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ABSTRACT 

EVALUATION OF ANTI-FUNGAL ORGANISMS, SOIL 

SOLARIZATION, COVER CROP ROTATION AND COMPOST 

AMENDMENTS AS ALTERNATIVES TO SOIL FUMIGATION IN 

COMMERCIAL STRAWBERRY PRODUCTION 

SEPTEMBER 1993 

SONIA G. SCHLOEMANN, B.S., UNIVERSITY OF MASSACHUSETTS 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by Associate Professor Wesley Autio 

Key words: Strawberries, black root rot, Rhizoctonia solani, Rhizoctoniafragariae, weed control, 

fumigation, soil solarization, cover crops, biological control, Trichoderma harzianum, compost, 

suppressiveness. 

The ability of soil solarization, cover crop rotations, anti-fungal biological control 

agents, and selected compost amendments to replace soil fumigation partially or fully in 

commercial strawberry production was studied. Strawberry plants, cv 'Honeyoye' and 

'Kent' were grown in field and greenhouse studies where they were challenged either 

naturally or artificially with weed and disease pressure. Measurements of weed density and 

biomass were taken at specific intervals in the field studies. Measurements of strawberry 

plant survival, runner production, shoot and root fresh and dry weight, and visual 

evaluation root lesion density and plant vigor were taken in field and greenhouse studies. 

Soil solarization had minimal effect on weed or strawberry growth. Weed biomass 

was lower and visual root root ratings were higher following solarization in one experiment 

compared to the control treatment. Buckwheat/winter rye and Sudex/winter rye cover 

crops suppressed weeds and improved strawberry growth with and without inoculation 

with Rhizoctonia solani. Strawberry plants grown in soil inoculated with the pathogen 



Rhizoctonia spp. and also with the biological control agent Trichoderma harzianum were 

larger than those not treated with T. harzianum. Results differed somewhat depending on 

the species of Rhizoctonia (binucleate, multinucleate, or a mixture) with which the pots 

were inoculated. And, treatment of Rhizoctonia-inoculated soil with various composts did 

not suppress strawberry root infection effectively. One compost appeared to have a 

detrimental effect on strawberry plant growth. 
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CHAPTER I 

INTRODUCTION 

1.1 Botanical Description of the Strawberry 

The cultivated strawberry, Fragaria x ananassa Duch., is an herbaceous perennial 

plant obtained from the hybridization of the wild species F. chiloensis Duch. and F. 

virginiana Duch. Fragaria spp. are members of the family Rosaceae and the family tribe 

Roseae (or Potentilleae) and therefore botanically related to the genera Potentilla 

(cinquefoil), Rubus (raspberry and blackberry), and Rosa (rose) (Galleta and Bringhurst, 

1990). Many cultivars of F. x ananassa have been produced that exhibit specific properties 

such as large fruit size, intense color, firmness, good flavor, suitability to a certain climate 

or production systems, or resistance to insects, mites, or pathogens. 

The strawberry fruit is an enlarged fleshy receptacle bearing multiple seed-like 

achenes (true fruits) on its surface. While flowers of wild species of strawberry may be 

pistillate (female), staminate (male), or perfect, flowers of most modem cultivated 

strawberry varieties are perfect and are borne on a dichasial cyme. Leaves are compound 

pinnate and trifoliate comprised of three leaflets with serrate margins (Galletta and 

Bringhurst, 1990). The three leaflets come together basally at the end of a long petiole. 

Leaves, flower trusses, and stolons emerge from a fleshy crown. At the end of each year 

existing crowns undergo a process of lignification and lateral expansion producing 'new' 

crowns above the old crown. Two types of roots are produced, fleshy perennial or 

primary roots and fibrous transient or secondary roots. Primary roots arise adventitiously 

from the base of new leaves produced by the crown. These are soil-penetrating roots. 

Secondary roots arise from the primary roots and are the feeder roots. New primary and 

secondary roots are produced continuously by the expanding crown. The old crowns and 

roots remain attached to the plant throughout its life but decay over time. Under 

commercial management, this habit of producing new crowns and roots necessitates the 
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addition of new soil or organic matter over the plants each year to prevent the plants from 

growing themselves out of the ground. 

Strawberries are propagated asexually from runner plants (daughters) produced at 

nodes on stolons emerging from the crowns of the mother plants. Single plants can 

produce multiple stolons, each with several runners. Modem commercial nurseries 

produce the mother plants through tissue culture propagation for its efficiency and speed, 

and to mitigate the risk of virus propagation. Mother plants initially are grown in 

greenhouses in soilless rooting media and then transplanted into the field. Once in the 

field, they are allowed to produce daughter plants. These daughters are harvested in large 

quantities for sale. Once planted, the daughter plants become mother plants which produce 

new runners. 

1.2 Commercial Production in the Northeast 

Strawberries are grown commercially in several regions of the United States. They 

grow best in a well drained, but not droughty, sandy loam with a pH between 5.5 and 6.5, 

a moderate to high organic matter content, and high cation exchange capacity (Galletta and 

Bringhurst, 1990). Different planting systems are used in different regions of the United 

States. In the West and South, the most common is the annual hill system, where mother 

plants are planted 20 to 30 cm apart in multiple rows on raised beds that are covered with 

plastic. Runners are not allowed to root, and the mother plants are fruited once and then 

removed from the field. Cultivars are bred specifically for this system of production. 

In the North, strawberries are grown as perennials in beds planted as either wide 

matted rows (20 - 40 cm) where the mother plants are spaced such that the runners fill in 

the row more or less randomly, or as ribbon rows, where the mother plants are planted 10 

to 15 cm apart and all runners are removed. Sometimes narrow matted or ribbon rows are 

set on a raised bed to improve air and water drainage. 
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Strawberries grown in the northern perennial system are fruited for multiple years. 

They are mulched in the winter for protection against sudden freezing, desiccation from 

winter winds, and heaving from the freeze/thaw cycle in the spring. Bed longevity usually 

is determined by productivity, and productivity is influenced by pest pressure, plant 

nutrition, and stress or damage resulting from winter injury, drought, or mechanical injury. 

Competition from weeds and predation by disease organisms, nematodes, and 

insects can cause significant reductions in the profitability of commercial strawberry beds 

(Chandler, 1979). Soil-borne diseases especially can be devastating because they can 

destroy a planting rapidly with few if any control measures available once the plants are in 

the ground. The problem must be anticipated and treated prior to planting. 

1.2.1 Weed Management 

Successful weed control in strawberries is necessary to maintain bed productivity, 

bed longevity, and fruit quality (Chandler, 1979). Weeds are difficult to control in a 

perennial crop and may trigger the premature removal of a planting if not controlled 

adequately (Himelrick and Galletta, 1990). Weeds compete with strawberries for light, soil 

resources and provide a habitat for insects and diseases. Additionally, a dense weed 

canopy can inhibit spray penetration, reducing pesticide effectiveness (Himelrick and 

Galletta, 1990). Controlling weeds is crucial to success in commercial strawberry 

production (Himelrick and Galletta, 1990). Among the most common weeds found in 

strawberries grown in the Northeast are perennial grass and broadleaf species such as 

quackgrass (Agropyron repens (L.) Beauv.), goldenrods (Solidago canadensis L.),and 

dandelion ('Taraxacum officinale Weber); annual grass species such as crabgrasses 

(Digitaria sanguinalis (L.) Scop, and D. ischanaemum (Schreb.) Muhl.), fall panicum 

CPanicum dichotomiflorwn Michx.), and barnyard grass {Echinochola crusgalli (L.) 

Beauv.); annual broadleaf species such as, common lamb's quarters (Chenopodium album 

L.), purslane speedwell (’Veronica peregrina L.), yellow wood sorrel (Oxalis stricta L.), 
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and horseweed (Conyza canadensis (L.) Cronq.), and winter annual species such as 

chickweed (Stellaria media (L.) Cyr.), and shepherd's purse (Capsella bursa-pastoris (L.) 

Medic. (Hemphill, 1980; Schloemann, 1992). 

Weed control in strawberries is achieved in four ways: soil fumigation, herbicide 

application, mulching, and cultivation (Himelrick and Galletta, 1990). Soil fumigation is 

done primarily to suppress soil-borne diseases. Some weed control is an added benefit of 

fumigation. This benefit, however, does not continue beyond the first year because fields 

are recolonized easily by weed seeds through wind dispersal or importation on farm 

equipment. Since fumigation is expensive ($2,000 to $2,500 per hectare), it is not 

recommended for weed control alone. 

Herbicides constitute a primary method of weed management in strawberries. 

Several pre- and post-emergence herbicides are used commonly in the northern perennial 

strawberry system; however, post-emergence broadleaf-weed management is difficult, 

because these materials can affect the strawberry plant also (Himelrick and Galletta, 1990). 

If weeds, especially broadleaf weeds, become established in the strawberry row, it is 

difficult to control them, and the bed longevity is usually shortened due to competition and 

other reasons described earlier. Since strawberries have only minor-crop status, there are 

relatively few herbicides registered for use on them compared with major crops. 

Herbicides and other pesticides are likely to become less available in the future owing to the 

high cost of reregistration for these materials. Therefore, relying on herbicides alone to 

control weeds in strawberries may be risky. 

Strawberries are mulched for winter protection (Galletta and Bringhurst, 1990). In 

the spring, the mulch material is raked off the rows and deposited in the alleys between 

rows. The mulch provides an added benefit by suppressing weed growth between the 

rows and by providing a "clean" surface for pickers in the field (Himelrick and Galletta, 

1990). In addition, it reduces splashing from rains or irrigation which can spread some 
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kinds of disease inoculum, particularly Phytophthora cactorum (Lebert & Cohn) Schrot 

(Grove et al., 1985). 

In the northern perennial strawberry system, a process of bed renovation is 

undertaken after harvesting. At this time, mature foliage is removed by mowing, 

stimulating growth of new foliage and rejuvenating the plants. The mulch material 

remaining in the alleys is tilled into the soil. A pre-emergence herbicide may be applied at 

this time, a cultivation schedule commenced, or both. Cultivation brings new weed seeds 

to the surface, and therefore, must be done regularly to control newly germinating weeds. 

There is some evidence that herbicide applications may result in a higher disease 

incidence in a crop (Altman and Campbell, 1977; Papavizas and Lewis, 1979). This 

situation is referred to as herbicide-induced microbial invasion of plants (Greaves and 

Seargent, 1986). Curry and Teem (1976) list nine classes of herbicides and three 

unclassified herbicides that have activity that significantly affects roots. The effects range 

from inhibition of primary or lateral root growth to root cell disorganization and multi- 

nucleation. 2,4-dichlorophenoxyacetic acid (2,4-D) and other members of the phenoxy 

acid group have been studied more extensively than other herbicide groups (Greaves and 

Seargent, 1986). Members of this group can cause decreased root length and production of 

large numbers of short lateral roots (Totman and Davies, 1978). Since the lateral roots are 

often host to large numbers of rhizosphere microorganisms, stimulation of lateral root 

growth may enhance the environment for pathogen proliferation and eventual cortical pene¬ 

tration. Thus, herbicide application may predispose plants to pathogen infection. Katan 

and Eshel (1974) suggest four mechanisms by which herbicides can affect plant disease: 

direct effect on pathogens, effects on pathogen virulence, effects on host susceptibility, and 

effects on non-target microorganisms and their relationship with the host or pathogen. 

Weed management requires significant inputs of labor and materials in order to be 

successful; approximately $5,000 per hectare (including fumigation) to bring a planting to 

fruiting and $1,250 per hectare per year thereafter, for the life of the planting (Goulart, 
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1991). And, weed control failure can lead to decreased productivity and shortened bed 

longevity (Hemphill, 1980; Schrocth and Monaco, 1980). When weed pressure is high, 

inputs are greater and the chance of failure is greater. When weed pressure is low, inputs 

can be reduced, the chance of success is greater, and profits likely will be increased. 

Additionally, herbicide application to strawberries may play a role in disease incidence 

predisposing the roots to pathogen infection. Therefore, suppressing weed pressure prior 

to planting strawberries and maintaining it at a low level with reduced herbicide inputs may 

make the enterprise more profitable and sustainable. 

1.2.2 Black Root Rot: A Disease Complex of Strawberry 

As mentioned in the botanical description above, strawberries have two types of 

roots: fleshy, structural, perennial roots and fibrous, secondary, feeder roots. Under good 

growing conditions and in the absence of pathogen infection, growth of both types of roots 

can be extensive. Healthy roots of both types generally are creamy white or light brown in 

color. In a porous friable soil, individual perennial roots may reach 100 cm in length 

(Galletta and Bringhurst, 1990). In a heavier soil, root growth is restricted. Most of the 

strawberry root system (50 - 90%) is found in the upper 15 cm of soil (Galletta and 

Bringhurst, 1990). An example of a healthy strawberry root system compared with roots 

affected by different diseases is shown in Figure 1.1. 

Figure 1.1. Typical appearance of strawberry roots showing black root rot (left) and red 
stele (right) diseases compared to a healthy plant (center) (after J. L. Maas, 1984.) 
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Perennial roots are structural, soil-penetrating organs which provide conduits for 

movement of water and nutrients, and tissue for storing food reserves. These roots are 

long-lived, persisting for months before eventually deteriorating and being replaced by new 

perennial roots which arise adventitiously from the crown. Dunne and Fritter (1989) found 

evidence that even decaying roots may still play a significant role in nutrient uptake of the 

plant. Since the stele remains intact for a while, even when the epidermal and cortical 

layers have decayed, it can still function in transporting water and nutrients. 

The secondary roots are the finer feeder roots and are more transient than the 

perennial roots. They originate from the perennial roots and persist up to two weeks, after 

which they deteriorate, die and are replaced by new feeder roots (Galletta and Bringhurst, 

1990). The cycle of root initiation, growth, deterioration, and replacement is important to 

the health of the plant, and disruption of this cycle can affect plant health significantly. 

Secondary roots are more disposed by their composition and structure to be 

susceptible to infection by pathogens than perennial roots. Secretions of soluble root 

exudates from secondary roots generate a rhizosphere environment that promotes 

colonization by microorganisms, some of which are pathogenic (Greaves and Darbyshire, 

1972). Cells of the epidermal layer of these secondary roots are thin walled and thus 

vulnerable to penetration. Very young perennial roots are similarly vulnerable. As these 

roots age, they undergo changes in structure and differentiation of tissues (Mann, 1927; 

1930). These changes affect the ability of soil-borne fungi to penetrate the root epidermis 

and cortex, making older perennial roots less vulnerable to pathogen attack. On the other 

hand, if the endodermis has not sufficiently suberized to prevent vascular entry of a 

pathogen, decaying perennial roots may become infection courts as the epidermal and 

cortical cells break down (Kolattukudy, 1980). 

Strawberries are affected by several soil-borne fungal pathogens including 

Phytophthora spp., Rhizoctonia spp., Pythium spp., Verticillium spp., and the root-lesion 

nematode Pratylenchus penetrans (Cobb) Filip & Stek.. These organisms may be present 
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singly or in combination with other organisms to produce diseases or disease complexes. 

Phytophthorafragariae Hick, causes a common disease known as red stele, named for its 

characteristic appearance. Phytophthora cactorum causes other crown- and root-rot 

diseases. Verticillium wilt is caused by Verticillium albo-atrum Reinke & Berthier. Black 

root rot is a disease complex in which several organisms have a role. Constituents of this 

complex include Rhizoctonia solani Kiinh R.fragariae Hussain & McKeen, Pratylenchus 

penetrans, and possibly Verticillium spp., and Pythium spp. (Maas, 1984). These 

organisms all are common inhabitants of soil and may be present without causing disease 

symptoms. Symptoms usually arise as a consequence of stress on the plant from sources 

including low winter temperatures, excessive or deficient water, nutrient stress, or 

wounding injury caused by insects feeding on the roots. 

Symptoms of black root rot of strawberries include a general failure to thrive, poor 

runner production, stunted growth, small bluish leaves, small fruit, wilting or collapse of 

the plant canopy during water stress, or plant death. All these above-ground symptoms 

arise from a weakened, poorly functioning root system. Black root rot infection of the 

roots first causes blackening and death of fibrous secondary roots, and then deterioration 

and blackening of the cortex of the fleshy perennial roots. It is the infection of the 

perennial roots that is most significant, because they form the main conduits between the 

root system and the crown and canopy of the plant. At first, the core or stele of the root 

remains white but eventually the entire root becomes blackened and decayed. Once a lesion 

has girdled the root and the stele has become necrotic, the rest of the root below the lesion, 

including all its branches, dies (Zeller, 1932). The initial lesions are reddish but melanize 

and darken with age. The disease progression is distinct from that of red stele root rot 

which discolors the stele of the root first. Above-ground symptoms of the two diseases, 

however, are similar. 

The extent of damage from black root rot in any given field is variable. In light 

infestations, a general loss of vigor may be observed in patches within the field. Rows 
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may appear thin or patchy in spots where runners are sparse. In more severe infestations, 

larger areas may exhibit decline, poor berry production, or wilting in hot weather. In very 

severe cases, portions of the planting die, sometimes within the first year of planting. 

More typically, the disease progresses over several years becoming more severe with time. 

Black root rot is often difficult to recognize, especially in early stages of a field 

epidemic, because the symptoms are not always obvious or distinct. When a field simply 

shows poor growth and yield, it may be attributed to another cause such as poor fertility, 

winter injury, poor cultivar performance, or natural aging. These factors may contribute to 

the decline, but may do so in the context of black root rot pathogens. In order for a disease 

to be expressed in plants, three conditions must be satisfied as illustrated in Figure 1.2; 

i.e., a susceptible host and virulent pathogen must be coupled in an environment that is 

suitable for disease development. 

Host 

Environment Pathogen 

Figure 1.2. The 'Disease Triangle'. 

Rhizoctonia spp. are considered to be primary pathogens in the black root rot 

complex in Massachusetts (Drosdowski, 1987), Connecticut (Martin, 1987; LaMondia and 

Elmer, 1992), Canada (Husain and McKeen, 1963), and Israel (Razik, et al, 1989). In 

fact, the relationship between Rhizoctonia spp. and black root rot of strawberry has been 

described for decades (Heald, 1920; Zeller, 1932; Boyd, 1933). In each of these studies, 
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the majority of isolations made from root lesions of plants exhibiting black root rot 

symptoms were identified to be Rhizoctonia spp., and Rhizoctonia spp. were the only 

organisms able to reproduce the original symptoms, thereby confirming Koch's postulate. 

Other organisms were also found and identified, but their role in the disease complex 

remains unclear. It is thought that Pratylenchus penetrans may be a key to the disease by 

producing entry sites for the pathogen (Raski, 1956; Townsend, 1962; LaMondia and 

Martin, 1989). Other organisms may play a role in weakening the plant so that it is more 

susceptible to infection by Rhizoctonia. Similar symptoms may be produced by other 

pathogens, such as Pythium spp. (Wilcox, pers. comm.) leading to some confusion. 

The genus Rhizoctonia belongs to the Class Fungi Imperfecti, Order Mycelia 

Sterilia. It is a highly diversified genus. Species of this genus are soil-borne and 

ubiquitous. Defining attributes include primarily vegetative mycelium (rarely producing a 

perfect stage) characterized by hyphal branching at right or acute angles, hyphal 

constriction at the point of branching, and presence of septa near the point of branching 

(Husain and Me Keen, 1963). Morphological characteristics, including the number of 

nuclei in cells of the mycelium, are used to differentiate among species (Ogoshi, 1987; 

Parmeter et al., 1967). Further differentiation within species is made according to 

anastomosis groupings (AGs), i.e., isolates of individual species are grouped according to 

their ability to anastomose or fuse hyphae. If hyphae of different isolates are unable to 

fuse, they belong to different AG groups. 

Rhizoctonia spreads by proliferation of mycelia in the soil growing saprophytically 

on soil organic matter. Species rarely form a perfect stage and therefore do not produce 

spores; however, resting structures of highly condensed mycelia called sclerotia are 

produced. These structures fulfill a role similar to spores. Sclerotia, 0.1 - 10 mm across, 

are resistant to environmental stress such as freezing or drought and can remain viable in 

the soil or plant residue for up to five years (Cook and Baker, 1983). This persistence 

adds to the difficulty in controlling diseases caused by Rhizoctonia spp. Even if the more 
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susceptible mycelia of the organisms are suppressed effectively with a biocidal treatment, 

sclerotia may survive, germinate, and recolonize the soil rapidly. 

When mycelia of Rhizoctonia contact a host, they form infection cushions or 

appresoria with infection pegs. Root exudates given off by susceptible hosts stimulate 

hyphae of Rhizoctonia to proliferate. Husain and McKeen (1963) found that root exudates 

given off by strawberry plants grown in cool soil (58 and 10°C) stimulated mycelial 

proliferation in Rhizoctonia fragariae, while exudates from plants grown in warm soils (20° 

and 30°C) did not. Using chromatographic analysis of exudates, they were able to 

determine that greater amounts of the amino acids alanine, serine, glutamine, glycine, and 

threonine were present in exudates from roots in the cool soil and were, in fact, responsible 

for the enhanced growth of Rhizoctonia. Others have observed that black root rot 

infections occur primarily in cool soils of the spring and fall (Martin, 1988; LaMondia and 

Elmer, 1991). 

There are two species of Rhizoctonia associated with black root rot of strawberries: 

R. solani, which is multinucleate, and R. fragariae, which is binucleate. Anastomosis 

groups of R. solani and R. fragariae are labeled AG 1-5 and AG A-O, respectively. 

Further delineation is made within some AG groups and are labeled intra-specific groups 

(ISG). This complicated taxonomy reflects the diversity in this genus. 

Rhizoctonia solani (perfect state Thanatephorus cucumeris) is a ubiquitous and 

cosmopolitan pathogen with one of the widest host ranges known (Farr et al., 1990). 

Baker (1970) describes R. solani as causing "... more different types of disease to a wider 

variety of plants, over a larger part of the world, and under more diverse environmental 

conditions, than any other plant pathogenic species." In one of the earliest and most 

comprehensive descriptions of black root rot, Zeller (1932) found that in 78.5% of the 

5,715 black-root-rot-related strawberry root lesions from which he isolated, R. solani was 

the causal agent. It has been associated with serious losses in strawberries in different 

parts of the world. In Israel, Elad and Chet (1981) and Razik et al. (1989) found R. solani 
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to be the major element of root rot disease in commercial fruiting and nursery fields. Van 

Adrichem and Bosher (1962) identified R. solani as a component of the strawberry root rot 

complex in British Columbia. Italian researchers found R. solani and R.fragariae to be the 

major constituents of the black root rot complex there (D'Ercole et al., 1989). 

Rhizoctonia fragariae (perfect state Ceratobasidium spp.) is also associated widely 

with the black root rot complex. Unlike R. solani, the perfect state of R.fragariae 

typically is found and commonly produces spores. Sclerotia are not produced by R. 

fragariae. Wilhelm et al. (1962) isolated R.fragariae from plants collected from the major 

strawberry producing areas of California and found it to be ubiquitous. In West Virginia, 

R.fragariae was isolated consistently from plants collected from declining and healthy 

fields as well as from nursery stock (Ribeiro and Black, 1971). Martin (1988) determined 

that R.fragariae associated with black root rot of strawberry belonged primarily to groups 

AG A, AG G, and AG I, with the former being the most common but the latter being the 

most virulent. 

Drosdowski (1987), in a survey of fungi associated with black root rot in 

Massachusetts, found that R.fragariae was the dominant species isolated from plants 

collected from declining and healthy fields (as in West Virginia) and from wild 

strawberries. In laboratory tests, Husain and McKeen (1963) determined that root 

infection by R.fragariae occurred almost invariably and most severely at low soil 

temperatures (5° and 10°C) and rarely at higher soil temperatures (20° and 30°C). When 

plants were collected from the field in July, none of the root isolations yielded Rhizoctonia. 

Pythium spp. (35%), Fusarium spp. (29%), and Trichoderma spp. (20%) were the 

organisms most commonly isolated from roots collected at that time. Roots collected in 

March, however, yielded primarily R.fragariae (58%) with the other species found in 

lesser amounts (36% combined). 
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1.2.3 Soil Fumigation: Risks and Benefits 

Chemical soil fumigation with compounds like methyl bromide, metam sodium 

(Vapam™), chloropicrin, and methyl isothiocyanate (Vorlex™) is the most common means 

of combating soil-borne diseases (Himelrick and Dozier, 1991). Methyl isothiocyanate has 

been the most commonly used fumigant for strawberries in the Northeast but has recently 

been voluntarily withdrawn from the market by the manufacturer. Methyl bromide is under 

special review by the EPA as a potential ozone-depleting chemical and may also be 

withdrawn from the market. 

Benefits obtained from fumigation include suppression or elimination of weeds, 

soil-borne pathogens, nematodes, and some soil-inhabiting insects. In addition, it has been 

shown that fumigation can, in some cases, stimulate plant growth and vigor beyond the 

benefit obtained by the elimination of identifiable pests (Altman, 1970). Enhanced growth 

response after fumigation may be due to increased amounts of plant nutrients released by 

killed microorganisms (Kreutzer, 1965), temporary disruption of nitrification causing a 

build-up of NH4+ (Altman, 1963; Altman and Tsue, 1965), or other mechanisms. Altman 

and Tsue (1965) observed an increase of nitrogenous compounds in soil after fumigation 

and an increase of certain saprophytic microorganisms {Pseudomonas spp. and 

Arthrobacter spp.), some of which may be plant-growth-promoting rhizobacteria (PGPR). 

PGPR belong primarily to the genus Pseudomonas and are associated with growth- 

promotion and greater yields in crops like soybean and canola (Zablotowitz et al., 1991). 

They metabolize seed or root exudates and colonize the rhizosphere. The mechanisms of 

growth promotion are not understood but may include the production of antibiotics or 

siderophores and the resulting displacement of pathogens (Kloepper, 1988). 

Altman and Lawlor (1966) further observed a fundamental ecological shift in soil 

treated with a biocide. They noted the destruction or disruption of soil parasites and non¬ 

spore-forming saprophytes and the subsequent colonization of the soil by spore-forming or 

sclerotia-forming microflora. This change resulted in niche replacement by organisms like 
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Trichoderma spp.(spore-forming beneficial fungus) or Rhizoctonia spp. (sclerotia-forming 

pathogen) after fumigation. They observed the development of a new constellation of 

climax species in treated soil that maintained a new dynamic equilibrium. Kreutzer (1960) 

described this equilibrium as being defined by soil biophase sustainers and inhibitors. 

Following biocidal treatment, the resulting biophase established a new set of influences on 

the other soil constituents including the crop. This concept is illustrated in Figure 1.3. Soil 

biophase constituents may be beneficial, benign, or pathogenic to the crop. And, 

successful fumigation (or any soil treatment) may require tools for predicting or influencing 

the constituents of the resulting soil biophase. 

Figure 1.3. The influence of soil-applied treatments on soil, soil biophase, plant, and 
their interactions (after Altman, 1970). 

While soil fumigation can improve crop growth and yield through various 

mechanisms, these benefits also carry three major economic and ecological risks. Three 

major risks predominate. First is an environmental risk. Since soil fumigants are applied 

directly into the soil (usually by injection), the risk of leaching of the active ingredient or 
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breakdown products is present. Relatively large quantities of these materials are applied to 

the soil (e.g., 280-375 liters per hectare for Vorlex™) and remain in place undisturbed for 

several weeks before the soil is ventilated. Guns (1989) found a five-fold increase in the 

bromine concentration in groundwater and a 15-fold increase in soil bromine in the 50 - 75 

cm depth range one month after fumigation with methyl bromide in greenhouse culture in 

Belgium. Elevated levels of bromine lasted for up to two years. He also found that under 

certain conditions for up to two years after treatment, bromine accumulated in crops 

(especially lettuce and tomato) grown on treated soil. Methyl bromide has been identified 

by the U. S. Environmental Protection Agency (EPA) as a potential ozone-depleting 

chemical. As such, it is under review and may be subject to removal from the market. 

The second risk is economic. Fumigation is an expensive practice, costing about 

$2,500 per hectare for material and application (Schloemann et al., 1992). A grower must 

be sure that the potential benefits exceed the cost of treatment, an a priori judgement which 

is difficult and imprecise. For example, if a field is fumigated to control black root rot, the 

grower must infer a need to fumigate based on field history; i.e., a previous planting 

succumbed to symptoms that resembled black root rot. This inference may be incorrect. 

The previous planting may have declined owing to an abiotic stress such as winter cold, 

poor fertilization, drought, or renovation, completely independent of any pathogen. Less 

costly practices may remedy the problem, such as better winter protection, crop rotation 

with a 'stale seed bed' phase, resistant cultivar selection, a nutrient management plan, and 

beneficial soil amendments. 

The third risk is the potential for treatment failure. Soil fumigation is not always 

effective against the target problem. For example, when transplants, especially those 

grown in field soil, are planted into fumigated soil, microorganisms (including pathogens) 

on the roots of the runners, even in small quantities, can colonize the soil rapidly where 

fumigation has destroyed the soil ecology and no biological checks and balances exist 

(Altman, 1970; Haasis, 1952). This response is known as 'the boomerang effect’ 
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(Kreutzer, 1960). Kreutzer observed more disease in sugar beets after fumigation with 

chloropicrin due to the rapid recolonization of soil by Rhizoctonia and Pythium. Haasis 

(1952) described the control of bulb rot of iris caused by Sclerotium rolfsii Sacc.by soil 

fumigation but the concurrent increased infection from bulb-borne Fusarium transplanted 

into the fumigated soil. Huber et al. (1965) observed an increase in Rhizoctonia infection 

of potato following Telone™ fumigation for Verticillium wilt. In this case, the increase in 

NH4+ following fumigation both stimulated Rhizoctonia pathogenicity and made potato 

roots more susceptible to infection. 

Anecdotal evidence exists that the boomerang phenomenon has occurred in 

fumigated strawberry plantings. The partial biological vacuum established by soil 

fumigation can be colonized rapidly by organisms inhabiting the roots of field-grown 

strawberry runner plants which are transplanted into the fumigated production field. These 

organisms may only be present in small quantities on the transplants but once placed in the 

fumigated soil, they may colonize it freely. If pathogens are present among these root 

inhabitants, disease severity may be worse with fumigation than without it (Yuen et al., 

1991; Elad et al., 1981) Additionally, soil fumigation may activate resting structures of 

pathogens inhabiting the soil. Husain and McKeen (1963) described this phenomenon 

where sclerotia of Rhizoctonia fragariae did not germinate in non sterilized soil but 

germinated in sterilized soil. 

Additionally, fumigation may exacerbate weed problems such as Oxalis stricta 

(yellow wood sorrel) by increasing germination by seed coat scarification (R. Bonnano, 

pers. comm.). The result may be trading one problem for another. 

1.3 Thesis Rationale 

Strawberries are a high value crop ($12,500-$60,000/ha gross value) in New 

England grown primarily as a component of diversified farms providing early cash flow 

and attracting customers to other profitable on-farm enterprises like road-side stands. As 
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such, they provide a key element to the profitability of some farm enterprises. Still others 

rely on revenues generated by sale (wholesale and retail) of strawberries as their primary 

crop and depend on their profitability for success. Successful strawberry production 

requires significant pest management inputs. Commercial strawberry producers rely 

mainly on crop protection chemicals for pest management. 

In United States agriculture today, there is a trend toward reduction in the amount 

of crop protection chemicals used on farmland. This trend is motivated, in large part, by 

public concern over food and groundwater safety. The Alar™ scare in apples in 1989 

served to focus public attention on chemicals applied to crops and the hazards associated 

with residues on food and potential groundwater contamination. Integrated pest 

management (IPM) is an approach to crop production that seeks to minimize the use of crop 

protection chemicals by emphasizing knowledge-based pest management rather than 

calendar-based or prophylactic pest control. The IPM practitioner is skilled in crop 

production methods (crop rotation, use of resistant cultivars, etc.) that help mitigate pest 

pressure and in pest monitoring techniques that indicate when pest management action is 

necessary. When pest management action is indicated, the emphasis is on management of 

the pest within the context of the entire pest complex and crop ecology rather than on 

controlling a single pest species in isolation. An example of this strategy in strawberries 

comes into play when field scouting indicates that the population of strawberry bud weevil 

CAnthonomus signatus Say) exceeds the action threshold and also indicates the presence of 

two-spotted mite (Tetranychus urticae L.). In this case, the IPM recommendation would be 

to use an insecticide for suppressing strawberry bud weevil that is not detrimental to the 

two-spotted mite predator, Amblysieus fallacis, thereby preserving the naturally occurring 

pest control agent of two-spotted mite. IPM actively involves the use of biological or 

biorational pest control agents in place of synthetic chemical pesticides when available, 

affordable, and effective. 
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The Council on Environmental Quality (Bottrell, 1979) defined IPM as ”... the 

selection, integration, and implementation of pest control based on predicted economic, 

ecological, and sociological consequences. IPM seeks maximum use of naturally occurring 

pest controls, including weather, disease agents, predators, and parasites." Since that time, 

IPM has become part of a larger movement toward sustainable agriculture, concerned with 

more than just pest management. Just as one pest cannot be managed successfully in 

isolation of the whole pest complex, pest management practices cannot be viewed in 

isolation from the whole crop production system. The United States Department of 

Agriculture (USDA) defines sustainable agriculture as "...an integrated system of plant and 

animal production practices having a site-specific application that will, over the long term: 

satisfy human food and fiber needs, enhance environmental quality and the natural resource 

base upon which the agricultural economy depends, make most efficient use of non¬ 

renewable resources and on-farm resources and integrate, where possible, natural 

biological cycles, and complies with community norms and meets social needs. (Farm Bill, 

1990)." As such, sustainable agriculture is a broad socio-political goal, not a prescribed set 

of practices, methods, or inputs to be applied broadly to farming. Efforts toward 

sustainability in agriculture, however, are guided by the scientific principles of ecology, 

i.e. agroecology, which have broad application and can be adapted to different farm 

settings. Agroecology provides a new area of agricultural research and powerful tools for 

generating new methods of pest management that do not rely exclusively on crop protection 

chemicals. 

These broad trends within agriculture, fueled by public attitudes toward pesticides, 

provide powerful incentives for strawberry growers in the Northeast to adopt IPM methods 

in their production system, and many of them have. In a recent survey of Massachusetts 

strawberry growers, 83% identified themselves as IPM practitioners (Schloemann et al., 

1992). This high level of grower identification with IPM may reflect less actual pest man¬ 

agement practices than a general attitude that IPM is something positive. Current IPM 
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methods in strawberries address key arthropod pests, fruit rot and leaf spot pathogens, 

and, to a lesser extent, weeds (Schloemann et al., 1993). As such, growers cooperating 

with the university-sponsored IPM program in Massachusetts have reduced their overall 

pesticide inputs by 30-40% (Schloemann et al., 1992). One of the most significant pest 

problems faced by New England strawberry growers, however, is black root rot, a disease 

problem for which, as yet, there is no IPM strategy. Additionally, the current conventional 

strategy of soil fumigation has diminished appeal due to high cost, potential treatment 

failure, potential environmental hazards, public pressure against fumigation, and loss of 

registered materials as discussed above. 

For these reasons, it is necessary to investigate alternative practices to soil 

fumigation so that commercial strawberry production may remain a viable and sustainable 

element of successful farming in New England and so that a more comprehensive IPM 

system is available to strawberry growers. Furthermore, principles discovered through the 

investigation of these alternatives may have broad application to crop production and soil 

management in general since some of the pathogen and weed problems mitigated by the 

methods investigated are common among several crops and farming systems. 

Investigating alternatives to soil fumigation requires that the focus, at first, remain 

narrow and specific. New building blocks are needed for an alternative strategy for soil- 

borne pest management. This strategy will be developed on a fundamentally different 

premise (i.e., enhancing the biological life and diversity in the soil rather than striving to 

achieve a biological vacuum through biocidal fumigation) and may achieve a more balanced 

and resilient agro-ecosystem that favors plant health over disease. These building blocks 

must first be constructed separately and later used in combination for a comprehensive 

approach to crop management. 

When considering a new premise for management of soil-borne pests, it is useful to 

reconsider the disease triangle (Figure 1.2). In that depiction, the integral role of the soil 

biophase separate from the pathogen is not represented. The environment is simply another 
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leg of the triangle that is presented as a distinct entity. Burpee (1990) offers an alternative 

model (Figure 1.4) of the disease triangle that places the environment at the center of the 

relationship among plants, pathogens, and soil microflora (including biocontrol agents). 

When viewed this way, the true complexity of the relationships is represented and the key 

elements in management of disease are discernible. Plant genotypes can be manipulated to 

confer genetic resistance, pesticidal action can be taken against the pathogen, beneficial 

action can be taken to increase the effect of biocontrol agents, and the environment can be 

manipulated to affect the plant, pathogen, or biocontrol agents. 

Plant 

Pathogen 

Figure 1.4. Disease triangle (after Burpee, 1990) illustrating the role of the environment 
on the interaction among plants, pathogens, and biocontrol agents in the development of 
plant disease. 

1.4 Thesis Objectives 

This thesis seeks to investigate four possible alternatives to soil fumigation for 

managing Rhizoctonia-induced black root rot and weeds in strawberries: soil solarization, 

cover crop rotations, microbial antagonists, and selected compost amendments to induce or 

enhance Rhizoctonia suppressiveness of soil. Each of these techniques has been studied 

extensively in other cropping systems and some have been studied in strawberries. None 
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individually is likely to substitute fully for soil fumigation, but in combination may provide 

viable or perhaps better and more sustainable alternatives to biocidal treatments. 

Soil solarization has been used as a method for partial pasteurization of the top layer 

(15-20cm) of soil, changing the ecology to favor growth of beneficial or benign 

microorganisms, reducing disease potential, and reducing viability of weed seeds (Katan, 

1980). Researchers have met with success using this method for suppressing a variety of 

pathogens including some which are detrimental to strawberries (Rhizoctonia, Pythium, 

Verticillium). Cover crop rotations have been used successfully for reducing weed 

pressure. Different mechanisms like interspacific competition and allelopathy may explain 

how cover crops suppress weeds. To a lesser extent, cover crops have been studied for 

disease suppressing properties. Solarization and cover crop rotations for suppressing 

weeds and black root rot in strawberries are discussed in Chapter II of this thesis. 

The use of microbial antagonists for suppressing plant pathogens has been studied 

widely. One of the most commonly studied genera of antagonists is Trichoderma (Cook 

and Baker, 1983). Members of this genus have been studied extensively as biocontrol 

agents for Rhizoctonia, Phytophthora, Pythium, Sclerotium, and many other fungal 

pathogens. Many of these organisms are significant pathogens of strawberries. 

Trichoderma spp. are also often identified as soil biophase constituents in disease 

suppressive soil (Cook and Baker, 1983). Cook (1991) asserted that no other area of 

research offers more benefit to improving crop production and advancing agricultural 

sustainability than that of rhizosphere microbiology, and that understanding this field is the 

key to managing root, and therefore plant, health and plant nutrition through efficient 

nutrient uptake by roots. Mechanisms involved in disease suppressiveness and biological 

control of plant pathogens are not understood fully but include competition, antibiosis, and 

predation/parasitism (Liu and Baker, 1980). The use of microbial antagonists for 

suppressing Rhizoctonia-induced black root rot of strawberries is discussed in Chapter ID 

of this thesis. 
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Disease suppression through the use of compost amendments is an area of study 

which is relatively new. While horticultural benefits of compost amendments have been 

long recognized, the role of compost in generating or enhancing disease suppressiveness in 

soil or growing media is an area of intense research and study. Selected composts have 

been identified which, when used to substitute for peat moss in container mixes, suppress 

damping off pathogens, e.g., Rhizoctonia, Pythium, Phytophthora (Hoitink, 1986). This 

new aspect of compost utilization is stimulating great interest, but the corollary aspect of 

compost engineering, with the aim of generating disease suppressive properties, is also 

compelling. A further societal benefit may be achieved if otherwise problematic organic 

residuals (e.g., municipal yard or solid waste or food processing waste) can be used to 

produce valuable compost. • The use of selected composts for suppressing Rhizoctonia- 

induced black root rot in strawberries is discussed in Chapter IV of this thesis. 

Finally, in the conclusion (Chapter V) of this thesis, the potential of each of these 

techniques individually and in combination as alternatives to soil fumigation for managing 

black root rot in strawberries and as a component of a comprehensive IPM strategy for 

growing strawberries in the Northeast will be discussed. 
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CHAPTER II 

SOIL SOLARIZATION AND COVER-CROP ROTATION 

STUDY 

2.1 Literature Review 

2.1.1 Soil Solarization 

2.1.1.1 Description and History 

Solarization is the solar heating of soil using an unventilated clear plastic covering. 

In this technique, soil is covered for several weeks when the solar radiation potential is 

high. A "greenhouse effect" develops under the plastic, heating the soil. Elevated 

temperatures, either directiy or indirectly, affect the physical, biochemical, and microbial 

composition of the soil and can result in the destruction of weed seeds and plant pathogens 

(De Vay, 1991a). Soil temperature is elevated to the greatest extent close to the surface of 

the soil, but for solarization to be effective, soil temperature must be raised at depths of 10 

to 30 cm (Katan, 1987; Stapleton and De Vay, 1986). High soil moisture improves heat 

conductivity. Seventy percent of field capacity within the top 15 cm of soil and moist to 60 

cm depth is optimal (De Vay, 1991b). 

Solar heating of the soil for pest control originated from the use of black plastic film 

as mulch (De Vay, 1991a). It was noted that black plastic heated the soil and prevented 

weed growth by blocking sunlight. Katan et al. (1976) were the first to publish work on 

the heating of soil with transparent plastic film as a method of partial pasteurization to 

suppress soilbome diseases. In their studies, they buried inoculum of Fusarium 

oxysporum Schlech.and Verticillium dahliae Kleb.at 3 soil depths; 5 cm, 15 cm, and 25 

cm. Soil was moistened and covered with clear polyethylene film for 14 days. The same 

inocula were buried in non-solarized soil for comparison. V. dahliae was eliminated by 

solarization at all three soil depths. At the 5 cm soil depth, F. oxysporum viability was 

reduced by 94 - 100%. At 15 cm and 25 cm, viability was reduced by 67 - 100% and 54 - 

% 
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74%, respectively. This was the first of many studies which has led to the development of 

soil solarization as a viable pest management technique in some parts of the world. Katan 

et al, (1987) wrote a chronological bibliography of the first decade (1976-1986) of soil 

solarization research and cite 173 articles from over 20 countries. 

The basis for soil solarization (or any kind of pasteurization process) is that many 

organisms, including many weeds and plant pathogens cannot survive or grow at very high 

temperatures. Some are inhibited or killed directly by temperature extremes, i.e., slowed 

or halted metabolism at low temperatures (Paul and Clark, 1989), or phase change of lipids 

in membranes at high temperatures (Brock, 1978). Some are killed or weakened as the 

result of biochemical changes in the soil environment or by the stimulation of thermophilic 

microbial antagonists following solarization (DeVay, 1991b). 

Lethal temperatures differ among organisms and are expressed as LD90. That is, 

the lethal dose (time) at a specified temperature that kills 90% of the target population. A 

certain organism may have an LD90 at 37°C of 2 weeks and an LD90 at 47°C of 1 hour 

(Pullman et al., 1981). It may also be true that organisms have an LD90 that relates to 

accumulated time at a certain temperature (like degree days) rather than constant exposure at 

or exceeding a temperature threshold (DeVay, 1991a). This concept of thermal 

accumulation may be germane to the process of soil solarization since soil temperatures are 

generally not sustained for long periods of time, but rather fluctuate during the solarization 

process. 

Soil solarization may also have a general effect of changing the soil biophase in the 

same way that fumigation does (see Chapter I). By partially sterilizing the soil, the balance 

and composition of biophase sustainers and inhibitors are altered. As the soil is 

recolonized, a different microbial community may be established than was present before 

(DeVay, 1991a). This new climax community may favor plant health or plant disease 

(Katan, 1980; Stapleton, 1991). Generally, thermophilic (or thermotolerant) and 

competitive soil organisms are not plant pathogens, and many are beneficial organisms 
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such as mycoparasites, mycorrhizae, and plant-growth-promoting rhizobacteria (DeVay, 

1991a). 

2.1.1.2 Plant-Growth Enhancement by Soil Solarization 

As with fumigation, researchers have found that soil solarization can enhance plant 

growth (biomass and yield) beyond that expected from pathogen suppression. For 

example, availability of mineral nutrients can be increased after solarization providing an 

improved growing medium for plants (Stapleton, 1991). Katan (1980) reported that solar 

heating of the soil increased yields of various crops, including peanuts (Arachis hypogae), 

eggplant (Solanum melogena L.), tomato (Lycopersicon esculentum Mill.), onion (Allium 

cepa L.), carrot (Daucus carota L.), and cotton (Gossypium spp.), from 35% to 215%. 

He suggested that these results may be due to several mechanisms including release of 

minerals into the soil, stimulation of beneficial microorganisms, or control of minor 

pathogens. 

In Texas trials, Hartz et al. (1985) observed yield increases after soil solarization in 

peppers {Capsicum frutescens L.) and muskmelons {Cucumis melo L.). They found a 

20% increase in yield of fall-grown peppers in plots solarized for one month when 

compared to conventionally grown peppers. They reported a 53% increase in yield if 

solarization plastic was pigmented and left in place as mulch when compared to 

conventionally grown peppers. They further reported a residual benefit from solarization 

the following year when muskmelons were grown in the same plots. They attributed the 

yield response to a selective shift in soil microflora (fungi, actimomycetes, and bacteria) 

resulting from repeated exposure to modest temperature increases rather than heat 

sterilization and elimination of plant pathogens. They suggested that solarization favors the 

survival and growth of selected beneficial organisms, including mycoparasites and 

mycorrhizae. 
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Also, Grinstein et al (1979) observed an overall yield increase of peanuts of 53% 

and an increase in Grade A yield of 124% in plots solarized for six weeks prior to planting 

when compared to non-solarized plots. The resulting overall crop value was increased by 

73% by pre-plant soil solarization. Stevens et al (1990) reported a 178% yield increase of 

’Allstar' strawberries grown in solarized soil over those grown in non-solarized soil. 

2.1.1.3 Effect of Soil Solarization on Weeds 

Soil solarization for weed control has been demonstrated in various cropping 

systems (Bell and Elmore, 1983; Egley, 1983; Standifer, 1984; Horowitz et al.y 1983). 

Katan et al (1976) found almost complete control of four major weed species (Alhagi 

maurorum L., Cyperus rotundas L., Notobasis syriaca L., and Prosopis fareata Torr.) 

following soil solarization with clear 0.03 mm polyethylene plastic for four to five weeks in 

three experiments using eggplant (Solanum melogena) and tomato (Lycopersicon 

esculentum). Stapleton et al (1989) found an 82% reduction in groundcover of both 

winter and summer weeds (species not identified) following mulching with clear or black 

plastic in established apple (Malus spp.) and pecan (Carya illinoensis (Wangenh.) Koch) 

orchards and in established vineyards with no detrimental effects on the crop plants. 

Daelemans (1989) found no measurable weed growth of Imperata cylindrica Cyr., 

Amaranthus spp., Portulaca spp., Setaria spp., Digitaria spp., Ageratum spp. in solarized 

vegetable plots even 23 days after removal of the plastic compared to non-solarized plots 

which were overgrown with these species. 

Weeds under unventilated plastic are primarily destroyed by high temperatures 

(Elmore, 1991). High temperatures are lethal to many dormant or germinating seeds 

(Rubin and Benjamin, 1984). Additionally, weed seeds that are not killed directly by the 

heat may germinate under plastic and seedlings then are destroyed by the high temperatures 

(Rubin and Benjamin, 1984). Weed seeds, like disease propagules, differ in their 
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sensitivity to heat and have different LD90S (Elmore, 1991). Not all are equally controlled 

by solarization. 

One of the difficulties in maintaining the beneficial effects of solarization for weed 

control is in not disturbing the soil by bringing untreated soil to the surface (Elmore, 1991). 

The seed bank of weeds may extend significandy deeper into the soil profile than the effects 

of solarization. Thus, cultivation or bed preparation may negate the solarization effect. For 

this reason, it may be necessary to prepare the field for planting prior to the solarization 

treatment and plant the crop soon after removing the plastic with minimal soil disruption. 

Pigmenting and planting through the plastic may be an option for some crops. 

2.1.1.4 Plant Pathogens and Soil Solarization 

Soil temperatures in the range of 40° to 50°C are effective in controlling many soil- 

borne plant pathogens (Cook and Baker, 1983). Since Katan's early investigations (1976), 

soil solarization has been reported to destroy propagules of or suppress disease caused by 

Verticillium dahliae (Ashworth et al., 1979; Grinstein et al., 1979; Davis and Sorensen, 

1986; Jimenez-Diaz, 1991), Fusarium solani (Mart.) Sacc. (Sarhan, 1991), Pythium spp. 

(Pullman et al., 1981), Rhizoctonia solani (Pullman et al., 1981), and Sclerotium rolfsii 

(Grinstein, 1979), to cite a few examples. 

Control (or suppression) of soilbome plant pathogens by solarization results from 

direct and indirect effects. Lethal temperatures affect pathogen propagules direcdy by 

breaking down membrane stability and function and by the sustained inactivation of 

respiratory enzymes (Sandarum, 1986). In addition to destruction of soilbome pathogens 

by solarization, Katan (1980) offered three indirect biological mechanisms that may occur: 

1) a partial or complete suspension of fungistasis which exposes germinating propagules to 

action by antagonists; 2) weakening of resting structures which also exposes them to action 

by antagonists; and 3) biochemical or physical stimulation of antagonists making them 

more active. 
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Stapleton et al. (1989) found a 55 - 97% decrease in natural populations of Pythium 

ultimum Trow and Verticillium dahliae at a soil depth of 0-23 cm in California soils when 

mulched with either clear or black plastic. Soil temperatures were raised 10° - 18°C and 8° 

- 12°C under clear and black plastics, respectively, when compared to bare soil. Pullman et 

al. (1981) found that Pythium ultimum, Rhizoctonia solani, Verticillium dahliae, and 

Thielaviopsis basicola (Berk. & Broome) Ferraris were suppressed in soil exposed to 

sublethal temperatures (37°C and 39°C) for long periods of time. They suggested that heat 

damage accumulates over time to a point where the propagules are unable to germinate and 

grow. In one study, sclerotia of Sclerotium rolfsii were weakened by exposure to elevated 

but sublethal temperatures (Lifschitz etal., 1983). The outer layer of the sclerotia became 

cracked, and they were subsequently colonized heavily by Trichoderma harzianum Rifai, a 

fungal mycoparasite. 

Most studies of solarization techniques and efficacy have been carried out in regions 

of the world with high solar radiation potential (e.g., Egypt, Israel, California, Texas). 

Garibaldi and Tamietti (1989), however, found significant suppression of Rhizoctonia 

solani and Phytophthora nicotianae Breda de Haan var. parasitica (Dastur) following 

solarization with single or double-layered polyethylene during the summer months in 

northern Italy. They reported that the effectiveness of solarization lasted for two to four 

successive bean crops (Viciafabia Moench.) grown in the same plots. LaMondia and 

Brodie (1984) studied the effects of soil solarization on populations of Globodera 

rostochiensis nematodes in New York. They found a 96-98% reduction in natural soil 

populations of G. rostochiensis at a 10 cm soil depth following solarization, compared to 

control treatments. 

Several researchers have studied the effects of soil solarization compared to soil 

fumigation in strawberry production. In Texas, Patten et al. (1991) found that solarization 

and fumigation increased yields of 'Chandler' by 21% and 32%, respectively, compared to 

bare soil. Benefits from solarization and fumigation were reported to last for 2 years. 
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Razik et al. (1989) found that yields from solarized strawberry plots were increased by 

33% and from fumigated plots by 36% compared to control plots. Solarization and 

fumigation controlled weeds equally in their study. 

In Japan, Horiuchi (1991) reported that over 1,300 hectares of strawberry land are 

treated with soil solarization to control Fusarium wilt, nematodes, crown rot, Verticillium 

wilt, and red stele. In Japan, a large portion of the strawberry crop is produced under 

plastic tunnels to increase production on marginal lands. As such, the Japanese system is 

well suited for soil solarization. Horiuchi (1991) reported a grower satisfaction index of 

2.0 to 2.7 to (on a scale of 1 to 3) for this practice in achieving the desired disease-control 

results. 

2.1.2 Cover Crop Rotations 

2.1.2.1 General Benefits 

Benefits of cover crops have been described previously (Lai et al., 1991). They 

include reduction or prevention of wind and water erosion, soil moisture conservation, 

nutrient leaching reduction, increased soil nitrogen (by legumes), increased soil organic 

matter content and improved soil structure. Cover crops also provide some protection of 

surface waters from silt-accumulation and nitrate contamination resulting from excessive 

runoff from agricultural lands (Meisinger et al., 1991). Roots of cover crops hold the soil 

in place, retain moisture, and absorb nutrients. They also contribute to a complex 

biochemical exchange that influences the soil ecology. Exudates from roots of cover crops 

influence the rhizosphere and rhizoplane microflora (beneficial and pathogenic), soil pH, 

and energy and nutrient cycling in the soil (Lai et al., 1991). Thus, the distribution of 

microorganisms and the chemical composition of a cover cropped soil will differ from that 

of a bare soil even if other physical parameters are the same (Richards, 1978). The effects 

of plant roots on soil properties subsequently may influence the macroflora (including 

weeds) and fauna (earthworms, etc.) in the soil and likely will affect the conditions under 
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which a subsequent commercial crop is grown. Benefits of cover crops are summarized in 

Figure 2.1. 

• Improve aggregation • Provide crop residue mulch to • Preserve a favorable balance 

• Increase macropores regulate temperature and conserve between pests and predators 

• Improve water infiltration water • Enhance biological diversity 

• Reduce soil crust • Increase nitrogen fixation 

• Decrease runoff • Recycling nutrients 

• Reduce interrill and rill erosion • Maintain soil organic matter 

Figure 2.1. Potential benefits of cover crops (after Lai et al., 1991). 

Even though herbicides will continue to be a primary weed-management tool in the 

foreseeable future, alleviating weed pressure by incorporating cover-crop rotations and 

other strategies into the system will benefit the environment and agricultural sustainability. 

Currently, herbicides constitute 65% of all pesticide sales in the United States costing $3.6 

billion (Worsham, 1991). Herbicides have played a key role in modem agriculture by 

protecting against significant crop losses due to weeds; however, the benefits of chemical 

control of weeds come at a cost that must be considered carefully. Persistence of 

herbicides in soil and groundwater (Williams et al., 1988) and development of herbicide 

resistance in weed species (Worsham, 1991) are some of the costs of long-term use of 

these crop protection chemicals. 
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Management of soilbome diseases generates similar problems. As described in 

Chapter I, soil fumigation is a tool used for managing soilbome diseases in many crops but 

carries with it significant risks: high cost, potential environmental contamination, possible 

treatment failure, and declining availability of registered fumigation materials. If cover- 

crop use alone or in combination with other strategies can suppress disease caused by 

soilbome pathogens, these fumigant-related problems may be solved. 

2.1.2.2 Weed Suppression by Cover Crops 

Certain cover crop species have been shown to reduce weed growth (Putnam ex al, 

1983; Worsham, 1991). Two mechanisms may contribute to this reduction: competition 

for available light and soil resources and allelopathy (Putnam, 1988). Allelopathy is the 

effect of one plant or group of plants on another through the production of chemical 

compounds released into the soil by living roots or decaying plant residues (Putnam and 

Tang, 1986). The allelopathic chemicals may act directly or indirectly on seed germination 

or seedling growth (Putnam et al., 1983). 

Allelopathic processes are common in natural plant communities (Putnam and Tang, 

1986) and may be common in agricultural plant communities (Fay and Duke, 1977). 

Allelopathy was first thought to be a detrimental phenomenon in agricultural systems linked 

to weed effects on cultivated crops. Many weeds were identified as having allelopathic 

properties which added to their negative impact on crops (Putnam and Weston, 1986). 

Weed scientist subsequently considered the possibility of using allelopathy to their 

advantage in weed control. 

Putnam and DeFrank (1983), Barnes and Putnam (1983), and Worsham (1984) 

identified the phytotoxicity of rye (Secale cereale L.) residues as a means of suppressing 

weed growth, especially in no-till or conservation till cropping systems. Barnes and 

Putnam (1983) found that a winter rye crop reduced the biomass of common lamb's 

quarters (Chenopodium album L.) by 98%, large crabgrass (Digitaria sanguinalis) by 
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42%, and common ragweed {Ambrosia artemisiifolia L.) by 90%, compared to a control. 

They identified the inhibitory compounds as root exudates that were taken up by weeds. 

Aqueous extracts of rye were studied and found effective in inhibiting growth of several 

species (Barnes and Putnam, 1986). Allelochemicals in sorghum {Sorghum bicolor (L.) 

Moench.) were isolated and identified by Lehle and Putnam (1982) and Weston et al. 

(1989), and aqueous extracts of these chemicals were found to inhibit germination of 

several species. The greatest inhibition was from extracts of top-growth that was less than 

four weeks old. Older plant tissues contained lower concentration of the allelochemicals 

(Weston etal., 1989). 

Growth of seedlings of Brassica campestris L., Cyperus rotundus, and Digitaria 

sanguinalis planted in pots containing excised roots of wild buckwheat {Fagopyrum 

cymosum Gaertn.) was restricted compared to those planted in buckwheat-free soil 

(Tsuzuki et al., 1987). From this is was concluded that wild buckwheat exudes toxins 

inhibitory to the growth of these other species. Some plants may release compounds that 

inhibit the colonization of roots of neighboring plants by mycorrhizae. Crowell and 

Boemer (1988) found that growth of vescular-arbuscular mycorrizae- (VAM) colonized 

Ambrosia artemisiifolia was inhibited by the presence of black mustard {Brassica nigra 

(L.) Koch.). 

Competition is another mechanism by which a cover crop affects weed growth. 

Smother crops are crops that are highly competitive with weeds for light, nutrients, and 

water. Some grain crops such as rye {Secale cereale), barley {Hordeum vulagare L.), 

millet {Panicum miliaceum L.), and sorghum {Sorghum bicolor), legumes such as alfalfa 

{Medicago sativa L.), clovers {Trifolium spp.), and vetch {Vicia spp.), or others such as 

buckwheat {Fagopyrum esculentum Gaertn.), rape {Brassica napus L.), black mustard 

{B. nigra (L.) Koch), and sesbania {Sesbania exaltata (Raf.) Cory) are used as smother 

crops (Anderson, 1983). 
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Cover crops can be grown singly or combined to exploit their individual properties. 

In combination, winter rye and hairy vetch (Vicia villosa Roth.) possess a high potential 

for competitiveness and biomass production, as well as nitrogen fixation (Hoffman and 

Regnier, 1991). Crops can also be grown in succession. Buckwheat (Fagopyrum 

esculatum) is a highly competitive, fast-growing summer cover crop that can reach maturity 

when planted after harvesting a summer cash crop (Martin, et al. 1976; Oplinger, 1975). It 

can add up to seven metric tons per hectare of organic matter to the soil when used as a 

green manure crop (Oplinger, 1975). Once incorporated in the soil, it decays rapidly 

making nutrients quickly available to succeeding crops (Robinson, 1980). It can be 

followed by a winter cover crop or crop mix like winter rye or winter rye plus hairy vetch. 

2.1.2.3 Disease Suppression by Cover Crops 

In a monoculture system of farming, where a single crop is grown over a large 

acreage for successive years, disease inoculum can often increase to a high density (Cook 

and Baker, 1983). High inoculum density makes disease management more difficult and 

the threat of disease outbreak more likely (Cook and Weller, 1987). Crop rotation is one 

way to reduce the inoculum density of plant pathogens (Cook and Baker, 1983; Cook and 

Weller, 1987). Many pathogens have a limited host range so employing a rotation that 

avoids alternate hosts for a pathogen, a farmer can avoid increasing inoculum density of 

that pathogen (Cook and Baker, 1983). The rotation scheme becomes more complicated 

when several significant soil-borne pathogens comprise the disease complex of a crop, as is 

the case in strawberries. Then a longer, more sophisticated rotation may be needed in order 

to gain a reliable benefit from rotation. 

Cook and Baker (1983) state that"... a disease outbreak can commonly be traced to 

some ecological shock causing biological imbalance. Disease itself is an ecological force 

and will eventually restore balance within the ecosystem." Ecological stability is 

characterized by a diversity of organisms existing in a cycling environment (Baker and 
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Scher, 1987). In modem agriculture, there are many sources of ecological shock, 

including monoculture, genetic uniformity of crops, cultivation, and pesticide applications 

(Cook and Baker, 1983). Cover crop rotations can aid in increasing microbial diversity in 

soil simply by increasing its organic matter content (Cook and Baker, 1983; Cook and 

Weller, 1987). Even if the cover crop is harvested for grain, straw, or silage, the root 

biomass alone can add significant organic matter to the soil (Brady, 1984). The resulting 

increase in biological diversity in the soil ecosystem may promote antagonistic soil 

microorganisms and suppress disease potential. 

Phatak et al. (1991) studied disease incidence of Pythium spp., Rhizoctonia solani, 

binucleat^-Rhizoctonia spp., and Laetisaria arvalis Burdsall. in cucumber (Cucumis 

sativus L.) following nineteen overwintering cover crop treatments. Propagule densities 

of Pythium spp. were highest following Cahaba white vetch (Vicia sativa x cor data L.) and 

ryegrass (Lolium multiflorum Lam.), and lowest after canola (Brassica nap us), the 

control, and subterranean clover (Trifolium subterraneum L.). There were no differences 

in propagule density for Rhizoctonia solani, but binucleat ^-Rhizoctonia density was found 

to be greatest following subterranean clover and least following canola. Rothrock and 

Kendig (1991) found the soil population and disease incidence caused by Thielaviopsis 

basicola in cotton to be significantly less following cover crops of hairy vetch or hairy 

vetch plus rye than in the fallow control plots. 

The mechanisms involved in cover crop effects on disease are not well understood. 

In the case of black mustard, canola, and other members of the Brassicaceae, production of 

allelochemicals has been studied (Dhoesin and Boemer, 1991). Brassica spp. are known 

to produce mustard oils which hydrolize to form isothiocyanate compounds. These 

compounds are closely related to the active ingredient of the soil fumigant Vorlex™, methyl 

isothiocyanate. Thus, Brassica spp. may provide a powerful tool for suppressing plant 

pathogens in soils where they have accumulated. For other cover crop species, different 

mechanisms may be responsible for disease suppression. 
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2.1.3 Objectives 

Two experiments in this study sought to evaluate solarization, fumigation, and 

several cover crop rotations for effects on weed density and distribution, strawberry plant 

growth, and root-disease incidence in strawberry. 

2.2 Materials and Methods 

2.2.1 Experiment I 

A preliminary field experiment to evaluate soil solarization and cover crop rotations 

was conducted in 1989 on a Winooski very fine sandy loam (Aquic Udifluvent) at the 

University of Massachusetts Research Farm in South Deerfield, Massachusetts. The soil 

properties included: 1.07g/cm3 bulk density, pH 5.5, 5.75% organic matter content, and 

10.0 meq/lOOg cation exchange capacity. Strawberries were growing on the site of the 

experiment for the two years prior to 1989. Prior planting was done to simulate a 

commercial situation where strawberries are replanted on old strawberry land possibly 

causing soilborne disease inoculum potential to accumulate. No herbicides were used 

during that time so that normal to acute weed pressure was also present. 

The experiment was a randomized complete block split plot design with six 

treatments and six replications with main plots receiving the treatments and subplots either 

receiving normal tillage before planting strawberries or not tilled. Plots were 6 meters long 

and 1.5 meters wide. The treatments consisted of: 

1) Solarization with an ultrathin 0.8 mm, clear, 70-day photodegradable plastic film 

(manufactured by Lecklers, Inc. of LaSalle Michigan) and applied to the soil on 12 

Aug. 1989, 

2) Sudex (Sorghum bicolor x Sudanese Piper) summer cover crop seeded at 28 kg ha'1 and 

followed by Austrian winter field pea (Pisum sativum L.) winter cover crop seeded at 

78 kg ha-1, 
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3) Sudex summer cover crop seeded at 28 kg ha'1 and followed by black mustard (Brassica 

nigra) cover crop seeded at 22 kg ha'1- 

4) buckwheat (Fagopyrum esculatum) summer cover crop seeded at 84 kg ha-1 and 

followed by winter rye (,Secale cereale) winter cover crop seeded at 84 kg ha*1, 

5) fumigation w/ Vorlex™ (methyl isothiocyanate) using a Fumigun™ 470-2A small plot 

soil injector (Neil A. Maclean, Co., Belmont, CA) calibrated to 375 L ha'l (applied on 

12 Sept 1989), and 

6) a control where no treatment was applied. 

Summer cover crops were all seeded on 12 Aug. 1989. Summer cover crops were 

incorporated to a depth of 20 cm with a rototiller on 3 Sept. 1989. Winter cover crops 

were seeded on 15 Sept. 1989. The rototiller was cleaned carefully between each treatment 

to avoid contamination between plots. 

In 1990, plots were split and half (3 meters) of each plot (randomly chosen) was 

tilled normally prior to planting strawberries and the other half was treated as a 'no-till' 

planting system. Again, the rototiller was cleaned carefully between each treatment to 

avoid contamination. In the 'no-till' subplots, holes were punched (10 cm x 15 cm) in a 

row down the center with a bulb planter and strawberries were planted in these holes. 

Strawberries cv Honeoye of normal nursery stock (field grown runner plants supplied by 

Nourse Farms, Inc. of Whately, Massachusetts) were planted, 10/subplot, on 1 May 1990. 

Normal irrigation and fertilization regimes were followed for the season. No cultivation or 

pesticide treatments were made. 

During the summer of 1989, soil temperatures were recorded using REOTEMP® 

M640 15 cm dial thermometers (REOTEMP Instrument Corp., San Diego, CA) at 48-hr 

intervals for 18 days starting 15 August. Temperature readings were taken in the early 

afternoon when the soil temperature was likely to be at its highest. Thermometers were set 

at a 10 cm soil depth in the solarization and buckwheat cover crop plots and in cultivated 
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bare soil with no weed cover. Temperature readings were taken in solarized, cover 

cropped and bare soil in four plots of each treatment. 

In 1990, weed data were collected by visual assesment of percent of soil surface 

covered by weed canopy per m2 on two sampling dates (15 May and 11 July), and density 

and distribution of monocot and dicot weed species as determined by counting and 

identifying weeds within a square-meter frame on 15 May 1990. Visual ratings of 

strawberry plant status on a scale of 1 to 5 where l=dead with no green tissue, 2=dying 

with some green tissue, 3=stunted, 4=no dark tissue but somewhat stunted, 5=healthy, 

were conducted 11 July, ten weeks after planting. The experiment was terminated on 25 

July, 12 weeks after planting when weed cover reached 100% in most of the experiment. 

2.2.2 Experiment II 

A second field experiment was initiated in 1990 at a different location at the same 

site as Experiment I except that it had not previously been planted with strawberries. Soil 

properties did not differ from Experiment I. Prior to the application of the treatments, plots 

were split and half (randomly chosen) were inoculated with Rhizoctonia solani (AG 1, 

B43) at a rate of 0.5 kg per m2 of inoculum (30-50 xlO4 cfu's per gram of inoculum) on 16 

July 1990. The inoculum was sprinkled evenly on the surface of tilled soil, raked in, 

irrigated, and allowed to remain undisturbed for two weeks prior to applying the 

treatments. Inoculum was prepared according to standard operating procedures (SOP): 

T101, T106, and T109 (provided in the appendices). 

The second experiment was also a randomized complete block split plot design with 

six treatments and six replications with main plots receiving the treatments and subplots 

either receiving inoculation with Rhizoctonia solani prior to applying the main plot 

treatments or not inoculated. Plots were 6 meters long and 1.5 meters wide. Treatments 

were: 
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1) Solarization with non-photodegradeable 4 mm clear plastic film (commonly available) 

applied to the soil on 31 July 1990, 

2) Sudex {Sorghum bicolor x Sudanese) summer cover crop seeded at 28 kg ha'1 and 

followed with winter rye {Secale cereale) winter cover crop seeded at 84 kg ha'1 , 

3) buckwheat (Fagopyrum esculentum) summer cover crop seeded at 84 kg ha'1 and 

followed with winter rye winter cover crop seeded at 84 kg ha'1 , 

4) Japanese millet (Echinochloafrumentacea (L.) Beauv.) summer cover crop seeded at 45 

kg ha'1 and allowed to 'winter-kill' instead of planting a winter cover crop, 

5) fumigation w/ Vorlex™ (methyl isothiocyanate) using a Fumigun™ 470-2A small plot 

soil injector (Neil A. Maclean, Co., Belmont, CA) calibrated to 375 L ha'1 (applied on 

15 Sept. 1990) and, 

6) a control where no treatment was applied. 

Soil was loosened with a spading fork at the time of treatment application. Summer 

cover crops were seeded on 31 July 1990 and winter cover crops on 15 Sept. 1990. 

Summer cover crops were incorporated with a rototiller on 5 Sept 1990. The rototiller was 

cleaned carefully between each treatment to avoid contamination between treatments. 

Winter cover crops were evenly broadcast over the plots and raked in. Tasks were always 

completed on non-inoculated subplots first and tools cleaned carefully between treatments 

to avoid contamination. 

During the summer of 1990, soil temperatures were recorded using REOTEMP® 

M640 15 cm dial thermometers as in Experiment 1, except continuing for 18 days starting 

15 August. Temperature readings were taken in the early afternoon when the soil 

temperature was likely to be at its highest. Thermometers were set at 2.5 cm and 10 cm 

soil depths in solarized and bare soil in six plots of each treatment. 

During the spring of 1991, all plots were tilled to a depth of 20 cm on 18 April with 

a rototiller with care taken to avoid contamination between treatments. Strawberries cv 

38 



Honeoye from normal nursery stock (field grown runner plants supplied by Nourse Farms, 

Inc. of Whately, Massachusetts) were planted as in Experiment 1 on 1 May 1991. 

In 1991, weed data was collected as in Experiment 1 on 13 May and 10 July. 

Density and distribution of monocot and dicot weeds was determined on 13 May by 

counting weeds within a square meter frame. Weeds were harvested by severing tops at 

the soil level on 10 July and weighed (fresh and dry). In addidtion, weed specied 

distribution was measured by ranking weed species found in each plot from 1-4 where 

l=most abundant, 2=second most abundant, 3=third most abundant, and 4=fourth most 

abundant. 

Strawberry plant survival (no. per plot) was evaluated eight weeks after planting. 

On 15 September, strawberry plants were harvested by severing plants at soil surface. The 

number of runners produced by each plant was recorded and plants were dried and 

weighed. Five root systems per subplot were collected randomly and evaluated visually on 

a scale of 1 to 5 where l=dead and 5=excellent. 

2.2.3 Determination of Inoculum Density 

For both experiments in this study, inoculum density, as expressed as colony 

forming units (cfu), of Rhizoctonia inoculum were determined using serial dilution plating 

on a Rhizoctonia selective medium, RSM, as described in SOP T102 and T117 included in 

Appendix B. 

2.2.4 Statistical Analysis 

Statistical analyses were performed using SYSTAT for the Macintosh© (Statistics, 

Version 5.2 Edition. Evanston IL). Square root and arcsine transformations were 

performed percentage and count data as needed to stabilize variances or normalize the 

sample population (Damon and Harvey, 1987). Original data are presented in all tables and 

figures. Differences between treatments were analyzed by analysis of variance (ANOVA) 
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using the general linear model (GLM) procedure, with means separated by least significant 

difference (LSD) or single-degree-of-freedom contrasts (Damon and Harvey, 1987; Steel 

and Torrie, 1980; Gomez and Gomez, 1984). Ranked data (weed distrribution) was 

analyzed using Kruskal-Wallis one-way analysis of variance for non-parametric data (Steel 

and Torrie, 1980). 

2.3 Results 

2.3.1 Experiment I 

From 15 Aug. 1989 to 2 Sept 1989, soil temperatures ranged from 25° to 43°C at 

10 cm under the ultrathin photodegradeable plastic, from 21° to 29°C at 10 cm in bare soil, 

and from 21° to 26°C at 10 cm in the buckwheat cover crop plots (Figure 2.2). The 

average temperature difference between solarized and bare soil was 9.1°C, and between 

solarized and cover cropped soil was 11.0°C. These differences were highly significant 

(p<0.001). The average difference between bare and cover cropped soil was 1.9°C, which 

also was highly significant. 

°C 

15-Aug 17-Aug 19-Aug 21-Aug 23-Aug 25-Aug 27-Aug 29-Aug 31-Aug 2-Sep 

■■ ■ ■ A-w/plastic -B -w/o plastic -# buckwheat cover 
crop 

Figure 2.2. Mean mid-day soil temperature at 48-hour intervals from 8/15/89 to 9/2/89 
at 10-cm soil depth with or without solarizing plastic mulch or in a buckwheat cover crop. 
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Percent weed cover was significantly greater in tilled subplots compared to no-till 

subplots (Table 2.1) and at the two data collection dates, three and ten weeks after planting 

strawberries (p< 0.001; data not shown). In the tilled subplots, the buckwheat/winter rye 

rotation plots had less weed cover than any other treatment at both three and ten weeks. 

And, fumigated plots had less weed cover than control plots at both dates while all 

remaining treatments were not different from the control plots. 

At three weeks after planting, there were no differences in percent weed cover in the 

no-till subplots but, at ten weeks, fumigated plots had less weed cover than the sudex/black 

mustard rotation plots while all other plots were not significantly different (Table 2.1). 

Table 2.1. Percent weed cover (% of soil surface covered by weed canopy) one year 
after six pre-plant treatments at two dates and two planting systems (till and no till) for 

strawberries2. 

Percent Weed Covery 

Till No-till 

Treatments 3 Weeksw 10 Weeks 3 Weeks 10 Weeks 
Fumigation 11.0 bx 53.7 b 0.2 a 2.3 a 
Soil solarization 12.6 be 79.6 be 0.9 a 7.0 ab 
Buckwheat/winter rye 2.5 a 10.4 a 0.1 a 3.0 ab 
Sudex/black mustard 10.5 be 83.8 cd 0.3 a 8.2 b 
Sudex/Austrian pea 16.7 c 95.8 d 0.3 a 5.6 ab 
Control 17.1 c 94.6 cd 0.3 a 6.1 ab 

Mean 69.6 *** 5.3 

zAnalysis of variance performed on transformed data (arcsine (x + 0.5)^); ANOVA table A.l in Appendix 
A. 

y Data presented backtransformed from analyzed data. 

x Means in columns followed by same letters are not significantly different at p<0.05; LSD. 

w Time after planting strawberries on 1 May 1990. 
***Till and no-till significantly different at p<0.001 

Monocot weed species present primarily included large crabgrass (Digitaria 

sanguinalis) and fall panicum (Panicum dichotomiflorum) and dicot weed species included 

dandelion ('Taraxacum officinale), chickweed (Stellaria media), shepherd's purse (Capsella 

bursa-pastoris), and purselane speedwell (Veronica peregrina). Mean density (no./m2) of 

41 



monocot weed species and dicot weed species, and total weeds were significantly less in 

the no-till subplots than in the tilled subplots (p<0.01). The effects of treatments were non¬ 

significant (Table 2.2). 

Table 2.2. Weed density of monocot and dicot weed species and total weeds one year 

after six pre-plant treatments in two planting systems (till and no-till) for strawberries2^. 

Weed Density* (no./m2) 
Monocot Dicot Total 

Treatments Till No-till Till No-till Till No-till 

Fumigation 0.3 0.0 9.4 0.1 9.7 0.1 
Soil solarization 0.5 0.0 16.2 1.0 16.7 1.0 
Buck wheat/winter rye 0.3 0.1 2.9 0.0 3.3 0.1 
Sudex/mustard 1.3 0.1 12.4 0.1 13.7 0.2 
Sudex/winter pea 0.4 0.1 8.9 0.1 9.4 0.1 
Control 0.6 0.2 8.8 0.1 9.4 0.3 

Mean 0.6 ** 0.1 9 g *** 0.2 10.4 *** 0.3 

zAnalysis of variances tables A.2, A.3, A.4 in Appendix A. 

yMeans in columns followed by same letters are not significantly different at p<0.05; LSD. 

x Weed density 3 weeks after planting strawberries on 1 May 1990. 
** ***rppi no-till significantly different at p<0.01 and p<0.001, respectively. 

Visual rating of plant status (l=dead with no green tissue, 2=dying with some 

green tissue, 3=stunted, 4=no dark tissue but somewhat stunted, 5=healthy) showed a 

highly significant difference due to treatment and till effects. Plants in rilled subplots grew 

better than in the no-till subplots. Strawberry plants growing in the tilled buckwheat/rye 

treatment had the highest visual rating and were, together with the solarization and 

fumigation treatments, rated significantly higher than those growing in the control treatment 

(Table 2.3). 
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Table 2.3. Visual rating of strawberry plants eight weeks after planting 0990) in plots 
receiving six different pre-plant site preparation treatments 0989) and subplots which were 
tilled before planting strawberries7-. 

_Visual ratings_ 
Treatments Till No-till Meanw 

Fumigation 4.33 3.00 3.67 b 
Soil solarization 4.37 3.03 3.70 ab 
Buckwheat/winter rye 4.60 3.50 4.05 a 
Sudex/black mustard 4.17 2.87 3.52 be 
Sudex/Austrian winter field pea 4.13 2.63 3.38 be 
Control 3.87 2.70 3.28 c 

Mean 4.24 *** 2.95 

7-Analysis of variance performed on transformed data (Yx + 0.5)^) ANOVA table A.5 in Appendix A. 

yData presented backtransformcd from analyzed data. 

x Visual rating of strawberry plants 10 weeks after planting on 1 May 1990. 

wMeans in columns followed by same letters are not signif icantly dif ferent at p^O.05; LSD. 
***Till and no-till significantly different at p^O.OO 1. 

2.3.2 Experiment II 

From 15 Aug. 1990 to 6 Sept 1990, mean soil temperatures at 2.5 cm under the 

transparent polyethylene plastic film ranged from 31.5' to 46.7'C and from 25.2" to 

33.4’C 10 cm in bare soil. Mean soil temperatures at 10 cm under the transparent 

polyethylene plastic film ranged from 28.0’ to 40.5'C and from 22.0' to 25.0'C in bare 

soil (Figure 2.3). The average temperature differences between solarized and bare soil at 

the 2.5 and 10 cm depths were 11.2* and 5.5’C, respectively. These differences were 

highly significant (p<0.001, LSD). 
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48 hr. intervals 

6-Sep 

10 cm 

bare soil 

10 cm 

solarized 

soil 
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Figure 2.3. Mean mid-day soil temperatures at 48-hour intervals from 15 Aug. 1991 to 
6 Sept 1991 at two soil depths in solarized and bare soil. 

Percent weed cover was not significantly different in inoculated subplots compared 

to non-inoculated subplots at either date. On 31 May 1991, there were no significant 

differences among treatments. On 10 July 1991, buckwheat/winter rye was the only 

treatment that had significantly less weed cover than the control treatment. The Japanese 

millet treatment had the greatest amount of weed cover, significantly more than the 

buckwheat/winter rye, and fumigation (Table 2.4). 

Table 2.4. Percent weed cover in strawberries one year after six pre-plant treatments 

with or without inoculation with Rhizoctonia solani (AG 1, B-43) at two dates2. 

Percent Weed Covery-* 
Treatments 4 Weeksw 8 Weeksw 

Fumigation 2.4y a 58.3 b 
Soil solarization 6.1 a 82.5 c 
Buckwheat/winter rye 4.2 a 11.2 a 
Sudex/rye 8.2 a 83.8 be 
Japanese millet 5.6 a 95.8 c 
Control 7.0 a 79.6 be 

Mean 5.6 *** 68.5 

zAnalysis of variance performed on transformed data (arcsine(x)^) ANOVA table A.6 in Appendix A. 

yData presented backtransformed from analyzed data. 

xMeans in columns followed by same letters are not significantly different at p<0.05; LSD. 

w4 and 8 weeks, respectively, after planting strawberries 1 May 1991. 
***% weed cover at 4 weeks and 8 weeks significantly different at p<0.001. 
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Weed species distribution was not affected by treatment or inoculation (p<0.5; 

Kruskal-Wallis). Dominant weed species were purselane speedwell (Veronica peregrina) 

36% , dandelion ('Taraxacum officionale) 15% , and common chickweed (Stellaria media) 

13% , with other species occurring in lesser amounts (Figure 2.4). 

□ Purselane speedwell 

■ Dandelion 

□ Common chickweed 

□ Common lamb'squarters 

Q Mouse-ear chickweed 

B Buckwheat 

□ Clover spp. 

□ No weeds 

□ Large crabgrass 

□ Shepherd’s purse 

E3 Horseweed 

Figure 2.4. Relative frequency of weed species recorded in strawberries one year after 
six pre-plant treatments and 8 weeks after planting strawberries on 1 May 1991. 

There was no effect of inoculation or treatment on monocot, dicot or total weed 

density (analysis of variance tables A.7, A.8 and A.9 in Appendix A). However, fresh and 

dry biomass of all weed species combined (top growth only) were significantly different 

due to inoculation and treatment. Sudex/winter rye, buckwheat/winter rye and solarization 

plots has less fresh and dry biomass than fumigation, Japanese millet and control plots 

(Table 2.5). 
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Table 2.5. Mean fresh and dry biomass (g/m- of top growth only) of weeds in 
strawberries one year after receiving six different pre-plant treatments and two inoculation 
treatments2^. 

Treatment Weed Fresh Weightx Weed Dry Weightx 

Fumigation 1123.7 b 346.7 b 
Soil solarization 485.3 a 210.2 a 
Buckwheat/winter rye 313.6 a 92.7 a 
Sudex/winter rye 216.5 a 102.9 a 
Japanese millet 1362.7 b 485.4 c 
Control 2202.7 c 614.3 c 

zAnalysis of variance table A.10 and A.11, respectively, in Appendix A. 

YMeans in columns followed by same letters are not significantly different at p<0.05; LSD. 

xWeed weights 8 weeks after planting strawberries on 1 May 1991. 

Percent survival of strawberry plants was not affected by treatment or inoculation, 

but there was a significant interaction between treatment and inoculation. With inoculation 

with Rhizoctonia solani, solarization, fumigation, the buckwheat and winter rye, and 

Sudex and winter rye plots were not different from the non-inoculated plots, while the 

Japanese millet and control plots were different (Figure 2.5). 

n Non-inoculated HI Inoculated 
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Solarization Fumigation Buckwheat/rye Sudex/rye Japanese millet Control 

Figure 2.5. Survival percentage of strawberry plants (no. surviving/no. planted) after 
six pre-plant treatments grown in soil with or without inoculation with Rhizoctonia solani 
(**,*, ns inoculated and non-inoculated plots significantly different at p<0.01 and 0.05 or 
not significant, respectively; analysis of variance table A. 12 in Appendix A.) 
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Biomass of strawberry shoots per plot and per plant, as well as the number of 

strawberry runners per plant were not significantly affected by inoculation with R. solani., 

but were significantly affected by treatment (p<0.01). Shoot weight per plot and per plant 

were highest in the Sudex plus winter rye plots (Table 2.6). All other treatments except 

Japanese millet were higher than the control plots. Plants grown in the Sudex plus winter 

rye and buckwheat plus winter rye plots produced the most runners and were the only 

treatments that produced more runners than the control plots (Table 2.6). 

Visual ratings of root lesion density indicated no significant differences among 

treatments, but a highly significant difference due to inoculation with R. solani (p<0.001) 

(Table 2.7). 

Table 2.6. Top dry weight (g) of strawberry plants per plot and per plant and number of 
strawberry runners per plant 12 weeks after planting following six pre-plant soil 

treatments2^. 

Treatments 
Shoot Weight of 

Plants per Plot (g) 
Shoot Weight per 

Plant(g) 
No. Runners per 

Plant 

Fumigation 58.7 b 6.4 b 0.8 be 
Soil solarization 50.2 be 5.2 be 0.5 c 
Buckwheat/winter rye 59.1 b 6.8 b 1.3 ab 
Sudex/winter rye 85.1 a 9.6 a 1.6 a 
Japanese millet 50.3 be 5.5 be 0.7 be 
Control 28.9 c 3.3 c 0.2 c 

zAnalysis of variance table A. 14, A. 15, and A. 13, respectively, in Appendix A. 

yMeans in columns followed by same letters are not significantly different at p<0.05; LSD. 
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Table 2.7. Visual ratings (where 1 = 100% lesion coverage, 2=75% lesion coverage, 
3=50% lesion coverage, 4=25% lesion coverage, 5=no lesions) of strawberry roots grown 
in soil receiving 6 pre-plant treatments and with or without inoculation with Rhizocionia 
solani.7-. 

Root ratingsy 

Treatments Inoculated Non-inoculated 

Fumigation 2.8 3.7 
Soil solarization 3.5 3.9 
Buck wheat/winter rye 3.3 3.8 
Sudex/winter rye 3.4 3.7 
Japanese millet 3.0 3.3 
Control 3.2 3.7 

Mean 3 2 *** 3.7 

zAnalysis of variance of root ratings done on data after square root transformation; ANOVA table A. 16 in 
Appendix A. 

yData presented backtransformed from analyzed data. 
***Inoculated and non-inoculated significantly different at p<0.001 

2.4 Discussion 

2.4.1 Tillage Effects 

While, in Experiment I, the no-till plots showed significantly less weed growth 

both in terms of percent weed cover and weed density, the growth of strawberry plants in 

the no-till plots also was adversely affected. Pritts et al. (1992) found that strawberry 

yield was reduced in the no-till killed sod plots compared to the conventionally treated 

plots. They also reported weed suppression in plots where strawberries were planted into 

non-tilled killed sods but the standard herbicide treatments provided better weed 

suppression over time. Poor plant growth and yield may be due, in part, to restricted root 

growth and runner establishment in a non-tilled soil. An improvement in planting 

technology for a no-till system of strawberry culture may alleviate this problem. It is, 

never-the-less, not a desirable method of growing strawberries based on the results of this 

experiment. 
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2.4.2 Cover Crop Effects 

In Experiment I, under normal tillage practices, buckwheat followed by rye as a 

pre-plant cover crop rotation suppressed weed growth more than fumigation for up to 10 

weeks in the establishment year and both suppressed weed growth more than control plots 

where no treatment was applied. In Experiment II, the buckwheat and winter rye rotation 

plots exhibited notable weed suppression by two measures: percent weed cover and weed 

biomass. 

Sudex and winter rye rotation plots were not different from the control plots in 

terms of percent weed cover but were significanly less than the control in terms of weed 

biomass. This may be explained by the higher (though not significanly) density of weeds 

in the Sudex/rye plots. Weeds in the Sudex/rye plots may have germinated later resulting 

in a higher percentage cover but low biomass production. Weed species distribution was 

not affected by the cover crop treatments in this study. 

Strawberry plant growth (visual ratings, runner production, and top growth) in 

both experiments was better in the Sudex and winter rye and the buckwheat and winter rye 

plots than in control plots suggesting that these rotation confers not only weed suppression 

but enhances strawberry plant growth significantly. 

These results are unlike those reported by Pritts et al. (1991) where no significant 

differences were found between preplant cover crops (including buckwheat and 

sudangrass) and a fallow control treatment in strawberry yield, mean berry weight, plant 

fresh biomass, or runner production nor any significant weed suppression within or 

between rows. However, in their study sudangrass appeared to suppress broadleaf weed 

species and buckwheat suppressed grasses but neither suppresses yellow nutsedge 

(Cyperus esculentus L.) which was a dominant weed. This may explain the overall lack of 

weed suppression from the cover crops. Results differing from those in our study may be 

due to a difference in the composition and intensity of weed pressure as well as different 

soil characteristics. Further evaluation may be needed on a variety of soil types and 
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conditions over longer periods of time and possibly in larger plots to determine the value of 

cover crops for weed suppression in strawberries. 

Disease suppressive effects were not directly evident in Experiment II since the 

inoculation effect on plant growth was insignificant. Visual evaluation of root lesion 

densities did show an effect from inoculation but it was not shown in other plant 

measurements. However, as mentioned above, growth parameters were enhanced 

significantly in buckwheat plus winter rye and Sudex plus winter rye treatments and may 

have been related to some low level of disease suppression. Additionally, measurement of 

survival percentage showed that plots inoculated with Rhizoctonia solani were not different 

from non-inoculated plots in the fumigation, solarization, buckwheat plus rye and Sudex 

plus rye treatments while reduced in the control and Japanese millet treatments. Micro-plot 

studies may help to clarify the role of cover crops in disease suppression. 

2.4.3 Solarization Effects 

Soil solarization with clear polyethylene plastic succeeded in elevating temperatures 

significantly to a depth of 10 cm, even under late summer conditions in the Northeast. 

Maximal temperatures in the 35° - 45°C range at 10 cm and 45° - 50°C range at 2.5 cm 

were reached. However, solarization only suppressed weeds significantly in Experiment II 

in terms of weed biomass. Percent weed cover and density were unaffected by solarization 

in both experiments. Strawberry growth was enhanced by soil solarization in Experiment I 

in terms of visual rating of the plants but that result was not repeated in Experiment II. 

Hartz et al. (1993) reported significant weed suppression and strawberry yield 

increase from soil solarization compared to untreated control plots under California 

conditions. Additionally, soil solarization was equally lethal to Phytophthora cactorum and 

Verticillium dahliae (in terms of % pathogen survival) as fumigation with either methyl 

bromide or metam sodium. It is unclear whether or not the effect of solarization is strong 

enough to reliably suppress weeds or pathogens under Northeastern conditions. Further 
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studies on the effect of different temperature regimes (e.g., repeated exposure to sublethal 

temperatures) on weed seed germination and pathogen propagule viability will help 

determine if soil solarization is a dependable management tool in this region. 

Additionally, modification of solarization timing and subsequent planting system 

could enhance the benefits of this technique for northern latitudes. As mentioned earlier, 

for solarization to be effective, soil must not be disturbed following treatment. This would 

require a modification in current planting practices. For example, soil solarization in strips 

for several weeks between a low-growing harvested crop during the peak solar radiation 

period of the summer (beginning at the summer solstice) and high-density fall planting of 

strawberries without removing the plastic. Strawberry runners would not be allowed to 

root (as in a ribbon row) and plastic could be pigmented as in Hartz et al. (1985). This 

system may have higher labor requirements and shortened longevity, but lower pesticide 

inputs and higher yield may enhance profitability. 

2.4.4 Rhizoctonia Inoculation Effects 

Inoculation with Rhizoctonia solani (AG 1-, B43) had no effect on weed growth 

and only affected plants as indicated by visual root evaluation of lesion densities. Visual 

rating of root lesions were significantly lower (i.e., more lesions) for plants grown in soil 

inoculated with the pathogen than non-inoculated soil but none of the treatments had an 

effect. Further studies with more precise measures of pathogen viability, growth and 

infectivity may be needed to determine whether or not cover crop rotations or soil 

solarization have a measurable, repeatable effect on strawberry diseases. 
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CHAPTER III 

BLACK ROOT ROT BIOLOGICAL CONTROL STUDY 

3.1 Literature Review 

3.1.1 Biological Control of Plant Pathogens and Disease Suppression 

The potential for biological control of plant pathogens by other microorganisms is 

well recognized in natural and agricultural ecosystems (Baker and Cook, 1974; Cook and 

Baker, 1983; Baker and Scher, 1987). Biological control of soil-borne plant pathogens 

often is referred to as disease suppressiveness and is described as a condition in which the 

pathogen does not establish or persist, is present but causes little or no damage, or causes 

damage for a short period of time but ceases to be damaging while still present in the soil 

(Baker and Cook, 1974). Baker (1991) asserted that disease-suppressiveness attributable 

to indigenous microorganisms is present in most cropping systems and that biocidal 

treatments to soils are likely to disrupt suppressiveness and result in the recolonization of 

the soil by plant pathogens. This assertion supports the concept of the "boomerang effect" 

described by Kreutzer (1960) and Altman (1970) which is discussed in Chapter I. 

Soils can be categorized as either generally or specifically suppressive (Gerlagh, 

1968). General suppression is considered to be related directly to the total amount of 

microbial biomass in the soil and likely is the result of intense competition among 

organisms in the soil or rhizosphere for carbon, oxygen, and other soil ecosystem 

resources (Baker and Cook, 1974; Cook and Baker, 1983). Mechanisms of specific 

suppression include antibiosis and parasitism involving the presence of specific mi¬ 

croorganisms antagonistic to a specific pathogen during a susceptible stage in the 

pathogen's life cycle such as propagule germination or host penetration (Benson and 

Baker, 1970). Specific suppression often occurs together with general suppression (Cook 

and Baker, 1983). 
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3.1.2 Trichoderma spp. as Biological Control Agents 

Descriptions of many types of parasitism, antagonism, and fungistasis between 

soil-borne plant-pathogenic organisms and other soil microorganisms have been reported 

(Knudsen and Bin, 1990; Lumsden and Locke, 1989; Liu and Baker; 1980). Cases of 

disease suppressiveness have been reported to occur naturally (Lumsden et al., 1990) or be 

induced by inoculation with specific antagonists (Harman et al., 1989). 

Members of the fungal genus Trichoderma are among the most investigated agents 

of naturally occurring and induced biological control (Baker, 1991; Adams, 1990; Cook 

and Baker, 1983). Weindling and Emerson (1936) were the first to isolate antifungal 

compounds from cultures of Trichoderma spp. and were among early researchers who 

suggested the potential of Trichoderma spp. for use as a biological control agent for plant 

pathogenic fungi (Weindling, 1934; Weindling and Fawcett, 1939; Weindling and 

Emerson, 1936). Dennis and Webster (1971 a-c) described the antibiotic and parasitic 

mechanisms of antagonism of Trichoderma spp. against target organisms. And, Wells et 

al. (1972) first reported field control of Sclerotium rolfsii by T. harzianum. Since then, 

Trichoderma spp. have been reported to reduce disease caused by Armillaria mellea 

(Vahl:Fr.) Kumm. (Cook and Baker, 1983), Rhizoctonia solani (Davet, 1986; Harman et 

al., 1980, 1981; Elad et al., 1980a,b; Liu and Baker, 1980; Hadar et al., 1979; Bell and 

Wells, 1977), Phytophthora spp. (Smith et at., 1990), and Pythium spp. (Harman et al., 

1980, 1981; Wolffhechel, 1989). Elad et al. (1980b) also found that following soil 

solarization or fumigation, soil inoculation with Trichoderma harzianum enhanced control 

of R. solani over that achieved by either treatments alone and also resulted in the control of 

Sclerotium rolfsii. 

The use of T. harzianum has been investigated for controlling Rhizoctonia solani in 

strawberries (Elad et al., 1981). In this study, two field experiments were conducted 

where nursery beds were planted in fumigated soil and inoculated twice with T. harzianum; 

once at planting and again one month later. A 18-46% reduction in disease severity was 
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achieved in T. harziamim-treated nursery plots compared to control plots. A third field 

experiment was conducted where plants from the treated and control plots were 

transplanted to fruiting fields for yield evaluation. Plots in the fruiting field were split, and 

half were treated again with T. harzianum. Plants from T. harzianum-tieaied plots that did 

not receive additional inoculation when transplanted resulted in a 21-37% yield increase 

over untreated transplants. Additional T. harzianum inoculation did not enhance yield 

compared to plants treated only in the nursery beds. 

3.1.2.2 Taxonomy and Morphology of Trichoderma spp. 

Trichoderma spp. are spore forming fungi belonging to the order Hyphomycetes, 

family Moniliaceae (Farr et al., 1989). The genus is comprised of 20 species groups of 

which five or six are associated with biological control of plant pathogens (Cook and 

Baker, 1983). Many species of Trichoderma, including T. harzianum Rifai (teleomorph, 

Hypocrea spp.) are cosmopolitan in distribution (Fairer al., 1989) and are found 

commonly in soil (Cook and Baker, 1983). Hyphae of Trichoderma spp. produce 

conidiophores bearing flask shaped phialides singly or in clusters shown in (Cook and 

Baker, 1983). Chlamydospores commonly are formed as resting structures. In culture, 

colonies usually grow rapidly with aerial mycelia tufted white or green (Cook and Baker, 

1983). 

3.1.2.3 Biocontrol Modes of Action of Trichoderma spp. 

The primary modes of action of Trichoderma spp. have been described as 

mycoparasitism of host fungi and aggressive competition with host and non-host fungi for 

soil resources (Webster and Lomas, 1964; Cook and Baker, 1983). As illustrated in 

Figure 3.2, mycoparasitism takes place by hyphae of Trichoderma spp. coiling around the 

hyphae of host fungi, lysing membranes and causing hyphae to collapse and disintegrate 

(Cook and Baker, 1983). Once the host cell integrity is destroyed, the mycoparasite 
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absorbs the hyphal contents (Chet, 1987). The mechanism of cell destruction by T. 

harzianum involves the release of B-( 1,3) glucanase and chitinase, lysing walls of R. 

solani (Hadar et al., 1979). Chet et al. (1981) and Chet and Elad (1983) described hyphae 

of Trichoderma spp. growing directly toward host mycelia, chemotropically stimulated in 

the presence of hyphal exudates produced by the host species. Elad et al. (1983) reported 

evidence that Trichoderma hyphae may bind to R. solani hyphae as a precursor to lysis. 

Additionally, Trichoderma spp. are aggressive saprophytes able to utilize a range of 

polymers including cellulose and hemicelluloses as growth substrates (Deacon, 1983). 

3.1.2.4 Growth Parameters of Trichoderma spp. 

Soil characteristics affect the growth and biological control effectiveness of 

Trichoderma spp. (Cook and Baker, 1983). For example, efficacy of Trichoderma spp. 

in disease suppression was greater in acid soil, i.e. pH 3.5 to 6.5 (Chet and Baker, 1980; 

Roiger et al., 1991, Harman, 1992). Trichoderma spp. also were favored in moist soil 

(> -.135 MPa) and at soil temperatures below 25°C (Liu and Baker, 1980; Elad et al., 

1980a). 

3.1.2.5 Rhizosphere Competence of Trichoderma spp. 

In addidon to environmental parameters (e.g., the soil characteristics described 

above) that affect the biocontrol activity of Trichoderma spp., the isolate must be suited to 

inhabit the target zone required for conveying crop protection against pathogen infection 

(Chet, 1987; Harman, 1992). Protection of subterranean plant pans is best accomplished 

with rhizosphere-competent isolates (Harman, 1992). Such isolates are those capable of 

colonizing the root surface or rhizosphere of the target crop (Harman, 1990). Rhizosphere- 

competent isolates can be obtained from crop roots grown in naturally suppressive soils or 

through a process of genetic manipulation or mutation of candidate isolates (Ahmad and 

Baker, 1987; 1988a,b; Harman, 1990). 
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3.1.2.6 Delivery Methods for Trichoderma spp. 

Biocontrol inocula must contain a carrier capable of providing a substrate for the 

initial growth of the organism when released in the target zone (Cook and Baker, 1983). 

Harman et al. (1981) reported a significant benefit to amending conidial suspensions of T. 

hammatum (Bonord.) Bainier with chitin or dried mycelium from a non-pathogenic 

Rhizoctonia as a food base for protecting seedlings from damping-off diseases. Backman 

and Rodriguez-Kabana (1975) used molasses-enriched clay granules plus diatomaceous 

earth as a carrier for T. harzianum in controlling Sclerotium rolfsii. Other methods for 

inoculating soil with Trichoderma include conidia-impregnated alginate and wheat bran 

pellets (Lumsden and Locke, 1989), a wheat bran and sawdust inoculum (Elad et al. 

1980a), and a wheat bran and peat inoculum (Sivan et al., 1984; Paulits et al., 1986; 

Maplestone et al., 1991). 

3.1.3 Role of Biocontrol in Integrated Pest Management 

Effective mycoparasitism and saprophytic competitiveness indicate that 

Trichoderma spp. play a role in both general and specific disease suppression in soil (Chet, 

1987). Elad et al. (1980b) observed that natural populations of Trichoderma spp. increased 

following soil fumigation or solarization (sub-lethal biocidal treatments), that Rhizoctonia 

solani failed to recolonize the soil effectively, and that a combination of soil solarization or 

fumigation and inoculation with T. harzianum provided the best control of R. solani and S. 

rolfsii. Integration of cultural or chemical controls with biological controls may provide 

powerful and long-lasting disease-management options in integrated pest management 

programs for different crops (Baker and Scher, 1987). 

3.1.4 Objectives 

The objective of this study was to test isolates of Trichoderma harzianum as 

potential biological control agents of Rhizoctonia solani and R.fragariae in strawberries. 
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3.2 Materials and Methods 

Two candidate isolates of Trichodernia harzianum were obtained 1) from the 

collection of G. Harman (Cornell University, Ithaca New York) and 2) by isolation from 

strawberry roots collected from ten locations in Massachusetts, following procedures 

described in Roiger et al. (1991). Trichoderma harzianum inoculum was prepared 

according to Smith et al. (1990). 

3.2.1 Greenhouse Experiment I 

The first greenhouse experiment evaluated two Trichoderma harzianum isolates for 

biological control of Rhizoctonia solani infection of strawberry roots. The experimental 

design was a fully factorial randomized complete block with two main classifications and 

10 replications. The first classification contained two treatments: inoculation with three 

grams of R. solani (AG1, B43) inoculum at 20 x 105 colony forming units (cfu)/gram, 

prepared according to standard operating procedures SOP: T101, T106, and T109; pro¬ 

vided in the appendices and an untreated control. The second classification contained four 

treatments: inoculation with four grams of either T. harzianum isolate ’Y’ or '11' inoculum 

at 30 x 106 and 25 x 105 cfu/gram, respectively, prepared according to Smith et al. (1990), 

four grams of double autoclaved, non-inoculated wheatbran/peat carrier, and an untreated 

control. There were a total of eight treatment combinations. 

The growing medium was a pasteurized soil mix with soil, sand, and perlite in a 

ratio of 2:1:1. The soil mix was double heat sterilized at 180°F for five hours on two 

consecutive days and 350 ml (1.5 g/ml dry weight equivalent) decanted into 10 cm diameter 

clean plastic pots. Plants were greenhouse-grown, tissue-cultured plantlets cv Kent 

provided by Nourse Farms, Inc., Whately, MA. 

R. solani inoculum was allowed to incubate in pots for one week at ambient 

greenhouse air temperature (22° to 26°C) after being incorporated into the soil mix. T. 

harzianum inoculum then was added and likewise allowed to incubate for one week at 
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ambient greenhouse air temperature prior to planting strawberries. Care was taken to 

prevent contamination by washing tools and hands with 20% bleach solution between 

treatments. The strawberry plants were allowed to grow for 12 weeks. Plants were 

fertilized with 50 ml of a 1% solution of Peter's® 20-20-20 A11 Purpose Plant Food 

(Grace Sierra Hort. Products Co., Milpitas, CA) weekly. 

Plant survival and runner production were recorded at the end of the experiment. 

Roots and shoots were separated by dividing crowns where the roots emerged, dried and 

weighed. Visual evaluations of root lesion density on primary and secondary roots were 

made on a scale of 1 to 5 (where 1=100% lesion coverage, 2=75% lesion coverage, 

3=50% lesion coverage, 4=25% lesion coverage, 5=no lesions) at the end of the 

experiment. 

3.2.2 Greenhouse Experiment II 

The second greenhouse experiment evaluated the same two isolates of T. harzianum 

for biological control of infection of strawberry roots by R.fragariae and R. solani. 

combined. The experiment was a fully factorial randomized complete block design with 

two main classifications and nine replications. The two treatments in the first classification 

included inoculation with two grams of R. solani (AG1, B43) inoculum at 35 x 105 

cfus/gram and two grams of R.fragariae inoculum at 25 x 104 cfus/gram prepared 

according to SOP T101, T106, and T109 (provided in the appendices) mixed together and 

an untreated control. The four treatments in the second classification were: four grams of 

T. harzianum 'Y' (30 x 106 cfus/gram) or four grams of T. harzianum T T (35 x 105 

cfus/gram) prepared according to Smith et al. (1990), four grams double autoclaved wheat 

bran/peat carrier, and an untreated control. There were a total of eight treatment 

combinations. 

The growing medium was a pasteurized sand. The sand was double heat sterilized 

at 83°C for five hours on two consecutive days and 350 ml (1.2 g/ml dryweight equivalent) 
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decanted into 10 cm diameter clean plastic pots. Plants were dormant greenhouse-grown 

tissue-cultured plantlets cv. Kent provided by Nourse Farms, Inc., Whately, MA that had 

been stored at -2 °C for two months. 

Fresh weight of each strawberry plant was recorded at the beginning and end of the 

experiment in order to evaluate plant growth and for use in analysis of covariance. R. 

solani plus R.fragariae inoculum was allowed to incubate in pots for one week at ambient 

greenhouse air temperature (22° to 26°C) after being incorporated in the soil mix. T. 

harzianum inoculum then was added and likewise allowed to incubate for one week at 

ambient temperature prior to planting strawberries. Care was taken to prevent 

contamination by washing tools and hands with 20% bleach solution between treatments. 

The strawberry plants were allowed to grow for 10 weeks. Plants were fertilized with 50 

ml of a 1% solution of Peter's® 20-20-20 A11 Purpose Plant Food (Grace Sierra Hort. 

Products Co., Milpitas, CA) or Hoagland's nutrient solution (Hoagland and Arnon, 1938) 

on alternating weeks. 

Plant survival, fresh weight, and runner production were recorded at the end of the 

experiment. Roots and shoots were separated by dividing crowns where the roots 

emerged, then dried and weighed. Visual evaluations of plant health and root lesion 

density on primary and secondary roots were made on a scale of 1 to 5 (where, root ratings 

were done as in Greenhouse Experiment I and, for plant ratings, l=dead with no green 

tissue, 2=dying with some green tissue, 3=sick with mostly green tissue, 4=no dark tissue 

but somewhat stunted, 5=healthy, no stunting, and all green tissue) at the end of the 

experiment. 

3.2.3 Greenhouse Experiment III 

The third greenhouse experiment evaluated the same two isolates of T. harzianum 

for biological control of infection of strawberry roots by R.fragariae and R. solani., 

separately. It was a fully factorial randomized complete block design with two main 
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classifications and seven replications. The first classification contained four treatments: 

three grams of R. solani inoculum (AG1, B43) at 40 x 10^ cfus/gram, three grams or R. 

fragariae inoculum (AGI, 1005) at 25 x 105 cfus/gram, three grams of sterile oat carrier, 

and an untreated control. The second classification contained four treatments: four grams 

of T. harzianum 'Y' (32 x 106 cfus/gram), four grams of t. harzianum T l'(25 x 105 

cfus/gram) prepared according to Smith et al. (1990), four grams of double autoclaved, 

non-inoculated wheatbran/peat carrier, and an untreated control. There were a total of 16 

treatment combinations. 

Planting medium was pasteurized sand which was heat sterilized at 83°C for five 

hours on two consecutive days and 350 ml (1.2 g/ml dry weight equivalent) decanted into 

10 cm diameter clean plastic pots. Strawberry plants cv Honeoye were obtained from field 

harvested runners and rooted in soilless mix in the greenhouse. Runners were rooted for 

one week under mist and then grown for three weeks in the greenhouse in order to produce 

root systems. Plants were washed, weighed, and grouped according to weight prior to 

planting. Treatments were assigned randomly among plants within weight groups. 

Inoculum of Trichoderma and Rhizocionia were added to the pots at the same time 

and allowed to incubate in the sand one week at ambient greenhouse temperatures (24°C) 

prior to planting strawberries. Strawberries were grown for 12 weeks. Plants were wa¬ 

tered with deionized water only (pH 5.8 to 6.2) and fertilized with 50 ml of a 1% solution 

of Peter’s® 20-20-20 Al 1 Purpose Plant Food (Grace Sierra Hort. Products Co., Milpitas, 

CA) or Hoagland's nutrient solution (Hoagland and Arnon, 1938) on alternating weeks. 

Plant growth and health variables were measured as in Greenhouse Experiment II 

except that plants were not divided into shoots and roots but were weighed as whole plants 

and no visual root evaluations were made. 
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3.2.5 Determination of Inoculum Density 

For all experiments in this study, inoculum density, as expressed as colony forming 

units (cfu), of Trichoderma and Rhizoctonia inoculum were determined using serial dilu¬ 

tion plating on Trichoderma selective media, TSM, (Smith el al., 1990) or Rhizoctonia 

selective media, RSM, (Martin, 1988), respectively, according to SOP T102, included in 

the appendices. 

3.2.6 Statistical Analysis 

Statistical analyses were performed using SYSTAT for the Macintosh© (Statistics, 

Version 5.2 Edition, Evanston, IL). Square root and arcsine transformations were 

performed on percentage and count data, as needed, to stabilize variances or normalize the 

sample population (Damon and Harvey, 1987; Steel and Torie, 1980). Back-transformed 

data from transformations are presented in all tables and figures. Differences between 

treatments were analyzed by analysis of variance (ANOVA) using the general linear model 

(GLM) procedure, with means separated by least significant difference (LSD) or single- 

degree-of-freedom contrasts (Damon and Harvey, 1987; Gomez and Gomez, 1984). 

3.3 Results 

3.3.1 Greenhouse Experiment I 

Whole-plant weight was affected by treatment and inoculation, where plants grown 

with either of the T. harzianum isolates weighed more (p<0.05) than control plants and 

plants inoculated with R. solani weighed less (p<0.01) than non-inoculated plants (Table 

3.1). Similarly, shoot weights were affected by treatment and inoculation with those of 

plants grown with either of the T. harzianum isolates greater (p<0.05) than control plants, 

and those of plants inoculated with R. solani less (p< 0.001) than those of non-inoculated 

plants (Table 3.2). Root weight were affected by treatments but not inoculation. Root 
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weights of plants grown with either of the T. harzianum isolates were greater (p<0.05) than 

those grown with the wheat bran and peat carrier or control plants. 

Table 3.1. Dry weight (g) of whole strawberry plants grown in soil with or without 
inoculation with Rhizoctonia solani and treated with one of two isolates of Trichoderma 
harzianum, a sterile wheat bran and peat carrier, or not treated2. 

Treatments 

Whole-plant Weight (g) 

Inoculatedx Non-inoculated Meany . 
T. harzianum 'Y'w 3.79 5.41 4.60 ab 
T. harzianum T l’w 4.47 5.35 4.90 a 
Wheat bran/peatv 2.92 4.78 3.85 be 
Control 3.25 4.05 3.65 c 

Mean 3.61 ** 4.90 
2Analysis of variance table A. 19 in Appendix A. 

Cleans in columns followed by different letters significantly different at p<0.05; LSD. 

xInoculated with 3 g R. solani inoculum (20 x 10^ cfu/g) grown on double-autoclaved oat seed carrier. 

wTreated with 4 g T. harzianum isolate 'Y' or '11' inoculum (25 and 30 x 10^ cfu/g, respectively) grown on 
double-autoclaved wheatbran and peat plus H2O carrier (1:1 v/v). 

vSterile double-autoclaved wheatbran and peat (1:1, v/v). 
••Inoculated significantly different from non-inoculated at p<0.01. 

Table 3.2. Dry weight (g) of roots and shoots of strawberry plants grown in soil with or 
without inoculation with Rhizoctonia solani and treated with one of two isolates of 
Trichoderma harzianum, a sterile wheat bran and peat carrier, or not treated2. 

Strawberry Root Weight (g) 
Treatments Inoculated* Non-inoculated Meany 

T. harzianum 'Y'w 0.75 0.86 0.81 a 
T. harzianum '1 Yw 0.82 0.78 0.80 a 
Wheat bran/peatv 0.79 0.56 0.67 b 
Control 0.73 0.54 0.64 b 

Mean 0.77 ns 0.69 
Strawberry Shoot Weight (g) 

T. harzianum 'Y' 3.03 4.56 3.79 ab 
T. harzianum 'll' 3.64 4.57 4.11 a 
Wheat bran/peat 2.13 4.22 3.18 be 
Control 2.52 3.50 3.01 c 

Mean 2.83 *** 4.21 

2Analysis of variance tables A. 17 and A. 18 in Appendix A. 

y.Means in columns followed by different letters significantly different at p<0.05; LSD. 

xInoculated with 3 g R. solani inoculum (20 x 10^ cfu/g) grown on double-autoclaved oat seed carrier. 

wTreated with 4 g T. harzianum isolate 'Y' or '11' inoculum (25 and 30 x 10^ cfu/g, respectively) grown on 
double-autoclaved wheatbran and peat plus H2O carrier (1:1 v/v). 

vSterile double-autoclaved wheatbran and peat (1:1, v/v). 
••• jis Inoculated significantly different from non-inoculated at p<0.001 or not significantly different, 

respectively. 
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The number of runners produced by each strawberry plant was affected by 

treatment and inoculation. Untreated control plants produced more runners (p< 0.05) than 

those treated with either isolate of T. harzianum, but plants inoculated with R. solani 

produced fewer runners (p< 0.001) than non-inoculated plants (Table 3.3). 

Table 3.3. Number of runners produced by plants grown in soil with or without 
inoculation with Rhizoctonia solani and treated with one of two isolates of Trichoderma 
harzianum, sterile wheat bran and peat carrier, or not treated2. 

Treatments 

Number of Runners per Plant 

Inoculated Non-inoculated Meany 
T. harzianum 'Y' 0.4 1.9 1.1 b 
T. harzianum 'll' 0.4 1.7 1.0 b 
Wheat bran/peat 0.5 2.0 1.2 ab 
Control 1.1 2.2 1.6 a 

Mean 0.6 *** 2 0 

zAnalysis of variance table A.20 in Appendix A. 

yMeans in columns followed by different letters significantly different at p<0.05; LSD. 
*** Inoculated significantly different from non-inoculated at p<0.001. 

Inoculation with R. solani reduced (p< 0.001) visual rating scores of primary and 

secondary roots . Treatments affected (p< 0.05) visual ratings of secondary roots only, 

with plants grown with T. harzianum 'Y' resulting in healthier appearing roots than plants 

grown with wheat bran/ peat or the control (Table 3.4). 
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Table 3.4. Visual ratings (where 1 = 100% lesion coverage, 2=75% lesion coverage, 
3=50% lesion coverage, 4=25% lesion coverage, 5=no lesions) of primary and secondary 
strawberry roots from plants grown in soil with or without inoculation with R. solani and 
treated with one of two isolates of T. harzianum, sterile wheat bran and peat carrier or not 
treated2^. 

Visual rating of strawberry rootsx 

Primary roots _Secondary roots 

Treatments Inoculatedw 
Non- 

inoculated Inoculatedw 
Non- 

inoculated Mean 

T. harzianum 'Y'v 2.4 3.9 2.4 4.1 3.2 a 
T. harzianum Tl'v 2.5 3.4 2.2 3.7 3.0 ab 
Wheat bran/peatu 2.0 3.0 1.7 3.3 2.5 b 
Control 2.1 2.9 2.2 2.9 2.5 b 

Mean 2 2 *** 3.3 2 ] *** 3.5 

zAnalysis of variance per formed on transformed data ((x + .05)^); ANOVA tables A.21 and A.22 in 
Appendix A. 

yMeans in columns followed by different letters significantly different at p<0.05; LSD. 

xData presented backtransformed from analyzed data. 
wInoculated with 3 g R. solani inoculum (20 x 10^ cfu/g) grown on double-autoclaved oat seed carrier. 

vTreated with 4 g T. harzianum isolate 'Y' or '11' inoculum (25 and 30 x 10^ cfu/g, respectively) grown on 
double-autoclaved wheatbran and peat plus H2O carrier (1:1 v/v). 

uSterile double-autoclaved wheatbran and peat (1:1, v/v). 
*** Inoculated significantly different from non-inoculated at p<0.001. 

3.3.2 Greenhouse Experiment II 

Whole-plant weights of strawberry plants inoculated with R. solani and R.fragariae 

were less (p< 0.001) than non-inoculated plants (Table 3.5). Dry weight of T. harzianum 

'Y'-treated plants inoculated with Rhizoctonia were not significantly different from non- 

inoculated plants. Root and shoot weights of inoculated strawberry plants were less 

(p<0.05 and p< 0.001, respectively) than non-inoculated plants (Table 3.6). 
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Table 3.5. Fresh and dry weight (g) of whole strawberry plants grown in soil with or 
without inoculation with a combination of Rhizoctonia solani and R.fragariae and treated 
with one of two isolates of Trichoderma harzianum , a sterile wheat bran and peat carrier, 
or not treated2^. 

Treatment 
Whole-plant Fresh Weight (g)x 

Inoculatedw Non-inoculated 
T. harzianum 'Y'v 6.74 ab 16.01 a 
T. harzianum Tl'v 8.64 a 13.73 b 
Wheat bran/peatu 7.66 a 12.17 b 
Control 5.40 b 12.95 b 

Mean 7.11 *** 13.71 

Whole-plant Dry Weight (g) 
Treatment Inoculated Non-inoculated 

T. harzianum 'Y' 1.08 a *** 2.74 a 
T. harzianum 'll' 1.71 a ns 1.96 b 
Wheat bran/peat 1.67 a ** 2.62 a 
Control 1.17 a ** 2.22 ab 

Mean 1.41 *** 2.38 

zAnalysis of covariance and analysis of variance tables A.25 and A.26 in Appendix A. 

yMeans in columns followed by different letters significantly different at p<0.05; LSD. 

xAdjusted least squares means reported for data analyzed for covariance. 

wInoculated with 2 g each R. solani and R.fragariae inoculum (30 and 35 x 10^ cfu/g, respectively). 

vTreated with 4 g T. harzianum isolate 'Y' or 'll' inoculum (30 and 35 x 10^ cfu/g, respectively). 

uSterile double-autoclaved wheatbran and peat (1:1, v/v). 
**,***, ns Inoculated significantly different from non-inoculated at p<0.01, p<0.001 or not significantly 

different, respectively. 

Table 3.6. Dry weight (g) of roots and shoots of strawberry plants grown in soil with or 
without inoculation with a combination of Rhizoctonia solani and R.fragariae and treated 
with one of two isolates of Trichoderma harzianum or a sterile wheat bran and peat carrier, 
or untreated2. 

Treatments 
Root Dry Weight (g) 

Inoculated Non-inoculated 
T. harzianum 'Y' 0.86 1.69 
T. harzianum 'll' 1.25 1.21 
Wheat bran/peat 1.27 1.59 
Control 1.00 1.31 

Mean 1.09 * 1.45 

Shoot Dry Weight (g)y 
T. harzianum 'Y' 0.22 ab 1.05 a 
T. harzianum 'll' 0.47 a 0.75 b 
Wheat bran/peat 0.40 a 1.03 a 
Control 0.17 b 0.91 ab 

Mean 0.32 *** 0.94 

zAnalysis of variance tables A.23 and A.24 in Appendix A. 

yMeans in columns followed by different letters significantly different at p<0.05; LSD. 
*,*** Inoculated significandy different from non-inoculated at p<0.05, p<0.001, respectively. 
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The number of runners produced by each strawberry plant was not affected by 

treatments, but plants inoculated with R. solani and R. fragariae produced fewer (p<0.001) 

runners than non-inoculated plants (Table 3.7). Visual ratings of whole strawberry plants 

were lower (p< 0.001) for plants inoculated with a R. solani and R. fragariae than non- 

inoculated plants. Among inoculated strawberry plants, visual ratings of plants treated with 

either T. harzianum and wheat bran plus peat were higher than control plants (Table 3.8). 

Visual ratings of primary and secondary roots were lower (p< 0.001) for plants inoculated 

with a R. solani and R. fragariae than non-inoculated plants. Visual ratings of primary and 

secondary roots were unaffected by treatments.(Table 3.9). 

Table 3.7. Number of runners produced by plants grown in soil with or without 
inoculation with a combination of Rhizoctonia solani and R. fragariae and treated with one 
of two isolates of Trichoderma harzianum, sterile wheat bran and peat carrier or not 
treated7-. 

Number of runners 
Treatments Inoculated Non-inoculated 

T. harzianum ’Y’ 1.0 1.7 
T. harzianum 'll' 1.0 1.9 
Wheat bran/peat 1.0 1.7 
Control 0.7 1.9 

Mean 1 o *** 1.8 

-'•Analysis of variance table A.27 in Appendix A. 
*** Inoculated significantly different from non-inoculated at p<0.001. 

Table 3.8. Visual ratings of strawberry plants (l=dead, 2=almost dead, 3=some 
discoloration, 4=slightly stunted, 5=healthy) grown in soil with or without inoculation with 
a combination of Rhizoctonia solani and R. fragariae and treated with one of two isolates of 
Trichoderma harzianum, sterile wheat bran and peat carrier, or not treated7-y. 

Whole-plant Visual Ratingx 

Treatment Inoculated Non-inoculated 
T. harzianum 'Y' 2.2U b 5.0 a 
T. harzianum 'll' 3.1 a 5.0 a 
Wheat bran/peat 2.4 ab 5.0 a 
Control 1.4 c 5.0 a 

Mean 2 3 *** 5.0 

zAnalysis of variance per formed on transformed data ((x + .05)^); ANOVA table A.30 in Appendix A . 

yMeans in columns followed by different letters significantly different at p<0.05; LSD. 

xData presented backtransformcd from analyzed data. 
*** Inoculated significantly different from non-inoculated at p<0.001. 
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Table 3.9. Visual ratings (where 1 = 100% lesion coverage, 2=75% lesion coverage, 
3=50% lesion coverage, 4=25% lesion coverage, 5=no lesions) of primary and secondary 
strawberry roots from plants grown in soil with or without inoculation with a combination 
of Rhizoctonia solani and R.fragariae and treated with one of two isolates of Trichoderma 
harzianum, sterile wheat bran and peat carrier or not treated. 

Treatments 

Visual Rating of Primary Roots2 

Inoculatedy Non-inoculated 
T. harzianum 'Y'x 2.6V 4.7 

T. harzianum 'H'x 3.2 4.3 

Wheat bran/peatw 2.9 4.6 
Control 2.4 4.4 

Mean 2 g *** 4.5 

Visual Rating of Secondary roots 
T. harzianum 'Y' 2.6 4.3 
T. harzianum 'll' 2.1 4.4 
Wheat bran/peat 2.3 4.3 
Control 2.8 4.2 

Mean 2 4 *** 4.3 

zAnalysis of variance per formed on transformed data ((x + .05)^); ANOVA tables A.28 and A.29 in 
Appendix A . 

xData presented backtransformed from analyzed data. 
*** Inoculated significantly different from non-inoculated at p<0.001. 

3.3.3 Greenhouse Experiment III 

Ending fresh and dry weights were affected by inoculation with Rhizoctonia 

isolates but not by treatment (Table 3.10) Fresh weight of strawberry plants was greater 

(p< 0.001) for plants grown in sand amended with the sterile carrier or no amendment than 

those inoculated with either species of Rhizoctonia. Dry weight of strawberry plants was 

greater (p< 0.01) for plants grown in unamended sand than sand amended with either 

species of Rhizoctonia or with the sterile carrier. 
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Table 3.10. Whole plant fresh and dry weights of strawberry plants grown in sand 
inoculated with either Rhizoctonia solani or R.fragariae, amended with a sterile oat carrier 
or non-inoculated and treated with one of two isolates of Trichoderma harziamim, a sterile 
wheat bran and peat carrier, or not treated2^. 

Treatments 

Fresh Weight of Whole Plants (g)x 

R.fragariae w R. solani w Sterile carrierv Control 
T. harzianum ’Y’u 2.32 4.24 3.88 3.73 
T. harzianum 'H'u 3.75 2.74 4.71 3.87 
Sterile carrier1 3.05 1.66 4.33 4.06 
Control 2.59 2.63 4.08 4.75 

Mean 2.93 b 2.82 b 4.25 a 4.12 a 

Dry Weight of Whole Plants (g) 
T. harzianum 'Y' 0.86 1.44 0.93 1.23 
T. harzianum 'll' 1.12 0.95 1.01 1.18 
Sterile carrier 0.84 0.58 1.00 1.44 
Control 0.70 0.65 0.97 1.55 

Mean 0.88 b 0.91 b 0.98 b 1.35 a 

z Analysis of covariance and analysis of variance tables A.34 and A.35, respectively, in Appendix A. 

yMeans in rows followed by different letters significantly different at p<0.05; LSD. 

xAdjusted least squares means reported for data analyzed for covariance. 

wInoculated with 3 g of either/?, solani or R.fragariae inoculum (40 x 10^ and 25 x 10^cfu/g, 
respectively) grown on double-autoclaved oat seed carrier. 

vSterile double-autoclaved oat seed plus H20 carrier (1:2 v/v). 
uTreated with 4 g T. harzianum isolate 'Y' or 'll' inoculum (32 and 25 x 10^ cfu/g, respectively) grown on 

double-autoclaved wheat bran and peat plus H2O carrier (1:1:1 v/v/v). 

Sterile double-autoclaved wheat bran and peat plus H2O carrier (1:1:1 v/v/v). 

Plants inoculated with R. solani or R.fragariae gained less weight than non- 

inoculated plants (p< 0.01) but were unaffected by treatment T. harzianum isolates (Table 

3.11). Visual ratings of plant health and root lesion density were affected by inoculation 

with Rhizoctonia but not by treatment with Trichoderma (Table 3.12). Plant and root 

ratings were both lower for plants grown in sand inoculated with either species of 

Rhizoctonia than those grown in sand amended with sterile wheat bran and peat or not 

treated. 
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Table 3.11. Visual ratings of plants and roots from plants grown in sand inoculated with 
either Rhizoctonia solani or R.fragariae, amended with a sterile oat carrier or non- 
inoculated and treated with one of two isolates of Trichoderma harzianum, a sterile wheat 
bran and peat carrier, or not treated2. 

Treatments 

Visual Plant Rating 

R. fragariae R. solani Sterile carrier Control 
T. harzianum 'Y' 2.1 3.0 2.7 2.7 
T. harzianum 'll' 2.7 2.1 3.0 2.6 
Sterile carrier11 2.4 1.6 3.1 3.7 
Control 1.9 2.1 3.3 3.6 

Mean 2.3 b 2.2 b 3.0 a 3.1 a 

Visual Root Rating 
T. harzianum 'Y' 2.1 3.0 3.0 3.4 
T. harzianum 'll' 2.7 2.3 2.9 3.4 
Sterile carrier 2.6 1.7 3.4 4.1 
Control 1.8 2.0 4.0 3.8 

Mean 2.3 b 2.3 b 3.3 a 3.7 a 

zMeans in rows followed by different letters significantly different at p<0.05; LSD. 

3.4 Discussion 

The three experiments in this study were similar in design and variable in result. It 

is usefull to review the representative effects briefly prior to discussion (Table 3.12). 

Experiment I involved inoculation with Rhizoctonia solani, Experiment II used R. solani 

and R.fragariae in combination, and Experiment II used R. solani and R.fragariae 

separately. All experiments used Trichoderma harzianum isolates 'Y' and 'll' and a sterile 

carrier. 
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Table 3.12. Summary of effects on whole plant dry weight from three experiments on 
biological control of Rhizoctonia spp. with twoTrichoderma harzianum isolates. 

Effect Experiment I Experiment II Experiment III 
Rhizoctonia spp. 

R. solani _z n/a 

R.fragariae n/a y n/a _ 

combination nJa - n/a 

Trichoderma harzianum 
•Y' +x none none 

'll + none none 

Sterile carrier nonew none none 

Interaction between Trichoderma 
(p values) 

and Rhizoctonia 
0.418 

inoculation 
0.006 0.063 

zNegative effect. 

yTreatment not applied in this experiment. 

xPositive effect. 

wEffect not significant different from control treatment at p<0.05 

3.4.1 Effect of Rhizoctonia Inoculation on Strawberry Plants 

Inoculation with Rhizoctonia had an effect on all growth variables measured in this 

study except root weight in Experiment I. However, determining an effect on root and 

shoot weight was imprecise since the division of the crown was somewhat arbitrary and 

variation in location of the cut changed weight measurements significantly. In the future, 

determining the effect on root weights will require the excision of each of the perennial 

roots from the crown so that the roots, alone, can be weighed. Then, the whole crown 

could be weighed as part of the shoot of the plant. Since this was not the methodology of 

these experiments, root and shoot weights were combined to form whole plant weights. 

Effects on whole plant weights then were evaluated. 

The effect of inoculation on whole plant weights was highly significant in 

Experiments I and II, where R. solani and a mixture of R. solani and R.fragariae were 
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used, respectively. Similarly, in Experiment III, inoculation with R. solani and R. 

fragariae as separate treatments, significantly reduced fresh and dry whole plant weights 

compared to controls. In the first two experiments, some of the difference in plant weights 

could have been the result of increased runner production in the non-inoculated plants. 

But, in Experiment III, plants did not produce any runners. 

Visual evaluations of root lesions also showed the effect of inoculation in all three 

experiments. The scale used for these evaluations was somewhat limited and appeared 

insufficient for detecting fine differences between Trichoderma treatments discussed 

below. Greater precision in measuring lesion density on roots may be gained by using 

digital image analysis, and this technology will be tried in future studies. 

The detrimental effect of Rhizoctonia on strawberry roots is well known and was 

described in Chapter I. Results of inoculation obtained in these experiments confirm the 

expected effect of disease pressure on the plants. Conditions of this study, however, were 

artificial since sterilized soil mix or sand were used to grow plants and "clean” tissue 

cultured plantlets or rooted runners were used as experimental subjects. These provisions 

had the effect of reducing the microbial population in the root zone to the organisms 

introduced as part of the experiments (plus some random contamination from the air and 

water). In the field, the microbial population is complex and conditions cannot be 

controlled, and plants received form the nursery are dormant field grown runners with 

roots that are populated by soil microorganisms. As a result, disease progression will 

differ from that in controlled greenhouse conditions. Conclusions cannot be drawn from 

controlled studies that predict what will happen in the field, or vice-versa. But, it is still 

necessary to confirm that the disease organism under investigation is producing the 

expected effect on plants, and this was proven in each of these experiments. 
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3.4.2 Effect of Trichoderma harzianum on Root Disease and Plant Growth 

In Experiment I, whole-plant dry-weights were greater in both treatments receiving 

Trichoderma harzianum than in the controls. Since the Rhizoctonia-inoculation effect was 

also significant and there was no interaction effect, it is not possible to say that the 

Trichoderma treatments suppressed Rhizoctonia infections. Greater plant weights may 

instead have resulted from plant growth enhancement from Trichoderma as described in 

the literature review for this chapter. Interestingly, this plant growth enhancement cannot 

be attributed to increased runner production since runner production was reduced by both 

Trichoderma treatments when compared to controls. 

In Experiment II, whole plant fresh weights among plants inoculated Rhizoctonia 

and treated with T. harzianum 'll' were also greater than controls. And, while whole- 

plant dry weights of Trichoderma-treated plants were not greater than controls in 

Experiment II, dry weight of plants inoculated with Rhizoctonia and treated with T. 

harzianum 'll' were not significantly different than non-inoculated plants. This suggests 

that the Trichoderma suppressed the detrimental effect of Rhizoctonia inoculation in this 

experiment. In Experiment III, treatment with T. harzianum did not have an effect on 

fresh or dry weights, but it appeared that plants treated with T. harzianum isolate 'll' grew 

larger when inoculated with R.fragariae and plants treated with T. harzianum 'Y' grew 

larger when inoculated with R. solani. This would not be a surprising result since isolate 

'll' was obtained from strawberry roots that likely could have been exposed toR. 

fragariae and isolate 'Y' was obtained from a research collection that showed in vitro 

suppression of R. solani. The beneficial effects of treatment with T. harzianum 'll' may 

relate to the issue of rhizosphere competence described by Ahmad and Baker (1987; 1988a; 

1988b). Much more research on these and other isolates is needed before practical 

applications for the field, if any, are developed. 

Numbers of runners in Experiments I and II were not affected by treatment with 

Trichoderma., nor were visual evaluations of the roots. However, visual plant evaluations 
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in Experiment II showed that with inoculation with Rhizoctonia, plants treated with T. 

harzianum 'll' were rated higher than the controls. 

No conclusions can be drawn from results obtained by treatment with the sterile 

wheat bran plus peat. This treatment was included as a carrier control to determine whether 

effects of Trichoderma addition were due to the organism or the carrier. However, Baker 

et al. (1984) suggest the fallacy of this reasoning in that, the carrier alone is not the same as 

the carrier colonized and partially digested by a living organism. They use the example of 

the wheat bran and peat carrier for Trichoderma inoculum in their argument. They say it 

cannot be considered a control but rather must be considered as a treatment unto itself and 

results from treatment with wheat bran and peat cannot be used to extrapolate meaning 

about inoculation with any organism grown on that substrate. In the case of Trichoderma, 

difficulty arises from its tendency to sporulate profusely, even on the surface of the potting 

medium during the course of an experiment. Dispersal of Trichoderma spores from 

watering or ventilation fans may cause pots containing the carrier substrate to be colonized 

by Trichoderma , inadvertently. Therefore, treatments with sterile carrier alone may not be 

sterile. In the future this treatment will be discontinued and watering methods may have to 

be modified to a capillary system with individual trays for each pot. 

Overall, it appeared that treatment with isolates of Trichoderma had beneficial 

effects on strawberry plant growth in the presence of Rhizoctonia solani and R.fragariae 

but the benefits were variable. In order for more reliable benefits fot strawberry growth to 

be defined, more experiments must be conducted. Laboratory experiments should be 

conducted that evaluate the population kinetics of these organisms in field soil with and 

without the presence of strawberry roots to determine the important components of the 

system (i.e., pH, temperature, soil moisture and organic matter content, other compatible 

biocontrol organisms, water stress and nutritional status of the plant, plant cultivar 

differences, etc.). Also, field studies must be conducted under normal production 

conditions to determine the practical aspects of this method of disease management (i.e., 
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cost, method of application, timing of application, duration of effects, etc.). It is likely that 

if biological management of soilbome diseases with introduced microorganisms becomes a 

viable option in commercial strawberry production, it will be as pan of a package of 

practices that could include cultivar selection, crop rotation, possibly soil solarization and 

cover cropping, and organic matter amendment with compost to enhance the available 

substrate for sustaining the biocontrol organism(s) introduced into the system, plus other 

changes. 
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CHAPTER IV 
DISEASE SUPPRESSION STUDY USING SELECTED 

COMPOSTS 

4.1 Literature Review 

4.1.1 General Benefits of Organic Matter Amendments 

Soil organic matter (SOM) is the fraction of the soil made up of dead plant and 

animal tissue in various stages of decomposition (Brady, 1984). Per unit mass, this is the 

most chemically and biologically active fraction of the soil and contains an important 

reservoir of essential elements needed for plant growth (Bohn et al., 1985). Organic matter 

in soil also helps promote the formation of soil aggregates improving soil structure, and 

promotes chelation of copper, zinc, and other polyvalent cations making them more 

available to higher plants (Bohn et al., 1985). It contains a large reserve of carbon needed 

to support microbial life (protozoa, nematodes, fungi, bacteria, actinomycetes and some 

micro arthropods) which is needed to break down newly added organic matter into a rela¬ 

tively stable form known as humus, and are a food source for other microorganisms and 

micro- and macro- arthropods (Paul and Clark, 1989 ; Bohn et al., 1985). 

Benefits of adding organic matter to soil are known and include an increase in water 

holding capacity and cation exchange capacity, improved aeration and tilth, soil pH 

buffering, and the addition of plant nutrients through mineralization (Brady, 1984). The 

incorporation of organic matter into soil also stimulates microbial activity as microor¬ 

ganisms consume added carbon, nitrogen, and each other, in a complex food chain (Paul 

and Clark, 1989). 

4.1.2 Compost Properties and Production 

Compost is a form of organic matter commonly applied to soils. It can be described 

as a stable form of organic matter (i.e., no longer undergoing rapid degradation) which 
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results from a process of biological decomposition by microorganisms under controlled 

conditions (Golueke, 1972). The stipulation that it results from a controlled process 

distinguishes it from the organic humus which results from decomposition under natural 

conditions as in the forest floor (Rynk, 1992). 

Composting is primarily an aerobic process of decomposition involving 

thermophilic and mesophilic microorganisms (Golueke, 1972). Hoitink and Fahy (1986) 

describe three phases that comprise the composting process: (1) the initial phase lasting one 

to two days where temperatures in the organic matter mass rise sharply and readily 

degradable compounds break down; (2) a thermophilic phase lasting months where 

temperatures in the center of the pile are sustained at high levels (45° to 65°C) and cellulose 

and other complex molecules are degraded; and (3) a stabilization phase lasting an 

undetermined amount of time where temperatures decline, the rate of decomposition 

decreases and mesophilic organisms recolonize the pile. 

Conditions which must be controlled in order for composting to occur include 

proportioning of materials that make-up the mass of organic matter to be composted with 

regard to carbon and nitrogen content and ratio (C:N ratio), particle size, water holding 

capacity, and pH, and the maintenance of adequate moisture within and aeration of the 

organic matter mass (Rynk, 1992). Dimensions of the mass are also important in the 

composting process. In order for the decomposition process to accelerate, generating heat 

and sustaining a thermophilic phase, the pile must be of sufficient mass or else acceleration 

never occurs or is not sustained (Golueke, 1972). Dimensions vary with the materials used 

but are generally thought to be a minimum of 1 m- and up to 3-4 m high, 6-7 m wide and 

any length (Rynk, 1992). Upper limits are usually defined by the size of the equipment 

used to aerate or otherwise manipulate the mass. All of these conditions affect the 

biological activity in the mass, thereby affecting the process of composting. Desirable 

ranges of the above parameters are summarized in Table 4.1. 
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Table 4.1. Recommended conditions for rapid composting. 

Condition Reasonable Range a Preferred Range 
Carbon to nitrogen (C:N) ratio 20:1 -40:1 24:1 -30:1 
Moisture content 40 - 65% 50 - 60% 
Oxygen concentration Greater than 5% Much greater than 5% 
Particle size (diameter) 0.3 - 1.25 cm Varies b 
pH 5.5 - 9.0 6.5 - 8.0 
Temperature (°C) 44° - 66° 55° - 50° 

aThese recommendations are for rapid composting. Conditions outside these ranges can also yield successful 
results. 

^Depends on the specific materials, pile size, and/or weather conditions. 
(After Rynk, 1992) 

Sources of raw materials for composting vary widely, ranging from common 

household kitchen scraps for back-yard composting to municipal mixed solid waste 

diverted from landfills and water treatment plants for large scale industrial composting 

(Rynk, 1992). Many industries and companies are finding composting an appealing option 

for disposing of organic residuals as other disposal options are restricted or increasingly 

expensive. Nynex Information Systems has initiated a project for composting outdated 

telephone directories by shredding them and using them first as animal bedding prior to 

composting (Logan, 1991; Gould, 1992). In 1990, Proctor & Gamble Co., makers of 

Pampers™ disposable diapers, began a $20 million research and education initiative for 

promoting mixed solid waste composting as an alternative to landfilling or incineration 

(Kunzler, 1992). Ocean Spray, Inc., which formerly disposed of cranberry waste from 

processing in local landfills, and is now prohibited from this practice, contracts with a 

company to compost the material at a profit (B. Page, pers. comm.). Indeed, composting 

is increasingly being viewed as an attractive strategy in integrated waste management; an 

equal partner with recycling and conservation (Gouin, 1989; Logsdon, 1990). End uses of 

compost also vary, ranging from use in potting mixes for greenhouse or container grown 

nursery crops, to use as landfill caps (Gouin, 1989). 
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The trend toward increased manufacturing of compost is relevant to agriculture 

because of increasing availability of this potentially beneficial soil amendment, but also 

because of increased pressure for land application of some composts that are an otherwise 

difficult disposal problem (Gouin, 1989; Logsdon, 1990; Richard and Chadsey, 1990). 

This is particularly true of sludge based composts which may have an increased risk of 

contamination by heavy metals or other toxins (Richard and Chadsey, 1990). 

Compost quality standards are, as yet, ill-defined and not universally accepted 

(Gouin, 1989). Attempts are being made to develop scientifically based compost quality 

standards with highest end-use recommendations attached (Rynk, 1992). Such standards 

rate characteristics like particle size, color, soluble salt concentration, respiration rate , etc. 

with respect to various grades recommended for certain end uses (Rynk, 1992). 

Discussion of the broad spectrum of compost properties relevant to plant growth or 

soil improvement is beyond the scope of this study; however, generalizations about 

compost quality are possible. For example, a high quality compost is one that would 

directly benefit plant growth or soil conditions for plant growth while a poor quality 

compost would be detrimental. A poor quality compost may also contain leachable 

contaminants (heavy metals), be unstable (high respiration rate), have noxious odors, 

contain viable weed seeds or plant pathogens, or have physical contaminants like plastic or 

glass. Desirable properties of compost may go beyond basic horticultural benefits of plant 

growth to include the ability of a compost to suppress plant disease (Hoitink and Fahy, 

1986). 

4.1.3 Disease Suppression by Compost 

Increased microbial activity following addition of organic matter to soil has been 

shown to contribute to suppression of plant disease (Hoitink and Fahy, 1986). This 

suppression is thought to result primarily from increased competition among soil organisms 

for carbon and nitrogen and other soil resources (i.e., general suppression), and 
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secondarily, from specific suppression by direct predation or parasitism on pathogens by 

antagonists residing in, or stimulated by organic matter added to soil (Benson and Baker, 

1970; Cook and Baker, 1983). 

Compost made from various organic residues have been shown to suppress plant 

pathogens such as Phytophthora cinnamomi Rands, Rhizoctonia solani, Sclerotium rolfsii, 

Fusarium oxysporum, and Pythium aphanidermatum (Edson) Fitzp. (Hoitink, 1980; 

Hoitink and Fahy, 1986; Gorodecki and Hadar, 1990; Hadar and Mandelbaum, 1986; 

Spring et al., 1980). Composted hardwood bark, when used in place of peat in potting 

media, suppressed damping off diseases of cucumber caused by Pythium ultimum (Chen et 

al., 1983). Vaughn et al. (1954) reported control of red stele of strawberry (Phytophthora 

fragariae) following incorporation of composted Douglas Fir bark (@90-225 mt/ha). 

Incorporation of Douglas fir sawdust increased losses by the disease. Malek and Gartner 

(1975) reported suppression of plant parasitic nematodes, including Pratylenchus 

penetrans, following incorporation of composted hardwood bark, whereas incorporation 

of peat stimulated nematode populations. Lumsden et al., (1982) reported long-term 

suppression of lettuce drop caused by Sclerotinia minor Jagger following soil 

incorporation of composted municipal sludge. Interestingly, this suppression was not 

correlated with a drop in the soil population of the pathogen, but rather with an increase in 

microbial activity (assessed as dehydrogenase activity) and an increase in the total organic 

matter content in the soil over four years. 

Researchers have reported on suppression of Rhizoctonia solani following 

compost amendment of soil or potting media (Hoitink, 1980; Hoitink et al., 1976; Hoitink 

and Kuter, 1985; Kuter et al., 1983). Much of the documented suppression of R. solani 

has been from use of composted hardwood bark (CHB) (Kuter et al., 1983; Nelson and 

Hoitink, 1982; 1983). Damping-off of Celosia argentina L. caused by R. solani was 

suppressed in planting medium containing 50% or more of CHB (Hoitink, 1980). 
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Increasing the ratio of peat in the medium reduced or eliminated the suppression and fresh 

bark did not suppress disease. 

The properties of CHB responsible for disease suppression are not well under¬ 

stood, but are thought to include five factors: 

(1) the particle size of CHB is larger than other organic amendments like peat and 

improve aeration of the root zone, especially in container grown crops (Hoitink 

and Fahy, 1986); 

(2) high nitrogen content increases disease caused by Phytophthora and Fusarium 

(Engelhard and Woltz, 1973) and nitrogen content of CHB is often low because 

immobilization may be still taking place (Hoitink and Fahy, 1986); 

(3) pH reduction suppresses certain pathogens such as P. cinnamomi but not R. 

solani which may be favored by low pH (Blaker and MacDonald, 1983); 

(4) CHB supports high populations of antagonistic and phagous organisms (Kuter 

et al., 1983), and 

(5) water extracts prepared from bark contain toxic compounds (e.g., ethyl esters of 

hydroxy-oleic acids) with fungicidal properties (Hoitink, 1980; Hoitink and 

Fahy, 1983). 

Antagonistic microorganisms commonly isolated form CHB include members of 

the genera Trichoderma, Gliocladium, Penicillium, Morteierella, Paecilomyces, 

Geomyces, and Ophiostoma with T. hamatum and T. harzianum the most abundant taxa 

(Nelson et al., 1983). Composted hardwood bark is not commonly available in New 

England. However, composted municipal yard waste made from leaves of mixed 

hardwoods is abundant. Properties of the two composts are thought to be similar (H. 

Hoitink, pers. comm.). 
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4.1.4 Objective 

The objective of this study was to test different composts for the ability to suppress 

R. solani infection of strawberry roots and to determine whether soil inhabiting 

microorganisms were important to disease development or suppression. 

4.2 Methods and Materials 

4.2.1 Greenhouse Experiment I 

The first greenhouse experiment evaluated four composts for suppression of 

Rhizoctonia solani infection of strawberry roots. The experimental design was a fully 

factorial randomized complete block with three main classifications and 10 replications. 

The first classification contained two treatments: inoculation with three grams of R. solani 

(AG1, B43) inoculum at 25 x 105 colony forming units (cfu)/gram, prepared according to 

standard operating procedures SOP: T101, T106, and T109; provided in the appendices 

and an untreated control. The second classification contained five treatments: 50 ml3 of 

Municipal Yard Waste (MYW) compost primarily made from leaves of mixed hardwood 

and shade trees obtained from the City of Springfield Dept, of Public Works, Springfield, 

MA; 50 ml3 MYW compost primarily made from leaves of mixed hardwood and shade 

trees obtained from the City of Northampton Sanitary Landfill, Northampton, MA; 50 ml3 

agricultural compost made from cranberry presscake mixed with chicken manure obtained 

from Mass Natural Fertilizer Co., Westminster, MA; 50 ml3 agricultural compost made 

from horse and cow manure obtained from Moody Hill, Inc., NY; and an untreated control 

where no compost was added. The third classification contained two treatments: 

pasteurized soil, sand, perlite (2:1:1) soil mix (double heat sterilized at 85°C for five hours 

on two consecutive days) and non-pasteurized soil mix of the same composition. There 

were a total of 20 treatment combinations. 
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Pasteurization of the soil mix was done prior to the other treatments. 300 ml (1.5 

g/ml dryweight equivalent) of soil mix decanted into 10 cm diameter clean plastic pots. R. 

solani inoculum was allowed to incubate in pots for one week at ambient greenhouse air 

temperature (22 to 26 C) after being incorporated into the soil mix. Compost treatments 

then were added and likewise allowed to incubate for one week at ambient greenhouse air 

temperature prior to planting strawberries. Plants were greenhouse-grown, tissue-cultured 

plantlets cv. Kent provided by Nourse Farms, Inc., Whately, MA. 

Care was taken to prevent contamination by washing tools and hands with 20% 

bleach solution between treatments. The strawberry plants were allowed to grow for 12 

weeks. Plants were fertilized with 50 ml of a 1% solution of Peter's® 20-20-20 All 

Purpose Plant Food (Grace Sierra Hort.. Products Co., Milpitas, CA) weekly. 

Plant survival and runner production were recorded at the end of the experiment. 

Roots and shoots were separated by dividing crowns where the roots emerged, dried and 

weighed. Visual evaluations of root lesion density on primary and secondary roots were 

made on a scale of 1 to 5 (where 1 = 100% lesion coverage, 2=75% lesion coverage, 

3=50% lesion coverage, 4=25% lesion coverage, 5=no lesions) at the end of the 

experiment. 

4.2.2 Greenhouse Experiment II 

The second greenhouse experiment evaluated two composts before and after heat 

sterilization for suppression of Rhizoctonia solani infection of strawberry roots. The 

experimental design was a fully factorial randomized complete block with three main 

classifications and 10 replications. The first main classification contained three treatments: 

inoculation with three grams of R. solani (AG1, B43) inoculum at 30 x 105 colony 

forming units (cfu)/gram, prepared according to standard operating procedures SOP: T101, 

T105, and T109; provided in the appendices; inoculation with three grams of sterile oat 

seed carrier, and an untreated control. The second main classification contained five 
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treatments: 50 ml of Municipal Yard Waste (MYW) compost primarily made from leaves of 

mixed hardwood and shade trees obtained from the City of Springfield Dept, of Public 

Works, Springfield, MA; 50 ml of the same MYW compost autoclaved twice at 85°C for 

one hour each on two consecutive days; 50 ml agricultural compost made from cranberry 

presscake mixed with chicken manure obtained from Mass Natural Fertilizer Co., 

Westminster, MA; 50 ml of the same agricultural compost autoclaved twice at 85°C for one 

hour each on two consecutive days; and an untreated control where no compost was added. 

The third main classification contained two treatments: pasteurized soil, sand, perlite (2:1:1) 

soil mix (double heat sterilized at 85°C for five hours on two consecutive days) and non- 

pasteurized soil mix of the same composition. There were a total of 30 treatment 

combinations. 

Pasteurization of the soil mix was done prior to the other treatments. 300 ml (1.5 

g/ml dry weight equivalent) of soil mix decanted into 10 cm diameter clean plastic pots. R. 

solani inoculum was allowed to incubate in pots for one week at ambient greenhouse air 

temperature (22° to 26°C) after being incorporated into the soil mix. Compost treatments 

then were added and likewise allowed to incubate for one week at ambient greenhouse air 

temperature prior to planting strawberries. Plants were greenhouse-grown, tissue-cultured 

plantlets cv. Kent provided by Nourse Farms, Inc., Whately, MA. 

Care was taken to prevent contamination by washing tools and hands with 20% 

bleach solution between treatments. The strawberry plants were allowed to grow for 16 

weeks. Plants were watered with deionized water to suppress the pH. Plants were 

fertilized with 50 ml of 1% solution of Peter's® 20-20-20 All Purpose Plant Food (Grace 

Sierra Hort. Products Co., Milpitas, CA) or Hoagland's nutrient solution (Hoagland and 

Amon, 1938) on alternating weeks. 
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4.2.3 Statistical Analysis 

Statistical analyses were performed using SYSTAT for the Macintosh© (Statistics, 

Version 5.2 Edition, Evanston, IL). Square root transformations were performed on rating 

data to stabilize variances or normalize the sample population (Damon and Harvey, 1987). 

Back-transformed data from transformations are presented in all tables. Differences 

between treatments were analyzed by analysis of variance (ANOVA) using the general 

linear model (GLM) procedure, with means separated by least significant difference (LSD) 

(Damon and Harvey, 1987; Gomez and Gomez, 1984). 

4,3 Results 

4.3.1 Experiment 1 

Whole dry weights of strawberry plants were not affected by compost treatments or 

by pasteurization of the soil mix However, inoculation with /(. solani reduced the dry 

weight of plants (p^O.OOl). Interestingly, the amount of dry weight reduction due to 

inoculation was less for plants in non-pasteurized soil mix than in pasteurized soil mix 

('fable 4,2). 

Dry weight of shoots arid r</>ts v/erc also evaluated. Root dry weights were not 

affected by treatment, inoculation or soil mix pasteurization (data not shown; analysis of 

variance table A 35 in Appendix A). And, shoot dry weights were affected by inoculation 

similarly to whole plant dry weight (data not shown; analysis of variance table A.36 in 

Appendix A). 
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Table 4.2. Whole plant dry weights of strawberry plants grown in pasteurized or non- 
pasteurized soil mix with or without inoculation with Rhizoctonia solani and treated with 
one of four composts, or not treated2. 

Dry Weight of Whole Plants (g) 
Pasteurized soily Non-pasteurized soil 

Compost Treatmentsw Inoculatedx Non-inoculated Inoculated Non-inoculated 
Springfield MYWV 2.77 4.11 3.93 3.68 
Northampton MYW 2.76 3.92 2.81 4.27 
MassNatural™u 3.26 4.34 2.88 3.78 
Moody Hill™1 2.57 4.20 2.51 3.03 
Control (no compost) 3.35 4.69 3.46 3.39 • 

Mean 2.94 4.26 3.12 3.65 
Inoculation effects *** * 

Pasteurization effectr ns ** 

2 Analysis of variance table A.37 in Appendix A. 

yHeat pasteurized at 83°C for five hours on two consecutive days. 

xInoculated with 3 g of R. solani inoculum (40 x 10^ cfu/g). 

wPotting soil mix amended with 50 ml of compost material from sources listed. 

vMYW=municipal yard waste primarily comprised of leaves from mixed hardwoods. 

Agricultural compost made from cranberry waste and chicken manure. 

Agricultural compost made from horse and cow manure. 

difference between plant weights from inoculated vs. non-inoculated soil within pasteurization. 

difference between plant weights from pasteurized vs. non-pasteurized soil within inoculation. 
*,**,***, ns Plant weights significantly different at p<0.5, p<0.01, p<0.001, or not significant, 

respectively. 

The number of strawberry runner plants produced was not affected by compost 

treatments or by soil pasteurization. Inoculation with R. solani reduced the number of 

runners compared to non-inoculated plants (Table 4.3). 

Table 4.3. Number of runners produced by strawberry plants grown in pasteurized or 
non-pasteurized soil mix with or without inoculation with Rhizoctonia solani and treated 
with one of four composts, or not treated2. 

Compost Treatments’1 

Number of Runners 
Inoculatedy Non-inoculated 

Springfield MYW 0.6 1.3 
Northampton MYW 0.5 1.4 
MassNatural™ 0.6 0.7 
Moody Hill™ 0.4 0.8 
Control (no compost) 0.4 1.2 

Mean 0.5 *** 1.1 

2 Analysis of variance table A.38 in Appendix A. 

yinoculated with 3 g of R. solani inoculum (40 x 10^ cfu/g). 

xPotting soil mix amended with 50 ml of compost material from sources listed. 
*** Number of runners significantly different at p<0.001. 
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Visual ratings of strawberry roots were affected by the compost treatments and by 

inoculation with R. solani (Table 4.4). Three of the four compost treatments plus the 

control were rated higher than the Moody Hill™ compost treatment. In the non-pasteurized 

soil mix, inoculation did not have an effect on visual ratings but, in pasteurized soil, non- 

inoculated plants received a higher rating (Table 4.4). And, among non-inoculated plants, 

roots from pots with non-pasteurized soil mix were not rated differently from pasteurized 

soil. However, among inoculated pots, roots from pasteurized soil mix were rated lower 

than those from non-pasteurized soil. 

Table 4.4. Visual rating of strawberry roots (1 = 100% lesion coverage, 2=75% lesion 
coverage, 3=50% lesion coverage, 4=25% lesion coverage, 5=no lesions) grown in 
pasteurized or non-pasteurized soil mix with or without inoculation with Rhizoctonia solani 

and treated with one of four composts, or not treated2. 

Strawberry Root Rating 

Pasteurized soiiy Non-pasteurized soil 

in 
Compost 
Treatments w Inoc.x Non-inoc. Inoc. Non-inoc. Mei 
Springfield MYW 2.9 3.8 3.4 3.3 3.35 a 
Northampton MYW 3.1 3.8 3.1 3.2 3.30 a 
MassNatural™ 2.8 3.0 3.2 4.1 3.27 a 
Moody Hill™ 2.2 3.1 3.3 2.7 2.82 b 
Control (no compost) 3.3 3.8 3.7 3.7 3.62 a 

Mean 2.9 3.5 3.3 3.4 
Inoculation effectv ** ns 

Pasteurization effect11 ** ns 

z Analysis of variance table A.39 in Appendix A. 

yHeat pasteurized at 83°C for five hours on two consecutive days. 

xInoculated with 3 g of R. solani inoculum (40 x 10^ cfu/g). 

wPotting soil mix amended with 50 ml of compost material from sources listed. 

difference between plant weights from inoculated vs. non-inoculated soil within pasteurization. 

difference between plant weights from pasteurized vs. non-pasteurized soil within inoculation. 
** , ns Root rating significantly different at p<0.001, or not significant, respectively. 

4.3.2 Experiment II 

Fresh and dry weight of whole plants were not affected by compost treatment, 

pasteurization of soil mix, or Rhizoctonia-inocuVdlion (Table 4.5). However, visual root 

rating of plants was higher in pasteurized soil compared to non-pasteurized (p<0.05; data 
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not shown), and higher in non pasteurized Springfield MYW than either pasteurized or 

non-pasteurized MassNatural™ compost (Table 4.6), but inoculation did not affect the 

visual rating of the roots. Within the inoculation treatment, there were differences among 

compost treatments, but none was different from the control treatment where no compost 

was applied. Roots from plants inoculated with R. solani were rated higher in the 

pasteurized Springfield MYW treatment than either of the MassNatural™ compost treatment 

(Table 4.6). Unfortunately, a flaw in the experimental design makes it impossible to 

evaluate the effect of compost pasteurization on any of the experimental measures. 

Table 4.5. Whole plant fresh and dry weights of strawberry plants grown in pasteurized 
or non-pasteurized soil mix with or without inoculation with Rhizoctonia solani and treated 
with one of four composts, or not treated2. 

Compost Treatmentsw 

Fresh Weight of Whole Plants (g) 
Pasteurized soily Non-pasteurized soil 

Inoc.x Oat Carrier Non-inoc. Inoc. Oat Carrier Non-inoc. 

Springfield MYWV 
Pasteurized 6.47 5.95 6.58 7.13 4.17 8.32 
Non-pasteurized 5.35 7.92 5.50 5.24 7.28 7.12 

MassNatural™0 
Pasteurized 4.02 6.90 5.80 6.46 5.64 5.45 
Non-pasteurized 2.32 5.60 7.16 4.19 4.01 5.77 

Control (no compost) 4.61 6.41 3.82 5.30 4.84 5.85 

Dry Weight of Whole Plants (g) 
Pasteurized soil Non-pasteurized soil 

Inoc. Oat Carrier Non-inoc. Inoc. Oat Carrier Non-inoc. 
Springfield MYW 

Pasteurized 1.00 0.84 1.17 1.15 0.88 1.71 
Non-pasteurized 0.95 1.82 1.10 0.83 1.76 1.38 

MassNatural™ 
Pasteurized 0.91 1.26 0.86 0.88 0.71 0.97 
Non-pasteurized 0.42 1.22 1.08 0.73 0.68 1.12 

Control (no compost) 0.79 1.23 0.67 0.94 0.96 1.01 

2 Analysis of covariance and variance tables A.40 and A.41, respectively, in Appendix A. 

yHeat pasteurized at 83°C for five hours on two consecutive days. 

xInoculated with 3 g of R. solani inoculum (40 x 10^ cfu/g). 

wPotting soil mix amended with 50 ml of compost material from sources listed. 

vMYW=municipal yard waste primarily comprised of leaves from mixed hardwoods. 

Agricultural compost made from cranberry waste and chicken manure. 
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Table 4.6. Visual rating of strawberry roots from plants grown in pasteurized or non- 
pasteurized soil mix with or without inoculation with Rhizoctonia solani and treated with 
one of four composts, or not treated2^. 

Strawberry Root Rating* 

Compost Treatments'^ Inoc.w Oat Carrier Non-inoc. Mean 

Springfield MYW 
Pasteurized 3.6 2.9 3.1 3.2 abc 
Non-pasteurized 3.4 3.9 3.1 3.4 a 

MassNatural™ 
Pasteurized 2.5 3.1 2.9 2.8 be 
Non-pasteurized 2.2 2.6 3.1 2.7 c 

Control (no compost) 3.4 3.5 3.3 3.3 ab 

Pasteurized soil mix 2.9 3.8 a 3.2 3.3 a 
Non-pasteurized soil mix 3.1 2.6 b 2.9 2.9 b 

2 Analysis of variance performed on transformed data ((x+0.5)^); ANOVA table A.42 in Appendix A. 

yMeans in columns followed by different letters are significandy different at p<0.05. 

xData presented backtransformed from analyzed data. 

wInoculated with 3 g of R. solani inoculum (40 x 10^ cfu/g). 

vPotting soil mix amended with 50 ml of compost material from sources listed. 

4.4 Discussion 

4.4.1 Effect of Inoculation with Rhizoctonia solani 

Plants inoculated with R. solani were smaller (dry weight) than those not 

inoculated, produced fewer runners, and had roots that were rated lower in visual 

evaluation than non-inoculated plants in Experiment I, but not in Experiment II. In 

Experiment II, inoculation did not affect any of the measurements of strawberry plant 

growth. The analyses of variance of these experiments suggest that the effect of 

inoculation was not strong and only marginally significant (effect on fresh weight p=0.09; 

effect on dry weight p=0.06). The marginal effect of inoculation may have been due to 

excessive variability in the plants at the beginning of the experiment or due to contamination 
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during the experiment. Whichever the case, this result compromised much of the value of 

Experiment II. 

4.4.2 Effect of Soil Pasteurization 

Soil pasteurization did not have an overall effect in either experiment except for on 

the visual root ratings in Experiment II where roots from pasteurized soil were rated higher 

than those from non-pasteurized soil. No statistical significance was found in the 

interaction between pasteurization and treatment, but with in Experiment I, the data appear 

to suggest that non-pasteurized soil contains some agent of R. solani suppression as 

evidenced by similar plant weights of inoculated and non-inoculated plants in control 

treatments. Additionally, the Springfield MYW compost appeared to have a similar effect. 

Also, visual ratings of roots were not different between inoculated and non-inoculated 

plants in the non-pasteurized soil, suggesting the possibility of a living factor in the soil 

which plays a role in suppression of R. solani. 

4.4.3 Effect of Compost Treatments 

Compost treatments did not have a consistent effect on strawberry plant growth or 

visual root evaluations. In Experiment I, Moody Hill agricultural compost appeared to 

have a detrimental effect on root ratings but no detectable effect on plant growth or runner 

production. None of the other composts had detectable effects. In Experiment II, no 

coherent treatment effects were evident from the data. 

4.4.4 Summary 

Clearly, no conclusions about compost effects on strawberry growth or 

suppression of Rhizoctonia can be drawn from the experiments in this study. Much 

additional work must be done to pursue this method of disease suppression. Experimental 

methods must insure that plant variability is minimized at the outset of the experiment and 
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that sources of contamination are eliminated. Additionally, the factor of soil sterilization 

must be sure to produce the desired result, i.e., eliminating the living fraction of the soil or 

compost and otherwise not altering it. Heat sterilization may not be the desired method for 

this since it changes the physical and chemical properties of the material (Sandler et al., 

1988). Gamma irradiation may be a preferred method for sterilizing these materials and 

will be considered for future experiments. Finally, evaluations of root lesion density may 

be done more accurately with the use of digital image analysis. This technology will be 

developed and used in future studies. 
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CHAPTER V 

CONCLUSIONS 

None of the strategies investigated in this thesis (soil solarization, cover crop 

rotations, application of biological control agents or compost amendments) will, alone, 

serve as alternatives to soil fumigation for controlling weeds or black root rot in 

strawberries. It is possible, however, that a combination of these strategies may provide a 

practical and affordable approach to these difficult problems. A review of benefits and 

drawbacks of the four strategies is valuable. 

5.1 Soil Solarization 

Advantages of soil solarization include the absence of toxic chemicals which makes 

it safe for the applicator as well as mitigating the risk of chemical contamination of soil or 

groundwater. Solarization can be an effective method of weed and disease suppression in 

strawberries (Hartz et al., 1993). In our studies, solarization was often as good as 

fumigation and usually better than control plots for weed control and promoting subsequent 

strawberry plant growth. However, the effect of solarization was not consistent between 

the two experiments we conducted in two consecutive years. This points out one of the 

major drawbacks of this technique which is the unreliable levels of solar radiation in the 

Northeast. There may not be sufficient solar radiation each summer to depend on this 

technique of soil disinfestation. Furthermore, the timing of applying plastic to the soil is 

during the peak production period of the growing season. In order to use this method, a 

grower must be willing to remove land from production during this time. This may be 

acceptable for small plantings but too costly for large ones. Additionally, in order to 

sustain the benefits of solarization, the soil must be disturbed as little as possible after 

treatment so as not to mix treated and untreated soil. This may require a completely new 

planting system for strawberries. Finally, disposal of the plastic used for solarization is 
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problematic. Even photodegradable plastic film leaves strips in the field where edges were 

covered with soil. Collection of plastic residue is labor intensive and leaving it in the field 

creates a nuisance for cultivation and other field operations. 

5.2 Cover Crop Rotations 

Pre-plant cover crop rotations can also benefit strawberry culture by suppressing 

weeds and diseases. Buckwheat or Sudex followed by winter rye seeded the year prior to 

planting strawberries can suppress weed growth and promote strawberry plant growth in 

the establishment year. How long those benefits last is not known from these studies. The 

drawback of this method is in needing to commit most of the year prior to planting 

strawberries to growing a non-cash crop. Sudex may be used for mulch if harvested but it 

is unknown whether removing topgrowth from the field lessens the benefit compared to 

soil incorporation of the whole plant. Again, this may be more acceptable in small land 

areas than in large ones. 

5.3 Use of the Biological Control Agent Trichoderma harzianum 

The biological control agent Trichoderma harzianum can suppress Rhizoctonia 

infection of strawberry plants (Elad et al., 1981). In our study, T. harzianum benefited 

strawberry plant growth with or without inoculation with Rhizoctonia, most of the time. 

However, of the two isolates used, results were not consistent as to which one was 

beneficial in each case. Issues of timing of field application, formularion and delivery 

system, and cost have not yet been addressed. Field studies must be conducted to assess 

whether predictable results can be achieved. 

5.4 Use of Compost Amendments 

The value of compost amendments for disease suppression in strawberries was not 

established in this study. However, the abundance of research results supporting this 
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method compels further study. It may be that compost already determined to be 

suppressive (e.g., composted hardwood bark) should have been included in the study, 

even though it is not a practical option for this region. Comparisons between CHB and 

municipal yard waste compost could then be made. Specific properties that confer 

suppressiveness to a compost should also be defined so that compost production 

technology can be refined in order to produce a reliably disease suppressive product. 

Inoculation of compost with beneficial organisms may also prove valuable in enhancing the 

value of the compost and providing a delivery substrate for biological control agents. 

The primary drawback of using compost amendments for disease suppression is 

lack of reliable results, but a secondary drawback is handling and cost of the material. On- 

farm composting alleviates much of these drawbacks, but not all growers have the option to 

do on-farm composting. If cost and handling of municipally produced compost (e.g., 

municipal yard waste compost) proves affordable, and benefits to growers sufficient to 

offset those costs, an important link may be forged between agriculture and waste 

management concerns to form a system of organic matter cycling (recycling) with benefits 

to all parties. 
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APPENDIX A 
ANALYSIS OF VARIANCE TABLES 

Chapter II: Experiment I 

Table AJ, Analysis of variance for percent weed cover, transformed by arcsine 
(x+0.5)W. 

ss DF MS F-ratio P 
Whole Hot 

Replication 0.039 5 0.007 
Treatrncrjt 2.525 5 0.505 15.18 0.0001 

Trt^Rep 
Spin Hot 

0.832 25 0.033 

Till 11.230 1 11.230 424.43 0.0001 
Till'P.ep 0.052 5 0.010 

TrtTill 1.799 5 0.342 12.92 0.0001 
Tfl*TjIJ*Rep 

Spi4 ',;.4 Plot 
0.661 25 0.026 

Ira& 7.637 1 7.637 2545.67 0.0001 
Date^Rep 0X115 5 0.003 

Tn'Date 0.714 5 0.143 11.84 0.0001 
7rt*Date*P.ep 0.302 25 0.012 

Till •'Date 2.976 1 2.976 294.81 0.0001 
Tij)*Date*P.tp 0.265 5 0.005 

TfiTiU* Irate 0.517 5 0.103 10.30 0.0001 
'>r: 'Date*?':*) 0.252 25 0.010 

Table A.2. Analysis of variance for monocot weed density. 

Source SS DF MS F-rauo P 
W hole Plot 

Replication 1.841 5 0.368 1.036 0.418 
Treaunent 2.867 5 0.573 2.065 0.104 

Trt*Rqp 6.944 25 0.278 
Spirt Plot 

Till 4.753 1 4.753 14.535 0.012 
TUPTfcep 1j635 5 0.327 
TffrtWfH*Ti 1.977 5 0.395 1.113 0.379 

Tn*Tj'.j*rP 8.883 25 0.355 

Table AJ. Analysis of variance for dicot v.eed density. 

Source SS DF MS F-rauo P 

Whole Plot 
Pep'jcauoo 70.747 5 14.149 0.426 0.826 
TrtatrrjcrA 329.625 5 65.925 2.001 0.113 

Trt^Rep 823.644 25 32.946 
Spirt Plot 

Till 1651.592 1 1651.592 78.651 0.000 
Tiii^Rep 104.995 5 20.999 
T«a»M*TiQ 253.988 5 50.798 1.529 0.217 

TifTilPte 830.785 25 33.231 
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Table A.4. Analysis of variance for total weed density. 

Source SS DF MS F-ratio P 
Whole Plot 

Replication 86.566 5 17.313 0.524 0.756 
Treatment 350.783 5 70.157 2.134 0.094 

Trt*Rep 821.925 25 32.877 
Split Plot 

Till 1833.555 1 1833.555 75.716 0.000 
Till*Rep 121.080 5 24.216 
Treatment*Till 279.063 5 55.813 1.690 0.174 

Trt*Till*Rep 825.606 25 33.024 

Table A.5. Analysis of variance for visual rating of strawberry plants; transformed by 
(x+0.5)1/2. 

Source SS DF MS F-ratio P 

Whole Plot 
Replication 0.056 5 0.011 1.028 0.381 
Treatment 0.275 5 0.055 4.582 0.004 

Trt*Rep 0.300 25 0.012 
Split Plot 

Till 1.870 1 1.870 445.603 0.000 
Till*Rep 0.021 5 0.004 
Treatment*Till 0.024 5 0.005 0.439 0.817 

Trt*Till*Rep 0.274 25 0.011 
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Chapter II 
Experiment II 

Table A.6. Analysis of variance for percent weed cover; transformed by arcsine 
(x+0.5)1/2. 

Source SS DF MS F-ratio P 
Whole Plot 

Replication 0.049 5 0.010 
Treatment 3.025 5 0.605 10.39 0.0001 

Trt*Rep 
Split Plot 

1.456 25 0.058 

Inoculation 0.012 1 0.012 2.18 0.199 
Inoc*Rep 0.028 5 0.006 

Trt*Inoc 0.011 5 0.002 0.44 0.8183 
Trt* Inoc* Rep 

Split Split Plot 
0.129 25 0.005 

Date 14.269 1 14.269 927.92 0.0001 
Date* Rep 0.076 5 0.015 

Trt*Date 2.615 5 0.523 8.98 0.0001 
Tit* Date* Rep 1.456 25 0.058 

Inoc*Date 0.006 1 0.006 0.89 0.3881 
Inoc*Date*Rep 0.036 5 0.007 

Trt*Inoc*Date 0.007 5 0.001 0.24 0.9432 
Trt*Inoc*Date*Rep 0.140 25 0.006 

Table A.7. Analysis of variance for monocot weed density. 

Source SS DF MS F-ratio P 
Whole Plot 

Replication 20.815 5 4.163 0.996 0.440 
Treatment 16.644 5 3.329 0.749 0.594 

Trt*Rep 111.062 25 4.442 
Split Plot 

Inoc 21.641 1 21.641 3.127 0.137 
Inoc*Rep 34.603 5 6.921 
Treatment* Inoc 17.133 5 3.427 0.820 0.547 

Trt*Inoc*Rep 104.487 25 4.179 

Table A.8. Analysis of variance for dicot weed density. 

Source SS DF MS F-ratio P 
Whole Plot 

Replication 575.006 5 115.001 2.888 0.034 
Treatment 1708.017 5 341.603 1.845 0.140 

Trt*Rep 4628.086 25 185.123 
Split Plot 

Inoc 52.835 1 52.835 1.490 0.277 
Inoc*Rep 177.272 5 35.454 
Treatment* Inoc 270.826 5 54.165 1.360 0.273 

Trt*Inoc*Rep 995.358 25 39.814 
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Table A.9. Analysis of variance for total weed density. 

Source SS DF MS F-ratio P 
Whole Plot 

Replication 605.664 5 121.133 3.041 0.028 
Treatment 1809.799 5 361.960 2.073 0.103 

Trt*Rep 4364.446 25 174.578 
Split Plot 

Inoc 142.105 1 142.105 2.343 0.186 
Inoc*Rep 303.288 5 60.658 
Treatment* Inoc 33.0452 5 66.090 1.659 0.181 

Trt*Inoc*Rep 995.696 25 39.828 

Table A.10. Analysis of variance for weed weight (fresh). 

Source SS DF MS F-ratio P 
Whole Plot 

Replication 4028352.284 5 805670.457 10.722 0.000 
Treatment .351425* 108 5 7028947.977 18.187 0.000 

Trt*Rep 
Split Plot 

9661333.049 25 386453.322 

Inoc 362270.720 1 362270.720 3.183 0.134 
Inoc*Rep 568995.840 5 113799.168 
Treatment*Inoc 694435.840 5 138887.168 1.848 0.140 

Trt*Inoc*Rep 1878589.440 25 75143.578 

Table A.ll. Analysis of variance for weed weight (dry). 

Source SS DF MS F-ratio P 

Whole Plot 
Replication 114715.442 5 22943.008 5.926 0.001 
Treatment 2696955.579 5 539391.116 23.337 0.000 

Trt*Rep 
Split Plot 

577825.213 25 23113.009 

Inoc 18898.920 1 18898.920 2.480 0.176 
Inoc*Rep 38096.489 5 7619.298 
Treatment*Inoc 29297.369 5 5859.474 1.514 0.221 

Trt*Inoc*Rep 96786.617 25 3871.465 

Table A.12. Analysis of variance for percent survival of strawberry plants; transformed 
by arcsine. 

Source SS DF MS F-ratio P 

Whole Plot 
Replication 0.978 5 0.196 1.935 0.124 
Treatment 0.470 5 0.094 1.076 0.397 

Trt*Rep 2.183 25 0.087 
Split Plot 

Inoc 0.459 1 0.459 1.290 0.308 
Inoc*Rep 1.778 5 0.356 
Treatment* Inoc 1.883 5 0.377 3.724 0.012 

Trt*Inoc*Rep 2.528 25 0.101 
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Table A.13. Analysis of variance for runners/plant. 

Source SS DF MS F-ratio P 
Whole Plot 

Replication 8.322 5 1.664 12.611 0.000 
Treatment 15.712 5 3.142 5.117 0.002 

Trt*Rep 15.352 25 0.614 
Split Plot 

Inoc 0.517 1 0.517 0.605 0.472 
Inoc*Rep 4.273 5 0.855 
Treatment* Inoc 0.416 5 0.083 0.631 0.678 

Trt*Inoc*Rep 3.299 25 0.132 

Table A.14. Analysis of variance for strawberry plants biomass/plot. 

Source SS DF MS F-ratio P 
Whole Plot 

Replication 17512.321 5 3502.464 13.517 0.000 
Treatment 19923.274 5 3984.655 4.605 0.004 

Trt*Rep 21631.340 25 865.254 
Split Plot 

Inoc 283.629 1 283.692 0.196 0.676 
Inoc*Rep 7220.948 5 1444.190 
Treatment* Inoc 2840.194 5 568.039 0.604 0.697 

Trt* Inoc* Rep 6478.046 25 259.122 

Table A.15. Analysis of variance for strawberry plant biomass/surviving plant. 

Source SS DF MS F-ratio P 
Whole Plot 

Replication 179.514 5 35.903 15.128 0.000 
Treatment 266.364 5 53.273 22.447 0.000 

Trt*Rep 
Split Plot 

194.343 25 7.774 

Inoc 14.725 1 14.725 1.508 0.274 
Inoc*Rep 7220.948 5 9.765 
Treatment*Inoc 7.167 5 1.433 0.604 0.697 

Trt*Inoc*Rep 59.331 25 2.373 

Table A.16. Analysis of variance for root rating; transformed by (x+0.5)1/2. 

Source SS DF MS F-ratio P 

Whole Plot 
Replication 0.078 5 0.016 1.264 0.310 
Treatment 0.152 5 0.030 2.323 0.073 

Trt*Rep 
Split Plot 

0.328 25 0.013 

Inoc 0.298 1 0.298 53.977 0.001 
Inoc*Rep 0.028 5 0.006 
Treatment* Inoc 0.048 5 0.010 0.776 0.576 

Trt*Inoc*Rep 0.307 25 0.012 
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Chapter III 
Experiment I 

Table A.17. Analysis of variance of root weight. 

Source SS DF MS F-ratio P 
Replication 0.699 9 0.078 1.962 0.085 
Treatment 0.451 3 0.150 3.935 0.019 
Inoculation 0.154 1 0.154 2.638 0.139 
Treatment* Inoc 0.341 3 0.114 2.869 0.055 

Treatment*Rep 1.032 27 0.038 
Inoc*Rep 0.524 9 0.058 
Treatment*Inoc*Rep 1.069 27 0.040 

Table A.18. Analysis of variance of top weight. 

Source SS DF MS F-ratio P 
Replication 12.441 9 1.382 1.228 0.320 
Treatment 15.868 3 5.289 4.849 0.008 
Inoculation 38.135 1 38.135 27.336 0.001 
Treatment* Inoc 4.509 3 1.503 1.335 0.284 

Treatment* Rep 29.454 27 1.091 
Inoc*Rep 12.555 9 1.395 
Treatmen t* I noc* Rep 30.396 27 1.126 

Table A.19. Analysis of variance of whole plant weight. 

Source SS DF MS F-ratio P 
Replication 16.621 9 1.847 1.277 0.294 
Treatment 21.477 3 7.159 5.152 0.006 
Inoculation 33.449 1 33.449 17.709 0.002 
Treatment* Inoc 4.235 3 1.412 0.976 0.418 

Treatment*Rep 37.517 27 1.390 
Inoc*Rep 16.999 9 1.889 
T reatmen t* Inoc* Rep 39.042 27 1.446 

Table A.20. Analysis of variance of runners produced. 

Source SS DF MS F-ratio P 
Replication 3.450 9 0.383 0.831 0.594 
Treatment 4.150 3 1.383 3.291 0.036 
Inoculation 36.450 1 36.450 211.645 0.000 
Treatment* Inoc 0.550 3 0.183 0.398 0.756 

Treatment* Rep 11.350 27 0.420 
Inoc*Rep 1.550 9 0.172 
Treatment* Inoc* Rep 12.450 27 0.461 
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Table A.21. Analysis of variance of primary root visual rating; transformed by 
(x+0.5)1/2. 

Source SS DF MS F-ratio P 
Replication 0.246 9 0.027 0.303 0.967 
Treatment 0.450 3 0.150 2.305 0.099 
Inoculation 1.910 1 1.910 28.785 0.000 
Treatment* Inoc 0.105 3 0.035 0.386 0.764 

Treatment* Rep 1.757 27 0.065 
Inoc*Rep 0.597 9 0.066 
Treatment* Inoc* Rep 2.443 27 0.090 

Table A.22. Analysis of variance of secondary root visual rating; transformed by 
(x+0.5)1/2. 

Source SS DF MS F-ratio P 

Replication 0.546 9 0.061 1.155 0.361 
Treatment 0.499 3 0.166 3.420 0.031 
Inoculation 3.127 1 3.127 59.968 0.000 
Treatment* Inoc 0.222 3 0.074 1.405 0.263 

Treatment*Rep 1.312 27 0.049 
Inoc*Rep 0.469 9 0.052 
Treatment*Inoc*Rep 1.419 27 0.053 
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Experiment II 

Table A.23. Analysis of variance of strawberry root weight. 

Source SS DF MS F-ratio P 
Replication 0.792 8 0.099 0.390 0.915 
Treatment 0.757 3 0.252 0.978 0.420 
Inoculation 2.258 1 2.258 6.444 0.035 
Treatment* Inoc 1.706 3 0.569 2.239 0.110 

Treatment*Rep 6.199 24 0.258 
Inoc*Rep 2.803 8 0.350 
T reatmen t* Inoc* Rep 6.096 24 0.254 

Table A.24. Analysis of variance of strawberry top weight. 

Source SS DF MS F-ratio P 
Replication 0.623 8 0.078 1.037 0.436 
Treatment 0.275 3 0.092 1.829 0.169 
Inoculation 6.919 1 6.919 192.451 0.000 
Treatment* Inoc 0.785 3 0.262 3.487 0.031 

Treatment*Rep 1.203 24 0.050 
Inoc*Rep 0.288 8 0.036 
Treatment*Inoc*Rep 1.802 24 0.075 

Table A.25. Analysis of covariance of whole strawberry plant fresh weight. 

Source SS DF MS F-ratio P 

Starting fresh wt. 328.436 1 328.436 68.371 0.000 
Replication 20.662 8 2.577 0.536 0.001 
Treatment 58.254 3 19.418 4.042 0.011 
Inoculation 781.050 1 781.050 162.592 0.000 
Treatment*Inoc 65.664 3 21.888 4.556 0.006 
Error 302.635 55 4.804 

Table A.26. Analysis of variance of whole strawberry plant dry weight. 

Source SS DF MS F-ratio P 

Replication 1.791 8 0.224 0.482 0.857 
Treatment 1.935 3 0.645 1.470 0.248 
Inoculation 17.082 1 17.082 35.803 0.000 
Treatment* Inoc 4.546 3 1.515 3.260 0.039 

Treatment*Rep 10.530 24 0.439 
Inoc*Rep 3.817 8 0.477 
T reatmen t* I noc* Rep 11.157 24 0.465 
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Table A.27. Analysis of variance of runners produced. 

Source SS DF MS F-ratio P 
Replication 9.000 8 1.125 2.613 0.033 
Treatment 0.819 3 0.273 0.291 0.832 
Inoculation 11.681 1 11.681 64.692 0.000 
Treatment* Inoc 1.042 3 0.347 0.806 0.503 

Treatment*Rep 22.556 24 0.940 
Inoc*Rep 1.444 8 0.181 
Treatment*Inoc*Rep 10.333 24 0.431 

Table A.28. Analysis of variance of primary root visual rating; transformed by 
(x+0.5)’/2. 

Source SS DF MS F-ratio P 
Replication 0.270 8 0.034 0.991 0.468 
Treatment 0.091 3 0.030 0.901 0.455 
Inoculation 3.455 1 3.455 103.973 0.000 
Treatment* Inoc 0.187 3 0.062 1.827 0.169 

Treatment*Rep 0.807 24 0.034 
Inoc*Rep 0.266 8 0.033 
Treatmen t* Inoc * Rep 0.818 24 0.034 

Table A.29. Analysis of variance of secondary root visual rating; transformed by 
(x+0.5)’/2. 

Source SS DF MS F-ratio P 
Replication 0.545 8 0.068 1.282 0.299 
Treatment 0.049 3 0.016 0.242 0.866 
Inoculation 4.687 1 4.687 76.865 0.000 
Treatment* Inoc 0.134 3 0.045 0.837 0.487 

Treatment*Rep 1.620 24 0.067 
Inoc*Rep 0.488 8 0.061 
Treatment*Inoc*Rep 1.276 24 0.053 

Table A.30. Analysis of variance of whole plant visual rating; transformed by 
(x+0.5)’/2. 

Source SS DF MS F-ratio P 
Replication 0.179 8 0.022 0.405 0.907 
Treatment 0.551 3 0.184 3.325 0.037 
Inoculation 8.937 1 8.937 399.900 0.000 
Treatment* Inoc 0.551 3 0.184 3.325 0.037 

Treatment*Rep 1.325 24 0.055 
Inoc*Rep 0.179 8 0.022 
Treatment* I noc* Rep 1.325 24 0.055 
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Experiment III 

Table A.31. Analysis of covariance of ending fresh weight. 

Source SS DF MS F-ratio P 
Starting fresh Wt. 83.866 1 83.866 31.353 0.000 
Replication 17.312 6 2.885 1.078 0.043 
Treatment 3.412 3 1.137 0.425 0.735 
Inoculation 48.558 3 16.186 6.051 0.001 
Treatment* Inoc 36.330 9 4.037 1.509 0.156 
Error 254.118 95 2.675 

Table A.32. Analysis of variance of whole plant dry weight. 

Source SS DF MS F-ratio P 
Replication 10.770 6 1.795 7.805 0.000 
Treatment 0.476 3 0.159 0.421 0.740 
Inoculation 4.007 3 1.336 5.221 0.009 
Treatment* Inoc 4.054 9 0.450 1.958 0.063 

Treatment* Rep 6.788 18 0.377 
Inoc*Rep 4.605 18 0.256 
Treatment*Inoc*Rep 12.419 54 0.230 

Table A.33. Analysis of variance of visual plant rating; transformed by (x + 0.5) 

Source SS DF MS F-ratio P 
Replication 1.500 6 0.250 2.644 0.025 
Treatment 0.004 3 0.001 0.016 0.997 
Inoculation 1.830 3 0.610 5.670 0.006 
Treatment* Inoc 1.429 9 0.159 1.679 0.117 

Treatment* Rep 1.549 18 0.086 
Inoc*Rep 1.936 18 0.108 
Treatment*Inoc*Rep 5.107 54 0.095 

Table A.34. Analysis of variance of visual root rating; transformed by (x + 0.5)1/2. 

Source SS DF MS F-ratio P 
Replication 2.030 6 0.338 3.567 0.005 
Treatment 0.002 3 0.001 0.006 0.999 
Inoculation 3.615 3 1.205 13.232 0.000 
Treatment* Inoc 1.349 9 0.150 1.580 0.145 

Treatment*Rep 2.009 18 0.112 
Inoc*Rep 1.639 18 0.091 
Treatment*Inoc*Rep 5.123 54 0.095 
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Chapter IV 
Experiment I 

Table A.35. Analysis of variance of root weight. 

Source SS DF MS F-ratio P 
Replication 0.530 9 0.059 1.258 0.263 
Treatment 0.237 4 0.059 1.266 0.285 
Inoculation 0.114 1 0.114 2.429 0.121 
Soil Pasteurization 0.022 1 0.022 0.460 0.499 
Trt*Inoc 0.576 4 0.144 3.007 0.018 
Trt*Soil Past. 0.284 4 0.071 1.516 0.200 
Inoc*Soil Past. 0.152 1 0.152 3.251 0.073 
Trt*Inoc*Soil Past 0.276 4 0.069 1.468 0.214 
Error 8.002 171 0.047 

Table A.36. Analysis of variance of shoot weight. 

Source SS DF MS F-ratio P 
Replication 19.646 9 2.183 2.380 0.015 
Treatment 8.100 4 2.025 2.207 0.070 
Inoculation 38.217 1 38.217 41.661 0.000 
Soil Pasteurization 1.906 1 1.906 2.077 0.151 
Trt*Inoc 2.785 4 0.696 0.759 0.553 
Trt*Soil Past. 6.461 4 1.615 1.761 0.139 
Inoc*Soil Past. 5.611 1 5.611 6.116 0.014 
Trt*Inoc*Soil Past 4.039 4 1.010 1.101 0.358 
Error 156.866 171 0.917 

Table A.37. Analysis of variance of whole plant weight. 

Source SS DF MS F-ratio P 
Replication 24.071 9 2.675 2.113 0.031 
Treatment 10.260 4 2.565 2.026 0.093 
Inoculation 42.500 1 42.500 33.569 0.000 
Soil Pasteurization 2.332 1 2.332 1.842 0.176 
Trt*Inoc 3.772 4 0.943 0.745 0.563 
Trt*Soil Past. 9.197 4 2.299 1.816 0.128 
Inoc*Soil Past. 7.611 1 7.611 6.012 0.015 
Trt*Inoc*Soil Past 6.351 4 1.588 1.254 0.290 
Error 216.491 171 1.266 
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Table A.38. Analysis of variance of runner production. 

Source SS DF MS F-ratio P 
Replication 7.905 9 0.878 1.467 0.164 
Treatment 4.630 4 1.157 1.933 0.107 
Inoculation 17.405 1 17.405 29.066 0.000 
Soil Pasteurization 0.005 1 0.005 0.008 0.927 
Trt*Inoc 4.370 4 1.093 1.824 0.126 
Trt*Soil Past. 0.670 4 0.168 0.280 0.891 
Inoc*Soil Past. 1.125 1 1.125 1.879 0.172 
Trt*Inoc*Soil Past 1.450 4 0.363 0.605 0.659 ' 
Error 171 

Table A.39. Analysis of variance of visual root rating; transformed by (x+0.5)1/2. 

Source SS DF MS F-ratio P 

Replication 0.655 9 0.073 0.967 0.469 
Treatment 0.996 4 0.249 3.308 0.012 
Inoculation 0.437 1 0.437 5.803 0.017 
Soil Pasteurization 0.151 1 0.151 2.007 0.158 

Trt*Inoc 0.547 4 0.137 1.817 0.128 
Trt*Soil Past. 0.413 4 0.103 1.371 0.246 

Inoc*Soil Past. 0.410 1 0.410 5.448 0.021 

Trt*Inoc*Soil Past 0.053 4 0.013 0.177 0.950 

Error 12.872 171 0.075 
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Experiment II 

Table A.40. Analysis of covariance of whole plant fresh weight. 

Source SS DF MS F-ratio P 
Start Fresh Wt. 580.272 1 580.272 70.206 0.000 
Replication 20.566 6 3.428 0.415 
Treatment 72.372 4 18.093 2.189 0.079 
Inoculation 39.893 2 19.947 2.413 0.092 
Soil Pasteurization 1.320 1 1.320 0.160 0.690 
Trt*Inoc 124.802 8 15.600 1.887 0.064 
Trt*Soil Past. 3.760 4 0.940 0.114 0.978 
Inoc*Soil Past. 22.208 2 11.104 1.343 0.101 
Trt*Inoc*Soil Past 45.656 8 5.707 0.690 0.700 
Error 1479.490 173 8.265 

Table A.41. Analysis of variance of whole plant dry weight. 

Source SS DF MS F-ratio P 
Replication 3.435 6 0.573 1.013 0.418 
Treatment 5.321 4 1.330 2.355 0.056 
Inoculation 3.240 2 1.620 2.868 0.060 
Soil Pasteurization 0.034 1 0.034 0.061 0.805 
Trt*Inoc 7.596 8 0.949 1.681 0.106 
Trt*Soil Past. 0.934 4 0.234 0.413 0.799 
Inoc*Soil Past. 2.662 2 1.331 2.356 0.098 
Trt*Inoc*Soil Past 0.983 8 0.123 0.217 0.987 
Error 98.293 174 0.565 

Table A.42. Analysis of variance of visual root rating; transformed by (x+0.5)1/2. 

Source SS DF MS F-ratio P 

Replication 1.103 6 0.184 1.293 0.263 
Treatment 1.500 4 0.375 2.639 0.036 
Inoculation 0.091 2 0.046 0.322 0.725 
Soil Pasteurization 0.798 1 0.798 5.616 0.019 
Trt*Inoc 1.322 8 0.165 1.162 0.325 
Trt*Soil Past. 0.239 4 0.060 0.420 0.794 
Inoc*Soil Past. 1.458 2 0.729 5.128 0.007 
Trt*Inoc*Soil Past 2.145 8 0.269 1.894 0.064 
Error 24.734 174 0.142 
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APPENDIX B 
STANDARD OPERATING PROCEDURES (SOPS) 

SOPT101 
PageJ. of_2 

SOP for a TECHNIQUE 

Title: Preparing oats and fungal inoculum medium 

SOP No.: T101 

OBJECTIVE: to prepare an oats growth medium and to inoculate it with a plant pathogen 
in order to use the oats plus pathogen medium in experiments with live plants in 
greenhouse or field experiments. 

MATERIALS: 
Wide mouth 250 ml erlenmeyer flasks 
non-absorbent cotton 
aluminum foil 
distilled H2O 
whole (feed-type) grain oats 
wire-tipped tool 
spoonula 
autoclave 
alcohol lamp 
laminar flow hood 
inoculant material 
75% ETOH spray bottle 
90% ETOH in bottle 

SAFETY PRECAUTIONS: no hazards to humans or animals 

SHELF LIFE AND STORAGE CONDITIONS OF REAGENT/SOLUTION/MEDIUM: 
once the oats/fungal inoculum has grown at room temperature for approx. 7 days, it should 
be used within 5 days. 

METHODS: (Note that eight 250 ml flasks of wet inoculum will yield 
approx. 240 g dry groung inoculum.) 

For each 250 ml flask: 
1. put 75 ml of oats in flask; 
2. add distilled H2O up to 100-125 ml mark on flask; (this determines how moist the final 
product will be); 
3. stuff the mouth of the flask with enough non-absorbent cotton to completely block the 
opening; leave some cotton sticking out to serve as a handle; 
4. cover the cotton and entire neck of flask tightly with a double thickness square of 
aluminum foil (approx. 6" square). 
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SOP 1101 
Page 2 of 2 

For all 250 ml flasks: 
5. autoclave at 14 psi (SLOW) for 30 minutes; 
6. remove from autoclave when temperature reaches approx. 80°C (must be below 
100°C); 
7. let flasks stand at room temperature for 24 hours. 
8. repeat autoclaving procedure for 24 hours. 

Inoculation Process: 
1. tum-on hood, spray with 75% ETOH, and wipe-down with paper towelling; (if it is 
already on, spray and wipe again); 
2. place flasks and petri plates of inoculum into hood; along one side 
3. spray flasks lightly with 75% ETOH and wipe-down with paper towelling; 
Steps 4-13 will be performed using 1 flask and 1 petri plate at a time to 
prevent contamination; care will be taken to minimize the amount of time 
either the flask or the petri plate remain open; 
4. open a petri plate and divide medium into large pieces (approx. 1 X 2 cm.) using the 
sterile blunt end of a spoonula, a wire-tipped tool or equivalent tool; 
5. use 1/2 of the medium in a standard plate (100 X 15 mm) per 250 ml flask, or all the 
medium in a 60 X 15 mm plate; 
6. carefully remove aluminum foil cap from a flask and save, top side down; 
7. remove cotton and place on aluminum foil cap; 
8. while holding flask, flame mouth of flask over alcohol lamp approximately 30 seconds; 
9. drop pieces of medium into flask with sterile spoonula or wire-tipped tool; be careful 
not to touch the flask or insert tool into the mouth of the flask; 
10. flame the flask mouth again for 30 seconds; 
11. replace the cotton and then the aluminum foil cap; fit cap tightly; 
12. shake flask gently to mix oats and medium; 
13. seal edges of aluminum foil with parafilm; 
14 repeat steps 4-13 with another petri plate and flask; 

15. let flasks incubate at room temperature (approx. 30 0 C) for approx. 7 days on the lab 
bench. 
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SOP for a TECHNIQUE 

SQPT102 
Page 1 of 2 

Title: CFU Counts 

SOP No.: T102 

OBJECTIVE: To determine presence and population density of inoculum (colony forming 
units per volume of media) 

MATERIALS: 
9 test tubes and covers 
100 ml cool sterile distilled H2O 
8 sterile 1 ml pipettes 
1 sterile 10 ml pipette 
sterile bent glass rod 
200 micro liter pipettes (pipette-man) 
sterile pipette tips for above 
sterile plates of media PCAL or PDAL 3 per each sampling 
250 ml beaker 1/2 full of 90% ETOH 
spray bottle with 75% ETOH 
pipette-aid-electric pump 
Vortex 
SAFETY PRECAUTIONS: 
no hazards 

SHELF LIFE AND STORAGE CONDITIONS OF REAGENT/SOLUTION/MEDIUM(if 
applicable): 
Once dilutions are plated, they will be counted within 48 hrs. (before plates are over¬ 
grown.) 

METHODS: 
Setting up the experiment 
1. At least one day prior to dilution, autoclave the following on FAST (14psi) for 15 min.: 
test tubes (t.t), glass rod wrapped in foil, pipette tips in their box, empty beaker topped 
with foil. 
2. If the 1 ml and 10 ml pipettes are not sterile, they can be sterilized as follows (if they are 
glass; plastic pipettes are never reused): 

a. Stuff non absorbent cotton pieces into the blunt end of the glass 10 ml and 1 ml 
pipettes. 

b. Wrap pipettes in separate bundles in heavy duty aluminum foil. 
c. Autoclave as described above. 

3. Turn-on hood and wipe-down with 75% ETOH. 

4. After autoclave has cooled to 80°C remove instruments and place in hood. 
5. Separately autoclave H2O on SLOW setting (14 psi) for 30 min. Water must be at 

room temperature before dilutions can be started. 
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Making the dilution series 

SOP T102 
Page 2 of 2 

1. Bring-in to the hood the pipette-aid, vortex pipette-man and sterile H2O, along with the 

instruments already stored in hood. 
2. Spray all these down very well with 75% ETOH and wipe dry. (Only the 'gun' part of 
the pipette-aid need be in the hood. The pump can sit on the table.) 
3. Using the 10 ml pipette fitted into the pipette-aid 'gun', measure water into test tubes, 
10 ml in first tube, 9 ml in the rest. 

4. Hold test tube at 45° angle. Be sure not to insert pipette into the tube. Instead, squirt a 
stream of H2O into the tube, flame mouth of tube 30 seconds before re-covering. 

5. Weigh out your sample to be used in the dilution. Approximately 1 gram for dry 
material and 1.5 or more for wet materials (e.g. moist soil). Record exact weight. 
6. To compensate for moisture, place sample in weighing paper and fold up into sealed 
bundle. 
7. In hood, open bundle and pour contents into 10 ml test tube, flame t.t. and cover 
Vortex t.t., for 30 seconds. 
8. Using 1 ml pipette; extract 1 ml of solution from t.t. containing sample, flame mouth 
and replace cover on t.t. 
9. Transfer this 1 ml of solution to the next test tube (9 ml), flame and recover, then 
Vortex. 
10. Repeat procedure for each test tube. 

Plating the dilutions 

1. Use 2 plates for each dilution. (You will sample from the first tube away from the 

initial sample in 10 ml H2O will be 10'*, next 10““ etc.) Label your plates accordingly 

prior to plating. 
2. Using the pipette-man fitted with a sterile tip, start at the most dilute tube (highest #). 
3. Set pipette-man at 200 microliters (2/10 ml). 

4. Vortex test tube 30 seconds. Draw up sample. Eject sample onto plate held open just a 
crack awav from you (facing towards rear of hood, make sure no equipment is blocking 
air flow.) 
5. Repeat procedure with other two plates. 
6. Take bent glass rod and immerse it into beaker of 90% ETOH and remove, allowing 
excess to drip off, and flame. 
7. Repeat and let cool for 30 seconds. 
8. Using bent end gently spread liquid over and around plate surface on each of the three 
plates. (Put glass rod back in ETOH.) 
9. Discard pipette tip and put on a fresh one. 
10. Repeat these procedures on remaining tubes you want to sample from, changing tips 
after each dilution. (You don't have to save from all test tubes.) 

*You might only want 10'2 —> 10“5 or 10_1 —> 10'3 but you still need 3 plates from 
each, and at least 3 dilutions in series to get workable data. 
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SOP for a TECHNIQUE 

SQPT106 
Page 1 of 2 

Title: Drying Oats/Inoculum Medium 

SOP No.: T106 

OBJECTIVE: To effectievely dry fresh oats inoculum prior to grinding, while maintaining 
inoculum purity. 

MATERIALS: 
Drying oven 
90% ETOH in 600 ml beaker 
Long-handled spatula 
Alcohol lamp 
Sterile paper towels 
Sterile tray(s) 
70% ETOH spray bottle 
Piece of cheese cloth approx. 8" square folded once 

SAFETY PRECAUTIONS: Wear latex gloves to protect hands from ETOH, and maintain 
sterile conditions. 

SHELF LIFE AND STORAGE CONDITIONS OF RAGENT/SOLUTION/MEDIUM (if 
applicable): once oats are dried and ground, they can be stored in a zip-loc bag in 
refridgerator at 4°C for a month without losing viability. 

METHODS: 
Setting up the experiment 
1. Prepare drying oven by removing rack and spraying down interior and inside door with 
70% ETOH and wiping dry with paper towel. 
2. Spray rack and wipe dry. Return rack to oven. 
3. Spray oven interior, inside door, and rack again. Close door and turn on oven to 
approx. 35°C. Place clean cheesecloth over oven vent. 
4. Use metal trays that have been coveren in aluminum foil and autoclaved on FAST 
(14psi) for 15 minutes to sterilize. 
5. Place tray(s) in oven and close door. 
6. Assemble bealcer of 90% ETOH, alcohol lamp, and spatula on side of oven. 
7. Bring flasks or jars of inoculum and sterile paper towels to side of oven. 
8. Open oven. 
9. Line trays with paper towelling. 
10. Light alcohol lamp and place spatula in beaker of 90% ETOH. 
11. Grasp flask of jar of inoculum; remove foil top and cotton, or unscrew ring and 
remove vacuum seal. 
12. While holding jar of flask at 45° angle, flame mouth of jar for 30 secs. 
13. Dip spatula in 90% ETOH and flame; repeat. 
14. Scoop out inoculated oats on to paper towel-lined tray. Spread oats to evenly cover 
tray . 
15. Cover tray with another layer of sterile paper towels. 
16. Repeat as needed with different jar/flast of inoculum making sure to thoroughly 
sterilize spatula in between jar/flask. 
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SOP 1106 
Page 1 of 2 

17. Close oven door. 
18. Check the cheese cloth to make sure it is covering the vent hole on top of the oven. 
19. Let dry for 3 days or so before grinding. If trays are filled deeply it might take longer. 
It must be completely dry before grinding. 
20. Verify that the oven remained at approx 35°C at least once during the 3 days and at the 
end. 
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SOP for a TECHNIQUE 

SQPT109 
Page 1 of 1 

Title: Grinding Dried Oats/ Inoculum Medium 

SOP No.: T109 

OBJECTIVE: To prepare a finely textured dry product of dried oats and fungal inoculum 
medium that will be uniform in particle size, and will be easy to measure and deliver as an 
inoculum. 
MATERIALS: 
Spray bottle of 75% ETOH 
Blender 
Paper towels 
Zip-loc bags 
Latex gloves 
Lab marker 

SAFETY PRECAUTIONS: 
No hazards 

SHELF LIFE AND STORAGE CONDITIONS OF REAGENT/SOLUTION/MEDIUM(if 
applicable): 
Ground material will be kept in refrigerator (4°C) indefinitely. 

METHODS : 
1. Grinding MUST NOT be done in lab to avoid contamination of lab. Take blender out 
to hall-way by double sink (potting area). 
2. Use the extension cord that powers over-head lights. (There is no other outlet with 
table nearby.) 
3. Spray interior and lid of blender until soaked with 75% ETOH, wipe dry with clean 
paper towelling. 
4. Run blender in order to evaporate any excess ETOH, keep lid on. 
5. Wearing latex gloves, place several chunks of unground dry oats/inoculum in blender. 
No more than about one cup at a time. 
6. Run blender on "grind" or "chop" setting. (You might have to tilt blender while it's 
running to get all of it ground up.) 
7. Blend until oats reach consistency of fine sawdust. 
8. Pour into Zip-loc bag, seal. 
9. Repeat until all oats are ground. 
10. Wash blender out with hot soapy water, rinse. 
11. Repeat alcohol procedure and return blender to lab. 
12. Store ground oats in "dirty refrigerator," i.e. not where sterile plates are kept. 
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