora (as in M4), pathogen suppression, and seedling survival, was significantly 

enhanced. 
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Since radish, as a member of the mustard family, Cruciferaceae, is non-mycorrhizal, 

the reduction in disease seen in M3 and M4 was most likely attributable to some component 

of the pot culture inoculum itself, which was transferred into these treatment media when the 

inoculum was incorporated. Evidence that a biotic factor in the inoculum, such as a 

suppressive microflora, rather than an abiotic factor such as root exudate, was responsible for 

the suppression observed is provided by the fact that M2, which contained sterilized pot 

culture inoculum, provided no suppressive effect whatsoever. 

The creation of a beneficial microflora, including one that is suppressive to pathogens, 

associated with mycorrhizal roots and the pot-culturing process itself has been discussed 

previously (pp. 28-30 and p. 149). Iqbal, et al (1988) observed similar results when 

mycorrhizal inoculum was incorporated into the germination medium sown with Brassica 

campestris (field mustard) and Brassica napus (rapeseed). Though this is a non-mycorrhizal 

plant species, and no mycorrhizal colonization occurred, the medium into which the inoculum 

had been incorporated showed significantly greater resistance to damping-ofif caused by 

Rhizoctonia solani. The authors did not discuss the possibility that the mycorrhizal inoculum 

may have contained a suppressive microflora which protected the seedlings fi'om K solani; 

nevertheless, this was a likely scenario. The authors attributed the outcome to the "biological 

deterrence" effect of endomycorrhizas, but did not account for the fact that the seedlings 

were non-mycorrhizal. This is understandable, given the fact that at the time this study was 

undertaken, little to no work had been done on the creation of a beneficial mycorrhizosphere 

microflora during the pot culturing process. 
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The Basil/Fw5ar/w/w results were comparable to the ^(XishlRhizoctonia results (Table 

17, p. 139, and Fig. 63), although it took four months for the Fiisarium pathogen to cause 

disease in the basil (Figs. 64 and 65, pp. 143-144). Nevertheless, the treatment medium 

containing active pot culture inoculum displayed analogous suppression against this fungal 

pathogen, and once again, the presence of a mycorrhizal component in the inoculum 

significantly enhanced this suppressive effect. This echoes the results seen by Caron, et al 

(1986), who demonstrated a reduced population oiFusarium oxyspomm f sp. radicis- 

lycopersici in the rhizosphere of mycorrhizal tomatoes when compared to non-mycorrhizal 

tomatoes. In the present study, the incorporation of mycorrhizal Sudex roots and associated 

hyphae and spores lowered the incidence of disease in basil, presumably by reducing the 

population of the Fusarium pathogen (mycorrhizal colonization was not detected in the basil 

roots, eliminating this as a factor in the outcome). Furthermore, the fact that both of the 

media containing active pot cultures (M3 and M4) were still exerting a suppressive effect 

after four months is consistent with the 1995 results, which also suggested a long-term effect 

resulting from germination in a mycorrhizally-inoculated medium, transferred with the roots 

during transplant. It is interesting to note that M2, which contained sterilized pot culture 

inoculum, did have a small, albeit significant, effect compared to the control medium (Ml), 

implying an abiotic factor such as root exudates in the suppression of this particular pathogen. 

This also parallels the conclusions of Jalali and Jalali (1991), who in a review of a study by 

Caron, et al, (1986), attributed decreased Fusarium populations to the increased root 

exudation of arginine and other inhibitory amino acids in the mycorrhizosphere of mycorrhizal 

tomatoes. 
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The results of both disease suppression experiments indicate that the pot culture 

inoculum itself, even without a mycorrhizal component, confers some suppressive factor, 

whether biotic or abiotic, to the growing medium into which it is incorporated. Nevertheless, 

the presence of a mycorrhizal component in the pot culture inoculum (i.e., mycorrhizal Sudex 

roots and associated hyphae, spores and microflora) significantly enhances the suppression of 

these soil-borne root infecting fungal pathogens, and by extension, reduces the disease 

incidence of seedlings and transplants in these media. Based on the results of these 1996 

disease suppression experiments, it seems likely that this is what occurred with the gentian 

seedlings in the 1995 experiments, resulting in their increased survival. 

2. Soil dilution and plating 

This 1996 soil dilution and plating series demonstrated that TM 14, the 

mycorrhizally-inoculated growing medium which supported the highest survival rate of 

G. crinita in the 1995 experiments, supported the lowest population levels of soil microflora 

when compared to the non-mycorrhizal media (TM 11) and a control (TM 12). When total 

soil microorganism populations (at least of the three types selected for in this study) were 

compared, the significantly lower population in TM 14 suggests that there was a generalized 

suppressive effect occurring in this medium (Fig. 66, p. 145). When each type of organism 

was looked at individually, it was revealed that the bulk of this difference was accounted for 

by the reduced population of soil flmgi in TM 14. Bacterial and actinomycetes population 

levels were not affected. This fungal data are of particular significance, since the pathogens 

infecting the roots of G. crinita were soil-borne fungal pathogens. This provides additional 
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evidence that there was indeed a suppression of these pathogens in TM 14, the mycorrhizally- 

inoculated growing medium, which protected the G. crinita seedlings germinated and 

transplanted into TM 14 from disease during the 1995 experiments (It should be noted again 

that GM 1 and TM 14 were essentially the same medium). 

The suppression of soil microflora may have influenced the 1995 results in other ways 

as well. Saprophytic rhizosphere microflora normally present in growing media compete with 

the plant root for resources (water and nutrients). By significantly suppressing their numbers, 

more resources are made available to the plant (Schippers, et al, 1987; Campbell, 1989; 

Christensen and Jakobsen, 1993). Particularly noteworthy was the presence of phophorus- 

solubilizing organisms on the TM 14 (mycorrhizal medium) dilution plate, as indicated by 

"zones of clearing" in the cloudy culture medium (caused by potassium phosphate), which 

were not present on the two control plates from the non-mycorrhizal media (TM 11 and 12). 

The phenomenon of a unique or altered microflora in the mycorrhizosphere (previously 

discussed on pp. 28-30, and again on p. 149) can partially explain this difference. The 

presence of phosphorus-solubilizing organisms in the rhizosphere make more phosphorus 

available to the plant by transforming the normally unavailable pool of phosphorus in the soil 

into a form available to the plant, one which is more readily available for uptake by plant 

roots (Okon and Hadar, 1987). This would almost certainly enhance the growth and survival 

of these plants. Increased P, in addition to enhancing growth, induces physiological changes 

in the root which would make it less susceptible to pathogen infection and disease (see p. 30). 

Reduced root cell membrane permeability through the augmentation of the phospholipid 

bilayer decreases root exudation, which diminishes populations of pathogenic fungi by 
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depleting their nutrient base. Also, increased P uptake is associated with increased 

production of lignin and other insoluble polysaccharides in root cell walls. Either or both of 

these may have played a role in the increased survival of Fringed gentian in the mycorrhizal 

medium, although this evidence remains circumstantial. 

The soil dilution and plating results revealed that in the mycorrhizally-inoculated 

treatment medium (TM 14), soil microorganism populations, particularly of soil-borne fungi, 

were suppressed. This, combined with the results from the disease suppression experiments, 

provided further insights into the possible mechanisms by which the mycorrhizal inoculum 

may have reduced disease incidence and enhanced growth in G. crinita seedlings and 

transplants. 
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CHAPTER DC 

SUMMARY AND CONCLUSIONS 

VA mycorrhizal pot culture inoculum conferred a pathogen-suppressive influence to the 

treatment medium into which it was incorporated and protected plants germinated or transplanted 

into that medium. Increased transplant survival was most likely due to this suppressive effect, 

which reduced pathogen populations in the growing medium. This occurred in the 1994 

preliminary trials with Penstemon hirsutus and Gentiam clausa, as well as in the 1995 and 1996 

experiments, where the growth and survival of G. crinita and other test plants were significantly 

enhanced. These beneficial eflfects occurred despite the lack of actual mycorrhizal root 

colonization of the plant hosts, suggesting that the underlying basis of lower disease incidence and 

enhanced growth is the suppressive influence of mycorrhizally-assodated microflora fi'om the 

inoculum rather than the direct influence of mycorrhizal colonization of the host. While enhanced 

survival was due to pathogen suppression, the exact mechanism of growth enhancement in 

Fringed gentian and the 1994 test plants (G clausa and P. hirsutus) remains undefined. It was 

most likely due to suppression of competitive saprophytic microflora and root-infecting 

pathogenic fungi. 

Strong circumstantial evidence and observations indicated that the germination medium 

used in the 1995 e?q)eriments was the source of contamination by soil-borne root- and crown- 

infecting fungal pathogens vdiich plagued G crinita throughout the course of the experiment. 

Therefore, these G crinita experiments can be interpreted as bioassays which tested the 

effectiveness of VAM inoculum as a suppressive agent against these pathogens. In order to 
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further test this hypothesis, pathogen suppression and soil dilution and plating experiments were 

set up to confirm and elucidate these results under controlled conditions. 

The outcome of the 1996 pathogen suppression experiments with Bhizoctonia and 

Fusarium indicated that the mycorrhizal inoculum reduced the incidence of disease in susceptible 

plant hosts when these hosts were germinated and grown in a mycorrhizally-inoculated medium. 

The inclusion of a non-mycontizal pot culture inoculum in one of the treatments demonstrated 

that a significant portion of this pathogen suppression was attributable to the pot culture inoculum 

itself even without its mycorrhizal component. Nevertheless, the addition of a mycorrhizal 

component significantly enhanced this suppressive effect. 

The results of the 1996 soil dilution and plating series indicated that mycorrhizal inoculum 

had a general suppressive effect on soil microfiora, particularly soil fungi. This was a very 

informative result, since the pathogens causing disease in the test plants fi-om all three years (1994- 

96) were soil-borne fungi. These results provided strong evidence that the basis of disease 

suppression in the test plants was the incorporation of a mycorrfiizal inoculum in the growing 

medium, and that this suppressive effect was most likely due to the associated microfiora which 

developed during the pot-culturing process. 

These findings are corroborated by numerous reports in the literature of a beneficial 

myconbizae-specific (or mycorrhizospho'e) microfiora. Also reported is the creation of an 

antagonistic microfiora selected for by the pot-cultuiing process and suppressive against various 

pathogens, including those seen in the 1994-96 expaiments. This applies to damping-off 

diseases of seedlings as well, which is caused by these same pathogens and which amounts to a 

pre-mycorriiization event under these circumstances. 
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The results of these experiments imply that rhizosphere microflora play a significant role 

in growth and survival of G. crinita, which probably ranks among the most horticulturally 

recalcitrant of plant species. VAM pot culture inoculum significantly enhances the growth and 

survival of Fringed gentian in culture by conferring to the medium into which it is incorporated a 

suppressive influence on soil microflora in general and soil-borne pathogens in particular. Fringed 

gentian appears to rely on a particular constellation of rhizosphere microflora for optimum growth 

and survival, and myconrhizal inoculum added to a compost-based potting medium may provide 

just the right mk necessary to tilt the balance in favor of survival. 

There is also ample evidence, both fi’om the literature and fi’om this study, that 

mycoirhization plays a role in the perennialization and dormancy of Fringed gentian. The primary 

evidence is the timing and development of mycorrhizal colonization. The gentian initially 

suppresses the mycorrhizal fungi throughout the growing season. During the onset of dormancy, 

mycoirhization occurs. In response colonization by mycorrhizal fungi, root "overgrowth", an 

abnormal development of root tissue, takes place. This may be a direct morphological response 

to colonization. It may also reflect the production of starch necessary for root perennialization, 

for which phosphorus provided by the mycorrhizae is required. In any case, this process, which 

appears to represent the formation of the root perennial structures (i.e. rhizomes) preceding 

dormancy, was exhibited in the root thickening (up to 2x normal width) observed by this author 

and other investigators, which accompanied myconhizal colonization. 

Throughout the first part of the dormancy period, mycorrhizae serve as both a provider 

and embodiment of phophorus reserves, which function as a storage reservoir and in the 

protection of roots fi'om fi'eezing. Finally, towards the end of the overwintering penod. 
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disintegration of arbuscules occurs, releasing phosphorus compounds which the plant utilizes for 

biosynthesis during reemergence. The unusual "Paris" morphology of mycorrhizae in the 

Gentianaceae, coupled with the correlation between the development of myconhization and the 

physiological needs of the gentian host at various phonological stages during the overwintering 

period from dormancy to reemergence may indicate host control over the association. These 

circumstances further suggest that the gentian is living mycoheterotrophically or semi-parasitically 

off of its fimgal symbiont, at least for a portion of the symbiosis, obtaining both carbohydrates and 

phosphorus. This emerges as a My common arrangement among species in the Gentianaceae. 

Gentians also form associations with other non-pathogenic root-associated fungi, and this 

was observed in the roots of Fringed gentian during the current investigation. There is evidence 

that these fiingi, known as "pseudomycorrhizal" or dark-septate endophytes (DSE), may have 

some ecological significance and may be analagous to mycorrhizal fijngi in habitats with low 

populations of VAM. These fimgal endophytes may even provide benefits to their plant host, 

though this was not investigated in the present study. 

From the observations of this author, in conjunction with a detailed review of the literature, 

a picture emerges A\diich begins to shed light on the peculiar nature of the mycorrhizal symbiosis in 

Fringed gentian. Mycorrhization appears to be a phenologically-timed and fimctionally-defined 

symbioas which is for the most part under the control of the gentian host. The resulting association 

is not the classic symbiosis seen in most plants, which typically involves nutrient exchange during 

active growth. Rather, it is one whose function is relegated to root development in preparation for 

dormancy, temporary symbiosis, phosphorus embodiment and storage, and finally, the dissolution 

of the fungal symbiont for its phosphorus reserves, to meet the specific needs of the gentian host at 
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various phenological stages throughout this portion of its life cycle. Given the integral role that 

mycorrhizal colonization, and the P it provides, play in perennialization, dormancy, overwintering 

survival and reemergence, the adoption of unusual mycorrhizal and "pseudomyconhizal" 

associations makes ecological sense. Fringed gentian, vriiich evolved in highly-stressed habitats 

under conditions of scarcity, needed to develop alternative phenological and mycotrophic strategies 

in order to survive. 

These results demonstrate that VAM inoculum, when incorporated into a compost-based 

germination and growing medium, can significantly improve the propagation of Fringed gentian and 

other herbaceous perennials in the greenhouse. Nevertheless, cultivation protocols must be adapted 

to accommodate both the host plant and its fiingal symbiont. Furthermore, the particular VAM 

isolate used must be selected on the basis of its ability to adapt to and function under the particular 

mycotrophic and cultivation requirements of the plant species being grown, no matter how unusual 

the plant host. 

In conclusion, VAM inoculum holds great potential as a bio-suppressant, bio-protectant, 

and bio-enhancement agent in horticultural production systems. There is much room for 

improvement in this area, as production of herbaceous perennials and nursery stock is currently a 

very high-input system. The use of VAM and VAM inoculum may contribute to the ultimate goal 

of all ecologicaUy-based plant enhancement and disease management strategies - an overall 

reduction in the use of chemical inputs, specifically fungicides and synthetic fertilizers - and help to 

advance the development of sustainable plant production systems. 
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APPENDIX 

LAB TECHNIQUES FOR INVESTIGATING VAM 

Materials: 

Root staining 

1 2g root sample 1 fine-tipped paintbrush or needle 
15 ml 10%KOH 
15 ml 1%HCL 
1 sampling bottle (small) 
15 ml 0.05% methyl blue solution 
1 petri dish Whatmans filter paper 

50 micron nylon mesh 
horticultural sand 

1 vacuum filter pump 
1 blue paper disc 

1 millipore filter disc (w/grid) 
15 ml 50% glycerol 
forceps 
autoclave 
dissecting scope 
35 ml 50% sucrose solution 
3 50ml centrifuge tubes (with caps) 
1 petri dish 
parafilm 
dissecting scope 

Spore extraction 

1 50g soil sample (fi’om pot culture or field) 
1 sampling bottle (large) 
sieves (in microns)- 500m (no.35), 250m (no. 60), 125m, (no. 120), and 53m (no. 270). 
1 large-mouthed fiinnel 
1 large beaker 
1 fleaker (combination flask and beaker) 
100 mg. kaolin clay 
1 water spray bottle 
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Procedure: 

Root staining 

1. Washing - Wash root sample clear of soil by placing roots in small sampling bottle, filling 
with enough water to cover, and shaking bottle gently for 10 seconds. Pour oflf water. 

2. Clearing - Pour 15ml of 10% KOH solution into bottle; autoclave for 15 minutes at 121 
C (15 psi). 

3. Rinsing - After autoclaving, pour oflf KOH solution, and refill bottle with water. Soak 
roots for 10 seconds, swirl gently for 10 seconds, then pour oflf water. Repeat this two 
more times. 

4. Acidification - Refill bottle with 15 ml 1% HCL and soak 2-3 minutes. Pour oflfHCL. 

5. Staining - Refill bottle with 15 ml methyl blue solution; autoclave roots in stain solution 
for 15 min. at 121 C (15 psi.). 

6. Destaining - After autoclaving, pour oflf stain solution. Place roots on filter paper (grid 
side up) in petri dish filled with 50% glycerol. Cover, apply parafilm, and allow to soak 
for several days, for observation during the next lab period. 

Procedure: 

Spore extraction 

1. Mix 50g soil sample in large sampling bottle with 200 ml water. Shake vigorously for 1 
minute, until aggregates are dispersed evenly and suspended. Pour entire solution into 
fleaker, and allow heavier particles to settle for 15 seconds. 

2. Pour solution slovvfy (decant) through series of sieves stacked on top of one another (see 
diagram); sieves are placed on top of funnel into large beaker to catch liquid. Refill fleaker 
with approximately 200 ml tap water. 

3. Resuspend heavy particle residue by swirling fleaker gently. Allow to settle for 10 seconds. 
Decant again through sieves, catching liquid in bottom beaker. 

4. Repeat above process until water in beaker is clear (2-3 times), and only pure sand is at 
bottom of fleaker. Set large beaker with drained liquid aside. 
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5. Discard sievate from first (500 m) sieve. Collect sievate from 250, 125 and 53 m sieves, 
and wash with spray bottle into separate 50 ml centrifuge tubes; fill to 2/3 capacity with 
water, add lOOmg kaolin clay, and replace caps. 

6. Centrifuge for 5 min. at 2000 rpm (make sure centrifuge is balanced with tube of equal 
volume water). 

7. After centrifugation, pour off water and floating debris (supernatant). 

8. Resuspend pellets (solid material in tube) in 35 ml 50% sucrose solution, and centrifuge 
again for 1 min. at 2000 rpm. 

9. This time, after centrifugation, pour debris at top of each tube (supernatant) through 50 
micron sieve, and wash with water sprayer to remove sucrose. 

10. With water sprayer, wash sievate through vacuum filter pump fitted with glass fibre filter 
disc. 

11. After filtering, transfer filter disc to petri dish for examination under dissecting scope. 

Observation of spores 

1. Observe spores under dissecting scope at 40x magnification; sketch and record 
observations, including spore size, color, and morphology. Estimate total # of spores by 
either counting entire petri dish or counting one quadrant and multiplying by 4. Record all 
data (# of spores per 50g. soil). 

2. Several spores can be transferred with fine-tipped paintbrush or micropipette to slides 
with cover slips for closer observations. Spores under cover slips can be squashed for 
improved viewing by lightly pressing cover slip at spore point with fine-tipped needle or 
forceps. 

3. Spores can also be germinated, both to test % of viability and to view emerging hyphae. 
(see Fig. 4.1). Fill the bottom of a petri dish with 1 cm layer of horticultural sand, moisten 
with water, cover with blue paper disc, and place 9mm millipore filter squares (cut from 
filter paper) over disc. Transfer individual spores from observation dish to germinating dish 
using fine-tipped paintbrush or inoculating needle (spores will adhere to and release from 
fine-tipped instrument with a light touch). Cover, seal with parafilm and place in the dark 
at 20 C for two days to two weeks (check daily) until germinated. 
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4. Once spores have germinated, they can be observed under dissecting or compound 
microscope, or placed in pots filled with sterile growth media and used in greenhouse pot 
cultures with appropriate host plant (eg. Sorghum/sudangrass, clover, etc.). 

Observation of stained roots 

Destained roots can be observed in petri dishes (with 50% glycerol) under a dissecting 
scope at 40x to lOOx. A quick visual assay can determine percentage of roots infected by counting 
total # of intersections between grid lines and roots, and then # of intersections with mycorrhizal 
structures. Try to estimate % of roots infected as well as percent of colonization within infected 
roots. Sketch observations and record data. For closer examination, mount roots on slide under 
cover slip and view with compound microscope. Look for vesicles, arbuscules, intra-radical 
hyphae; sketch observations. 
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