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CHAPTER I 

INTRODUCTION 

Many people have shown a seed yield increase from 

soybean planted in narrowly spaced rows (less than 50cm) 

(Lehman and Lambert, 1969; Cooper, 1977; Costa et al., 

1980; Herbert and Litchfield, 1982; Taylor et al., 1982). 

Also, many people have shown a yield increase of soybean 

seed from plantings at high densities and narrow rows 

(Shibles and Weber, 1966; Cooper, 1977; Taylor et al., 

1982) . 

Wiggins (1939) reported that within population 

levels, seed yield increased as the spacing approached a 

uniform (Square) pattern. Uniformly spaced plants in 

narrow rows have been shown to intercept more solar radi¬ 

ation late in the season than wide row plants of equiva¬ 

lent density (Shibles and Weber, 1965). Shibles and Weber 

(1966) suggested that complete canopy closure by the time 

of rapid pod fill is an important factor for high yields. 

Soybean plants flower abundantly but a large portion 

of the flowers and pods abscise (Lehman and Lambert, 

1960). van Schaik and Probst (1957) found flower and pod 

shed combined to be from 43 to 81 percent, depending on 

the cultivar. Taylor et al. (1982) found that while pod 
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set was greater in wide rows, final pod number was greater 

in the narrow rows. They speculate that pod abortion 

caused by inadequate late season photosynthate supply was 

the major determinant of yield. In a yield component anal¬ 

ysis Herbert and Litchfield (1982) found pod number to be 

the major component of yield. 

This study was undertaken to determine the influence 

of row widths and plant densitis on the seed yield, yield 

components and flower production of two short seasoned 

soybeans of indeterminate growth type. 



CHAPTER II 

LITERATURE REVIEW 

General 

Soybean plants (Glycine max (L.) Merr.) are predomi¬ 

nantly of two growth types: determinate, those which com¬ 

plete their vegetative growth before flowering and repro¬ 

ductive growth begins; and indeterminate, those which 

continue vegetative growth while some parts of the plant 

are in reproductive growth. In the northern United 

States and Canada the adapted soybean cultivars are almost 

exclusively indeterminate in growth habit. In the south¬ 

ern U.S. the adapted soybean cultivars are almost exclu¬ 

sively determinate in growth habit. In the middle lati¬ 

tudes of the U.S. both determinate and indeterminate 

cultivars can be grown. 

Soybeans are quite sensitive to day length as a sti¬ 

mulus for flowering. This was recognized by Garner and 

Allard (1920) and termed photoperiodism. Ten maturity 

groups have been established in the U.S. and Canada to 

categorize the response of different cultivars to photo¬ 

periodism or time to maturity. These groups range from 

00 to VIII with 00 being the earliest to mature and VIII 

being the latest to mature in the U.S.. Maturity group 

3 
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00 cultivars normally would be planted in southern Canada 

or in the northernmost U.S. while maturity group VIII 

cultivars would normally be planted in the southern part 

of the Gulf states. A range of ten to fifteen days exists 

between groups. 

In Massachusetts a cultivar trial was conducted which 

included cultivars from maturity groups 00, 0, I, and II 

(Herbert, 1980). The results showed that the highest 

yields were from the maturity group I and II cultivars 

which were the later maturing groups. However, these 

cultivars did not mature a full crop in all years before 

the first frost. Further work by Herbert has been limit- 

ed to cultivars from maturity groups 00 and 0 which pro¬ 

duce harvestable crops each year. 

For a number of years agronomists have been concern¬ 

ed with the spacial arrangement of soybean plants and its 

effect on yield. Wiggins (1939) reported that within pop¬ 

ulation levels, seed yield increased as the spacing ap¬ 

proached a uniform (square) pattern. 

In the northern United States there have been numer¬ 

ous reports of higher yield from narrow row spacing* 

(Lehman and Lambert, 1960; Shibles and Weber, 196 6 ; 

* Narrow rows are taken to mean 50cm or less between 

rows. 
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Timmons et al., 1967; Spilde et al., 1980; Costa et al., 

1980; Herbert and Litchfield, 1982; Taylor et al., 1982). 

Others have found increased yield from narrow row spacing 

but specified certain other conditions as necessary. 

Weber et al. (1966) found maximum seed yield occurred in 

narrow rows (25cm) but only at low plant populations 

(257,000 plants/ha), and Cooper (1977) found greater 

yield in narrow rows (17cm) at higher plant populations 

(375,ooo plants/ha). Taylor (1980) reported narrow rows 

(25cm) to outyield wide rows (100cm) only when seasonal 

water supply was high. Generally, the response to row 

width is greater in early maturing cultivars. 
t 

Narrowing row spacing has not met with increasing 

yields in the southern United States (Hinson, 1967; Doss 

and Thurlow, 1974). It is thought that in the southern 

U.S., where cultivars are all of determinate growth habit 

and plants have a longer growing season, the plants have 

achieved full light interception before the reproductive 

stage which negates any positive effect of narrow row 

spacing on yield. 

Plant population has received a great deal of atten¬ 

tion by researchers over the past twenty years. Reports 

of increasing yield with increasing plant density were 

given by Buttery (1969), Dougherty (1969), Cooper (1977), 

and Dominguez and Hume (1978). Yield response to chang- 
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ing plant density has been studied by many others 

(Probst, 1945; Shibles and Weber, 1966 (128 and 257 

thousand plants/ha); Cooper, 1970 (150,000 plants/ha); 

Hoggard et al., 1978 (240,000 plants/ha); Herbert and 

Litchfield, 1982 (800,000 plants/ha). Because of the 

different plant populations used in each experiment the 

terms low, medium and high are quite relative. Gener¬ 

ally it appears that a minimum population must be estab¬ 

lished to produce high yields. The minimum population 

is difficult to establish in absolute terms because of 

interaction with cultivars (Johnson and Harris, 1967), 

years (Hinson and Hanson, 1961; Lueschen and Hicks, 1977), 
\ 

and row width (Weber et al., 1966; Basnet et al., 1977; 

Cooper, 19 77) . Reports that plant population had no 

effect on yield have come from both the northern U.S. 

(Costa et al., 1980) and the southern U.S. (Doss and 

Thurlow, 1974) . Perhaps this lack of response to plant 

population is because the lowest population used in these 

experiments was already above the minimum needed for high 

yields. Recognizing the wide diversity in experimental 

conditions from the papers cited, the minimum population 

appears to be in the range of 150,000 to 350,000 plants 

per hectare. Higher densities than 350,000 plants/ha, 

while not proving detrimental to yield, have not often 
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been cited as enhancing yield, and increase the cost of 

production with no additional return. 

Dougherty C 1969) reported greater dry matter weights 

in 51cm (20in) rows than 102cm (40in) rows. Weber et al. 

(1966) observed that planting patterns favoring the rapid 

attainment of high leaf area index (LAI) were also those 

having the greatest dry matter production. Shibles and 

Weber (1966) reported dry matter production to be a func¬ 

tion of percent solar radiation interception regardless of 

planting pattern. 

A number of researchers have found increased LAI as 

population increased (Shibles and Weber, 1965; Hicks et 

al., 1969; Costa et al., 1980). However, there has been 

no evidence of an optimum LAI. Shibles and Weber (1965) 

defined soybeans as a species which has a critical LAI, 

one in which yield increases up to a certain LAI then 

remains the same at further increases in LAI. They fur¬ 

ther defined critical LAI as that LAI required for 95 

percent interception of solar radiation. There have been 

very few reports of LAI values at the critical level and 

those reports which do exist seem to be specific to each 

experiment's conditions (Kokubun and Watanabe, 1982). 

Jeffers and Shibles (1969) found an interaction occurred 

between LAI and solar radiation in their effect on photo- 
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synthesis, causing the critical LAI to increse as solar 

radiation incresed. 

Shibles and Weber (1966) observed that an increase 

in population shortened the time to 95 percent solar rad¬ 

iation interception. They postulated that complete (95%) 

interception must be reached prior to the seed production 

period in order to attain maximum yields. 

Taylor (1980) observed higher LAI in wide (100cm) 

rows; however, narrow (25cm) rows yielded as well or bet¬ 

ter than the wide rows. Taylor et al. (1982) reported 

that radiation interception was greater at 25cm row spac¬ 

ing during most of the season. They believed it was the 

difference in radiation interception during late seed de¬ 

velopment which caused the yield differences between nar¬ 

row and wide rows. The work of Dunphy et al. (1979) gives 

support to the view that the seed development period is 

the most critical. They found the length of the seed de¬ 

velopment period (growth stages R4 to R7; Fehr and Cavines 

1977) was more highly correlated with yield than any 

other period. 

Lodging occurs in soybeans and has been associated 

with increased plant density ( Probst, 1945; Cooper, 1971; 

and Hoggard et al., 1978). It is argued that lodging may 

be detrimental to yield because of increased self-shading. 
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Lodging has been reported to reduce yields by 10 to 32 

percent (Johnston and Pendleton, 1968; Woods and Swear- 

ington, 1977). Cultivar differences in lodging response 

were recognized by Hoggard et al. (1978) who thought that 

cultivars of short stature and improved lodging resis¬ 

tance can be developed without lowering yield. The con¬ 

clusions of Gay et al. (1980) tend to support this view 

in that they found no relation between lodging and yield 

in the two old low yielding cultivars and the two new high 

yielding cultivars that they studied. 

Woods and Swearington (1977) found beginning seed 

stage (R5) to be the most critical time of lodging and 

accounted for the greatest yield reductions. Noor and 

Caviness (1980) found significant yield reductions oc¬ 

curred when plants lodged at full pod (R4) but none at 

vegetative or full bloom stages of development. When 

plants lodged at stage R5 apical dominance was lost and 

yield from branches increased (‘Woods and Swearington, 

1977). However, the increased branch yield was not enough 

to overcome the decrease in yield from the main stem. 

The main stem yield reduction occurred almost exclusively 

in the pods per plant component as seeds per pod and seed 

size were not affected. Woods and Swearington (1977) 

hypothesized that the altered light relationships were 
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responsible for the changes in yield and yield components. 

Changes in the plant's environment have been linked 

to a number of physiological processes. It is at this 

level that the real effects of competition expose the 

factors which are limiting to plant growth and where the 

possibility of identifying the better adapted or less 

adapted plants exists. In 1963, Donald defined compe¬ 

tition : 

"Competition occurs when each of two or more 
organisms seeks the measure it wants of any 
particular factor or thing and when the im¬ 
mediate supply of the factor or thing is 
below the combined demand of the organism". 

He further states that, 

"the factors for which competition may occur 
among plants are water, nutrients, light, 
oxygen and carbon dioxide; in the repro¬ 
ductive phase, agents of pollination and dis¬ 
persal must be added". 

Soybeans are a self-pollinated crop and therefore do not 

compete for the agents of pollination nor dispersal. 

Other factors affect growth such as temperature and 

humidity but are not in finite supply and therefore are 

not subject to competition. However, it must be noted 

that temperature and humidity may change from node to 

node in indeterminate plants where the development of 

one node occurs at a different time from the other nodes. 

Self shading or shading by other plants is under- 
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stood to reduce photosynthesis in the shaded leaves. This 

is well documented. There is however, evidence that un¬ 

shaded soybean leaves respond to this situation. Increas¬ 

ed rates of photosynthesis have been found in unshaded 

leaves when the other leaves of the plant were shaded 

(Thorne and Roller, 1974; Peet and Kramer, 1980). Shading 

treatments caused reduced leaf starch and either increased 

(Thorne and Roller, 1974) or had no effect on free sugar 

concentration (Egli et al., 1980). Thorne and Roller 

(1974) reported that the shading treatments caused an 

increased assimilate demand resulting in a net photosyn- 
% 

thesis increase by means of lower mesophyll resistance 

in the unshaded leaves. 

High irradiance resulted in a similar lowering of 

leaf starch content in leaves which were acclimated but 

no differences in CO2 exchange rates were found (Silvius 

et al., 1979). They interpret the data to indicate photo¬ 

synthesis rates stay the same but the photosynthate is 

transported out of the leaves rather than converted to 

starch. Under natural conditions leaves at the upper 

nodes usually have a higher irradiance than lower leaves 

and these upper leaves have been found to be thicker 

(Lugg and Sinclair, 1980) and to have more abscisic acid 

(ABA)(Ciha et al., 1978). Perhaps thicker leaves have 
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more chlorophyll or larger internal surface area with 

increased C02 exchange sites than thinner leaves. 

Cultivar differences in photosynthesis rate have 

been recognized. Sinclair (1980) observed cultivar dif¬ 

ferences in both maximum carbon exchange rate (CER) and 

in the duration of high CER throughout the season. Singh 

et al. (1968) found cultivar differences in net and spec¬ 

tral radiation but no such differences due to row spac¬ 

ing. However, their sampling period was after full cover 

was attained which excluded any possible early season dif¬ 

ferences . 

Many experiments have been done which either mani¬ 

pulate the photosynthetic sink by pod removal or increase 

the photosynthetic source material by adding CO2. Both 

Roller and Thorne (1978) and Setter et al. (1980) found 

pod removal to reduce the CO2 exchange rate by increasing 

stomatal diffusion resistance. It is quite possible that 

the increased stomatal diffusion resistance was caused by 

stomatal closure which was a reaction to greater water 

loss through the cut surfaces than a response to decreased 

assimilate demand by sink reduction. 

Nafziger and Roller (1975) found increased leaf 

starch levels after increasing CO2 supply. Hardman and 

Brun (1971) found that C02 enrichment increased yields 
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when applied at the pod filling stage. The yield increase 

was the result of larger seed size. CO2 enrichment at 

flowering caused a greater number of pods but seed size 

decreased thus cancelling any effect on yield. C02 

enrichment at the vegetative stage had no effect on yield 

or any other of the variables studied. 

Flowering 

Numerous factors have been found to influence flower¬ 

ing and pod set in soybeans. Among those factors are 

cultivar, plant density, photoperiod, light intensity, 

temperature, water supply, humidity and nutrition. Flower¬ 

ing and pod set periods are very sensitive but appear to 

have a great capacity for overproduction and consequent 

adjustment in yield components in order to maintain yield 

levels. 

McBlain and Hume (1981) found no cultivar differences 

in flo-ers produced or flowers and pods aborted in three 

indeterminate maturity group 00 cultivars. van Schaik and 

Probst (1957a) using both determinate and indeterminate 

cultivars and Weibold et al. (1981) using eleven determin¬ 

ate cultivars from maturity groups V through VIII all 

found cultivar differences in number of flowers, young 

pods and pods per plant. 
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Dominguez and Hume (1977) found a decrease in total 

flowers produced and in initial and final numbers of pods 

per plant at high densities (densities used were 40, 80, 

and 120 plants/m ). In addition, plant densities also 

affected the distribution of pods as fewer were produced 

on the bottom third of the plants at high densities. 

Both Dominguez and Hume (1977) and Hansen and Shibles 

(1978) observed flowering and pod set to be greatest on 

the middle section of the plant. 

Studying photoperiod sensitive lines Shanmugasundaram 

et al. (1978) found no differences in induction period 

from ten to sixteen hour daylengths in the insensitive 

line. However, the sensitive line had an inductive period 

of twenty-five days; ten days later anthesis occurred. 

It was nine days after emergence that the sensitive line 

began the inductive period. 

Light intensity also plays a part in flowering and 

pod set. It is presumed that this effect is through an 

increase or decrease in the production and availibility 

of photosynthate. Johnston et al. (1969) found that add¬ 

ing light to different canopy levels increased yield at 

those levels. The light rich plants produced more seeds, 

nodes, pods, branches, pods per node, seeds per pod and 

higher oil content than normal plants. The apparent 
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photosynthesis rates increased in the bottom and middle 

canopy levels with the supplemental light. Schou et al. 

(1978) found reflectors increased photosynthetically 

active radiation by 57 percent and increased pod number 

by 48 percent. In another experiment relating to improved 

photosynthesis Hardman and Brun (1971) found increased pod 

numbers and node numbers in plants enriched with CC>2 

during flowering, but no yield increase was found. How¬ 

ever, when CO2 enrichment was given to plants during the 

podfill stage a slight increase in seed size was found 

which resulted in greater yield. Shade treatments reduc¬ 

ing the amount of light available for photosynthesis were 
\ 

found to decrease pods per plant, seeds per pod and seed 

yield (Schou et al., 1978; Wahua and Miller, 1978). 

Subhadrabandhu et al. (1978) working with dry beans 

(Phaseolus vulgaris L.) observed the first formed flowers 

had the highest probability of setting pods and maturing 

seeds. Hardman (1970) made a similar observation in soy¬ 

beans stating that pod set success was greater for the 

first half of flowering period than the second half (50 

vs 25 percent success, respectively). Similarly, Gent 

(1982) found a lower rate of abortion of seeds on branch¬ 

es having fewer pods. Whbther these data reflect influ¬ 

ences of small seed number, stage of the plants develop- 
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ment or other factors is not clear. 

Woodward and Begg (1976) found that low humidity from 

the start of flowering on reduced pod number causing a 

reduction in yield. They reported that the reduced pod 

number was related to floret abortion rather than pod 

abortion. The reason for greater floret abortion at low 

humidity is not know. Perhaps the reason for the greater 

abortion at low humidity involved lack of pollination or 

fertilization. van Schaik and Probst (1957b) reported 

an increase in flower and pod shedding with high temper¬ 

atures (32^C). They found sufficient quantities of 

viable pollen but evidence that fertilization had not 

taken place. Thomas and Raper (1981) found a greater 

number of pods per plant with high day (26 to 30(-1C) and 

low night (14^0 temperatures than with other combinations 

of day (14, 18, 22, 26, and 30^C) and night (10, 14, 18, 

22, and 26^0) temperatures. 

The nutritional status of the plant has been shown 

to affect pod abortion. Increasing the nitrogen supply 

from initial bloom to the end of bloom increased seed 

number and seed size with a resulting increase in yield 

(Brevedan et al., 1978). 
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Growth Analysis 

The relative growth rate (RGR) has i een found to 

decline throughout the season (Buttery, 1969a; Herbert et 

al., 1983). Roller et al. (1970) found the RGR of each 

individual plant fraction steadily decreased as the sea¬ 

son progressed and the most recently initiated plant frac¬ 

tion had the greatest RGR. Buttery and Buzzell (1972) 

observed cultivar differences in RGR and also observed 

(1970) an increase in RGR with increasing density (80,000 

to 640,000 plants/ha). Herbert et al. (1983) observed 

increased RGR with narrow rows (25 vs 75cm row widths). 

The crop growth rate (CGR) is the amount of biomass 

increase per unit area per day. The CGR has been found 

to rise to a peak and then decline during the season 

(Buttery, 1969b; Roller et al., 1970; Herbert et al., 

1983). Roller (1971) observed that the leaf component 

was the first to reach peak CGR. Using altered plant 

types, Rokubun and Watanabe (1981 and 1982) found CGR 

at high density was greater in main-stem type (plants 

without branches) plants than in branch type or control. 

However, the CGR was higher in the control plants at low 

density. Buttery (1970) found the CGR decreased with 

increasing density. The plant density response to CGR 
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has not always been clear and seems to be dependent on the 

genetic make-up of the plant responding through its branch¬ 

ing pattern. 

Herbert et al. (1933) found a distinctly greater CGR 

in narrow rows (25 vs 75cm) regardless of density (21 vs 

113 plants/m^). Kokubun and Watanabe (1982 ) observed a 

greater CGR in narrow rows before the beginning of flower¬ 

ing but a greater CGR in wide rov/s after the beginning of 

flowering (GO vs 90cm rov; v/idths) . 

The net assimilation rate (NAR) is the rate of in¬ 

crease in plant material per unit of assimilatory material. 

Herbert et al. (1983) found a higher net assimilation rate 
t 

in narrow rows. They attribute the increased CGR and RGR 

of narrow rov/s to the higher NAR. Buttery (19 70) observ¬ 

ed that NAP. increased v/ith increasing density. Kokubun 

and Watanabe (1981) found higher NAR in the main-stem 

plant types at high density but higher NAR in control 

plants at low density. Self shading from branches in con¬ 

trol plants might have reduced the plants ability to pro¬ 

duce efficiently new material at high density. Cultivar 

differences have been detected in NAR by Buttery (1972). 

A comparison with parents shov/ed that selection for high 

yield resulted in increased NAR. 
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Yield Components 

Seed yield in soybeans is composed of the following 

yield components: plants/m , pods/plant, seeds/pod and 

seed size. Alterations of conditions in the plant's en¬ 

vironment whether by natural forces or by design cause 

alterations in yield components. Studying the changes in 

yield components that result from different row widths, 

plant densities and cultivars may lead to valuable know¬ 

ledge on how the plant achieves its yield. 

The soybean plant is noted for its ability to produce 

similar yields under a range of row width and plant density 

conditions. The stability of yield is achieved through 

compensation of the yield components. As conditions reduce 

one component, another often increases. Adams (1967) 

working with dry beans (Phaseolus vulgaris, L.) believed 

the negative correlations observed among yield components 

to be developmental rather than genetic. According to 

Adams the yield components develop in a sequential pat¬ 

tern but are genetically independent and therefore free to 

vary in response to either limited constant input or 

fluctuating input of metabolites such that input is limit¬ 

ing at critical stages in the developmental sequence. 

A number of workers have reported the yield compo- 
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nent pods/plant to be the most responsive to changes in 

the environment (Lehman and Lambert, 1960; Pandey and 

Torrie, 1973; Dominguez and Hume, 1978; Herbert and 

Litchfield, 1982). Dominguez and Hume (1978) reported an 

increasing percentage of pod abortions with increasing 

plant density. Numerous others have reported a decreas¬ 

ing number of pods/plant with increasing plant density 

(Hicks et al., 1969; Fontes and Ohlrogge, 1972; Enyi, 

1973; Lueschen and Hicks, 1977; Stivers and Swearington, 

1980; Herbert and Litchfield, 1982). 

Johnston et al. (1969) found that plants with supple- 

\ 

mental light had more pods/plant. Wahua and Miller (1978) 

found that increased shade decreased the number of pods/- 

plant. Lodging reduced the number of pods/plant especial¬ 

ly if it occurred at the beginning seed stage (R5)(Woods 

and Swearington, 1977). 

There is evidence that row spacing affects the number 

of pods/plant. Herbert and Litchfield (1982) using 25, 

50 and 75cm row spacing found the number of pods/plant 

decreased with increasing row spacing. Taylor et al. 

(1982) found pod set was greatest in 100cm rows but final 

pod number was greatest in 25cm rows. They attribute the 

difference to late season abortion of pods in the 100cm 

rows which resulted from a smaller late season LAI as 
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compared to the 25cm rows. 

The yield component seeds/pod is much more stable 

than pods/plant. Herbert and Litchfield (1982) and Taylor 

et al. (1982) both found no effect on the number of seeds/ 

pod from narrowing row width. Lehman and Lambert (1960) 

reported that row width and plant population had little 

effect on seeds/pod. However, Pandey and Torrie (1973) 

reported that row width and plant population had influ¬ 

enced the number of seeds/pod in four out of nine data 

sets with which they were working. Stivers and Swearing- 

ton (1980) found that with three populations (136, 107 

and 79 thousand plants/ha) the yield was constant due to 

compensation of yield components which included the number 

of seeds/pod on branches. 

Johnston et al. (1969) observed that by increasing 

the amount of light available the plants responded by 

producing a greater number of seeds/pod. Kokubun and 

Watanabe (1982) using an experimental procedure which 

increased light interception throughout the canopy by 

artificially holding the upper leaves in a vertical posi¬ 

tion observed a yield increase which depended on a great¬ 

er number of pods per unit area and seeds/pod. Wahua and 

Miller (1978) however, did not observe any change in 

seeds/pod with increasing degrees of shade. 
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Seed size is the yield component affected the least 

by changes in row width and plant density. However, 

slight changes in average seed size have been observed and 

in some instances these slight changes may account for 

significant differences in yield. Herbert and Litchfield 

(1982) found significant differences in seed size as a 

response to row width and plant density treatments in one 

year but not in the other of their experiment. Also, it 

was the difference in seed size which accounted for the 

difference in yield between the two years. Taylor et al. 

( 1982) found no effect of row spacing on seed size. 

There are many reports of plant density not affecting 

seed size (Probst, 1945; Wilcox, 1974; Dominguez and Hume, 

1978; Kokubun and Watanabe, 1982). There are also reports 

of seed size increasing with increasing plant density 

(Costa et al. , 1980; Stivers and Swearington, 1980), as 

well as reports of seed size decreasing with increasing 

plant density (Hinson and Hansen, 1961; Johnson and Harris 

1967; Enyi, 1973). 

Johnson and Harris (1967) found the decrease in seed 

size with increasing plant density was only true in one 

of the four cultivars they used. All the reports citing 

a decrease in seed size with increasing plant density 

were using the determinate cultivars and were either from 

the southern U.S. or the tropics. Egli et al. (1978) 



23 

observed a slight difference in seed size on late pods 

of indeterminate plants. The reports of increasing plant 

density causing larger seed size seem to be from the more 

northerly latitudes in which indeterminate cultivars pre¬ 

dominate. However, the growing conditions from one year 

to the next may play a large part in the seed size com¬ 

ponent of seed yield. 



CHAPTER III 

FLOWERING 

Introduction 

Many researchers have observed the loss of substan¬ 

tial numbers of soybean flowers and pods throughout the 

growing season (van Schaik and Probst, 1957b; Hardman, 

1970; Breveden et al. 1977). 

Various environmental factors such as inadequate nit¬ 

rogen (Breveden et al.,, 1977) , water stess (Ashley and 

Ethrdge, 1978), temperature extremes (van Schaik and 

Probst, 1957b; Thomas and Raper, 1981), low light levels 

(Wahua and Miller, 1978) and increased plant density 

(Dominguez and Hume, 1977) have been cited as adversely 

affecting flower and pod set. Other factors have been 

shown to increase soybean pod set: CO2 enrichment 

(Hardman, 1970; Hardman and Brun, 1971), light enrichment 

(Johnson et al. 1969; Schou et al., 1978) and the number 

of trifoliate leaves and short days (Shanmugasundaram and 

Tsou, 1977). 

van Schaik and Probst (1957a) considered flower num¬ 

bers per node and percent flower shedding as quantita- 

24 
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tively inherited traits. The position that genotypic 

differences for abscission exist among cultivars was 

supported by Wiebold et al. (1981). However, using three 

maturity 00 cultivars, McBlain and Hume (1981) did not 

find any cultivar differences in flowers produced or abor¬ 

tion of reproductive structures. 

In three experiments with indeterminate soybean 

cultivars, flower, pod and seed production were greatest 

in the middle portion of the plant (Dominguez and Hume, 

1977; Hansen and Shibles, 1978; Breveden et al., 1977). 

Wiebold et al. (1981) concluded that abscission was great¬ 

est in those sections of the canopy where light penetra¬ 

tion was lowest. 

The object of this study was to observe the effects 

of different row widths and plant densities on flower and 

pod production of two short season soybeans of indeter¬ 

minate growth type. 

Materials and Methods 

Two soybean cultivars, Evans, of maturity group 0, 

and Altona, of maturity group 00, were planted on May 28, 

1981. Each cultivar was planted in two row widths and 

at two plant densities. The row spacings were 25 and 75cm 
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between rows. The plant densities were 25 and 75 plants 

per square meter (250,000 and 750,000 plants per hectare). 

The three treatments of cultivar, row width and plant 

density were arranged factorially in a randomized complete 

block experiment. Three of the four replications were 

used for monitoring flowers. 

The experiment was located at the University of 

Massachusetts Agricultural Experiment Station farm in 

South Deerfield, Massachusetts. The soil was a Hadley 

fine sandy loam, mixed mesic, Typic Udifluvent. 

The site received 0-44-83 kg/ha of elemental N-P-K 

in the spring after plowing and before secondary tillage. 

Seeds with 90 percent germination were inoculated 

with a commercial granular inoculant and machine planted. 

Weeds were controlled by a preemergence application of 

1.7 kg/ha a.i. alachlor ( (2-chloro-2',61-diethyl-N- 

(methoxymethyl) acetanilide)) and 0.85 kg/ha a.i. linuron 

(3-(3,4-dichlorophenyl)-1-methoxylurea). 

The first flower was noticed on 'Altona' 35 days after 

planting. Full sampling began on July 7, fourty days after 

planting. 

Five plants, contiguos within a row, were used from 

each plot. The initial plant was selected randomly and 

the plants were identified so that the same plants were 
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counted at each sample date. Plots were 7.6m long and 

4m wide. 

Sample dates were initially twice weekly and gradually 

lengthened to once a week as flowering activity slowed 

down. Identification of flowers and pods for counting 

purposes followed the procedure of Dominguez and Hume 

(1977) were "a floral bud was considered a flower when 

colored petals were visible and a pod when the swelling 

of the ovary extended beyond the calyx". Plants were 

harvested and final pod number determined along with the 

larger yield component experiment reported in Chapter V. 

\ 

Results and Discussion 

The Evans cultivar began flowering a few days after 

'Altona' but rapidly caught up and surpassed the flowering 

capability of 'Altona' (Figures 1 and 2). Comparing the 

cultivar responses to plant density, 'Evans' equalled or 

surpassed 'Altona', having the most flowers on a plant at 

any one time (Fig. 1). However, the time of peak flower 

production of 'Evans' was earlier than 'Altona' (Fig. 1). 

These observations are partially accounted for by their 

differences in maturity group, 'Altona' being maturity 

group 00 and 'Evans' being group 0. But at final harvest 
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seed yield was not affected (Table 3, Chapter V). 

The flowering response was greater in narrow than 

wide row environments (Fig. 2). The magnitude of the 

increased flowering response in narrow rows was greater 

in the Evans cultivar but was also observed in 'Altona'. 

In 'Evans* the wide row plants maintained flower produc¬ 

tion later into the season than the narrow row plants. 

Most of this prolonged flowering was at the upper nodes 

of the main stem and branches which did not contribute 

much to overall plant yield. There was not sufficient 

time for all the upper nodes to mature pods and seeds 

before leaf senescence and cold weather. Flowering later 

into the season did not compensate for the early advan¬ 

tage in flower production of the narrow row plants which 

quickly became a difference in pods per plant (Fig. 2) 

and was maintained until harvest. 

The final pods per plant sample taken at harvest on 

those plants which had been followed throughout the 

season showed a cultivar by row width interaction (Fig. 2). 

There was a clear advantage in pod production in the nar¬ 

row rows of 'Evans' compared with the wide rows. In 

'Altona' the wide rows produced more pods per plant than 

the narrow rows (Fig. 2). However, the difference in pod 

production in 'Altona' as affected by row width was not 
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great. When a larger sample (2m2) at final harvest was 

analysed the narrow row 'Altona' plants had a greater 

number of pods than wide row plants and the cultivar by 

row width interaction was not statistically significant 

(P=0.63649) (Table 3, Chapter V) . 

There is a strong similarity between the different 

cultivar's flowering response to row width treatments and 

leaf area index (LAI) (Fig. 8, Chapter IV). Perhaps 

maximum LAI is reached when maximum flower production is 

reached. Flower production is dependent on LAI for 

photosynthate especially when the plant is having maximum 

ontological competition from flower development and new 

vegetative growth above and pod set and development on 

the lower and lower-middle nodes. This suggests that a 

production potential exists for each cultivar under a 

given set of environmental conditions and that the plant 

has a certain flexibility to attain this potential via 

branches or individual nodes as the environment dictates. 

Gent (1982) found in a depodding study of Y-shaped plants 

that long distance transport of carbohydrates readily 

occurred. 

Figures 3 and 4 both show the number of flowers on 

the top, middle, and bottom sections of the plant. In 

all cases flowering progressed from the bottom to the top 
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of the plant which is characteristic of indeterminate 

cultivars. 'Altona' plants flowered on the middle nodes 

before 'Evans' plants, and narrow row plants flowered on 

the top nodes before wide row plants. 

Narrow row plants had a greater number of flowers in 

all sections of the plant than the respective wide row 

plants in the Evans cultivar (Fig. 3). 'Altona' also had 

a greater number of flowers in narrow rows but the differ¬ 

ence was not as great as in 'Evans' (Fig. 3). 

The low density plants of both cultivars had greater 

peak flower production and sustained that production for 

a longer time than their high density counterparts 

(Fig. 1). Dominguez and Hume (1977) also observed a 

decrease in flowers and pods per plant at high densities. 

Yield per unit area was not affected by density (Table 3, 

Chapter V). 

Flower production of the bottom (nodes 1 through 5) 

section of the plant began earlier than the middle or top 

sections in 'Evans' regardless of density (Fig. 4). In 

'Evans' the middle section (nodes 6 through 10) began 

flowering a few days later (Fig. 4) and was followed by 

the top (nodes 11+) section of the plant. The middle 

section had the greatest percentage of flowers for most 

of the reproductive season (Figures 3 and 4). In exper- 
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iments using soybeans with indeterminate growth habit 

both Dominguez and Hume (1977) and Hansen and Shibles 

(1976) found the middle section of the plant to have the 

largest percentage of yield. 

We observed a rejuvenation in flower production from 

the bottom section of 'Evans' plants at the later sample 

dates (Figures 3 and 4). In this study, branch production 

is defined as any flowers or pods occurring on branches 

and have attributed that production to the node from which 

the branch arose. Close inspection of Figures 3 and 4 in 

conjunction with our field observations confirm that the 

increase in bottom section flower production at the late 

sample date is attributable to the low density condition 

under which the branches were produced. 

'Altona' high density plants never showed open flow¬ 

ers in the top section on any sampling dates (Fig. 4), 

although pods were observed on that section (Fig. 5) . 

This is an anomoly of the sampling procedure which appears 

when flowers open and pods are produced between sample 

dates. Thus the flowering data should be looked at as 

if they were instantaneous readings taken at different 

points in time throughout the plant's reproductive phase. 

The pod production data are an integration in that they 

progress from one sample date to the next by including 
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what has come before. 

The row width effect on pods/plant did not vary from 

one section of the plant to another. The middle section 

produced the most pods followed by the bottom section and 

lastly the top section (Fig. 5). However, with the Evans 

cultivar the top section surpassed the bottom section 

during the last part of the growing season (Fig. 5). 

Pod production of the two cultivars did not differ 

greatly in the low density conditions; however, the 

'Altona' was less productive than 'Evans' under the high 

density conditions in this study. Under high density con¬ 

ditions fewer branches were observed and therefore the 

cultivar with the greatest number of productive nodes 

would result in a greater number of pods and yield (Table 

1) . 

In both cultivars the middle and top sections of the 

plant produced more pods in the low density conditions 

(Fig. 6). The top section increased ('Evans') or main¬ 

tained ('Altona') its number of pods throughout the sea¬ 

son while the bottom and middle sections lost pods be¬ 

tween the 71st and 131st(harvest) day after planting 

(Fig. 6). 

There was a larger percentage of pods on the bottom 

section of 'Altona' compared to the bottom section of 
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'Evans' (Fig. 5). This is attributable to the greater 

number of nodes in 'Evans' (Table 1) which allowed the 

yield to be divided among a greater number of nodes and 

reduced the percentage at the bottom. In both cultivars 

by far the greatest number of pods is from the middle sec¬ 

tion of the plant (Figures 5 and 6). As previously men¬ 

tioned, both Dominguez and Hume (1977) and Hansen and 

Shibles (1976) found the middle section of the plant to 

have the highest percentage of yield. Because of the 

greater number of top section nodes and branch activity, 

the low density plants continue pod production throughout 

the season (Fig. 6). 

In summary, the low density environment stimulates 

greater flower production per plant. The greater flower 

production is converted into greater pod production. 

Branches are promoted by the low density environment and 

they produce flowers longer into the season than the main 

axis sections from which they arise. The row width effect 

seems to be cultivar specific to some degree and was more 

pronounced in 'Evans' than in 'Altona' plants. The narrow 

row environment caused a greater number of productive nod¬ 

es to be formed in plants from the Evans cultivar than the 

wide row environment. 



Table 1 

Total nodes, productive nodes and number of branches 

per plant 

Total nodes Productive 
nodes 

Number of 
branches 

Altona 

Low Density 13.4 12.8 2.2 

High 9.2 7.3 0.5 

Evans 

Low 14.3 
i 

13.2 3.7 

High 10.7 8.0 0.8 

Altona 

Narrow rows 11.5 10.5 1.6 

Wide 11.1 9.6 1.1 

Evans 

Narrow 13.2 11.7 2.3 

Wide 11.7 9.6 2.1 

Total nodes: density* 

Productive nodes: density** row width* 

Number of branches: density** 

* and ** indicate significance at 5% and 1% levels, 
respectively. 



CHAPTER IV 

GROWTH ANALYSIS 

Introduction 

The field of growth analysis has been developed over 

the past sixty years by plant physiologists, agronomists 

and other plant scientists in an attempt to quantify the 

basic growth processes of plants. 

Plants compete for a variety of resources and there 

are complex interactions between plants and their environ- 

ment. Inevitably one resource is most limiting. Solar 

radiation is a key resource for photosynthesis. To pro¬ 

duce an economic seed crop the plants must have a means 

of production - the leaf - and must be able to move the 

products of the leaves into the seeds. The plants are 

dependent on leaves to intercept solar radiation in order 

to photosynthesize and supply energy for growth. 

Sakamoto and Shaw (1967) found light interception 

occurred primarily at the periphery of the canopy which 

resulted in the lower leaves being shaded. Also, as the 

space between rows closed, interception was primarily at 

the top of the canopy (Sakamoto and Shaw, 1967; Luxmoore 

41 
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et al., 1971). Although not parasitic, because of shad¬ 

ing, lower leaves reportedly contribute little to photo¬ 

synthesis (Shibles and Weber, 1965; Johnston et al., 

1969). Closely spaced plants are more competitive for 

light and lower apparent photosynthesis rates have been 

found in lower leaves (Beuerlein and Pendleton, 1971). 

Adding light to the bottom and middle of the canopy 

increased yields (Johnston et al., 1969). 

The higher the position of the leaves on the plant, 

the higher the rate of photosynthesis and the higher the 

light saturation intensity (Kumura, 1969). Also, higher 

rates of photosynthesis have been correlated with thicker 
V 

leaves (Dornhoff and Shibles, 1970). 

Cultivar differences in C02 uptake rates have been 

reported (Dornhoff and Shibles, 1970), as well as differ¬ 

ences in stomatal frequency (Ciha and Brun, 1975). Ciha 

and Brun (1975) also indicated that stomatal frequency 

increased with high light intensity and with water stress. 

Dornhoff and Shibles (1970) considered cultivar differ¬ 

ences in net photosynthesis to be the result of differ¬ 

ences in diffusive resistances. 

While leaf area index (LAI) is a measure of the 

potential photosynthetic area, large LAI has not neces¬ 

sarily been correlated with high yield (Shibles and Weber, 

1966; Taylor, 1980; Taylor et al., 1982). 
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Sakamoto and Shaw (1967) suggested an increase in 

yield could possibly be obtained by selecting cultivars 

which allowed greater penetration of radiant energy into 

the canopy. However, in a study comparing plants with 

normal and narrow leaflets, leaflet type did not signif¬ 

icantly affect net carbon exchange or yield (Hiebsch et 

al., 1976). On the other hand, Kokuban and Watanabe 

(1981) showed that if upper leaves were arranged more 

vertically the lower leaves could contribute to an in¬ 

crease in photosynthesis and yield due to a greater crop 

growth rate. The greater crop growth rate resulted from 

an increase in net assimilation rate (i.e. greater photo¬ 

synthetic efficiency) while the LAI stayed the same. 

The object of this experiment was to apply growth 

analysis descriptions to the 'Evans' and 'Altona' soy¬ 

beans at narrow and wide row spacing and three popula¬ 

tions in order to gain some insight into the physiolo¬ 

gical mechanisms involved in crop responses to field 

conditions. 
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Materials and Methods 

Two cultivars of soybeans, Altona and Evans, were 

planted on May 28, 1981. In addition to the two culti¬ 

vars, treatments consisted of two row widths (25 and 

75cm), and three plant densities (25, 50 and 75 

plants/m2). 

The soil was a Hadley fine sandy loam. The site 

received 0-44-83 kg/ha elemental N-P-K in the spring 

after plowing and before secondary tillage. Weeds were 

controlled by a pre-emergence application of alachlor and 

linuron (see Materials and Methods, Chapter III for 

description of chemicals and rates). 

Seed with 90 percent germination were machine plant¬ 

ed and were inoculated with a commercial soil incorpo¬ 

rated granular inoculant. There were four replicates in 

a randomized complete block design. Plots were 7.6m long 

and 4m wide. The plots consisted of 16 rows for the 25cm 

row width and 6 rows for the 75cm row width. 

Sampling for growth analysis cmmenced on June 30th 

and continued at two week intervals throughout the season. 

Samples of 0.25m2 were taken from the center rows of each 

plot. Plants were cut at ground level and leaf area, 

leaf dry weight and total dry weight were determined. 
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The values for leaf area, leaf dry weight and total dry 

weight were transformed into natural logarithms, thus 

making the variances independent of the means. Second 

degree polynomials, 

loge W = a + bt + ct2 

and 

loge A = a' + b ' t + c 112 

were fitted by the least squares method to express the 

weight (W) and area (A) as functions of time. Relative 

growth rate (RGR) at any instant in time was derived 

directly by differentiation: 

RGR = d(loge W)/dt = b + 2ct (Buttery, 1969b) 

and 

NAR = '(b + 2ct) e (a-a') + (b-b')t + (c-c')t2 

and 

CGR = NAR x LAI (Watson, 1958) 

Final seed yield was determined after maturity by 

2 
harvesting plants in a 2m area from the center two rows 

of each plot. 

Results and Discussion 

Seed yield was greater in narrow rows (25cm) than 

wide rows (75cm), 400 g/m2 versus 324 g/m2, respectively. 
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This relationship held true in both cultivars: 'Altona', 

399 g/m2 versus 301 g/m2, and 'Evans’, 400 g/m2 versus 

346 g/m^ for the 25 and 75cm row widths respectively. 

All yields are averaged over density because no signifi¬ 

cant density response and no significant interactions of 

density with other variables were found. 

The total dry weight per meter square was higher in 

the narrow than the wide rows (Fig. 7). Dougherty (1969) 

also found greater dry matter production in narrow rows. 

Differences in the narrow and wide rows' total dry 

weight began to occur near the beginning pod stage (R3) 

(day 4 8) , however, there was no clear advantage to either 

row width. By the beginning seed stage (R5) (day 62) 

the greater total dry weight in narrow rows had become 

visible and it remained so for the rest of the season. 

Leaf area index (LAI) was greater in narrow rows 

than wide rows (Fig. 8). Differences between row width 

treatments began to become apparent by beginning pod 

stage (R3)(day 48). The most pronounced advantage of LAI 

in narrow rows was at the beginning seed stage (R5)(days 

62 and 76). Narrow rows maintained a higher leaf area 

later into the season than wide rows. 'Evans' had a 

greater maximum leaf area and maintained it longer than 

'Altona'. 
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Figure 7. Total Dry Weight per Meter Square 

Growth Stage 

Days After Planting 
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Taylor et al. (1982) reported that radiation interception 

was greater at 25cm row spacing during most of the season. 

However, they felt it was the difference in radiation 

interception during late seed development which gave the 

yield advantage to the narrow rows. 

The relative growth rate (RGR) is a growth parameter 

which indicates the rate of increase in plant material 

for each unit of plant material present at any point in 

time of the growing season. The relative growth rate has 

been reported to vary with plant density (Buttery, 1970), 

but no significant differences were observed in this ex¬ 

periment. Therefore, the data in Table 2 are for the 

medium density (50 plants/m^) which was representative 

of ail the densities used. 

The narrow rows had a greater RGR earlier in the 

season than the wide rows (Table 2). This indicates that 

early in the growing season the narrow rows were adding 

biomass faster than the wide rows. The small differences 

in daily increments of additional biomass due to higher 

RGR in narrow rows later became larger differences in 

total dry weight (Fig. 7). The RGR's at day 70 were the 

same for narrow and wide rows (Table 2). After day 70 

the rate of increase of biomass in wide rows was greater 

than narrow rows but relative increases were smal_ during 
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this period. 

Crop growth rate (CGR) is a growth parameter which 

indicates the rate of increase in plant material for each 

square meter of ground surface area at any point in tine 

during the growing season. The general relationship of 

CGR to tine is one in which early in the season CGR in¬ 

creases moderately, then increases rapidly, peaking some¬ 

where in the middle of the season and followed by a 

rapid decline (Buttery, 1969; Roller et al., 1970). 

The CGR was higher in the narrow rows than the wide 

rows at all times of the growing season (Table 2). As 

the plant grows early in the season there is relatively 

little competition from the surrounding plants and there¬ 

fore the rate of growth increases unimpeded. As the 

plants get larger there are more areas of the plant 

actively dividing to produce new growth thus causing the 

CGR to increase rapidly. later, resources, mainly light, 

become scarce and both inter- and intraplant competition 

check the CGR. The intraplant competition is often char¬ 

acterized by competition between the shaded understorv 

leaves and the more exoosed upper and peripheral leaves 

as well as the comoetition between the vegetative and 

reproductive parts for the products of photosynthesis. 

Because of higher within row populations inter- 
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plant competition begins earlier for plants in the wide 

row plots. This is reflected in both the lower CGR and 

the lower early season RGR. The between row space re¬ 

mains available until late in the season for light inter¬ 

ception by the canopy periphery. Plants in wide rows had 

fewer flowers (Chapter III) and fewer pods (Chapter V) 

and ultimately lower yield than the narrow row plants. 

The narrow row plants where able to intercept more light 

around the periphery earlier in the season. But the 

earlier closure of the interrow7 spaces caused a competi¬ 

tive situation and reduced the RGR in the late season. 

The CGR and the RGR are gross terms for trying to 

gain some insight into physiological processes. CGR is 

obtained from its two components: the net assimilation 

rate (NAR) and the leaf area index (LAI)(Watson, 1958). 

The NAR is also a component of RGR. The NAR is the rate 

of increase in plant material per unit of assimilatory 

material (i. e. the leaf) at any point of time in the 

growing season. The NAR can be interpreted as giving the 

relative efficiency of photosynthesis. The NAR behaved 

differently in the two cultivars. In 'Evans' the NAR is 

similar in the narrow and the wide rows throughout the 

growing season. Whereas, in 'Altona' the NAR is greater 

in the narrow rows than in the wide rows and the advantage 
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is maintained throughout the season. In addition, the 

values for the NAR and CGR are consistantly higher for 

'Altona' than for 'Evans' (Table 2). Buttery (1972) 

found cultivar differences in the NAR and found that 

selection for higher yield resulted in increased NAR. No 

significant cultivar difference in yield was detected 

(Chapter V). Although 'Evans' plants have a slightly 

longer growing period than 'Altona' the higher NAR and 

CGR of 'Altona' indicate that 'Altona' is more efficient 

during its growth period. 

Although the crop growth rate of both cultivars is 

greater in narrow rows' it appears they were achieved in 

a different manner. The greater narrow row CGR of 'Evans' 

was dependent exclusively on the higher leaf area index. 

On the other hand, the higher CGR of 'Altona' in the 

narrow row environment was due to a combination of higher 

leaf area index and higher net assimilation rate than the 

'Altona' wide row plants. Perhaps in 'Altona' the canopy 

allows greater light penetration because of less branch“ 

ing and lower LAI (Fig. 1). 

In summary, the narrow row environment produced 

larger leaf area, a greater increase in biomass per unit 

area (CGR), and throughout most of the season (until 

after day 70) a greater increase in biomass per unit of 
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plant material present (RGR). The combination of these 

factors represent the capture of more radiant energy and 

the more efficient conversion of that energy into photo- 

synthate in order to support a larger number of pods in 

the narrow row environment. 



CHAPTER V 

YIELD AND YIELD COMPONENTS 

Introduction 

Seed yield in soybeans is composed of the following 

yield components: plants/m^, pods/plant, seeds/pod and 

seed size. Changes in row width or plant density can 

cause changes in the yield components. 

In the northern United States narrowing row width 

has lead to higher yields in some years (Herbert and 
\ 

Litchfield, 1982; Taylor et al., 1982). Yield has also 

been altered by changes in plant density (Buttery, 1969; 

Duogherty, 1969; Cooper, 1977; Dominguez and Hume, 1978; 

Herbert and Litchfield, 1982). 

A number of workers have reported the yield component 

pods/plant to be the most responsive to changes in row 

width and plant density (Lehman and Lambert, 1960; Pandey 

and Torrie, 1973; Dominguez and Hume, 1978; Herbert and 

Litchfield, 1982). There are numerous reports of pods/ 

plant decreasing with increasing plant density (Hicks et 

al., 1969; Fontes and Ohlrogge, 1972; Enyi, 1973; Lueschen 

and Hicks, 1977; Stivers and Swearington, 1980; Herbert 

and Litchfield, 1982). 

55 
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There is also evidence that row spacing affects the 

number of pods/plant (Herbert and Litchfield, 1982; Taylor 

et al. , 1982). Herbert and Litchfield (1982) using 25, 

50 and 75cm row spacings found the number of pods/plant 

decreased with increasing row spacing. 

The other yield components are more stable and con¬ 

tribute much less to the explanation of variation in seed 

yield due to row width and plant density alterations. 

However, if metabolites are limiting at the time when one 

yield component is developing, a later developing compo¬ 

nent may compensate as metabolites become sufficient 

(Adams, 1967). 

The object of this experiment was to observe the 

effects of different row widths and plant densities on 

the yield and yield components of two short season soy¬ 

beans of indeterminate growth type. 

Materials and Methods 

The experiment was planted on May 28, 1981 at the 

University of Massachusetts Agricultural Experiment 

Station farm in South Deerfield, Massachusetts. Treat¬ 

ments consisted of two indeterminate soybean cultivars, 

Altona (maturity group 00) and Evans (maturity group 0), 
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two row widths, 25 and 75cm between rows, and three plant 

densities, 25, 50 and 75 plants/m2. The experimental 

design was a 2 x 2 x 3 factorial randomized complete 

block, replicated four times. Individual plots were 7.6m 

long and 4m wide. 

The soil was a Hadley silt loam, course-loamy, mixed, 

mesic, Typic TJdifluvent. Previous to planting the site 

received 0-44-83 kg/ha of elemental N-P-K and 4.5 t/ha of 

agricultural limestone. Alachlor and Linuron were applied 

as pre-emergence herbicides for control of weeds (see 

Materials and Methods section of Chapter III for details). 

Both cultivars were hand harvested after reaching 

full maturity, growth stage R8 (Fehr and Caviness, 1977). 

An area 2m was threshed and oven dried to determine 

yield. A subsample of ten plants from each plot was 

divided on a whole plant and node by node basis into 

yield components. 1, 2, 3, and 4-seeded pods were count¬ 

ed for each node. Analysis of variance was performed on 

the yield and yield components. 

Results and Discussion 

The seed yield relationships are summarized in 

Table 3. Narrow rows had a highly significant yield 

advantage over wide rows. ’Evans' tended to have a 
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Table 3. Seed Yield and Seed Yield Components 

Seed Yield 
(g/m2) 

Pods/ 
Plant 

Seeds/ 
Pod 

Seed 
Size 

Cultivar 

Altona 350 23 2.17 173mg 

Evans 373 27 2.20 149 

Signif.^ ns * * ns * * 

sx 5.7 10.5 0.08 56.9 

Row Width 

Narrow 400 28 2.18 158 

Wide 324 22 2.19 164 

signif. ** * * ns ns 

sx 18.6 15.5 0.02 13.6 

Plant Density 

Low 374 42 2.21 164 

Medium 364 19 2.21 153 

High 346 14 2.14 167 

Trend ns Q ns Q 

Sx 3.3 35.6 0.09 15.1 

#. * significant at 5 percent level 
** significant at 1 percent level 
Q = quadratic trend 
ns = non significant 
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higher yield than 'Altona' but this was not significant. 

Seed yield showed a slight decrease with increased plant 

density but both linear and quadratic trends were not sig¬ 

nificant. However, plant density affected the distribu¬ 

tion of seed yield per plant and its distribution among 

nodes within the plant. No significant interactions were 

found. 

Both cultivars responded to increasing density by 

maturing fewer pods per plant (Table 3). This is a well 

documented response of soybeans to increased density 

(Dominguez and Hume, 1977; Herbert and Litchfield, 1982; 

Hicks et al., 1969). 

While figures 9 and 10 show the decrease in pods/- 

plant with increasing density they also show that the 

number of pods on the lower nodes, including pods contri¬ 

buted by branches, are considerably suppressed by in¬ 

creasing density. Similar suppression of branching and 

reduction of pods on lower nodes has been found by others 

(Dominguez and Hume, 1977; Stivers and Swearington, 1980; 

Herbert and Litchfield, 1982). 

Less light penetration to lower levels of the plant 

canopy was documented by Sakamoto and Shaw, (1967). 

Wahua and Miller (1978) observed fewer pods/plant with 

increased shading. Both experiments confirm the impor- 
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Figure 9. Pods per plant - ALTONA 
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Figure 10. Pods per plant - EVANS 
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tance of light on the number of pods/plant. Johnston et 

al. (1969) found supplemental lighting affected the lower 

and central nodes more than the upper nodes. It is, 

therefore, possible that in a more competitive situation, 

resulting from increased plant density, less light would 

penetrate to the lower levels resulting in less photosyn- 

thate to support pods at the lower nodes. 

Another line of thought is that the level of produc¬ 

tion of photosynthate is not reduced but that its distri¬ 

bution is extended over both reproductive and vegetative 

growth. Egli and Leggett (1973) observed that in indeter¬ 

minate soybean plants,, while the lower nodes are flower¬ 

ing, only 57 percent of the plant's total dry weight had 

been accumulated. Therefore, there is greater competition 

between vegetative and reproductive parts of the plant. 

The data from South Deerfield in 1981 shows this competi¬ 

tion of vegetative and reproductive parts and shows that 

it is more pronounced during the flowering and pod set 

periods of growth (Chapter IV, Flowering). 

The two previous explanations for fewer pods on lower 

nodes are two aspects of the same process. Adams hypothe¬ 

sized in 1967 that as interplant competition became suffi¬ 

ciently intense, limitations were imposed on resources 

available to individual plants, resulting in intraplant 
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competition for nutrients and metabolites, which leads to 

compensation among yield components. Not only does intra¬ 

plant competition lead to compensation among components, 

but also affects the distribution of those components on 

the plant. 

The number of seeds/pod was a much more stable com¬ 

ponent of yield than the number of pods/plant (Table 3 

and Figure 11). Along the main axis most of the seed 

number per pod variation was on the upper and lower nodes. 

There were fewer pods contributing to the averages at 

these positions and therefore there was more variability. 

There were no significant effects of cultivar, row width 

or plant density on the number of seeds per pod (Table 3). 

Fontes and Ohlrogge (1972) in a depodding study where 

treatments were imposed at full pod stage (R4), found 

greater seed size at higher nodes in response to less 

demand for photosynthate at the middle and lower nodes. 

Collins and Cartter (1956) found smaller seed size and 

lower oil content on the higher nodes, while finding 

larger seeds and higher oil content on the central and 

lower nodes. Both of these studies indicate differences 

in the seed fill conditions at different sections of the 

plant. 
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Figure 11. Seed number per pod 

Main Axis Seed Number Per Pod Branch Seed No. 
Per Pod 

L = low density 

M = medium density 

H = high density 
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There was no significant difference in seed size due 

to the row width treatment (Table 3). There was a dif¬ 

ference between cultivars ('Altona' greater than ’Evans') 

and a small difference between densities (Table 3). A 

similar seed size relationship to plant density as shown 

in Table 3 was observed previously at this experimental 

site (Herbert and Litchfield, 1982) . We could speculate 

that low density plantings, which had lower leaf area 

index (LAI) but greater leaf area per plant, provided 

more available photosynthate to seeds during the seed 

filling period than medium density plantings, resulting 

in larger seeds in the low density plantings. In the 

high density plantings, pod set was lower than in medium 

densities. Although leaf area per plant was lower in 

high densities than in medium densities, total LAI's 

were similar, creating more favorable filling conditions 

for those seeds which remained in the high density crop. 

Wilcox (1974) observed in one of three soybean 

strains a larger seed size as plant density increased. 

Differences in seed size occuring from row width treat¬ 

ments (51 vs 102cm row widths) have been observed by 

Lehman and Lambert (1960) at one of two locations. 

In our experiment there was a tendency for seed 

from wide rows to be heavier than seed from narrow rows 



66 

(Table 3). This tendency was more pronounced in ’Evans' 

than in 'Altona'. These differences may be a response to 

fewer seeds per plant in the wide rows. It was concluded 

by Johnson and Harris (1968) that the increased seed size 

was the result of fewer seeds per plant. Their results 

indicate seed size does respond to environmental condi¬ 

tions. However, significant year to year variations in 

seed size have been reported by Herbert and Litchfield 

(1982). Figure 4 shows seed size was stable over all 

nodal positions suggesting seed size is the most stable 

component of seed yield. 

Figures 12 and 13 show the relationship of average 

seed size of seeds from 1, 2, 3, and 4-seeded pods. Seed 

size was very stable across node positions and similar 

irrespective of how many seeds were filled in a pod. This 

indicates that seed filling is independent of seed number 

per pod and position on the plant. It appears that regu¬ 

latory mechanisms as yet unknown control seed number 

through flower and pod abortion. Egli et al. (1978) sug¬ 

gested that the rate of seed growth is largely controlled 

by mechanisms in the seed and not simply by the supply of 

photosynthate to the seed. Gent (1982) has recently 

shown that the transport of carbohydrate occurs freely 

throughout the plant. This finding supports our data 
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(Figs. 12 and 13) and shows that the seed is dependent on 

the whole plant for photosynthate. When photosynthate is 

being distributed during the seed fill period, the plant 

responds on a whole plant rather than a node by node 

basis, and all pods and seeds compete for the available 

resources. This does not preclude that some pods compete 

more successfully than others through advantages of 

earlier development, production of greater quantities of 

hormones, or through mechanisms which effect the dyna¬ 

mics of energy flow in the plant throughout the repro¬ 

ductive stages. 

The percentages of 1, 2, 3, and 4-seeded pods per 

node are given in Table 4. The percent 1-seeded pods are 

less than either the 2 or 3-seeded pods. The 2 and 3- 

seeded pods were similar to each other in percent contri¬ 

bution to yield. The 4-seeded pods contributed little to 

the overall yield of the plants. There was a significant 

cultivar effect (P=0.004) on 4-seeded pods, with 'Evans' 

having the greater number than 'Altona', but still the 

contribution was small. The number of 4-seeded pods was 

shown by Weiss (1970) to be genetically controlled. 

The altering of row width and plant density caused 

very little effect on the relative percent of 1, 2, 3, 

and 4-seeded pods (Table 4) . 
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No distinction was made in this study among the seed 

positions within the pod, and therefore, seed size in our 

data for 1, 2, 3, and 4-seeded pods was averaged for all 

positions within the pod. Egli et al. (1978) found only 

small differences in seed growth rates and seed size re¬ 

lated to the position of the seed within the pod. 

In this study it has been noted that within the soy¬ 

bean plant environmental influences, such as light distri¬ 

bution as affected by row width and plant density, have 

more effect on pod set than on seed size. The number of 

seeds carried to maturity is regulated by the number of 

flowers which become pods and by the number of pods which 

remain to maturity. Ultimately, it is the number of seeds 

per unit area which determines yield. Although the number 

of seeds per pod averaged over the entire plant was more 

stable than the number of pods per plant, the number of 

pods with 1, 2, 3, and 4 seeds did fluctuate with posi¬ 

tion on the plant. Increases in yield might result if a 

higher percentage of 3-seeded pods were induced by plant 

breeding techniques. However, the chances of consistently 

increasing the percentage of pods having 3 seeds as op¬ 

posed to 1 and 2-seeded pods that might occur by manipu¬ 

lating the crop's environment through management techni¬ 

ques does not seem practical. Our efforts would be better 
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spent trying to identify those factors which would result 

in an increase in the number of pods held to maturity. 

Thus a better understanding of ovule formation and abor¬ 

tion, and the competition for resourses within a node and 

within a pod, as well as, identifying the plant's mech¬ 

anism for recognizing how many seeds it has the potential 

of filling are needed at this time. 



CHAPTER VI 

CONCLUSIONS 

Flower production was greater in narrow rows than 

in wide rows. The greater flower production of narrow 

rows was converted into greater pod production. Although 

narrow row plants had a similar number of total nodes as 

wide row plants the number of productive nodes (nodes 

with one or more pods containing a minimum of one seed) 

was significantly greater in narrow row plants. 

Low density environments stimulated greater flower 

production per plant and greater pod production per plant 

as well as promoting more branches. 

Early in the season narrow rows had a greater rel¬ 

ative growth rate (RGR) than wide rows. The crop growth 

rate (CGR) was higher in narrow rows at all times of the 

growing season. In the Evans cultivar the higher CGR in 

plants from narrow rows was dependent exclusively on the 

higher leaf area index. Whereas in the Altona cultivar 

the higher CGR in plants from narrow rows was due to a 

combination of higher leaf area index and higher net 

assimilation rate. 

73 
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Narrow rows had a highly significant seed yield 

advantage over wide rows. There were a greater number of 

pods per plant in narrow rows. 

Plant density did not affect seed yield per unit 

area, however, increasing plant density resulted in fewer 

pods per plant and fewer pods on the lower nodes. 

The number of seeds per pod did not differ with 

changes in cultivar, row width or plant density. 

Seed size did not differ with row width but there 

was a small but significant difference in seed size as 

plant density changed. A significant cultivar difference 
\ 

in seed size was detected. 'Altona' was found to have 

larger seeds than 'Evans'. 

Approximately 80 percent of all pods contained 

either 2 or 3 seeds. Most of the remainder had 1 seed/- 

pod while a very small percentage of pods had 4 seed/pod. 

The percentage of 4-seeded pods was significantly greater 

in 'Evans' than in 'Altona'. 
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