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CHAPTER 1 

INTRODUCTION 

Soybean (Glycine max (L.) Merrill), an important grain crop in the United 

States as well as in many other countries of the world, has been studied for 

many years with regard to yield. Since the supply of water and fertilizer 

currently is not a problem limiting soybean production in the U.S. and other 

developed countries, improvement in light utilization by the soybean canopy, 

usually through planting patterns such as plant density, row width, and 

intercropping has been intensively investigated. Numerous studies have 

demonstrated that more efficient light interception by soybean canopy 

contributes to an increase in soybean yield (Lehman and Lambert, 1960; Blad 

and Baker, 1972; Willcox, 1974; Cooper, 1977; Johnson eta/., 1982; Herbert 

eta/., 1984; Willcott eta/., 1984; Duncan,1986; Ikeda, 1992). 

Loomis et a/. (1979) hypothesized that future yield improvements in 

agricultural crops would come from enhanced partitioning of assimilate to the 

harvest fraction, and the assimilate partitioning theoretically was accomplished 

by translocation in the plant. A number of studies on soybean indicated that 
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most light interception by soybean occurs in the top and periphery of the 

canopy, while most yield occurs in the lower to the middle portions of the plant 

(Sakamoto and Shaw, 1967; Herbert and Litchfield, 1982). This character 

suggested that the long - distance assimilate translocation existed in soybean 

plants through which the assimilates was transported from upper and periphery 

sources to lower and middle sinks. This further suggested that genetically 

controlled partitioning of assimilate predominantly determines the distribution 

pattern of yield in soybean canopy. Detailed analysis on soybean yield 

components across the node positions would be helpful in the investigation of 

yield partitioning and yield improvement. 

Partitioning of assimilate is affected by the source - sink ratio which was 

largely responsible for changes in soybean yield (Hick et a/., 1969; Beuerlein et 

a/., 1971; Egli and Leggett, 1976; Herbert et a/., 1984). Seasonal and daily 

fluctuation of solar radiation in the field contribute to the variation of source 

supply to the sink. Pod abscission (abortion), thought to result from inadequate 

late season photosynthate supply, resulted in a subsequent yield reduction 

(Mondal et a/., 1978). Artificial depodding or defoliation could simulate source - 

sink variation in soybean plants. Egli and Leggett (1976) stated that pod 

removal reduced the sink demand in soybeans and resulted in the accumulation 

of carbohydrate in other plant parts. Reducing the supply of photosynthate by 

defoliation or shading has been shown to cause reductions in the carbohydrate 

levels in leaves and other plant parts (McAllister and Krober, 1958; Thorne and 
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Koller, 1974). Studies by Litchfield (1991) showed the soybean yield could be 

altered significantly by source - sink manipulation. 

This present study investigated the effects of light interception by the 

soybean canopy during two different growth stages on final yield and compared 

yield components. Also, the interrelationship among sources and sinks of this 

indeterminate soybean plant was evaluated by various depodding and 

defoliation treatments. Yield was analyzed by yield components on a node by 

node basis. In addition, harvest index and pod harvest index were evaluated to 

explore how the change in partitioning of assimilate between biological parts 

and economical parts of soybean plant affect final yield. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General history of soybean 

Soybean (Glycine max (L.) Merrill) is one of the oldest of cultivated crops 

in the world which likely originating in the northeastern provinces of China. As 

early as 2838 B.C., an ancient Chinese book - Pen Ts'ao Kong Mu - described 

this leguminous plant. This is believed to be the earliest written record of 

soybean. In the long history of Chinese civilization, soybean has been one of the 

five major grains - rice, soybean, wheat, barley and millet. The food made from 

soybean has always been popular food resource in China and in other oriental 

countries (Morse, 1950). 

Between 200 B.C. and the third century A.D., the cultivated soybean is 

believed to have disseminated from northern China into Korea, and into Japan 

(Nagata, 1959). After the Chinese-Japanese war (1894,1895), soybean 

production gained attention in Japan (Morse, 1950). The introduction of 

soybeans into Europe dates from 1740, when the missionaries sent soybean 

seeds from China to the Jardin des Plantes in Paris (Probst and Judd, 1973). In 
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the West, tremendous increase in production and use of soybean occurred after 

World War II (Synder and Kwon, 1987). 

In the United States, soybean was first introduced in the early 1800's, 

but remained a minor curiosity until the twentieth century. It was not until after 

1945 that the value as feed and food oil was recognized (Synder and Kwon, 

1987). In 1959, soybean yield in the United States approached the world level 

recorded by China. In 1960, the soybean yield in the United States surpassed 

that in mainland China. Since then, the United States has been the country with 

the largest scale in soybean production and maintained the highest soybean 

yield in the world. 

The steady increase in soybean yields in the United States is attributed to 

the strong demand as a feed and food resource, and to the rapid progress in 

modern agricultural science and technology. Probst and Judd (1973) stated that 

improved adapted varieties, better cultural methods, increased fertility, and 

improved machinery were important factors in the yield increase per acre. 

Synder and Kwon (1987) stated that the knowledge about the physiology of 

soybean had been extremely helpful to the soybean producer. Particularly, 

knowledge about the maturity group, breeding, diseases and pests, nitrogen and 

photosynthate assimilate made the management of soybean production much 

easier. Soybean yields increased with knowledge of plant density, row width, 

and interplanting. A reasonable planting pattern would enable the crop canopy 

to intercept much more solar radiation, and reduce competition for water and 
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nutrients. More recently, the source-sink relationship in soybean has been the 

subject of much investigation. 

2.2 Light and light interception in soybean production 

Many factors affect soybean growth and final yield including solar 

radiation, soil fertility, soil aeration, soil and air temperature, carbon dioxide, 

moisture, weed pressure, insects and pathogens (Litchfield, 1991; Norman, 

1978). Solar radiation plays a significant role determining soybean yield, since it 

supplied solar energy for photosynthesis. Norman (1978) stated that light 

strongly influenced the morphology of the soybean plants by causing changes in 

the time of flowering and maturity, which resulted in differences in plant height, 

pod height, leaf area, lodging, total dry matter production, and grain yield. 

One important aspect of light in soybean production is photoperiod that 

resulted in classification of soybean maturity groups in the United States. There 

are 11 zones in North America of best adaption for soybean cultivars 

respectively corresponding to Maturity Group 00 through Maturity Group IX. 

Soybean cultivars grown in Massachusetts belong to Maturity Group II. 

However, Group 0 and Group I were usually planted in this area to ensure an 

earlier harvest. Norman (1978) found that cultivar difference in day length 

resulted in response in terms of the number of days to flower, the number of 

days to maturity, plant height, seed weight, pod number, branch number, node 

number, and others. Flowering occurred when day length became shorter or 

rather night became longer than the critical value for the cultivar. 
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The use of maturity groups in the United States plays an important role in 

increasing soybean yields. Snyder and Kwon (1987) found that soybean yields 

could be reduced if a maturity group adapted for northern latitudes was planted 

further south, and vice versa. For the first case, the plant would flower and set 

pods before it had reached its full vegetative growth; for the later case, 

flowering would be postponed and easily encounter early frost before the seeds 

matured. 

Another important aspect of light related to soybean growth is light 

intensity. Light intensity can be altered by many factors like cloud cover, haze, 

altitude, angle of incidence, competitive shading, and other environmental 

conditions. Norman (1978) found flower initiation of Biloxi soybeans occurred 

when the light intensity was above 1076 lux for two consecutive 8-hour 

photoperiod, but light intensity of less than 1076 lux did not initiate flowering. 

In a soybean crop, light intensities at the different levels of the canopy varied 

greatly due to self-shading. Mann et al. (1980) suggested that light penetration 

into a row crop could be modeled by considering the cropping structure (row 

spacing and orientation, and planting density) as well as the individual plant 

structure (plant height, leaf area, and leaf angles). 

Sunlight must be intercepted by the soybean plant in order to convert the 

radiant energy of sunlight into the chemical energy stored in carbohydrates. 

Interception of light is affected by the arrangement and optical properties of the 

leaves (Kriedeman et al., 1964). Hesketh and Baker (1967) stated that the rate 

of dry matter accumulation of a crop could be defined as a function of the 
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quantity of light intercepted by the crop and the photosynthetic efficiency of 

the intercepting tissue. Brougham (1956) concluded that photosynthesis and 

dry matter production were related to the amount of leaf area present in a crop 

community, and this relationship was due to the influence of leaf area on the 

interception of light. 

Most light is intercepted by the top level of canopy (Sakamato and Shaw, 

1967; Willcott et al., 1984). Light penetration into lower levels of canopy is 

attenuated (Willcott et al., 1984). Light interception could be described by the 

different light intensities between two vertical points in a plant community, and 

could be expressed in the following equation by Monsi and Saeki (1953): 

I = l0ekA 

A straight line relationship with slope k is obtained when the equation was 

expressed in the logarithmic form: 

ln(l/l0) = -kA 

where I is the light intensity received inside the plant community, l0 is the light 

intensity at the top of the plant community, A is the leaf area index, and k is 

the extinction coefficient which is dependent on the leaf inclination and optical 

properties of the leaves. 

The measurements on light interception in plant communities are usually 

taken for the total short-wave band (300 to 3000 nanometers) (Anderson, 

1964). However, it is more common to measure light using wave bands that are 

available for photosynthetically active radiation (PAR). PAR is defined as the 

waveband between 400 and 700 nanometers (Anonymous, 1981). 
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Light interception in a soybean canopy can be high. Shakamoto and 

Shaw (1967) found that 90% of the incoming light was intercepted by the top 

and periphery of the soybean canopy. Singh et al. (1968) reported that net 

radiation at ground level for soybean was 12 - 18% of that above the crop, 

while Willcott et al. (1984) reported it was only 5%. These results were 

supported by work done by Shaw and Weber (1967). Due to its large leaf area 

and shorter plant height, soybean has a more closed canopy than other crops 

such as corn (Litchfield, 1991). The leaves at lower canopy contribute little 

photosynthate to yield (Shiblesa and Weber, 1965; Johnston et al., 1969). 

Since the lower leaves are not receiving adequate radiation for photosynthesis, 

an increase in yield presumably could be achieved by methods that would allow 

greater light penetration, and were demonstrated in a supplemental light 

treatment. 

Extinction coefficients showed large changes not only with height in the 

community of one soybean cultivar, but also among different cultivars 

(Sakamoto and Shaw, 1967; Johnston and Pendleton, 1968; Luxmoore et a/., 

1971). The variation of light penetration might result from the leaf area 

distribution, leaf type, leaf angles, and leaf optical properties. Blad and 

Baker(1972) found leaf area distribution in soybean dependent on plant age, 

leaf size and number, row width, and orientation. Narrow leaf types had been 

proposed to allow deeper light penetration into the soybean canopy (Sakamoto 

and Shaw, 1967), although no yield advantage was found. In a model for 

simulating photosynthesis, Duncan et al. (1967) found that light penetration 
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into the canopy might be increased by adjusting leaf angle. Kriedeman et ai 

(1964) showed that the rate of photosynthesis in soybean leaf was proportional 

to the cosine of the angle of the incident light. 

Numerous studies reported the advantage of narrow rows and high 

densities for growth and yield of indeterminate soybean cultivars in north and 

central regions of the United States. (Lehman and Lambert, 1960; Timmons et 

a/., 1967; Cooper, 1977; Koch, 1979; Costa eta!., 1980; Parks and Manning, 

1980; Spilde et a!., 1980; Graves and McCutchen, 1981; Herbert and 

Litchfield, 1982; Johnson eta!., 1982; Willcott eta!., 1984). Shibles and 

Weber (1966) explained that narrow rows and high densities could provide a 

more rapid development of complete canopy closure by the time plants set pods 

and fill seeds, with a resultant increase in the interception of solar radiation on a 

unit land basis accompanied by enhanced photosynthate production. 

Herbert et ai (1982) reported that more solar radiation was available in 

more productive years during the seed filling period, and was responsible for 

yield increase. On the other hand, Taylor et ai (1982) reported that a lack of 

photosynthate supply due to less solar radiation later in the season was a major 

factor in determining abortion rates of soybean seeds and pods and hence yield. 

Many researchers conducted investigations about the effects of increased light 

penetration into, and shading of, the soybean canopy. 

Schou et ai (1978) imposed various light enrichment or reduction 

treatments at different stages of soybean development. Two methods of light 

treatments were used. The first method involved installation of reflectors at 45° 
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angles to the sample row and installation of black boards of the same 

dimensions in the same manner. The second method decreased light by 63% 

using shade cloth. Results showed a increased yield of 6% - 57% from light 

enrichment treatments, which illustrated that more light was available from 

opening up the canopy, and that light reflectance resulted in additional 

advantages. Plants enriched during the period of late flowering to early pod 

formation had 48% more pods, and 57% more seed yields than controls. The 

number of pods and the seed yields were 16% and 29% less respectively than 

controls for the shade treatments imposed during the same development period. 

Changes in yield by shading during other growth stages were not as significant 

as during the period from late flowering to early pod formation. The authors 

postulated that the soybean plants were capable of filling more pods and more 

seeds due to the rich light condition than were normally produced. 

Wahua and Miller (1978) applied shade treatments to soybean plants and 

caused 20% - 93% reductions in light compared to ambient light. Results 

showed the highly negative correlation occurred between amount of shading 

and grain yields, pod number per plant, and percent leaf nitrogen. The loss of 

the nitrogen fixing ability of the crop as it developed was accelerated by 

shading. 

Johnston et a/. (1969) used wide-spectrum fluorescent lamps to 

supplement light on soybean canopies. Results showed that by adding light 

yields increased by increasing pods per plant and seeds per pod, but seed size 

decreased. Hongfei (1993) used shade-cloth above the canopy to reduce light 
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and showed a reduction in pod numbers per plant, due to increased flower and 

pod abscission and to reduced number of flowers per plant. Similar results have 

been reported by other researchers (Popp, 1926; Lehman, et at., 1960; 

Pendleton, et al., 1963; Probst, 1945). These studies suggested that solar 

radiation greatly affects soybean yield. However, more investigation is needed 

on the vegetative and reproductive growth phases in which light is most 

influential on the final yield. Season-long light treatments had different effects 

on soybean yield as hypothesized by Herbert et al. (1984) because of light 

variation during a specific period. 

2.3 Source - sink relationship and dry matter partitioning 

Generally, organs capable of meristematic activity, additional 

differentiation, or storage are referred to as sinks, while other organs from 

which substrates are transported are referred to as sources (Loomis and 

Connor, 1992). In soybean plant, Egli et al. (1989) gave the definition to source 

and sink; The photosynthetic production of assimilates was undertaken in 

various chlorophyll containing plant parts which were referred to sources, 

whereas the seeds were referred to sinks. The soybean yield was dependent on 

the photosynthetic production of assimilates by sources, the translocation of 

these assimilates to the sinks, and the utilization of these assimilates to produce 

storage materials in the sink to give the soybean its economical value 

(Litchfield, 1991). 
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To elucidate the movement mechanism of assimilate from source to sink, 

Gardner et at. (1985) stated that: 

"The photosynthetic source cell produces the sugars, which can 
move symplastically to the sieve tubes. Phloem loading increases 
the sugar concentration of sieve tubes above that of the apoplast. 
At the sink, carbohydrates are being absorbed and either actively 
partitioned into cell constituents (e.g., starches) or changed to 
other carbohydrates that have little effect on hydrostatic pressure 
of the phloem. Phloem unloading lowers the concentration of 
sugars in sieve tubes. The buildup of sugars at the source and the 
removal of sugars at the sink establish a hydrostatic pressure 
gradient, which moves water and sugars from source to sinks." 

The carbohydrate status of soybean leaves, usually the starch status, 

affects the interaction between the production of photosynthate and its 

utilization by the developing seeds and other sinks, and this status is related to 

the level of final yield (Egli et a/., 1980). Some studies proved the feed back 

effect of starch in leaves, and the high starch concentration could inhibit net 

leaf photosynthesis, whereas the decreased starch concentration could 

stimulate photosynthesis (Nafziger and Koller, 1976; Neales and Incoll, 1968). 

In indeterminate soybean plants, almost every node provides pod setting 

and seed development. Belikov and Pirskii (1966) found that the pattern of 

translocation from each leaf was similar. The greatest amount of assimilate 

remained in the pods at the node of the applied leaf, and the rest was 

transported to upper and lower nodes (Gardner et a/., 1985). 

Unlike cereal grains whose photosynthetic activity by their awns 

contribute 50% or more of photosynthates required by sinks, the primary site of 

photosynthesis of soybean plants is in the leaves (Norman, 1978). The green 

soybean pods apparently did not show any net fixation of atmospheric carbon 
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dioxide, but they could contribute photosynthetically by reassimilating 

respiratory carbon dioxide from the seeds (Quebedeaux and Challet, 1975). 

Soybean leaves are the major sources to supply assimilates to sinks. 

Leaf area index (LAI: leaf area per unit ground area) is often used to 

evaluate soybean growth due to its close association with photosynthesis and 

dry matter production. Shibles and Weber(1965 and 1966) found that until LAI 

reached its maximum, light interception and dry matter production increased 

with leaf area development. Further increases in LAI was not associated with 

decreased rates of dry matter production, indicating that leaf area in excess of 

that required for full light interception did not cause negative response to 

productivity. 

However, previous studies showed different results about the relationship 

between soybean yield and LAI. Hicks et a/. (1969) found no significant 

difference in seed yield, but found a greater LAI for plants grown in narrow 

rows. Willcott et al. (1984) found that LAI development and dry matter 

production need not to be greater in the soybean plants for a higher yield, while 

the efficient interception of light is an important factor in determining final yield. 

Soybean yield was a function of differential utilization of photosynthate 

between vegetative and reproductive structures (Shibles and Weber, 1966). The 

partitioning of assimilates during the reproductive phase was critical in 

determining final yield of soybean. 

There were predominantly two growth types in soybean plants - 

determinate and indeterminate species. In determinate species, leaf and stem 

14 



growth ceased at flowering, while indeterminate species have vegetative and 

reproductive growth occurring simultaneously. Gardner et a/. (1985) stated 

that, depending on the relative strength of their vegetative and reproductive 

sinks, reproductive yield might be reduced for the indeterminate species when 

there was more vegetative growth during reproductive development. For the 

determinate species, the maximum number of leaves was established at the 

initiation of flowering. Seeds became the dominant sink of plants shortly after 

pod setting, and the major part of assimilate was used for increasing seed 

weight during seed filling. 

Differences in the time of seed development resulted in different seed 

yields among varieties and between years (McBlain and Hume, 1980). In 

addition to leaves, pod walls, stems, and petioles could partially serve as 

sources of stored carbohydrate for developing seeds in soybean plants (Streeter 

and Jeffers, 1979; Stephenson and Wilson, 1977). Willcott (1983) suggested 

that assimilate storage and later redistribution from these additional sources 

especially from pod walls to developing seeds might effectively lengthen the 

pod filling period and contribute to final yield. 

Loomis et a/. (1979) hypothesized that future yield improvements in 

agricultural crops would come from enhanced partitioning of assimilate to the 

harvest fraction. Assimilate partitioning in the plant theoretically is 

accomplished by translocation. Blomquist and Kust (1971) used 14C02 to show 

that translocation from a leaf was limited to its axil and the axil at the next 

node below it, suggesting short-distance translocation patterns in soybean. 
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Conversely, Gent (1982) produced Y-shaped soybean plants by removing 

leaflets and pods from branches and demonstrated the existence of long¬ 

distance translocation. Furthermore, constant seed filling rate in the middle 

phase of seed growth coupled with daily fluctuations in photosynthetic activity, 

gave additional evidence of long-distance translocation (Thorne, 1979). 

Herbert and Litchfield (1982) reported that the most pods were in the 

central portion of the canopy. However, 90% of the incoming light was 

intercepted at the top and the periphery of the soybean canopy (Sakamoto and 

Shaw, 1967). Long-distance translocation of assimilates from top and periphery 

canopy to the central portion appeared to be necessary for seed development, 

although Willcott et a/.(1984) showed that leaves on long petioles were 

displayed much higher in the canopy than their point of attachment. The uneven 

pattern of pod distribution pattern may be caused by abscission of flowers and 

pods and may be due to uneven partitioning of photoassimilates (Wiebold eta!., 

1981; Heindl et a/., 1984). Interplant and intraplant competition for resources, 

particularly for solar radiation, determines the reproductive abscission and 

potential yield (Marvel etal., 1993). 

To study the mechanism of photoassimilate partitioning and translocation 

in soybean, many artificial manipulations have been conducted. The common 

methods used are depodding, defoliation, and branch removal. Generally, pod 

removal simulated plants which set pods and seeds under unfavorable 

environmental conditions and experienced more favorable conditions during the 

seed filling stage; defoliation simulated plants which set large numbers of pods 
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under favorable conditions during the period of early pod set, but encountered 

unfavorable conditions during the seed filling stage (Litchfield, 1991); branch 

removal simulated that the intraplant and interplant competition for source 

supply was reduced, and the mainstem soybean yield could be enhanced by 

branch removal (Beuerlein, etal., 1971). 

McAlister etal. (1958) studied the effects of pod removal on total seed 

yield of 'Lincoln' and 'Hawkeye' soybeans. They found that up to 17% of pods 

of 'Hawkeye' and 22% of pods of 'Lincoln' could be removed without loss of 

yield, because seed size increased. Hicks et at.(1969) studied flower removal 

from soybean plants. Seed size increased and yield per plant was not reduced 

after removing one third of the flowers. However, when two thirds of the 

flower were removed, the increase in seed size did not compensate for the 

reduction in the number of pods, and yield per plant was reduced. Beuerlein et 

al. (1971) reported that yield per hector, seed weight, leaf efficiency and leaf 

density were greater in plants without branches than those with branches. The 

author stated that the potential increase in soybean yields due to canopy 

manipulation and changing plant morphology remained an interesting agronomic 

question. He also suggested that the selection of a non-branching, high harvest 

index genotypes might merit further investigation. 

Source - sink relationship and the assimilate partitioning could be 

reflected by the term 'harvest index' (Gardner, et al., 1985). Harvest index is 

the ratio of economical yield to the biological yield. The economical yield in 

soybean refers to the seed yield, whereas the biological yield is the total yield of 
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plant material (Donald and Hamblin, 1976). However, for practical reasons, root 

contribution to biological yield is usually ignored. 

Harvest index = (economical yield / biological yield) x 100 

Crop yield could be improved either by increasing the total dry matter, 

the proportion of economic yield (the harvest index), or both (Gardner et a/., 

1985). Schapaugh and Wilcox (1980) indicated that harvest index was 

influenced by environmental conditions, while Egli (1988) and Spaeth et at. 

(1984) found that harvest index within a cultivar was relatively stable across a 

range of growing conditions. Harvest maturity was postulated by Hintz and 

Albrecht (1994) to have a great effect on dry matter partition and yield. 

2.4 Soybean yield components 

Soybean seed yield is made up by the yield components involving plant 

density, pods per plant, seeds per pod, and seed size. Environmental conditions 

affected soybean yield usually by altering one or more of the yield components. 

Yield changes of soybean plants resulting from variation in solar radiation or 

changes in source - sink ratio can be studied by detailed investigation on yield 

components. 

Lehman and Lambert (1960) found that the yield component pods per 

plant was most responsive to changes in the environment. This evidence was 

supported by a number of studies (Weber et a/., 1966; Hick et at., 1969; 

Fontes and Ohlrogge, 1972; Lueschen and Hicks, 1977; Dominguez and Hume, 

1978; Hoggard et a/., 1978; Peet and Kramer, 1980). Herbert and Litchfield 
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(1982) found that increasing plant densities (increasing interplant competition) 

resulted in fewer pods at final harvest. For the intraplant competition between 

soybean root and canopy, Marvel eta/. (1993) also found that pods per plant 

was the most responsive yield component related to the yield reduction. 

Variation in light condition caused obvious changes in pod number per 

plant. Schou eta/. (1978) and Johnston eta/. (1969) found light enrichment 

during flowering and early pod formation caused more pods per plant at 

maturity than controls. This evidence could be explained by increased light 

interception resulting in increased photosynthates available for pod-setting 

(Kokubun and Watanabe, 1981). Further, this result could be supported by the 

shading treatment that caused a reduction in pod number per plant (Wahua and 

Miller, 1978). 

Changes in the ratio of source - sink resulting in yield difference might 

primarily attribute to change in pods per plant. Litchfield (1991) found that sink 

size in soybean was first regulated by changes in pod numbers and that these 

changes occurred across all main axis nodes. Caviness and Thomas (1980) 

found that reduction in the number of pods per plant appeared to be the yield 

component primarily responsible for yield losses from induced defoliation by 

inadequate moisture and drought stress. 

The yield component seeds per pod was more stable than pods per plant, 

subject to changes in natural conditions and in artificial manipulation of yield 

(Lehman and Lambert, 1960; Herbert and Litchfield, 1982; Taylor eta/., 1982; 

Litchfield, 1991). Willcott (1983) reported that the trends for number of seeds 
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per plant tended to be the same as those for number of pods per plant, again 

suggesting stability in seed number per pod. 

However, some other researchers found that seeds per pod could be 

influenced by changes in row width and plant density (Paudey and Torris, 

1973), and in light interception (Kokubun and Watanabe, 1982). On the node- 

to-node basis, the variation in seed number per pod was most evident at 

extreme upper and lower node positions (Herbert and Litchfield, 1982). Fewer 

pods at the extreme node positions containing 1 to 4 seeds resulted in larger 

deviation from the average seed number per pod of the central nodes. 

Seed size is measured by average dry weight per seed. Generally, seed 

size has not been closely related to yield (Egli et al., 1978), and was the yield 

component least affected by changes in row width and plant density 

(Creighton, 1983). However, Herbert and Litchfield (1982) have observed that 

slight changes in average seed size may account for significant differences in 

yield between years. The differences in seed size may have resulted from the 

changes in climatic conditions and photosynthatic supply related to solar 

radiation between years. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 funeral cultural methods 

Studies were conducted at the Massachusetts Agricultural Experimental 

Station farm located in South Deerfield. The soil was a Hadley fine sandy loam 

(Typic Udifluvents). Muriate of potash was applied prior to cultivation at a rate 

of 306.45 g ha '. Prior to planting, 'Evans' soybean seeds were inoculated with 

a commercial powdered-peat base of granular Brady Rhizobium. Seeds with a 

92% germination rate were machine planted in 25 cm rows on May 24, 1994 

at a density of 83 seeds m'2. Weeds were controlled by a post-emergence 

mixture of 2.06 liter ha'1 Poast {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]- 

3-hydroxy-2-cyclohexen) and 2.75 liter ha'' crop oil, plus hand-weeding in the 

early growth stages of the soybean plants. Final harvest commenced September 

27, 1994. The total growth period was about 134 days. 

Final yield was determined after maturity by harvesting plants in 4 rows 

with a length of 3 m. For yield component analysis, 10 plants in each treatment 

plot were harvested at plant maturity. For each group of ten plants, data were 
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recorded for the whole plant and for each node on the main axis. For the 

branches, data were recorded for each branch corresponding to the main axis 

node from which it arose. Node one was the unifoliate node, the first node 

above the cotyledons. Among the data recorded were pod number, seed 

number, stem dry weight, pod dry weight and seed dry weight. From these the 

seed yield components were calculated. 

Main plot size was 8 rows, 20 m long. The experimental design was a 

randomized complete block, split-plot with 4 replications. 

3.2 Main-plot treatments: Light enrichment 

Light enrichment entailed increasing solar radiation available to the center 

sample row of each plot. This was achieved by installing a 90 cm tall wire mesh 

fence on either side of the center sample row, sloping at a 45° angle away from 

this sample row. The fences were inspected periodically, and all plants behind 

them were rearranged to prevent undue crowding and allow for normal growth 

of these fenced border row plants as much as possible. In this way, the plants 

from the neighboring rows were prevented from encroaching into the growing 

space of the central sample row thus providing for allowing greater light around 

the sample row plants. This method was chosen so root competition from the 

neighboring rows would be relatively unchanged. Once put in place, the fences 

remained in position until soybean maturity. 

Three light treatments were established, LEO, LEI and LE2. LEO was the 

control received no light enrichment. LEI - light enrichment was applied at the 
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time of the first flower in the soybean plant population. LE2 - light enrichment 

was applied after flower at the beginning of pod filling. 

3.3 Sub-plot treatments: Source - sink manipulation 

The following treatments of defoliation and depodding were imposed after 

most flowers occurring and at the beginning of the pod filling (Figure 3.1): 

CK - untreated check plants 

CL - removal of the central leaflet from each trifoliate main axis leaf 

AP - removal of the pods from alternate main axis nodes 

SP - removal of all but one pod from main axis nodes 

ALP - removal of the trifoliate leaf and all pods from alternate main axis nodes 

Figure 3.1 Source - sink manipulation treatments in soybean 
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CHAPTER 4 

RESPONSE OF SOYBEAN YIELD COMPONENTS TO INCREASED LIGHT 

4.1 Results and discussion 

The light intensity at the top of the canopy at the R3 stage (beginning 

pod) (Herman, 1985) was 13.30 uEs'W2 and 12.83 uEs'W2 for LEO and LE2 

respectively, whereas at the base of the canopy it was 0.19 uEs'W2 and 3.37 

uEs’m'2 respectively. Thus, 98.6% and 73.7% of the incoming solar radiation 

was intercepted by the soybean canopy for LEO and LE2 respectively. This 

means that leaves at the base of the soybean canopy in LE2 were receiving 

more than 25% of available light. 

The final yield and yield components of Evans soybean with check 

treatment in 1994 are shown in Figure 4.1 through Figure 4.11. Results of the 

analysis of variance are shown in Table 1. 

Plants receiving early light enrichment (LEI) yielded more than control 

plants (LEO); however, those receiving late light enrichment (LE2) did not differ 

from control (Figure 4.1). Similar results were obtained per plant and per meter 

of row (Figure 4.2). 
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Among the yield components, the number of pods per plant was the 

component most responsible for the yield increase from LEI (Figure 4.3). This 

result was similar to that reported by Litchfield (1991), whose experiment also 

demonstrated that the number of pods per plant was the component largely 

responsible for the increased yield due to light-enrichment treatments. 

The significant difference of pod number per plant due to light treatments 

suggested that solar radiation became more important in determining pod 

setting in the early reproductive stage. During flowering, increased solar 

radiation could afford more photosynthetic assimilate to the development of 

more pods. Increased solar radiation during flowering is more important for pod 

formation since soybean usually produces an overabundance of flowers 

(Dominguez and Hume, 1978; Jiang and Egli, 1993). 

Jiang and Egli (1993) reported that the reduction in pod numbers 

resulting from shade treatment was due both to increased flower and pod 

abscission and to fewer flowers developed per plant. According to this 

postulation, the result of increased pod number and increased yield in this LEI 

treatment might had resulted not only from an increase in flowering, but also 

from a reduction in flower abscission. Litchfield (1991) stated that if light 

enrichment was imposed when flowering was almost complete, an increase in 

the number of pods per plant resulted from increased pod retention. 

Seed number per pod (Figure 4.4) exhibited a similar trend to that of pod 

number per plant. LEI resulted in a 15% increase in seeds per pod. Therefore, 
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the increase in the number of seeds per pod was only a small component of the 

yield increase. 

Seed size exhibited significant increase for both LEI and LE2 over LEO 

(Figure 4.5). When light enrichment occurred after most of the flowers had set 

(LE2), there was no significant increase in the number of pods per plant or the 

number of seeds per pod, in contrast to the significant increase in the number 

of pods per plant and the number of seeds per pod by earlier light enrichment 

(LEI). The capacity of sink size (number of pods or seeds) in LE2 was less than 

that in LEI. Therefore, increased photosynthetic assimilate from subsequent 

increased light condition could cause a larger seed size in LE2 than that in LEI. 

Previously Litchfield (1991) found no increase in seed size for the LEI 

treatment. The 16% significant increase in seed size for the LEI in this 

experiment indicated that yield increase due to improved light condition in the 

early reproductive growth stage could be partially attributed to the seed-size 

increase in addition to the change in the pod number per plant and seed number 

per pod. This result might help explain the variance in seed size among years of 

the same genotype grown in the same field. 

The results of the analysis of pod harvest index (PHI) for different light 

treatments are shown in Figure 4.6. No matter when the light enrichment was 

imposed, dry matter distribution between pod shell and seed at final harvest 

was not significantly affected. No significant difference in pod harvest index 

was observed for LEI or LE2 against LEO. This result indicated that the pod 

harvest index in Evans soybean was controlled genetically and was constant, 
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regardless of how much change occurred in environmental conditions and 

subsequent changes in the final yield. 

Harvest index (HI) showed no significant difference. However, light 

enrichment treatments resulted in the tendency of increased harvest index 

(Figure 4.7). As stated previously, soybean yield could be enhanced either by 

increasing the total dry matter accumulation or by increasing the proportion of 

economic yield (the harvest index) or both (Gardner et al., 1958). The yield 

increase which resulted from an improvement in solar radiation on the soybean 

canopy, especially during early reproductive growth (LEI), could be contribute 

not only to the increase in total plant dry matter (Figure 4.8) but also to the 

harvest index (Figure 4.7). Enhancement in harvest index implied an 

improvement in partitioning to the sinks of economic significance, and it could 

be reached by an improved light condition. 

The results of the analysis of the number of pods across main axis node 

positions are shown in Figure 4.9. The majority of pods were born on lower- 

central region of the plants. Improvement in light conditions altered the pattern 

of distribution, and LEI greatly increased the number of pods per node in the 

central portion of the plant. An interesting finding was that nodes in the central 

region (e.g., node 6,7,8) had the largest number of pods; however, all nodes, 

except the extreme upper and lower nodes showed a large increase in pod 

number with added light at LEI. Previous studies (Egli, 1988; Litchfield, 1991; 

Jiang, 1993) also suggested that nodes in central region in soybean plant had 

the highest yield potential. Based on this evidence, therefore, selection of a 
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soybean genotype with high yield potential across all the main axis nodes might 

merit further investigation. 

Seed number per pod was relatively constant across node positions, and 

distribution was not affected by light treatments (Figure 4.10). This result 

suggests that the pod formation and the pod anatomical organization were 

controlled genetically rather than environmentally. In the study by Litchfield 

(1991), the relatively constant seeds per pod across node position was 

suggested to be the result of approximately constant proportion of 1-, 2-, 3-, 

and 4-seeded pods produced at each node. In this experiment, increased solar 

radiation did not largely improve the mean seed number in the pod across main 

stem nodes. However, the slight change in seeds per pod between LEI and LEO 

indicated that, improved light condition at an early reproductive growth stage 

caused a relatively sufficient source supply to the newly formed zygotes, 

embryos or young seeds that otherwise in poor light conditions might fail to 

develop during the process of meiosis. 

The big variance in seeds per pod at upper extreme node position 

occurred because the number of sampled pods at these node positions was far 

less than that in other regions of the plant. A fewer pods with extreme seed 

number (e.g. 1 or 4) at the extreme node position could easily cause anomalies 

in the statistical results (mean seeds per pod). 

Seed size on a nodal basis according to light treatments is presented in 

Figure 4.11. Within each light treatment, seed size was relatively constant 

across the main axis except for extreme node position. This result might 
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suggest that the partitioning of assimilate to each individual seed was relatively 

equivalent to each other. As mentioned before, Evans soybean is indeterminate 

which continues vegetative growth when some parts of the plant are 

experiencing reproductive growth. Complex mechanisms were involved in 

assimilate partitioning during the grain-filling period, due to different sources, 

e.g. leaves, green parts of stem, and pod walls, from which the photosynthate 

was deposited in seeds. The rate of partitioning of assimilate into developing 

seeds born at upper stem nodes must surpass that into developed seeds at 

middle and lower nodes, in order to develop a constant seed size at harvest. 

Bils and Howell (1963) and Egli et a/. (1981) stated that cell division in the 

cotyledons was usually complete early in seed development, and much of seed 

growth was related to cell expansion. The constant seed size across main stem 

nodes in this experiment suggests that seed size was under genetic control in 

the soybean plant, presumably, controlled by the constant cotyledon cell 

numbers. 

The consistent increase in seed size occurred at all node positions in 

response to both light enrichment treatments (Figure 4.11), even though time 

of seed fill varied greatly between lower and upper node position. Egli et al. 

(1978) reported that seed size of soybean was a function of the rate and 

duration of dry weight accumulation in the seed fraction. Consequently, 

environmental factors influencing that rate would have a direct influence on 

yield. In our experiment, the increased seed size in both LEI and LE2 was 
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caused by improved light condition, and thus by the resultant increased dry 

matter accumulation rate during seed filling period. 

4.2 Summary 

The yield of Evans soybean can be enhanced by increasing light during 

the early reproductive stages. Optimizing the light condition at the early 

reproductive stage would be more effective in determining final yield than at the 
/ 

beginning of pod filling. Yield increases are largely the result of increasing the 

number of pods per plant, although increase in seed size and the number of 

seeds per pod also contribute to the increased final yield. The change in yield 

components occurs across all the main axis node position. Seed size usually is 

not related closely to yield variation. However, the significant change in seed 

size by both light enrichment treatments can help explain the yield variance 

among years in the same field. Seed size was consistent across main axis nodes 

regardless of light changes. Pod harvest index remained constant showing the 

consistent assimilate partitioning among pod shells and seeds, and the harvest 

index was enhanced by higher light and thus the increased partitioning of 

assimilates to reproductive sinks can contribute to yield increase. 
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Table 1. Results of analysis of variances 

df F P> F 

Seed Yield (g/plant) 2 24.63 0.0013 

Pods/Plant 2 21.52 0.0018 

Seeds/Pod 2 5.67 0.0415 

Seed Weight 2 25.78 0.0011 

Pod Harvest Index 2 5.11 0.0506 

Harvest Index 2 4.78 0.0573 

Plant Dry Weight 2 67.48 0.0146 

Yield/Meter of Row 2 199.89 0.0001 
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LEO LEI LE2 

Light Enrichment 

Figure 4.1 Seed yield per plant in response to light treatments. 

LEO: Control light enrichment; LEI: Light enrichment 1; LE2: Light enrichment 2. 

Mean separation by Duncan's New Multiple Range Test, P=0.05. 
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Figure 4.2 Seed yield per meter of row in response to light treatments. 
LEO: Control light condition; LEI: Light enrichment 1; LE2: Light enrichment 2. 
Mean separation by Duncan's New Multiple Range Test, P=0.05. 
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LEO LEI LE2 

Light Enrichment 

Figure 4.3 Pod number per plant in response to light treatments. 

LEO: Control light condition; LEI: Light enrichment 1; LE2: Light enrichment 2. 

Mean separation by Duncan's New Multiple Range Test, P=0.05. 
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LEO LEI LE2 

Light Enrichment 

Figure 4.4 Seeds per pod in response to light treatments. 

LEO: Control light condition; LEI: Light enrichment 1; LE2: Light enrichment 2. 

Mean separation by Duncan's New Multiple Range Test, P=0.05. 
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LEO LEI LE2 

Light Enrichment 

Figure 4.5 Seed size in response to light treatments. 

LEO: Control light condition; LEI: Light enrichment 1; LE2: Light enrichment 2. 

Mean separation by Duncan's New Multiple Range Test, P=0.05. 
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LEO LEI LE2 

Light Enrichment 

Figure 4.6 Pod harvest index in response to light treatments. 

LEO: Control light condition; LEI: Light enrichmentl; LE2: Light enrichment 2. 

Light enrichment treatments did not affect pod harvest index significantly. 
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LEO LEI LE2 

Light Enrichment 

Figure 4.7 Harvest index in response to light treatments. 

LEO: Control light condition; LEI: Light enrichment 1; LE2: Light enrichment 2. 

Light enrichment treatments did not affect harvest index significantly. 
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Light Enrichment 

Figure 4.8 Plant dry weight in response to light treatments. 
LEO: Control light condition; LEI: Light enrichment 1; LE2: Light enrichment 2. 
Mean separation by Duncan's New Multiple Range Test, P=0.05. 
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Figure 4.9 Pod number per main axis node position in response 

to light treatments. 

LEO: Control light condition; LEI: Light enrichment 1; 

LE2: Light enrichment 2. 
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LEO 

Seed Number Per Pod 

Figure 4.10 Seeds per pod across main axis node position 
in response to light treatments. 
LEO: Control light condition; LEI: Light enrichment 1; 
LE2: Light enrichment 2. 
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Figure 4.11 Seed size across main axis node position 
in response to light treatments. 
LEO: Control light condition; LEI: Light enrichment 1; 
LE2: Light enrichment 2. 
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CHAPTER 5 

RESPONSE OF SOYBEAN YIELD COMPONENTS TO SOURCE - SINK 

MANIPULATIONS 

5.1 Results and discussion 

Manipulation treatments were imposed so that the patterns of resultant 

changes in yield components could be studied in detail (Table 2). Manipulation 

and light enrichment interacted to affect seed yield per plant, pods per plant, 

and seeds per pod. 

5.1.1 Effects of source - sink manipulation on yield components based on 

whole plants 

5.1.1.1 Seed yield per plant 

The effects of source-sink manipulation on final seed yield per plant are 

showed in Figure 5.1. Under control light conditions, manipulation did not 

significantly affect seed yield per plant. 
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Under LEI conditions, all the four manipulation treatments of pod and/or 

leaf removal (CL, SP, AP, ALP) significantly reduced seed yield compared to 

check plants (CK). 

Under LE2 conditions, all manipulation treatments caused the reduction in 

final seed yield except that removing pods from alternate main axis nodes (AP) 

did not affect the yield. The increased seed yield by remaining main axis nodes 

compensated for the loss of yield from depodded nodes in plants of AP within 

LE2 treatment. This compensation could be contributed by the 7% more pods 

retaining in the remaining main axis nodes (Figure 5.2), and by the 5% greater 

seed size (Figure 5.4). In contrast, ALP treatment caused a significant decrease 

in seed yield per plant, suggesting no compensation of seed yield by remaining 

main axis node position. 

Regardless of the light conditions, the trends of seed yield due to 

manipulation treatments were similar. In addition, the close similarity between 

Figure 5.1 and Figure 5.2 indicated that the decrease in final seed yield per 

plant was mainly contributed by the changes in the pod number per plant. 

5.1.1.2 Pod number per plant 

Pods per plant showed a highly significant difference in response to the 

light enrichment (L), to the source - sink manipulation (M), and to the interaction 

between light treatment and manipulation (L*M). The effect of source - sink 

manipulation on pod number per plant are shown in Figure 5.2. As stated 

before, the close similarity between Figure 5.1 and Figure 5.2 indicated that 

seed yield variation was mainly caused by the changes in pod number per plant. 
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5.1.1.3 Seed number per pod 

Seed number per pod showed a significant difference in response to the 

light treatments, highly significant difference in response to the manipulation 

treatments, and significant difference in the interaction between light treatment 

and manipulation. The effects of light treatment and source - sink manipulation 

on seed number per pod were smaller than the changes in pod number per plant 

(Figure 5.2, Figure 5.3). 

Under control light conditions (LEO), the manipulation of CL, AP, and ALP 

caused no significant difference in seeds per pod compared with check plants 

(Figure 5.3). However, thinning pods to only one per main axis node (SP) 

caused a significant increase in seeds per pod by 13%. This result 

demonstrated that increasing source/sink ratio by thinning pods to only one per 

main axis node would be able to supply more assimilates to the remaining single 

pod at each node, and therefore more seeds could be produced that might fail 

to develop in the normal level of source/sink ratio. 

For the light-enrichment treatment beginning from the early reproductive 

stage (LEI), no manipulation treatment was different from the check (Figure 

5.3). AP resulted in significantly fewer seeds per pod than ALP. The relatively 

constant seeds per pod for all the manipulation treatments in LEI indicated that, 

under early light enrichment condition (LEI), the proportion of 1,2, 3, and 4 

seeded pods was rarely affected by the change in source - sink ratio. 

Within the LE2, both AP and ALP caused slight but significant reduction 

in seeds per pod. It was difficult to give explanation on this point, since either 
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the increase in source/sink ratio due to AP or the relatively stable source/sink 

ratio due to ALP did not prohibit the supply of photosynthetic assimilate to seed 

development. The abnormal results might come from experimental error. For all 

light conditions and all manipulation treatments, the relatively constant number 

of seeds per pod indicate that the proportion among 1-, 2-, 3-, and 4-seeded 

pods was genetically controlled in Evans soybean, and this characteristics was 

rarely affected by the change in source-sink ratio. 

5.1.1.4 Seed size 

Seed size showed highly significant difference in response to light 

treatment, manipulation, but no significant difference in response to the 

interaction of light treatment and manipulation. Means of manipulation 

treatments (combining the three light treatments) are presented in Figure 5.4. 

Reducing sink size by removing pods (SP and AP treatments) significantly 

increased seed size, whereas reducing the source by removing central leaflet 

(CL) significantly decreased seed size. In contrast to treatments CL, AP and SP, 

reducing both source and sink size (ALP) resulted in a non-significant change in 

seed size. Presumably source (leaves) removal lessened the effect of sink 

(seeds) removal. 

These results were similar to previous studies on both Altona and Evans 

soybeans by Litchfield (1991). 

5.1.1.5 Pod harvest index 

ANOVA results on pod harvest index showed no significant difference in 

response to light treatments, manipulation treatments, and the interaction 
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between light enrichment and manipulation (Figure 5.5). Generally, the 

partitioning of assimilates between the pod shell and seeds at final harvest is 

not greatly affected by the change in source-sink ratio due to manipulation, light 

variation, or both. Genetic control exerted the predominant role in pod harvest 

index regardless of environment impaction. 

5.1.1.6 Harvest index 

Harvest index showed highly significant difference in response to 

manipulation treatments but showed no significant difference in response to the 

light treatments and the interaction between light treatments and manipulation. 

By combining three light treatments, all the four manipulation treatments (CL, 

SP, AP, ALP) were significantly lower than check plants (CK). This suggested 

the manipulation treatments reduced the partitioning of assimilate to seeds. In 

general, the seed yield reduction due to source-sink manipulation compared with 

check plants could be partially attributed to the decrease in harvest index 

(Figure 5.1, Figure 5.6). 

5.1.2 Effects of source - sink manipulation on yield components across main 

axis node position 

The analysis of yield components across main axis nodes are showed in 

Figure 5.7 through Figure 5.9. The patterns of yield components in response to 

manipulation treatments across main axis nodes were similar to each other for 

LEO, LEI and LE2. For brevity and convenience, the remaining discussion was 

focused on the manipulation treatments within LEI treatment. 
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The distribution of main axis pods across nodes showed that most pods 

were produced at the nodes in the lower and central sections of the plants. 

Contribution of nodes 2 - 12 to total pod number ranged from 92% in SP plants 

to 95% in AP plants. Thinning pods to only one at each node (SP) showed 

relatively consistent results except for the lack of productivity of extreme node 

positions, and therefore the absence of pods at extreme node positions in some 

sampled plants. Decreasing photosynthetic sources by removing central leaflets 

(CL) caused relatively consistent decrease in node productivity across all nodes 

in contrast to check plants (CK). The increase in node productivity of remaining 

node position due to removal of alternate pods (AP) or alternate pods and leaves 

(ALP) was primarily occurred at node 2, 4, and 6, which might be contributed 

by the increase in branch node productivity. However, the increase in node 

productivity in AP and ALP plants within LEO and LE2 occurred across all the 

main axis node, indicating less contribution from basal branches. Under the 

control light condition (LEO), the increase of node productivity in plants with AP 

and ALP treatments over check plants occurred across all the main axis node. 

Seed number per pod was mostly constant across node position 

regardless of manipulation treatments and light-enrichment treatments (Figure 

5.8). Some variation of seeds per pod at the extreme node position resulted 

from small number of pods produced at extreme node position, especially node 

14, 15, and 16. On most of the main axis nodes, the proportion of 1-, 2-, 3-, 

and 4-seeded pods was therefore relatively constant. No consistent variation in 

the number of seeds per pod across main axis node position was observed due 
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to manipulation treatments. These results elucidated that seeds per pod was the 

most stable yield component being least susceptible to changes in source-sink 

ratio and in canopy position. 

Seed size is shown on a nodal basis according to light treatments and 

manipulation treatments in Figure 5.9. Within each manipulation and light 

treatment, seed size was quite constant at the majority of nodes. Within LEI, 

the changes in seed size due to any manipulation treatment occurred 

consistently at all but extreme node positions. The significant decrease in seed 

size resulting from reduced photosynthetic area by removing central leaflets 

from all nodes (CL) was relatively consistent across all main axis nodes. This 

was also true for seed size increase by reducing sink capacity in both SP and 

AP treatments. However, reducing both source and sink size (ALP) resulted in 

little variation in seed size compared to check treatment because source 

removal perhaps offset the effect of sink size removal. 

5.2 Summary 

This research has demonstrated that source-sink changes in soybean 

plants can cause variation in soybean yield components and in total yield. 

Among these yield components, the pod number per plant is most responsible 

for yield change. In contrast, the seed number per pod has been slightly 

affected. Seed size increase when sink strength decrease, whereas seed size 

decrease when source strength decrease. All the changes in final yield 

components are reflected through the node-to-node positions. Pod harvest index 
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and harvest index show no significant difference in response to the interaction 

of light treatment and manipulation treatments. 
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Table 2. Analysis of variance of final harvest yield components for light 
treatments and source - sink manipulation treatments 

Pods per plant Seeds per pod Seed size 

Source df F P> F F P> F F P>F 

L 2 118.19 0.00 6.90 0.03 38.61 0.00 

M 4 19.09 0.00 7.30 0.00 26.70 0.00 

L*M 8 553.99 0.01 2.77 0.03 1.68 0.15 

Pod harvest index Harvest index Yield per plant 

Source df F P> F F P> F F P> F 

L 2 0.51 0.62 3.36 0.10 107.64 0.00 

M 4 2.14 0.14 22.97 0.00 12.36 0.00 

L*M 8 1.42 0.24 1.71 0.15 3.50 0.01 

M denote source - sink manipulation treatments 
L denote light enrichment treatments 
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Light Enrichment 

Figure 5.1 Seed yield per plant in response to light treatments and 

manipulation treatments. 

LEO: Control light condition;LEI: Light enrichment 1; LE2: Light enrichment 2. 

Mean separation within LE treatment by Duncan's New Multiple Range Test, 

P=0.05. 
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Figure 5.2 Pod number per plant in response to light treatments 

and manipulation treatments. 

LEO: Control light condition; LEI: Light enrichment 1; LE2: Light enrichment 2. 

Mean separation within LE treatment by Duncan's New Multiple Range Test, 

P=0.05. 
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Light Enrichment 

Figure 5.3 Seed number per pod in response to light treatments and 

manipulation treatments. 

LEO: Control light condition; LEI: Light enrichment 1; LE2: Light enrichment 2. 

Mean separation within LE treatment by Duncan's New Multiple Range Test, 

P=0.05. 
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Figure 5.4 Seed size in response to manipulation treatments 

with combined light condition. 

Mean separation by Duncan's New Multiple Range Test, P=0.05. 
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Figure 5.5 Pod harvest index in response to manipulation treatments 

with combined light condition. 

Manipulation treatments did not affect pod harvest index significantly. 
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Figure 5.6 Harvest index in response to manipulation treatments 

with combined light condition. 

Mean separation by Duncan's New Multiple Range Test, P=0.05. 
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Figure 5.7 Pod number per main axis node in response to 

light treatments and manipulation treatments. 

LEO: Control light condition; LEI: Light enrichment 1; 

LE2: Light enrichment 2. 

58 



12345 12345 

Seeds Per Pod 

Figure 5.8 Mean seed number per pod across main axis node position 

in response to light treatments and manipulation treatments. 

LEO: Control light condition; LEI: Light enrichment 1; 

LE2: Light enrichment 2. 
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Figure 5.9 Seed size of mainstem seeds across main axis nodes 

in response to light treatments and manipulation treatments. 

LEO: Control light condition; LEI: Light enrichment 1; 

LE2: Light enrichment 2. 
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