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CHAPTER I 

INTRODUCTION 

Ozone, a triatomic form of oxygen, is both formed and eliminated 

naturally. Natural formation of this strong oxidant occurs in the 

troposphere when nitrogen dioxide in the presence of high levels of 

ultraviolet light (occurring on clear, sunny days) forms nitric oxide 

and a highly reactive monoatomic oxygen radical. This oxygen radical 

subsequently interacts with atmospheric oxygen to form ozone. Concentra¬ 

tions of natural ozone rarely exceed 0,05 ppm in the troposphere, as 

ozone subsequently decays by reacting with nitric oxide to reform 

oxygen and nitrogen dioxide. Ozone can also decay by absorbing light at 

254 nm, an energy source that causes the ozone molecule to split into 

oxygen and a monoatomic oxygen radical (28), The sequence of these 

events (continual ozone formation/degradation) maintains the low level 

of ozone in the troposphere. 

The natural ozone cycle in the troposphere becomes disrupted by the 

presence of reactive peroxy radicals and hydrocarbons in the atmosphere 

from automobile emissions and from the burning of fossil fuels (49), 

The hydrocarbons and peroxy radicals react with nitric oxide and form 

the photochemical oxidant peroxyacetyl nitrate (PAN), a reaction that 

essentially removes the nitric oxide from the ozone formation/degrada¬ 

tion cycle (30), leaving little of the nitric oxide to react with 

monoatomic oxygen. Ozone formation thus continues unabated and elevated 

concentrations occur in the atmosphere. In addition, fossil fuel 

combustion releases nitrogen dioxide into the atmosphere, which pro¬ 

duces more ozone as the increased nitrogen dioxide is split by ul¬ 

traviolet light into nitric oxide and monatomic oxygen. Conditions 
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favorable Co ozone forinacion are warm temperatures, intense sunlight and 

high nitrogen dioxide levels (49). The key ozone level determining 

reactions in the hydrocarbon polluted atmosphere are (20); 

Currently, ozone is one of the most widespread air pollutants in 

the United States, and is particularly prevalent in Che Northeast and 

Los Angeles basin. Ozone pollution levels within these area results 

from 2 sources. First, ozone formation occurs in the immediate vicinity 

from released hydrocarbons and second, from transport of hydrocarbons 

and ozone into the area. In Massachusetts, ozone pollution is aggravat¬ 

ed by transport of photochemical air pollution formed from primary 

emissions in New York City. Pollution from New York is transported by 

prevailing winds through Connecticut and Massachusetts (19), resulting 

in elevated levels of ozone in the Hartford, Connecticut area in the 

afternoon and in the Boston, Massachusetts area in the evening (19). 

Connecticut and Massachusetts experience the highest ozone concentra- 
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tions in the Northeast, primarily due to long range transport. The 

amount of ambient ozone due to photochemical air pollution transport 

into Connecticut has been estimated at approximately 20 percent (20), 

Chronic exposure to ozone levels as low as 0.05 ppm can cause 

damage to ozone sensitive vegetation (30), In the summer of 1984, the 

town of Ware and Fairhaven in central Massachusetts reached maximal 

peaks of 0.2 ppm ozone, four times the concentration necessary for 

damage to vegetation. Ware exceeded 0.12 ppm (The EPA limit for human 

exposure, 30) on 19 different days, and Fairhaven exceeded this level 

for 5 consecutive days. Other parts of Massachusetts were also subject¬ 

ed to high levels of ozone pollution. Sudbury in the eastern part of 

the state had a peak concentration of 0.17 ppm, and Agawam in the west¬ 

ern part of the state reached an ozone peak of 0.15 ppm (30). 

Extended periods of elevated ozone are known as an "ozone event" or 

"ozone episode". These ozone events occur when conditions for ozone 

formation are favorable for extended periods of time and result in toxic 

levels of this pollutant for many hours a day over several days (30). 

One of the results of elevated levels of ozone is extensive damage to 

vegetation. According to a 1974 estimate, annual crop loss to air 

pollutants (primarily ozone) in the United States was $500 million. 

Recent assessements have put losses to farmers from ozone and other air 

pollutants (sulfur dioxide) at $1 billion in agricultural crops (1) , 

These estimates have not considered that ozone often works synergisti- 

cally with other pollutants such as sulfur dioxide and results in sec¬ 

ondary injury such as increased plant susceptibility to harmful patho¬ 

gens (30, 51, 57, 72). 
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Because of the prevalence of ozone pollution, and the plant injury 

and crop loss resulting from exposure to this oxidant, scientists have 

studied possible means of protecting plants from ozone damage. Re¬ 

search has focused on why ozone injures plants, and the possibility of 

using plant breeding or antioxidants as measures of protecting plants 

from ozone. An antioxidant with potent capabilities is ethylene diurea 

(EDU) . The limitations of EDU for ozone protection and how EDU pro¬ 

vides protection are still not known. 

Investigation of a possible ozone detoxifying system consisting of 

superoxide dismutase (SOD) and catalase (39) and determining the rela¬ 

tionship of these enzymes with EDU would provide insight into the mode 

of action of EDU. While SOD has been studied considerably, little 

research has focused on catalase. Also of importance is quantifying the 

limitations of the protection EDU provides in relation to ozone expo¬ 

sure, time of EDU application, and concentration of EDU needed for 

protection. 

Objectives 

1. To observe the relationship between the activities of the 

enzymes superoxide dismutase (SOD), and catalase in relation to ozone 

exposure and ethylene diurea (EDU) application. 

2. Establish the interaction between EDU and ozone in terms of 

visible injury and chlorophyll and carotenoid content. 
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CHAPTER II 

LITERATURE REVIEW 

Several environmental factors can influence whether a plant will be 

affected by ozone are known. High temperature (12, 44, 51, 55), humidi¬ 

ty (52, 55), and light intensity (12, 51), and a sustained water supply 

(2, 17) are factors implicated in enhancing a plants susceptibility to 

ozone injury. Well watered plants are more likely to be injured by 

ozone than plants under drought or semi-drought conditions. Since ozone 

enters through the stomata, plants experiencing water stress would be 

less susceptible as ozone would not be able to enter the plant leaf and 

react with cellular membranes. Well fertilized plants appear to be 

more susceptible to ozone injury than plants suffering a nutrient defi¬ 

ciency (8, 50). Heavy metals in the soil, such as zinc, and cadmium can 

enhance ozone-induced phytotoxicity (26). 

A plant's susceptibility to ozone is also often dependent upon 

stage of tissue development (18, 53), with leaves which have just 

matured more apt to exhibit foliar injury than immature leaves (18, 

53). Immature leaves exposed to ozone are less likely to have elevated 

levels of peroxidase as older leaves, which are nearing senescence. 

Elevated levels of peroxidase activity has been associated with ozone 

injury (10). 

Although a wide variety of plant species are susceptible to ozone, 

some species and cultivars are less sensitive than others. For example, 

the soybean cultivar 'Hark' is sensitive to ozone while the cultivar 

'Hood' is tolerant and is able to withstand exposure to ozone episodes 

without visible signs of injury (41). Herbaceous plants with culitvars 

sensitive to ozone exposure include soybean (59), parsley (53), tomato 
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(42, 43, 45), pinto bean (73), navy bean (32), potato (18), tobacco 

(35), poinsettia (73), begonia (13), marigold (13), chrysanthemum (13) 

and snapdragon (13). 

Several woody plants are also known to be sensitive to ozone, 

including White pine (4, 74), Ponderosa pine (71, 75), London plane 

(14), varnish tree (14), Honey locust (14), White birch (14), red maple 

(14), spruce (11), sycamore (55), green ash (55), silver maple (55) and 

poplar (54). Hardwood and evergreens suffer an additional problem in 

relation to most herbaceous species because hardwoods and evergreens are 

exposed to ambient ozone year after year, for decades and are more 

susceptible to chronic damage from ozone exposure (55). Ozone has been 

suggested to be a contributing factor in forest decline (55). 

A common effect of ozone on plants is reduced growth (2, 17, 24, 

55, 71). Research with soybeans (2) and Ponderosa pine (71) has demon¬ 

strated that both acute and chronic exposure of plant material to ozone 

results in a reduction of total plant biomass and a change in biomass 

allocation. In alfalfa exposed to ozone, root growth was reduced and 

plants had fewer leaves (24). In parsley exposed to ozone, more fixed 

carbon is transported to new leaves and less is transported to roots and 

mature leaves (53). 

Another effect of ozone on plants is induction of increased ethylene 

production (21, 60). Within a few hours after exposure to ozone, 

tomato, tobacco, bean, onion, potato, spinach, squash, soybean, eucalyp¬ 

tus and English Ivy have a two to six-fold increase in ethylene emis¬ 

sions (22, 52, 60, 70, 72). Ethylene is known to disrupt flower devel¬ 

opment (22, 23), accelerate defoliation (52) and promote premature 

senescence (55, 70, 72). 
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Pollen growth is inhibited in plants exposed to ozone, a factor 

that may reduce or prevent seed production in plants. Working with an 

ozone sensitive cultivar (White Bountiful) and an ozone tolerant culti- 

var (Blue Lagoon) of petunia, Harrison and Feder (31) observed that the 

germination rate of the ozone sensitive cultivar was reduced by 80 

percent and the tolerant by 15 percent. The germination rate may be 

reduced due to ultrastructural injury of pollen, as pollen organelles 

appeared to pull away from the cell membrane. This hypothesis is sup¬ 

ported by more frequent changes in pollen organelles occuring in ozone 

sensitive species than in the ozone tolerant species. Ozone inhibits 

pollen tube growth in tobacco Bell-W3 at concentrations as low as 0.05 

ppm (29). Pollen from tomato, corn and petunia have also been demon¬ 

strated to be sensitive to ozone (29). 

Nutrient content of plants is altered by exposure to ozone. Plants 

exposed to ambient levels of ozone [7 h daylight mean (9 A.M. to A P.M.) 

of 0.06 ppm] have lowered concentrations of magnesium, calcium, potas¬ 

sium, and nitrogen (68). Plants exposed to 0.1 ppm ozone for 6 h/day 

for 5 days are observed to have increased concentrations of phosphorus, 

copper and iron (8). The exact mechanism for nutrient content altera¬ 

tions is unclear but could be related to changes in membrane permeabili¬ 

ty (35, 48). Clover nodulation has been observed to be Inhibited by 

ozone exposure, resulting in a decrease in nitrogen fixation (36). 

A common biochemical indication of plant exposure to ozone is an 

increase in membrane permeability. Solute leakage from Phaseolus vulga¬ 

ris leaf discs upon acute ozone exposure was 2 to 4 fold greater than 

controls, resulting in significant losses of electrolytes, sugars, amino 

acids, and water from cells to intercellular spaces and causing a de- 
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crease in turgidity and a loss of plant cell integrity (35, 48), An 

increase in membrane permeability could result from oxidation of double 

and sulfhydryl bonds of fatty acids by ozone (55), Changes in fatty 

acids in the membrane following exposure of plant tissue to ozone may 

also alter membrane-bound photosynthesis systems as ozone in aqueous 

media can produce toxic photosynthetic imtermediates such as hydroxyl, 

perhydroxyl, and superoxide radicals (38). 

Decreases in pigment content and the appearance of foliar injury 

such as necrosis and chlorosis are associated with ozone injury to plant 

tissue. Loss of chlorophyll has been observed in such plants as water 

cress, lettuce, and soybean (26, 39). Poplar leaves developed necrosis 

after exposure to 0.15 ppm ozone for 8 h/day, 5 days a week over 6 weeks 

(a chronic exposure), (54). Chlorosis, a symptom of chlorophyll degra¬ 

dation, has been observed in soybean and needles of Ponderosa pine trees 

after treatment with ozone (70, 72, 75). 

Ozone decreases photosynthesis and causes a loss in plant chloro¬ 

phyll. The loss of chlorophyll can result in a decrease of photosynthet¬ 

ic activity. Research with soybean indicates acute doses of ozone cause 

a rapid decrease in photosynthesis. With chronic exposure to this air 

pollutant, a period of several days or a few weeks is necessary for a 

drop in photosynthesis to occur process (59). Decreases in photosynthe¬ 

sis have been observed in four species of pine (4), and in poplar trees 

following exposure to ozone (58). A decrease in photosynthesis may be 

partially related to changes in nutrient content which can affect the 

manner in which photosynthetic complexes such as light harvesting com¬ 

plexes I and II bind to chloroplast membranes (68). 
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Dark respiration increases in poplar leaves when plants are ex¬ 

posed to low levels of ozone (58). Dark respiration in Ponderosa pine 

needles almost doubled after exposure to 0.15 ppm ozone (4). Increased 

respiration and decreased photosynthesis would result in a dramatic loss 

in the amount of carbon fixed, decreasing plant growth. 

Changes in carbon fixation and metabolism have been associated with 

ozone exposure. White pine trees display abberations in carbon fixation 

within ten minutes after exposure to 0.1 ppm ozone, with a decrease in 

soluble sugars and an increase in sugar phosphates and free amino acids, 

especially alanine (74). Changes within soybean tissue after exposure 

to 0.5 ppm ozone for 2 h lasted for 3 days and included a depression in 

the activity of glyceraldehyde 3-phosphate dehydrogenase and an activa¬ 

tion of glucose 6-phosphate dehydrogenase (69). 

Ozone can also cause alterations in other enzyme activities. 

Peroxidase is known to increase upon exposure of tissue to acute levels 

of ozone (0.4 ppm for 2 h), an increase suggested to be partially de¬ 

pendent upon a rise in calcium ions of the cytosol due to increased 

membrane permeability (10). Increases of peroxidase activity following 

ozone exposure have been observed in soybeans (66) spinach plants (67), 

and poplar trees (54). An increase in peroxidase activity could result 

in an increase in quinones and polymers that are harmful to the plant 

(54). 

Besides peroxidase, several other enzymes are effected by ozone. 

Work with soybean cultivars has shown increases in the activities of 

glucose 6-phosphate dehydrogenase, phenylalanine ammonia lyase, and 

polyphenol oxidase (70) . Increases in these enzyme activities occur 

earlier in ozone sensitive species than ozone tolerant species. 
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A decrease in ascorbic acid content of plant tissue has been asso¬ 

ciated with exposure to ozone. Ozone tolerant plants appear to have a 

greater ability to maintain their ascorbic acid (an antioxidant) content 

as compared with ozone sensitive plants (67) . Maintainance of the cellu¬ 

lar level of ascorbic acid is necessary for the continued functioning of 

the enzyme ascorbate peroxidase and the chloroplast's photosystem I 

hydrogen peroxide scavenging system (67). Ozone tolerant spinach 

species were able to maintain monodehydroascorbate (MDHA) reductase and 

ascorbate peroxidase activities in the presence of ozone (67). Other 

researchers have suggested that ozone tolerant strains are able to 

prevent peroxidase activities from becoming elevated (54). 

Differences in tolerances to ozone have been associated with dif¬ 

ferent catalase and SOD activities, ozone tolerant species appear to 

have a greater ability to maintain the activities of SOD and catalase 

than ozone sensitive species (39, 41). Data from research with Norway 

spruce trees (11) support this hypothesis, and suggest that SOD and 

catalase enzyme activties may be affected by the concentration of calci¬ 

um and copper in the cytosol. Ozone tolerant species, which maintain 

their membrane structure under ozone stress, can prevent leakage of 

solutes such as calcium and copper into the cytosol, protecting the 

activities of these enzymes. Research has suggested membrane bound forms 

of SOD help maintain the integrity of the membrane (7). The ability of 

tolerant plants to sustain the SOD and catalase activity can be overcome 

by exposure to very high levels of ozone (0.4 ppm for several hours), 

(6). 

The ozone detoxifying system of SOD and catalase catalyze the 

reactions (39): 
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(1) * 2H'*' + 202' ->H202 + O2 (SOD regulated) 

(2) * 2H2O2 ->2H20 + O2 (catalase regulated) 

Within the plant cells the SOD catalyzed reaction is rate limiting as 

catalase has a higher maximum velocity than SOD (56). SOD, a metal 

based enzyme, exists in higher plants as either a copper-zinc based or 

manganese based form (7) . Copper-zinc based SOD is located mostly in 

the chloroplasts, but is also present in the cytosol. This form of SOD 

is characterized by sensitivity to cyanide and is inactivated by hydro¬ 

gen peroxide. The manganese based SOD present in the mitochondrial 

matrix and in the cytosol, is insensitive to cyanide and is not inacti¬ 

vated by hydrogen peroxide (56). 

Both tolerant and susceptible cultivars of Phaseolus vulgaris had 

increase levels of SOD after exposure to ozone, suggesting SOD alone is 

not responsible for ozone tolerance (47). Insensitivity of primary 

leaves to ozone was shown not to involve SOD (47). Other researchers 

have suggested SOD activity is not an important factor, citing the fact 

that SOD levels increased only after visible injury occurred (16). 

Visible injury continued to increase with time, even with elevated SOD 

activity (16). 

Whether or not a plant will be susceptible to ozone injury is often 

determined by a plant's genetic constitution. Tolerant cultivars may be 

able to maintain enzyme systems such as SOD and catalase that detoxify 

ozone (39, 41, 67). 

While researchers have suggested screening various cultivars of a 

crop for sensitivity to ozone and utilizing tolerant species (34), as 
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anee, use of tolerant species may not be feasible. For example, an 

ozone sensitive species of petunia might have flowers more aesthetical¬ 

ly pleasing than an ozone tolerant strain. Also, using tolerant hard¬ 

wood species would not be a practical way of preventing the loss of 

forest stands as replanting millions of acres of forest would be time 

consuming and costly. 

A more practical method of preventing ozone - induced injury to 

plants would be through the use of antioxidants. A variety of substance 

have been used as ozone - protectant chemicals, including ascorbic acid 

(Al), and the fungicides benomyl (18, 32, 44, 45), triarimol, zineb, 

thirara and ferbam (51). Ascorbic acid is an effective antioxidant, but 

only at high concentrations (0.01 M or higher), (51). Benomyl is the 

most effective of the fungicides, however this compound and the other 

fungicides can alter plant-pathogen (harmful fungi) interactions in the 

field (32). 

A more effective antioxidant appears to be an experimental chemical 

ethylene diurea (EDU, ^-[ 2 - (2-oxo- 1 -im i dozo1idiny1)ethy 1) -N' - 

phenylurea), orginally synthesized by Carnahan et. al., for DuPont de 

Nemours E.I. Inc. in 1978 (9): 

0 0 

N —CHjCHjNHCNH- 
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EDU has been used extensively in antioxidant research (6, 9, 12, 13, 14, 

18, 32, 38, 39, 42, 46, 62, 63, 64, 73). Carnahan (9) applied EDU to 

Pinto beans (Pinto 111) and determined the ability of EDU both as a 

foliar spray and as a soil drench to protect plant tissue against ozone 

(28). A 6 ml foliar spray application of EDU at a concentration of 500 

ug/ml (500 ppm) provided protection against visible injury induced by 

exposure to 0.8 ppm ozone for 150 minutes. Control plants not treated 

with EDU exhibited foliar injury on 100 percent of the leaf tissue, 

while EDU treated plants had injury on only 5 percent of the leaf tis¬ 

sue. Protection of plant tissue from ozone occurred within thirty 

minutes after foliar treatment (9). The prevention of the occurrence of 

visible injury EDU provided was greater than any other antioxidant. 

Research with EDU applied both as an aqueous soil drench and as a 

foliar spray, has indicated EDU provides protection against ozone in¬ 

jury. Research with seedlings of red maple, white birch, White dogwood 

and White pine have indicated a 500 ppm EDU soil drench will prevent 

injury to these tree seedlings when exposed to 0.4 ppm ozone for 3 h 

(13). A comparison of soil drenches and foliar sprays suggests the soil 

drench method is more effective and lasts longer in protecting plants 

from ozone injury. An elapsed time of three to seven days between 

application of EDU and ozone exposure increased EDU's effectiveness as a 

soil drench. This research was supported by studies done with begonias, 

snapdragon, tomato, pepper, aster, lettuce and English Ivy (13). 

Stem injection (61, 62) has also been suggested as an effective 

means of EDU application. Data gathered from treatment of yellow-poplar 

seedlings indicated that injection of 5 ml of a 500 ppm EDU solution 
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CAn KAintAin photC'syx\th<»sis Anvi pr<*v<>nt toiler Injviry vhon plants arc 

»?xposevi to 0.35 pp» orvM\o for 3 h (t»2). Tho protootlon affordoa by KOU 

VAS ov\frco»o vhon soodllri^s voro oxposod to O.'^S ppm orono for 3 h. KDU 

troAtod plants still suffered mvich less damage than control plants. 

Further research vith seedlings of red maple, honey«locust, sweetgum, 

and Fin oak indicates much less KDU (5ml vs. 250 ml) Is needed for 

protection vhen applied by stem injection instead of an aqueous soil 

drench (61). Both methods appear to be most effective when KDU is 

applied seven days before ozone exposure. The adwintages of stem injec¬ 

tion of KDU are a\*oidance of drift, precise dosage control, and improved 

applicator safety. The disadvantages with stem injection of EDU is this 

method is time consuming, requires greater training and inflicts a minor 

injury to the plant (61). 

The effectiveness of EDU appears unrelated to light, tempera¬ 

ture, humidity, and nutrient content of the plant (12). When ozone 

stress is the dominant factor affecting a plant, EDU can prevent signif¬ 

icant ozone injury. However, an ozone sensitive plant suffering from 

severe water stress and exposed to ozone will not be helped by EDU 

application as osmotic stress and not ozone is the dominant stress. 

Research has suggested that application of EDU in the absence of ozone 

stress may have a slight detrimental effect on plants (33). EDU doesn't 

appear to affect stomatal resistance (63) , suggesting EDU protection of 

plants is not from the prevention of ozone absorbance, yet EDU is still 

able to reduce damage from ozone (18, 32). 

Past results have suggested that a wide variety of plants can be 

protected from ozone injury by EDU application. Some species which 

have been protected from ozone injury by EDU application include snap 
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beans (39), pinto beans (9), tomato, pepper, lettuce, English ivy (13), 

soybean (64), Navy bean (32), potato (18), petunia (12), begonia (13) 

red clover (38) red maple, white birch, white dogwood, white pine (14), 

sugar maple, white ash, dogwood, crabapple (63), and yellow poplar (62). 

All research with EDU has involved plants that were ozone sensitive, and 

to be effective, EDU levels should be adjusted for a particular species. 

EDU is most effective when applied three to seven days before ozone 

exposure (13, 61, 63). 

Recent research has focused on EDU's mode of action. Some data has 

suggested EDU either maintains or enhances the activities of the cata¬ 

lytic oxidoreductase enzymes SOD and catalase (6, 39, 63) while other 

research suggests SOD is not responsible for the ozone protection EDU 

affords (15). These enzymes have been demonstrated to be related to 

photoxidative injury s3niiptoms such as senescence (27) , altered membrane 

permeability (27), lipid peroxidation (27) and ethylene production (3). 

One proposed hypothesis is SOD and catalase detoxify ozone and ozone- 

induced radicals before they can alter the biochemistry of a plant, 

which in turn prevents physical injury. Once the activities of these 

enzymes have decreased to a critical point (unknown), injury occurs. 

Therefore EDU may provide a plant with protection from ozone damage by 

sustaining the activities of SOD and catalase (6, 39). 

Other research has suggested that only the imidazole component 

(also part of Benomyl) of EDU affords ozone resistance while the pheny- 

lurea part of EDU has a cell proliferating effect similar to the effect 

of the synthetic cytokinin, kinetin (40). EDU may protect plants from 

ozone injury by increasing the amount of soluble carbohydrates in leave 

tissue as treatment of Phaseolus vulgaris with EDU has increased the 

15 



levels of erythritol, fructose, glucose, sucrose, ribose and arbitol 

(37) . Carbohydrates have been indicated as a mechanism of detoxifying 

hydroxyl radicals produced by ozone exposure (7). 

EDU has also been known to increase peroxidase activity (up to two 

to three fold), and toxicity from high levels of EDU (greater than 1,000 

ppm ) maybe from the enhancement of this enzyme (39), 
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CHAPTER III 

MATERIALS AND METHODS 

Plant Material 

Bean plants, Phaseolus vulgaris L. cv. Pinto 111 Idaho, were used 

in these studies. The plants were grown in a peat- sand-soil mix (1:1:1 

by volume) contained in square black plastic pots (13 cm x 13 cm x 15 cm 

deep) from seed (2 plants per pot) in a controlled environment room (27 

± 2‘’C, SHO fluorescent lights, 16 h photoperiod, irridiance 20 W/m^) . 

Water was supplied as required to maintain moist soil conditions and 

fertilizer (20-20-20, N-P2O5-K2O) was applied weekly in 150 ml aliquots 

from a solution containing 11,3 g dissolved in 2 liters, a concentration 

that promoted vigorous growth. Four plants per pot were thinned to two 

plants being as similar to each other as possible. 

Ethylene Diurea Treatment 

A wettable powder of ethylene diurea (EDU) (50 % active ingredi¬ 

ent) at a concentration of 400 ppm active ingredient (unless specified 

otherwise) was dissolved and thoroughly mixed in distilled water. 

Except for temporal studies where EDU was applied at different times, a 

150 ml aliquot of the EDU solution was applied as a soil drench to each 

pot 3 days before exposure of plants to ozone, an application procedure 

previously described (T. Craig Weidensaul, 73). For temporal experi¬ 

ments, EDU was applied at various stages of plant development, from seed 

to three days before treating the plants with ozone. Plants were ex¬ 

posed to ozone when the central leaflet of the fourth trifoliate was 

0.5 -1.5 cm long. 
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Ozone Treatment 

Plants were treated with ozone for 4 h in a previously described 

ozone treatment chamber (1.03 m x 0.36 m x 0.83 m high), (21). Exposure 

to ozone was started 4 h into the 16 h photoperiod, a time period chosen 

to reflect the usual time when ozone episodes usually occur in the 

field. The ozone was generated by passing charcoal-filtered air across 

an ultraviolet bulb and the levels of ozone were monitored by a Dasibi 

Model 1008-RS ozone meter with the sampling tube at the surface of the 

central leaflet on the second trifoliate leaf of the experimental plant. 

To assure open stomates during treatment with ozone, plants were 

thoroughly watered before exposure and relative humidity was maintained 

at 95 percent during the treatment period. Temperature in the treatment 

chamber was 27 ± 2°C during the day, 15 ± 2°C at night, corresponding to 

an expected summertime diurnal cycle. During the treatment period (both 

during and following ozone exposure), plants were under light from SHO 

2 
fluorescent tubes at an irradiance of 20 W/m . 

Enzyme Analysis 

Leaf tissue was analyzed for catalase and SOD activity 1 day (47) 

after the termination of ozone exposure, using the procedure of Tanaka 

(66, 67). A 0.25 g portion of leaflet was selected from the second 

trifoliate (60-80% mature, a stage of development considered 

moderately/highly ozone sensitive), was macerated in 5 ml potassium 

phosphate buffer pH 7.8, containing 600 ppm polyvinylpyrrolidone as a 

phenol scavenger, using a chilled mortar and pestle. A 2 ml aliquot of 

the slurry was centrifuged at 13,600 G for 15 min and the supernatant 

was used for enzyme analyses. Samples were chilled throughout the 

isolation procedure. 
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To determine catalase activity a 60 ul sample of the isolated 

supernanant was added to 2 ml of a phosphate buffer (pH 7.8). The 

solution was thoroughly mixed and 60 ul of 3 percent hydrogen peroxide 

was added. The resulting mixture was homogenized and decrease in ab¬ 

sorbance measured at 240 nm for 2 min. Extract prepared from a 20 

replicate sample of control plants (no ozone and no EDU) was used to 

establish a measurement standard defined as 10 units of enz3niie activity 

(absorbance decrease of 0.208/min). The data for samples assayed at the 

beginning of the measurement procedure and assayed again two hours later 

(the time required for analysis of all treatments) was the same. 

Superoxide dismutase (SOD) activity was measured using the method 

of Beauchamp and Fridovich (5) and is based on the inhibition of a color 

change in nitro-blue tetrazolium (NBT) by SOD activity. A 35 ul sample 

of the supernatant from the enzyme isolation process (containing the SOD 

enzyme) was added to 2 ml of the SOD reaction mixture (Appendix A) and 

illuminated with a 60 W bulb in an aluminum foil lined box (12 cm x 12 

cm X 10 cm high) for 6 min. Changes in absorbance were measured at 560 

nm and compared to changes that occurred in a 20 replicate sample of 

control solutions having no supernatant added (absorbance increase was 

0.22 units over six min). As with catalase, samples assayed at the 

beginning of the measurement procdure and assayed again at the end 

yielded nearly identical data, indicating time of measurement wasn't a 

significant variable. 

Visible Injury 

Visual injury to plants was monitored 1 day after ozone expo¬ 

sure. All recognizable forms of ozone damage to leaf tissue such as 
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flecking, stippling, chlorosis, and necrosis, were recorded and ex¬ 

pressed as a percentage of leaf area injured. 

Chlorophyll and Carotenoid Content 

The chlorophyll and carotenoid content of leaf tissue were meas¬ 

ured 48 h after ozone treatment, to allow for the development of injury 

(16). A 0.5 g sample of leaf tissue was selected from the third 

trifiolate (50-60% mature). The tissue was macerated with mortar and 

pestle in 10 ml of 80 percent acetone and 0.05 g of magnesium carbon¬ 

ate. The resultant slurry was allowed to set for 2 h in the dark at 5®C 

and subsequently filtered through 4 layers of cheesecloth. This solution 

was diluted 25 fold and absorbance measured at 645 and 663 nm for chlo¬ 

rophyll content and 475 nm for carotenoid content (65). The concentra¬ 

tion of pigments were calculated as: 

total chlorophyll (ug/ml)= 8.02 x Abs.^g^ 20.2 x Abs.^^^ 

carotenoid content (ug/ml)= Abs.^y^ x 4.0 

Experimental Design 

All experiments were of completely random design and were repli¬ 

cated a minimum of three times unless specified otherwise. For each 

experiment there were four treatments; ozone/EDU, ozone/No EDU, No 

ozone/EDU, No ozone/No EDU (control), with four plants per treatment. 

Analysis of variance (F test) was used to determine differences between 

treatments at p < 0.05 or p < 0.01 (Appendix B). 
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CHAPTER IV 

RESULTS 

The dosage required to ensure extensive damage to leave tissue was 

determined by exposing Pinto bean plants to various hourly levels of 

ozone. An hourly level of 0.3 ppm ozone 4h/day over 3 days resulted in 

severe visible injury (Table 1). Visible injury included flecking, 

stippling, chlorosis and necrosis on the margins of the second and third 

trifoliate leaves. Plants treated with a lower concentration of ozone 

(0.12 ppm ozone, the EPA limit for human exposure) had injury on 5-10 

percent of the leaf tissue (Table 9). 

The total amount of visible injury remained constant as ozone 

exposure increased in duration (4 days) or concentration (0.4 ppm 

ozone) (Tables 5 and 6), although most of the visble injury at the 

higher levels of ozone was due to necrosis rather than chlorosis. 

Plants exposed to the longer duration of ozone (4 days) exhibited injury 

on 75 percent of the leaf tissue. 

Besides visible injury, plants exposed to ozone had losses in 

chlorophyll and carotenoid pigments. Chlorophyll and carotenoid levels 

in leaf tissue were reduced when plants were exposed to 0.12 ppm ozone 

4 h/day for three days. Although a slight decrease in chorophyll 

concentration of 5 percent was observed as compared with controls not 

treated with ozone, these differences were not significant (Appendix 

B). Increasing the ozone level to 0.3 ppm increased the loss of chlo¬ 

rophyll to 24 percent, a highly significant loss (Appendix B). Plants 

treated with 0.3 ppm ozone also had a 14 percent loss of carotenoids 

(Appendix B). Pinto bean leaves treated with 0.3 ppm ozone 4 h/day for 

4 days had a 25 percent loss in chlorophyll content in the leaf tissue. 
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a highly significant loss (Table 5). In all experiments, decreases in 

chlorophyll were strongly correlated with decreases in carotenoids (r = 

0.99). 

The decreases in pigment content and the appearance of visible 

injury, were accompanied by a decrease in catalase activity in leaf 

tissue. In plants exposed to a low level of ozone (0,12 ppm, 4 h/day 

for 3 days), catalase activity in leaves was reduced by 22 percent as 

compared with controls (Table 9). Increasing the level of ozone treat¬ 

ment (0.3 ppm, 4 h/day for 3 days) caused catalase activity to decrease 

61 percent (Table 5), a highly significant decrease. Exposing plants to 

an acute level of ozone (0.45 ppm for 4 h) resulted in a 32 percent loss 

of catalase activity in leaf tissue (Table 8), a significant loss in 

catalase activity as compared with plants not exposed to ozone. 

Treatment of plants with ozone did not affect superoxide dismutase 

(SOD) activity. Plants exposed to 0,12 ppm ozone 4 h/day for 3 days 

had SOD activity similar to that of control plants (Table 9) , with no 

significant differences among any treatments. Plants exposed to 0.3 ppm 

ozone 4 h/day for 3 days had maintained 93 percent of the SOD activity 

of the control plants (Table 3). Ozone exposure sometimes exhibited an 

unexplained increase in SOD activity (Tables 4, 8). 

Injury from ozone treatments were altered by the application of the 

antioxidant EDU as a soil drench. A concentration of 400 ppm EDU re¬ 

duced visible injury from 70-80 percent to 5-10 percent (Table 2), EDU 

also reduced visible injury when plants were exposed to 0.3 ppm ozone 4 

h/day for 3 days. Plants treated with EDU had five to ten percent of 

the leaf tissue injured, while plants not treated with EDU, but exposed 

to the same ozone concentration had damage to 75 percent of the leaf 
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tissue (Table 3) . Pinto beans treated with a longer duration of ozone 

(0,3 ppm ozone 4 h/day for 4 days versus 3 days) had 25 percent visible 

leaf injury when treated with EDU, but plants not treated with EDU had 

75 percent visible leaf injury (Table 5), 

Application of EDU reduced the amount of pigment lost in leaves 

following exposure to ozone. In most experiments, application of EDU 

prevented a significant loss of chlorophyll content. Only when plants 

were treated with 0.4 ppm ozone 4 h/day for 3 days did EDU treated 

plants suffer a significant loss of chorophyll compared to controls 

(Table 6). Increasing the level of ozone reduced the protection against 

chlorophyll damage that EDU could provide. Plants exposed to ozone and 

treated with EDU also had a smaller loss of carotenoids than plants 

exposed to ozone and not treated with EDU. 

Treatment with EDU also reduced the loss of catalase activity in 

plants exposed to ozone. Plants exposed to an acute level of ozone 

(0.45 ppm ozone for 4 h), and treated with EDU had 80 percent of the 

catalase activity of the controls (no ozone, EDU), while plants without 

EDU application and treated with ozone had 68 percent of the catalase 

activity of matching control plants (no ozone, no EDU) (Table 8). 

Plants treated with a chronic ozone exposure (0.3 ppm ozone 4 h/day over 

3 days) had a 61 percent loss of catalase activity while those treated 

with EDU had an 8 percent loss (Table 5). Increasing the ozone dosage 

reduced the ratio of catalase activity between plants treated with ozone 

(EDU/No EDU). When the ozone exposure increased in duration the ratio 

fell from 2.21 to 1.40 (Table 5). An increase in ozone intensity re¬ 

sulted in the ratio falling from 2.21 to 1.57 (Table 6). 
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Application of EDU had no discernible effects on the level of SOD 

activity within the leaf tissue of a plant. Plants exposed to 0.3 ppm 

ozone 4 h/day for 3 days and treated with a 400 ppm solution of EDU had 

103 percent of the SOD activity of controls, while plants exposed to the 

same level of ozone and treated with a 300 ppm solution of EDU had 105 

percent SOD activity of the controls (Tables 3 and 4) . Plants treated 

with 0.3 ppm ozone 4 h/day for 3 days and not treated with EDU had 93 

percent SOD activity of the controls (Table 3). None of these changes 

were significant. 

Varying time of application of EDU to plants before ozone treatment 

did not result in any significant changes in any of the observed parame¬ 

ters (Table 7). When exposed to 0.3 ppm ozone 4 h/day for 3 days, and 

treated with 400 ppm EDU 3, 12 and 19 days before ozone treatment, there 

were no significant losses of chlorophyll. All plants not treated with 

EDU had highly significant losses of chlorophyll (Appendix B). Catalase 

activity of plants receiving EDU applications 3, 12, and 19 days before 

ozone treatment decreased 14, 13 and 15 percent, respectively. Plants 

not treated with EDU had highly significant (3 and 12 days) or signifi¬ 

cant (19 days) decreases (40 to 83%) in catalase activity (Table 7). 

When the level of EDU was reduced by 25 percent (from 400 ppm to 

300 ppm) and the ozone level remained at 0.3 ppm 4 h/day for 3 days, 

visible injury increased from 5-10 percent to 10-20 percent. The de¬ 

crease in catalase activity rose from 8 percent to 17 percent (Table 4). 

Increasing the duration or intensity of ozone treatment while 

maintaining the level of EDU at 400 ppm resulted in a rise in the amount 

of visible injury, a decrease in chlorophyll content and catalase activ¬ 

ity when compared to plants treated with a lower amount of ozone (Tables 

5 and 6). 
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Table 1 

Relationship Between Various Ozone 

Concentrations and Chlorophyll Loss 

Ozone Chlorophyll 

Concentration Loss 

(ppm) (%) 
0.15 1.5 

0.20 5.0 

0.25 12.2 

0.30 24.1 

Ozone concentration for 4 h/day for 3 days. 

Table 2 

Relationship Between Various EDU 

Concentrations and Visible Injury 

EDU Visible 

(ppm)* Iniurv 

(%) 
0 70-80 

100 50-60 

200 20-30 

300 15-20 

400 5-10 

600 10-20 

*Ozone concentration of 0.3 ppm 4 h/day for 

3 days. 
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Table 3 

The Effect of EDU on the Development 

of Ozone Injury in Beans 

Treatment^ Visible SOD Catalase 

Ozone EDU Iniurv (units) (units) 

(ppm) (%) 
No 0 0 3.0 9.0 

400 0 2.9 

00 • 

Yes 0 70-80 

00 

CM
 3.5** 

400 5-10 3.1 7.2 

^Plants exposed to 0 . 3 ppm ozone 4 h/day 

for 3 days. One unit of catalase activity 

is defined as a 0.0208 decrease in 

absorbance at 240 nm. One unit of SOD 

activity is defined as a 10 percent 

inhibition of the absorbance change of the 

dye NBT at 560 nm. Each number is an 

average of 12 data points. 

** Significantly different from other 

treatments at p < 0.01. 

Table 4 

The Effect of a Reduced EDU Concentration 

on the Development of Ozone Injury 

Treatment^ Visible SOD Catalase 

Ozone EDU 

(ppm) 

Iniurv 

(%) 

(units) (units) 

No 0 0 7.2 5.4 

300 0 6.8 7.1 

Yes 0 70-80 7.4** 2.3** 

300 10-20 7.6** 5.9 

Q ■ . . - nr. — . _ . . , , , 

Plants exposed to 0.3 ppm ozone 4 h/day 

for 3 days. One unit of catalase 

activity is defined as a 0.0208 decrease 

in absorbance at 240 nm. One unit of SOD 

activity is defined as a 10 percent 

inhibition of the absorbance change of the 

dye NBT at 560 nm. Each number is an 

average of 12 data points. 

** Significantly different from other 

treatments at p < 0.01. 
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Table 5 

The Effect of Extended Ozone Treatment on EDU 

Treatment^ Visible Catalase Relative Catalase 

Ozone EDU Iniurv Activitv Activitv 
(days) (ppm) (%) (% control) (EDU/No EDU) 

3 0 70-80 39 

2.21 

400 5-10 86** 

4 0 70-80 57 

1.40 

400 20-30 80 

B IT-- , r . , .... 

Plants exposed to 0.3 ppm ozone 4h/day for 3 or 4 

days. Data for catalase expressed as percent of 

control, where control plants were those not exposed 

to ozone or EDU and are considered to be 100 percent. 

Each number is an average of 12 data points. 

** Plants treated with a 3-day ozone exposure and 

treated with EDU were different at p < 0.01 as 

compared with plants not treated with EDU. 

Table 6 

The Effect of Ozone Concentration on EDU Efficacy 

Treatment^ Visible Catalase Relative Catalase 

Ozone EDU Iniurv Activitv Activitv 

(ppm) (ppm) (%) (% control) (EDU/ No EDU) 

0.3 0 70-80 39 

2.21 

400 5-10 86** 

0.4 0 60-70 44 

1.57 

400 20-30 69* 

a ■ .... - 

Plants exposed to either 0.3 ppm or 0.4 ppm ozone 4 

h/day for 3 days. Data for catalase expressed as 

percent of control, where control plants were those 

not exposed to ozone or EDU and are considered to be 

100 percent. Each number is an average of 12 data 

points. 

Plants treated with ozone and with EDU were 

significantly different at p < 0.01 (**) or p < 0.05 

(*) as compared with plants treated with ozone but not 

with EDU. 
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Table 7 

Variation of Time of EDU Application 

and the Resultant Effect on the 

Development of Ozone Injury. 

Treatment^ Visible Catalase 

Annlication EDU Iniurv Activity 

(days) (ppm) (%) (% control) 

3 0 70-80 39 

400 5-10 86** 

12 0 60-70 17 

400 5-10 87** 

19 0 50-60 60 

400 5-10 85* 

^Plants exposed to 0.3 ppm ozone, 4 h/day 

for 3 days. EDU applied either 3, 12, or 

19 days before exposure to ozone. Data 

for catalase and expressed as percent of 

control, where control plants were those 

not exposed to ozone or EDU and are 

considered to be 100 percent. Each 

number is an average of 12 data points. 

Plants treated with EDU were 

significantly different at p < 0.01 (**) 

or p < 0.05 (*) from plants not treated 

with EDU. 
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Table 8 

Effects of an Acute Ozone Exposure 

and EDU on Pinto Beans 

Treatment Visible 

Ozone EDU Iniurv SOD Catalas< 

(ppm) (%) (units) (units) 

No 0 0 3.3 10.5 

400 0 4.1 12.4 

Yes 0 10-15 5.3* 7.1* 

400 0-5 4.4* 9.9* 

Plants exposed to 0.45 ppm ozone for 4 

hours. One unit of catalase activity is 

defined as a 0.0208 decrease in 

absorbance at 240 nm. One unit of SOD 

activity is defined as a ten percent 

inhibition of the absorbance change of 

the dye NBT at 560 nm. Each number is 

an average of 4 data points. 

* Significantly different at p < 0.05 

(*) from all other treatments. 
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Table 9 

Effects of EDU and a Low Level 

Ozone Exposure on Pinto Beans 

Treatment^ 

Ozone EDU 

(ppm) 

Visible 

Iniurv 

(%) 

SOD 

(units) 

Catalase 

(units) 

No 0 0 5.0 6.3 

400 0 5.3 7.5* 

Yes 0 5-10 6.6 4.9 

400 0 5.8 8.4* 

^Plants 

h/day 

exposed to 0, 

for 3 days. One 

. 12 ppm 

unit of 

ozone 4 

catalase 

activity is defined as a 0,0208 decrease 

in absorbance at 240 nm. One unit of 

SOD activity is defined as a ten percent 

inhibition of the absorbance change of 

the dye NBT at 560 nm. Each number is 

an average of 4 data points. 

* Significantly different at p < 0.05 

from all other treatments. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

Discussion 

Exposing Pinto bean plants to an ozone level of 0.12 ppm for 4 

h/day over three days resulted in visible injury to the leaf tissue. 

Damage to foliage occurred on the second and third trifoliate leaflets 

in the form of flecking, stippling, chlorosis and necrosis. As ozone 

treatments increased either in intensity or duration, visible injury 

also increased. After exposure to 0.3 ppm ozone 4 h/day over 3 days, 

plants exhibited visible injury over 70-80 percent of the canopy. 

Coinciding with the occurrence of visible injury was a decrease in 

the content of the pigments chlorophyll and carotenoids. EDU applica¬ 

tion helped prevent the degradation of these pigments and in turn inhib¬ 

ited the occurence of visble injury. How carotenoids are affected by 

ozone exposure and EDU treatment has not been studied. Carotenoids are 

necessary accessory pigments for chlorophyll. Carotenoid data followed 

the same patterns as chlorophyll data for all treatments and was strong¬ 

ly correlated with chlorophyll data (r = 0.99). Plants exposed to ozone 

suffered a significant loss of chlorophyll and usually a significant 

loss of carotenoids. 

There was no relationship between the activity of superoxide 

dismutase (SOD) and treatment with EDU and/or exposure to ozone. Some 

research (7, 27, 39) has indicated SOD to be an important enzyme in 

detoxifying ozone, while other research (15, 16, 47) has suggested SOD 

plays no significant role in ozone tolerance. A reason for the discrep¬ 

ancy could be different isolation procedures, inconsistencies in assay 

procedures and a variation in species of plants (7, 15). For example, 

31 



in some instances SOD activity was measured using only crude extracts 

(16), while other researchers isolate SOD by dialysis (47) or by DEAE- 

cellulose columns (39). All assays were based on the superoxide scav¬ 

enging ability of SOD, preventing the reduction of a chemical or com¬ 

plex. Caution must be taken to remove peroxidase from the solution to 

be assayed, or a false low reading could result. This is more likely to 

occur in ozone damaged tissue which will have higher peroxidase levels 

(66). There was variation in the compound used to accept the electron 

from the superoxide molecule; some researchers used ferricytochrome c 

(39, 47), while others used NET (11, 15, 16). There was no discernible 

pattern between isolation techniques, assay procedures or SOD data. In 

other studies, activity in other studies was measured using a change in 

absorbance on a per weight basis (39), versus using only change in 

absorbance as used in this research. Measuring on a per weight bases 

adds another variable (weight) to the measurement of SOD activity. 

Another important factor pertaining to variability in SOD activity 

is the fact that the copper-zinc based form of SOD is inhibited by a 

build up of hydrogen peroxide (56), and accounts for 60-75 percent of 

the SOD activity in a cell (manganese based SOD accounts for the rest, 

16). If catalase activity decreases, levels of hydrogen peroxide would 

increase in the leaf, inhibiting the activity of copper zinc based SOD, 

potentially lowering activity by 75 percent. The procedures of isola¬ 

tion and measurement of SOD removes hydrogen peroxide, leading to a 

reading of SOD activity that may not accurately reflect SOD activity 

whithin the leaf. The procedure used for measuring SOD activity in 

these studies was orientated towards the measure of the activity of 

the hydrogen peroxide resistant form of SOD (manganese based) not the 
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hydrogen peroxide sensitive form of SOD. Lee and Bennett (39) used 

isolation (purified extract) and assay procedures (ferricytochrome c) 

different from the isolation (crude extracts) and assay techniques (NBT) 

used in this study. There isolation procedure howver, still removes SOD 

from the presence of hydrogen peroxide. There is no practical procedure 

to date that can accurately measure SOD activity within the leaf or to 

measure how much hydrogen peroxide is necessary for the inhibition of 

SOD activity. 

The data supports the concept of EDU protection of plant tissue 

from visible injury by ozone was due to sustained catalase activity. In 

our experiments, plants exhibiting ozone induced foliar injury had 

catalase activities lower than controls. EDU application either direct¬ 

ly or indirectly results in catalase activity being maintained and 

secondary injury symptoms such as visble injury and pigment loss being 

prevented. When the capacity of EDU to protect plants is overcome by 

increased hourly ozone levels or longer duration of ozone exposure, 

catalase activity subsequently decreases. A drop in catalase activity 

occurred approximately one day before the onset of visible injury and 

pigment loss. While catalase activity is sustained, a build up of 

hydrogen peroxide is prevented and SOD activity is not inhibited. 

Experiments varying EDU concentration against a constant ozone 

level (0.3 ppm ozone 4 h/day over 3 days) showed a 400 ppm solution to 

be effective in preventing visible injury on Pinto 111 bean leaves. 

Concentrations below 300 ppm failed to provide adequate protection, 

resulting in a rapid increase in visible injury of leave tissue along 

with decreases in catalase activity and chlorophyll and carotenoid con¬ 

tent. A common problem in EDU research is determining an effective 
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concentration of EDU (especially for field studies) and EDU application 

levels are either too high resulting in toxicity, or too low preventing 

EDU from being effective. 

The protection a plant receives from EDU can be overcome by 

increasing the hourly ozone levels or duration of exposure. When hourly 

ozone levels were increased by 33 percent (from 0.3 ppm/h to 0.4 ppm/h) , 

plants treated with EDU had an increase in visible injury and a decrease 

in catalase activity in comparison with plants treated with EDU and 

exposed to the lower concentration of ozone. Increasing the duration of 

exposure from three days to four days (0.3 ppm 4 h/day) had the same 

effect on EDU treated plant as increasing the hourly ozone levels; 

catalase activity decreased, pigment loss and visible injury increased. 

Another important issue addressed in this study was the temporal 

aspect of EDU application. Our data suggest EDU could be applied the 

same day as seeds were sown and the resultant plants exposed to ozone 

nineteen days later and EDU still was able to shield plants from ozone 

injury. Protection from oxidant injury was just as effective as if 

plants were treated three days before ozone exposure, an indicated time 

for optimal EDU efficacy (literature review). EDU may not be able to 

afford protection for nineteen days in the field however, due to possi¬ 

ble higher leaching rates and microbial activity. Also, soil conditions 

could affect the availability of EDU for uptake. Our prolonged protec¬ 

tion could have been due to the fact that EDU may have been bound to the 

organic material in the soil media (peat moss) which allowed fo continu¬ 

al uptake by the plant root system. 

Our data indicates that EDU at a concentration of 400 ppm could 

provide ample protection for potted Pinto bean 111 plants from ambient 
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ozone pollution occurring within nineteen days after application of EDU 

if the rooting media is the same as used in this study. The highest 

ambient levels of ozone occurring in western Massachusetts are <0.2 ppm 

for 1-4 h. A 150 ml aliquot of a 400 ppm EDU solution protected plants 

from on ozone level as high as 0.45 ppm for four hours. This informa¬ 

tion could provide a base for field studies with similar media as used 

here, and using the same cultivar of Pinto beans. In both cases (ambi¬ 

ent and acute ozone exposure) protection was correlated with sustained 

catalase activity which prevented secondary injury symptoms from occur¬ 

ring such as loss of chlorophyll and carotenoids. 

Conclusion 

Ozone is a prevalent air pollutant in the United States causing a 

wide variety of detrimental effects on plants (30). Prevention of 

oxidant injury and understanding the mechanism(s) of protection could 

aid in preventing further decreases in crop yields and damage to ozone 

sensitive plants. 

One possible mechanism plants posses for detoxifying ozone is the 

utilzation of the enzymes superoxide dismutase (SOD) and catalase. SOD 

catalayzes the reduction of an oxygen radical to hydrogen peroxide and 

oxygen. Catalase enzyme action converts hydrogen peroxide to water and 

oxygen. 

Our data suggests that EDU protects plants from ozone injury by 

maintaining catalase activity. The detoxification of hydrogen peroxide 

by catalase allows SOD activity to continue, decreasing the concentra¬ 

tion of oxygen radicals. A build up of hydrogen peroxide has been 
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associated with inhibition of SOD (56). With the continued functioning 

of these 2 enzymes, harmful oxy radicals from ozone are readily convert¬ 

ed to hydrogen peroxide and in turn water and oxygen. This prevents a 

loss of structural integrity resulting in pigment degradation and visi¬ 

ble injury. 

A 400 ppm solution of EDU prevented plants from suffering ozone 

induced foliar injury when exposed to a high level of ozone (0.3 ppm 4 

h/day over 3 days). The protection EDU afforded was overwhelmed by 

increasing the hourly ozone concentration or the duration of ozone 

exposure. A decrease in catalase activity always occurred as the pro¬ 

tection by EDU receded. EDU applied as a soil drench nineteen days 

before plants were exposed to ozone was still able to maintain catalase 

activity during ozone treatment. 

By completing EDU/ozone response studies, a determination of the 

amount of EDU necessary for protection against a particular oxidant 

level can be interpolated. Soil application of EDU can maintain cata¬ 

lase activity in plant leaf tissue preventing a loss of structural 

integrity and disruption of physiological activity from ozone exposure. 
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APPENDIX A 

SUPEROXIDE DISMUTASE REACTION MIXTURE 

Superoxide dismutase reaction mixture contained 1.17 x 10-^ M 

riboflavin, 0.01 M methionine, 2 x 10-^ M sodium cyanide, 5.61 x 10-^ M 

p-nitroblue tetrazolium (NET), and 0.05 M potassium phosphate (KH2P0^) 

at pH 7.8 (5). 
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APPENDIX B 

ANALYSIS OF VARIANCE TABLES 

ANOVA Table for Catalase (Table 3) 

Source DF MS F Value 

Experiment 2 14.919 2.977 

Ozone 1 111.021 22.154** 

EDU 1 18.750 3.741 

Ozone/EDU 1 69.120 13.793** 

Within 42 210.480 5.011 

Total 47 

ANOVA Table for SOD (Table 3) 

Source DF MS F Value 

Experiment 2 8.607 9.892** 

Ozone 1 0.010 0.011 

EDU 1 0.075 0.086 

Ozone/EDU 1 0.351 0.403 

Within 42 0.870 

Total 47 



ANOVA Table for Chlorophyll (Table 3) 

Source DF MS F Value 

Experiment 2 4053.377 6.166** 

Ozone 1 7313.672 11.126** 

EDU 1 1986.380 2.900 

Ozone/EDU 1 5082.061 7.731** 

Within 42 657.359 

Total 47 

ANOVA Table for Carotenoids (Table 3) 

Source MS F Value 

Experiment 2 85.084 2.977 

Ozone 1 126.750 4.435* 

EDU 1 50.021 1.750 

Ozone/EDU 1 63.023 2.205 

-Within 42 28.576 

Total 47 
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ANOVA Table for Catalase (Table 4) 

Source DF MS F Value 

Experiment 2 7.126 2.517 

Ozone 1 38.342 13.539** 

EDU 1 62.792 22.172** 

Ozone/EDU 1 3.049 1.077 

Within 42 18.718 

Total 47 

ANOVA Table for SOD (Tabl e 4) 

Source DF MS F Value 

Experiment 2 7.948 18.366** 

Ozone 1 3.521 8.136** 

EDU 1 0.041 0.100 

Ozone/EDU 1 0.907 2.097 

Within 42 0.433 

Total 47 
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ANOVA Table for Chlorophyll (Table 4) 

Source MS F Value 

Experiment 2 2521.850 8.441** 

Ozone 1 17995.508 60.236** 

EDU 1 593.613 1.987 

Ozone/EDU 1 2311.500 7.737** 

Within 42 298.752 

Total 47 

ANOVA Table for Catalase (Table 5) 

Source DF MS F Value 

Experiment 2 3.813 0.626 

Ozone 1 99.763 16.387** 

EDU 1 10.268 1.687 

Ozone/EDU 1 22.688 3.727 

Within 42 6.088 

Total 47 
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ANOVA Table for Chlorophyll (Table 5) 

Source DF MS F Value 

Experiment 2 664.351 4.639* 

Ozone 1 14466.435 101.025** 

EDU 1 2094.842 14.629** 

Ozone/EDU 1 297.533 2.078 

Within 42 143.196 

Total 47 

ANOVA Table for Catalase (Table 6) 

Source MS F Value 

Experiment 2 6.794 1.681 

Ozone 1 120.968 29 .934** 

EDU 1 21.068 5 .213* 

Ozone/EDU 1 2.253 0 .558 

Within 42 4.041 

Total 47 
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ANOVA Table for Chlorophyll (Table 6) 

Source MS F Value 

Experiment 2 2039.200 29.546** 

Ozone 1 5731.257 83.042** 

EDU 1 1338.799 19.398** 

Ozone/EDU 1 11.894 0.172 

Within 42 69.016 

Total 47 

ANOVA Table for Catalase (Table 7) 

Source M. MS F Value 

Experiment 2 14.425 2.892 

Ozone 1 49.613 9.947** 

EDU 1 11.077 2.221 

Ozone/EDU 1 30.237 6.062* 

Within 42 4.988 

Total 47 

43 



ANOVA Table for Chlorophyll (Table 7) 

Source MS F Value 

Experiment 2 460.754 4.916* 

Ozone 1 4820.021 51.427** 

EDU 1 3407.070 36.352** 

Ozone/EDU 1 1350.448 14.409** 

Within 42 93.725 

Total 47 

AKOVA Table for Catalase (Table 8) 

Source DF MS F Value 

Ozone 1 35.403 5.999* 

EDU 1 22.090 3.743 

Ozone/EDU 1 0.809 0.137 

within 12 5.901 

Total 15 
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AJvOVA Table for SOD (Table S) 

Source MS F Value 

Ozone 1 4.625 7.323* 

EDU 1 0.010 0.015 

Ozone/EDU 1 2.890 4.578 

Vithin 12 0.631 

Total 15 

ANOVA Table for Chlorophyll (Table 8) 

Source DF MS F Value 

Ozone 1 222.756 2.594 

EDU 1 130.531 1.520 

Ozone/EDU 1 1736.803 20.229** 

Within 12 85.859 

Total 15 
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ANOVA Table for Catalase (Table 9) 

Source DF MS F Value 

Ozone 1 0.181 0.042 

EDU 1 21.856 5.067* 

Ozone/EDU 1 5.176 1.200 

Within 12 4.314 

Total 15 

ANOVA Table for SOD (Table 9) 

Source MS F Value 

Ozone 1 4.515 3.618 

EDU 1 0.330 0.264 

Ozone/EDU 1 1.052 0.843 

Within 12 1.248 

Total 15 
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ANOVA Table for Chlorophyll (Table 9) 

Source DF MS F Value 

Ozone 1 0.276 0.002 

EDU 1 446.266 3.015 

Ozone/EDU 1 205.208 1.386 

Within 12 148.015 

Total 15 
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APPENDIX C 

THE EFFECT OF EDU AND OZONE 

ON PIGMENTS 

Treatment^ Chlorophyll Carotenoids 

Ozone EDU (ug/ml) (ug/ml) 

No 0 186.7 40.7 

400 178.7 40.4 

Yes 0 141.7* ** 35.2** 

400 174.7 39.5** 

Plants exposed to 0.3 ppm ozone 4 h/day 
for 3 days. EDU concentration in ppm. 
Each number is an average of 12 data 
points. 

** Significantly different from other 
treatments at p < 0.01. 
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