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ABSTRACT 

Sugarcane leaf parenchyma cells bathed in IX solution 

maintained an average membrane potential (PD) of -135 niV 

in the dark. An electrogenic pump appears to contribute 

to FD in these cells. Sugars (25myJ added externally 

caused the following PD depolarizations, in mV, in clone 

51 NG 97t glucose l8 t 4, galactose 24 t 7, 3-0-methyl- 

glucose 10 t 4, sucrose 22 t fructose 21 ± 7, raffinose 

9 t 3, mannitol 0, lactose 0, melibiose 0, and 1-0-methyl- 

c<rgalactose 0. Glycine (25mr^i) and serine (10m^^) caused 

depolarizations of 47 t 7 mV and 23-2 mV, respectively. 

Depolarization shows saturation kinetics with respect to 

glucose concentration, with a Km of 3-6mM, The metabolic 

inhibitors KCN aind SHAM together greatly inhibited depolar¬ 

ization by 25mivi glucose atnd 25mM raffinose. Glucose (25m!/l) 

caused almost total inhibition of depolarization by raffinose, 

sucrose and 3-0-methyl-glucose (all 25mM), but only partial 

inhibition of aPD to 25mM glycine. Glycine (25mlv'l), also, 

only partially inhibited depolarization by 25mr^ glucose. 

Total depolarization to 25mM glycine and 25mivi glucose was 

comparable to the active portion of ?D as measured by Imf.l 

KCN plus SHAM, No difference was found between clones 

51 NG 97 and r:50 7209. The results are consistent with a 

cotransport mechanism of membrane transport, with sugars and 

amino acids being transported by separate carrier systems, 
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CHAPTER I 

LITERATURE RET/IEW 

Plaint Electro-physiology 

Plant cells naLintaiin an electrical, potential differ¬ 

ence (PD) across the cell membrane with the inside about 

100 mV negative to the outside (20). Higher and lower 

values have been reported for different tissues under var¬ 

ious conditions. Because of the lange vacuole in higher 

plant cells, PD is measured across both the plasma membrane 

and the tonoplast. The measured PD, in the vacuole, is 

about 10 mV more positive than the cytoplasmic PD (52). 

The total potential difference can arise from Donnan systems, 

the passive diffusion of ions across the membrane and elec- 

trogenic ion transport. 

Diffusion potentials occur because the two ions of a 

salt normally have different mobilities. If the cell mem¬ 

brane is more permeable to one ion, a concentration cell is 

set up (1), generating sin electrical potential across the 

membrane. Donnan potentials, which arise due to fixed 

charges in the cell walls, can be considered to be a special 

case of diffusion potentials (4l). For most plant cells, 

the diffusion potential, when is in equilibrium with the 

electrochemical potential gradient, can be predicted from 

the Nernst equation for K**", 
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Ev = RT In 
F 

t 

where Ej^ is the diffusion potential, R is the gas constaint, 

T is absolute temperature, F is Faraday's constant and the 

subscripts o aind i refer to the k"*" concentrations outside 

and inside the cell, respectively. If Na'*' aind Cl” are also 

significantly permeable, the Goldman equation more accu¬ 

rately predicts the diffusion potential. 

E = RT In 
F 

Pk[K] 0 ^Na 1 H 1 0 + Pci [ci] i 

PkI [>^] li %a [Na] 1i + Pci! [Cl] lo 

f 

where P represents the permeability of the ion designated 

by the subscript (21), 

In the 1950*s and early 1960's, PD was assumed to be 

entirely due to passive ion fluxes across the plasma mem¬ 

brane (6,21). There was evidence even at this time, how¬ 

ever, that diffusion potentials were inadequate to explain 

certain observations, specifically, the depolarization of 

PD induced by metabolic inhibitors (7). This was also the 

first time PD measurements were reported in higher plant 

cells. As this method became more widely used, certain 

results were obtained which were inconsistent with the 

diffusion theory. These included measured electropoten¬ 

tials too high to be accounted for by the Nemst potentials 

of any of the diffusible ions, hyperpolarizations upon 



3 

changing from dairk to light in green cells, and the effect 

of metabolic inhibitors, which caused increaised depolariza¬ 

tion of PD with increasing concentration, up to a maximum 

point, which corresponded to the calculated diffusion 

potential (21), All of these results are consistent with 

a membrane potential generated by both the passive dif¬ 

fusion of ions aind an electrogenic pump, which uses meta¬ 

bolic energy to drive the transport of am ion across a mem¬ 

brane, usually against its electrochemical potential gra¬ 

dient (52), resultir^g in a net transfer of charge (20), 

There is now overwhelming evidence for an electrogenic 

pump in bacteria, fungi, algae, bryophytes and higher 

plants (19,20,50,55f59). In all of these groups, the most 

important and universal electrogenic system appears to be 

a H'*’-efflux pump operating at the plasma membrane (50, 52, 

56), This is an example of electrogenic uniport, where a 

single species is transported in one direction. In animals 

an antiport system is present, with three Na**" ions p-jmped 

out of the cell for every two K**" ions pumped in (27). Most 

current evidence indicates that the proton efflux pump at 

the plasma membrane is driven by ATP hydrolysis, with an 

apparent stoichiometry of two K*** ions transported for each 

mole of ATP consumed (50,52), The exception is bacterial 

cell membranes, which, like mitochondrial and chloroplast 

membranes, also use redox systems to drive the pump. 
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The proton efflux pump serves two importaint functions 

for the cell. The most obvious of these is the regulation 

of cytoplasmic pH, since excess H"** ions are produced as 

byproducts of cellular metabolism (52,58). The other main 

function of the pump is the coupling of metabolic energy to 

the active transport of solutes, which is predicted by 

Mitchell’s chemiosmotic hypothesis (39»^0), According to 

this theory, the energy produced from redox reactions and 

the hydrolysis of high energy bonds is coupled via the 

electrogenic pump to a downhill electrochemical gradient 

for the ion being pumped, which in turn provides the driv¬ 

ing force for solute transport. At every step the system 

is reversible, the direction depending on the prevailing 

downhill energy gradient. The alternative to this system 

is one in which ATP or redox energy is supplied directly 

to promote uphill transport of a substance, that is, 

against an electrochemical gradient (50), 

The chemiosmotic hypothesis has lead to the develop¬ 

ment of a cotransport theory for membrane transport in plant 

cells, Slayman (56) has proposed a model for proton- 

dependent cotransport of an uncharged substrate (Figure 1), 

In this model, protons and substrate at the outer membrane 

surface combine sequentially with a membrane carrier, 

forming a positively charged complex which is driven across 

the membrane by the electrochemical gradient for On 

the inner membrane surface the complex dissociates, and the 
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Figure 1, Slayman’s cyclic carrier model 
for cotrainsport of ¥1"^ ions and an unchanged sub¬ 
strate (56). 
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X = membrane carrier; S = substrate 
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H**" and substrate are released while the carrier is recycled, 

The sequence is theoretically reversible at all steps, but 

the prevailing electrochemical gradient in plant cells 

tends to drive the charged complex across the membrane in 

only one direction, from outside to inside. 

The electrochemical gradient produced by the H‘*‘-efflux 

pump tends to drive this process in two ways. The pH 

gradient affects the rates of proton association and disso¬ 

ciation with the carrier, while the membrane potential acts 

electrophoretically on the charged proton-substrate-carrier 

complex (11). The difference in the chemical potential of 

H"** on both sides of the membrane, ^ given by 

y - /'H* = ™ In pi n - zFE„ , 

Ml 
where z is the valence of H**" and Ej^ is the membrane poten¬ 

tial (4l). The total energy available for solute cotrans¬ 

port, the proton motive force (pmf), is 

pmf = = -59apH + Ejjj 
F 

at room temperature (50)* 

The cotransport model makes several predictions about 

substrate transport (11), They are the following« 

1) transport should behave like a carrier-mediated 

process, 

2) transport should cause membrane potential depolariza- 
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tion, and the depolarization should he related to substrate 

transport rates, 

3) transport should be affected by factors which control 

pmf, either by changing membrane potential or by changing 

the relative internal to external concentrations, and 

4) transport should be accompanied by alkalinization of 

the bathing medium due to proton influx. 

Evidence for Cotransoort in Higher Plants 

The existence of H‘‘‘-cotransport systems has been well 

documented for bacteria, fungi and algae (see 50). Studies 

by Slayman and Slayman (57) on Neurosoora and Komor and 

Tanner (29) on Chlorella have been especially important in 

providing the groundwork for later studies in higher plants. 

Evidence has also accumulated for cotrsinsport in a 

number of higher plant tissues. These include oat coleop- 

tiles (9,10,11,28,61), leaves (25,53)f and protoplasts (53)f 

Ricinus cotyledons (23,24,30,31) and petioles (34,35), pea 

stems (5) and protoplasts (17), maize leaves (25), coleop- 

tiles (5), roots (5), and scutellum (22), cotton leaves 

(49), cowpea leaves (67)r sugarbeet leaves (l4,15), soybean 

cotyledons (33), tomato intemodes (68,69,70,71), Samanea 

pulvini (51), Lemna fronds (47,48), and nematode-induced 

transfer cells of Imoatiens balsamina (26), 

Several types of evidence for cotransport have been 

presented. Transient alkalinization of the bathing medium 
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occurs when sugars and amino acids are added externally (5» 

23,30»31»3^»51»69)• Presumably this is due to proton 

influxes during transport of these substances. Factors 

which control pmf have been shown to affect labelled trans¬ 

port, Transport is increased by lAA (5»10rll»35) and 

fusicoccin (5»15»35r53)» both of which stimulate proton 

extrusion. Exogenous ATP also increases transport (17,68) 

by providing extra energy to the extrusion pump. High 

external H*** concentrations, which increase pmf, also pro¬ 

mote increased transport (10,11,23,3^,^8,53,68). Con¬ 

versely, those factors which decrease pmf decrease trans¬ 

port. Diethylstilbestrol, an inhibitor of the proton pump, 

inhibits transport (5). Abscissic acid (35), respiratory 

poisons (10,11,22,53) and high external pH (14,17,22,23,48) 

also inhibit labelled transport of solutes. 

According to the cotransport model, the addition of 

substrates externally should cause depolarization of the 

membrane potential. Furthermore, the extent of depolari¬ 

zation should be related to substrate transport rates. 

Etherton and coworkers (9,10) were the first to test these 

predictions of the theory. They found that the addition 

of glucose, sucrose, glutamine, glutamic acid, histidine 

and alanine to oat coleoptiles caused a transient depolar¬ 

ization of PD followed by a partial repolarization. When 

the substrate was removed membrane potential hyperpolarized 

beyond the original resting PD, Further studies with amino 
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acids revealed that the amount of depolarization increased 

with decreasing external pH, Depolarization with respect 

to increasing alanine concentration showed saturation 

kinetics, indicating a carrier-mediated process, 

Jones, Novacky and Dropkin (26) observed membrane 

potential depolarizations in nematode-induced transfer 

cells of Impatiens roots when sugars were added. Fifty mM 

concentrations of sorbitol, glucose, 3-0-methyl-glucose, 

2-deoxyglucose, sucrose and fructose.were used. Depolar¬ 

ization was saturated at this concentration. 

Similar results were reported by Racusen and Galston 

(51) for Samanea pulvini bathed in sucrose solution. In 

addition, they found that depolarization was accompanied 

by proton influxes, measured by alkalinization of the 

bathing solution. At high concentrations (above lOmM) the 

cations K"*", Na*** and Ca'‘“‘^ totally inhibited depolarization 

by sucrose, Lictner and Spanswick (33) found that pH also 

affected depolarization to lOOmM sucrose in soybean 

cotyledons. 

Several studies have used oC-aminoisobutyric acid (AIB), 

a nonmetabolized amino acid analog, to test for depolariza¬ 

tion during transport. Etherton and Rubenstein (10,11) 

found, for oat coleoptiles, a close correlation between 

labelled AIB uptake and membrane potential depolarization. 

Depolarization showed saturation kinetics with increasing 

AIB concentration. Changing external pH did not affect 
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uptsLke except when high concentrations of K*** (above lOmK) 

or Na*** (25^i^O were present. This was due to an inhibition 

of uptake by these cations which was more pronounced at 

high pE. Membrane potential depolarization was aiffected 

by pH, with increased depolairization at low pH. Both lAA 

and fusicoccin stimulated uptake, aind lAA aJ.so increased 

the amount of depolarization by AI3. Azide strongly inhib¬ 

ited AIB transport. 

Rubenstein and Tattar (53)» in experiments with oat 

leaves and protoplasts, found that lowering the pH of the 

medium caused a linear* increase in AIB uptake. Increasing 

K*** concentration caused corresponding decreases in both 

transport and membrane potential depolarization. Both 

white light and fusicoccin, which hyperpolarized PD, stim¬ 

ulated AIB transport. This was presumably due to an 

enhancement of the activity of the proton efflux pump. 

Novacky, Ullrich-Eberius and Liittge (48) studied 

depclanization by sugans in Lemna fronds. They also found 

a saturation effect of increasing sugar* concentration on the 

amount of depolarization, and increased depolarization at 

low pH. Amino acids also caused depolarization in Lemna 

(47). 

In recent work by Kinraide and Etherton (28), pH- 

dependent repolarizaticn of oat coleoptile cells depolarized 

by amino acids was strongly influenced by the acidic or 

basic nature of the molecule. Based on these results, they 
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have proposed a model in which positively charged sub¬ 

strates are transported without a proton, uncharged sub¬ 

strates are transported with one proton, and negatively 

charged substrates are transported with one proton plus 

another cation. 

Electronhvsiology and Plant Pathology 

Tattar and Blainchard (66) have reviewed the use of 

electrophysiological methods in plant pathology research. 

As electrical potential measurements in plants have become 

more fully understood, plant pathologists have begun to 

study the effect of disease on PD, 

One avenue of study has concentrated on the effects of 

host-specific phytotoxins on PD, Mertz and Amtzen (38) 

first studied this type of effect using Helminthosoorium 

mavdis race T-toxin. They observed rapid partial depolar¬ 

ization of corn root potentials upon addition of T-toxin, 

Novacky and Karr (46) found that T-toxin also changed PD 

responses to light and dark in corn leaves. 

Helminthosporoside, a toxin produced by Helminthosoor- 

ium sacchari. caused an irreversible depolarization of PD 

in susceptible but not resistant clones of sugarcane (45, 

46,72), Helminthosporoside also inhibited the light- 

dependent recovery of PD in the presence of cyanide, 

Victorin, produced by Helminthosoorium victoriae. 

caused reversible partial depolarization in susceptible oat 
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roots (43) and coleoptiles (12), but not in resistant 

tissues. The effect of Periconia circinata toxin on PD 

of sorghum coleoptiles was similar to that of victorin 

but slower. 

Only one toxin studied did not depolarize PD. 

Helminthosporium carbonum toxin, instead, caused transient 

hyperpolarization of membrane potentials in maize coleop¬ 

tiles (12). 

In a series of studies by Novacky and coworkers (42, 

44,45,46,49) the hypersensitive response to nonpathogenic 

organisms was examined. Cotton cotyledons were inoculated 

with either a virulent strain of Xanthomonas malvacearum or 

the nonpathogenic Pseudomonas nisi, both of which caused a 

hypersensitive response. In both cases PD depolarized due 

to changes in the passive diffusion permeability of the 

membrane. Both compatible (disease) and incompatible 

(hypersensitive) responses resulted in a loss of recovery 

of PD to cyanide depolarization. 

Depolarization due to glycine was also studied in this 

system (49). Incompatible reactions caused lowered PD 

and a loss of depolarization under both light and dark 

conditions, as did disease in the dark condition. But in 

the light, the amount of depolarization did not change. 

Instead, a lack of recovery occurred after 20 hr. 

Jones and coworkers (26) compared normal root cells to 

nematode-induced transfer cells of Imoatiens. Both showed 
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similar responses of PD to different ion concentrations, 

respiratory and protein synthesis inhibitors, and sugars. 

Stack and Tattar (60) examined the effects of virus 

infection on membrane potentials. Cells of cowpeas infec¬ 

ted with tobacco ringspot virus had Doxn higher and lower 

potentials than control cells. Infection caused a variable 

change in the response of PD to azide, Tattar (67) studied 

the effects of cowpea chlorotic mottle virus on PD in cow- 

pea leaves. Infected leaves depolarized to lower PD values 

in the dark. Depolarization caused by asparagine, glycine 

and sucrose was the same in infected and control tissue, 

Kota and Stelzig (32) have reported, for potato leaf 

petioles, that commercial pectins and fungal polysaccharides 

which elicited phytoalexin synthesis also caused a depolar¬ 

ization of membrane potential, 

Jennings and Tattar (25) observed the effects of chill¬ 

ing on PD in both chilling-sensitive (maize) and non-chill- 

ing-sensitive (oat) leaves. Low temperatures (8®C) affec¬ 

ted maize response to light, glycine and sucrose, compared 

to oats which showed similar responses at 21®C and 8°C, 

There was no difference in the effect of metabolic inhib¬ 

itors on the two tissues. 

Statement of Purpose 

If cotransport occurs in higher plaints, the results 

of studies using toxins and fungal elicitors will need to 
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be reevaluated, since sugars and amino acids in these prep¬ 

arations could have caused the observed depolarizations. 

It is therefore important to fully understand the response 

of FD to sugars aind amino acids before attempting electro- 

physiological studies of plant disease. 

The objectives of this study arei 

1) to examine the eiiects of sugars and amino acids on 

PD in sugarcane leaves in light of a possible cotransport 

mechanism for membrane transport of these substances, and 

2) to observe the effects of sugars and c(;-galactosides 

on PD in two clones of sugarcane to obtain a better under¬ 

standing of observed effects of helminthosporoside on PD. 



CHAPTER II 

MATERIALS AND METHODS 

Plant Material 

Sugarcane clones 51 NG 97 and H50 7209 were provided 

by Dr, G.A. Strobel. Plants were maintained in the green¬ 

house in ten inch plastic pots which contained a 2i1j1 

mixture of loam, peat and sand. Each plant was fertilized 

weekly with 2-3 g formulation 16-32-16 fertilizer (Start 

N Gro, Agway Inc,, Syracuse, NY) in about 300 ml water. 

Tissue sections were cut from the third youngest leaf 

of a stalk using a new razor blade. Rectangular sections 

were cut from the area halfway between the stem and the 

tip of the leaf, and contained only the green tissue on 

either side of the midrib (Figure 2), Each section was 

5 X 15 mm, with the vascular bundles parallel to the long 

axis. After cutting, tissue sections were aged by floating 

in IX solution (see below) in the dark for at least l6 hr 

but not more than 24 hr. 

Perfusion Solutions 

The bathing solution (8) was designated IX and con¬ 

tained l,0mM KCl, l.OmM Ca(N03)2, 0.25mM MgS04, 0.90mM 

NaH2P04, and 0.05mM Na2HP04. The pH was 5.5 to 5.7. The 

following sugars, amino acids, and inhibitors were dis¬ 

solved in IX solution I glucose, raffinose, galactose, 

16 
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Figure 2. Method for cutting sugarcane tissue 
sections. 
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melibiose, lactose, sucrose* fructose, mannitol, 3-0-methyl- 

glucose, l-0-methyl-o(-galactose, glycine, alanine, serine, 

N-ethyl-maleimide (NEM), carbonyl cyanide-M-chlorophenyl 

hydrazone (GCCP), and 2,4-dinitrophenol (DNP). Other 

solutions were modified from IX to keep the final concen¬ 

trations of K"** and Na'*’ the same as IX. For ImM sodium 

azide solution, NaH2P04 and Na2HP04 were omitted. When 

ImM KCN plus ImM salicyl hydroxamic acid (SHAM) were used, 

KCl was omitted. In all cases the pH of the final solution 

was adjusted to 5.5-5.7 with either ImM Tris buffer or 

ImM HCl. 

Electrorhysiological Measurements 

Micropipettes (tip diameter less than 1 Jim) were 

pulled from fiber-filled glass capillary tubes (1,2 mm OD) 

with a micropipette puller (Industrial Science Associates), 

Microelectrodes were made by filling these with 3WI KCl. 

Only electrodes with resistances less thain 20 Mil were used 

because of the rigidity of the sugarcane tissue. Refer¬ 

ence electrodes were 3 inm plugs of 3M KCl in 2fo agar. Both 

electrodes were connected via Ag/AgCl half cells to a high 

input impedance electrometer (2 x lO^^nj WPI Instruments, 

model 725). Output was recorded on an Esterline Angus 

strip chart recorder. 

For PD measurements, aged tissue sections, with the 

vascular bundles oriented vertically, were fitted into a 
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plexiglass holder and mounted in a plexiglass perfusion 

chamber (volume 2,3 mlj Figure 3). There was a continuous 

flow of bathing solution to the perfusion chamber at an 

average rate of 8 ral/min. The bathing solution delivery 

system contained a valve which allowed other solutions to 

be introduced during PD measurements. Solutions reached 

the chamber 30-60 s after addition (arrows in Figures 5 and 

8-12), The microelectrode was lowered into the parenchyma 

tissue between vascular bundles with a Brinkman micro¬ 

manipulator, This process was viewed through a microscope 

at 200X magnification. 

Parenchyma cells were penetrated in the light in IX, 

After a PD measurement was obtained, the light was switched 

off, and cells were allowed to stabilize in the dark until 

a steady PD was maintained for at least 5 min. Test sol¬ 

utions were added to the perfusion chamber at this time, 

and resting PD was measured at the point of addition. 
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Figure 3. Schematic diagram of system used 
for measuring membrane potential in sugarcane 
leaves. 
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CHAPTER III 

RESULTS 

Resting Potentials 

The average resting ?D in the dark for both clones of 

sugarcane studied was -135 mV’ (Table 1). PD values for 

individual cells rar^ged from -114 to -l62 mV for clone 

51 NG 97 and from -103 to -163 mV for clone H50 7209, 

Effect of Light and Dark on PD 

Cells bathed in IX in the dark exhibited transient 

depolarizations of 40-45 mV when the light was switched on 

(Figure 4). Recovery occurred within 30 min in the light. 

When the li^t was switched off, transient hyperpolariza- 

tions of about 10 mV were observed. In most cells, the 

same resting potential was maintained in both the light 

and the dairk. Both clones responded similarly to light 

and dark. All subsequent experiments were performed in the 

dark to eliminate energy input from photosynthesis. 

Effect of Sugars on PD 

Glucose was added externally to tissue in the dark 

while PD was monitored. The addition of glucose to the 

batning solution resulted in a rapid depolairizaticn of PD 

(Figure 5). Kaximal depolarization occurred within 2-4 min, 

and waiE followed by a slow partiaJL repolairization. If 
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Table 1, Resting ?D and range of PD measurements 

in leaf parenchyma cells of Saccharum clones 

51 NG 97 and H50 7209.^ 

51 NG 97 H50 7209 

?D -135 + 10 (135) -135 t 11 (128) 

PD range (mV) -114 to -162 -108 to -163 

^ Data for cells bathed in IX solution in the dark, 

^ Expressed as mean 1 standard deviation, number of 

observations in parentheses. Clones not signifi¬ 

cantly different, P=0,05, according to the t-test. 
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Figure 4. Effect of switching light on and 
off on membrane potential (PD) of sugarcane leaf 
parenchyma cells bathed in IX solution. 
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Figure 5, Effect of glucose, raffinose and 
sucrose on membrane potential (?D) of sugarcane 
leaf 'oarenchyma cells in the dark. Solutions 
reached the chamber 30-60 s after addition (arrow). 
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glucose was removed from the hathing solution, repolariza¬ 

tion was more rapid, and PD hyperpolarized beyond the 

resting potential for 10-20 min. 

Glucose concentrations of 100.0, 50.0, 25.0, 10.0, 5.0, 

1.0 and 0.5inM were added to the bathing solution. The time 

course of depolarization, recovery aind hyperpolarization 

was the same for all concentrations and did not differ 

between clones. The magnitude of the depolarization 

increased with increasing glucose concentration (Table 2), 

The average amount of depolarization was not significantly 

different between clones at the 0,05 level, except for 25mM 

glucose. Figure 6 shows that the relationship between con¬ 

centration and depolarization was hyperbolic, approximating 

the kinetics of an enzyme-catalysed reaction. Concentra¬ 

tions greater than 15niM caused maximal depolarization. 

Since the depolarization response was near saturation at 

25mM glucose, this was the concentration used in later 

experiments, 

Strobel (64) reported that sugarcane leaf protoplasts 

of clone 51 NG 97 took up labelled raffinose, an o(,-galac- 

tosidic sugar, while protoplasts from H50 7209 did not. 

If raffinose is cotransported, it should cause depolariza¬ 

tion in 51 NG 97 but not in H50 7209. When raffinose was 

added to the bathing solution there was a depolarization of 

PD in both clones, followed by repolarization (Figure 5). 

The time course of the response was similar to that caused 
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Table 2. Effect of external glucose concentration 

on FD of leaf parenchyma cells of Saccharum clones 

51 NG 97 and K50 7209.^ 

Glucose Depolarization (mV) 
concentration -- 

51 NG 97 K50 7209 

100.0 

50.0 

25.0^ 

10.0 

5.0 

1.0 

0.5 

27 t 8 (5) 

19 t 3 (6) 

18 t 4 (14) 

16 t 4 (5) 

9 1 1 (5) 

7 t 3 (5) 

4 1 1 (5) 

28 1 13 (4) 

22 t 8 (5) 

23 t 7 (15) 

24 t 8 (6) 

11 t 3 (5) 

8 1 3 ('*) 

2 1 1 (4) 

^ Experiments performed in the dark. Data expressed 

as mean t standard deviation, number of observations 

in parentheses. 

^ Clones significantly different, P=0.05, according 

to the t-test. 
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Figure 6. Maximum depolarization of membrane 
potential in relation to external glucose concen¬ 
tration in the dark in sugarcane clones 51 NG 97 
and H50 7209, Data points represent mean depolar¬ 
ization (see Table 2), 
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by glucose, but the amount of depolarization was much less. 

The effect of 100,0, 50.0, 25.0 and lO.OmM raffinose 

on PD was studied. As with glucose, aPD increased with 

increasing concentration (Table 3). There was no signif¬ 

icant difference between the two clones at the 0,05 level. 

A plot of depolarization versus raffinose concentration 

(Figure 7) is roughly hyperbolic in shape, indicating 

saturation kinetics for this process. Saturation occurred 

at about 50niM raffinose. 

Two other ©(-galactosides, melibiose and 1-0-methyl-o(.- 

galactose, were reported to bind to membrane proteins of 

51 NG 97 but not H50 7209 (64), At 25mM concentrations 

neither sugar affected PD in either clone. 

The effects of sucrose, fructose, galactose and 3-0- 

methyl-glucose on PD were studied using 25mM concentrations. 

Each caused rapid partial depolarization of PD within 

2-4 min (Figures 5 and 8), The average a PD caused by each 

sugar is given in Table 4, There was no significant dif¬ 

ference between clones at the 0,05 level. Sucrose-, 

galactose- and fructose-treated cells exhibited slow 

recovery after depolarization, and more rapid recovery in 

IX, Generally, the response of PD to these sugars was 

similar to that of glucose. Cells treated with 3-0-methyl- 

glucose showed no recovery of PD after depolarization. When 

methyl-glucose was removed, there was a slow recovery in 
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Table 3« Effect of external raffinose concentra¬ 

tion on PD of leaf parenchyma cells of Saccharum 

clones 51 NG 97 and K50 7209.^ 

Raffinose 
concentration 

(inM) 

Depolarization (mV) 

51 NG 97 H50 7209 

100.0 13 t 6 (5) 12+5 (5) 

50.0 15 t 6 (5) 11 i 4 (5) 

25.0 9 t 3 (5) 613(5) 

10.0 3 t 1 (3) ^ 1 2 (3) 

^ Experiments performed in the dark. Data expressed 

as mean t standard deviation, number of observations 

in parentheses. For each concentration, clones not 

significantly different, P=0,05, according to the 

t-test. 
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Figure 7. Msiximum depolarization of membrane 
potential in relation to external raffinose con¬ 
centration in the dark in sugarcane clones 51 NG 97 
and H50 7209. Data noints represent mean depolar¬ 
ization (see Table 3). 
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Figure 8, Effect of external galactose, fruc¬ 
tose and 3-0-methyl-glucose (MeGlu) on membrane 
potential (PD) of sugarcane leaf parenchyma cells 
in the dark. Solutions reached the chajnber s 
after addition (arrow). 
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Table 4, Effect of external sugars on PD of leaf 

parenchyma cells of Saccharum clones 51 NG 97 and 

H50 7209.^ 

Depolarization (mV) 

Sugar 51 NG 97 H50 7209 

Galactose 24 

3-0-Methyl- 10 
glucose 

Sucrose 22 

Fructose 21 

Mannitol 0 

Lactose 0 

Melibiose 0 

1-0-Methyl-0 
galactose 

t 7 (5) 27+1 (5) 

t 4 (4) 13 1 9 (4) 

1 3 (4) 22 i 5 (4) 

1 7 (4) 14 + 2 (4) 

(2) 0 (2) 

(3) 0 (3) 

(3) 0 (3) 

(2) 0 (2) 

a All sugars at 25inM concentration. Experiments 

performed in the dark. Data expressed as mean t 

standard deviation, number of observations in 

parentheses. Clones not significantly different, 

P=0.05f according to the t-test. 
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IX but no hyperpolarization. 

Neither mannitol nor lactose had any effect on PD in 

either clone at 25mM concentrations. 

Effect of Amino Acids on PD 

The addition of the amino acids glycine, serine and 

alanine had an effect on PD that was similar to that of 

glucose and other sugars (Figure 9). The time course of 

depolarization, recovery and hyperpolarization was roughly 

the same for all these compounds. In general, for both 

sugars and amino acids, the greater aPD was, the faster 

recovery occurred. Average a PD for lOmM serine and 25iqM 

glycine is shown in Table 5. The amount of depolarization 

was greater than for the sugars studied at the same concen¬ 

trations, There was no significant difference between clones, 

P=0,05, Results for alanine were not included because only 

one trial was performed for each clone. 

Metabolic Inhibitor Effects 

Metabolic inhibitor studies were performed to see if 

sugar-induced depolarization occurred when the active com¬ 

ponent of PD was depolarized. Cyanide is a respiratory 

inhibitor which causes depolarization of the active portion 

of PD, Some plants exhibit cyanide-resistant respiration 

and can recover PD in the presence of cyanide (44). Prelim¬ 

inary studies, in which ImM KCN was added to sugarcane 



4l 

Figure 9. Effect of external glycine, alanine 
and serine on membrane potential (PD) of sugarcane 
leaf parenchyma cells in the dark. Solutions 
reached the chamber 30-60 s after addition (arrow). 
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Table 5. Effect of external serine and glycine on 

PD of leaf parenchyma cells of Saccharum clones 

51 NG 97 and H50 7209.^ 

Depolarization (mV) 

Amino acid 51 NG 97 H50 7209 

lOmJ^ Serine 23 t 2 (3) 20 ± 1 (2) 

25mP-i Glycine 47 t 7 (7) 52 1 10 (7) 

3- Experiments performed in the dark. Data expressed 

as mean t standard deviation, number of observations 

in parentheses. Clones not significantly different, 

?=0,05f according to the t-test. 
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tissue, resulted in a depolarization of PD followed by 

partial recovery in cyanide (Figure 10), When 25mM raf- 

finose or glucose was added to depolarized cells in the 

presence of ImM cyanide, a second depolarization of up to 

17 mV occurred. These results indicated that KCN was not 

completely inhibiting respiration. 

To obtain maximum inhibition of the active portion of 

PD, ImM SHAM was added to cells along with ImM KCN, When 

both inhibitors were added to the perfusion chamber, there 

was a aPD of about 50 mV (Table 6), There was no recovery 

of PD when both inhibitors were present. Instead, cells 

maintained a steady PD at the new lower value. The addition 

of either 25mM glucose or 25mM raffinose to these cells, 

while maintaining inhibitor concentrations at ImM each, 

caused only slight additional depolarizations. Membrane 

potential depolarization by glucose and raffinose was 

severely inhibited by depolarization of the active portion 

of PD, 

Preliminary experiments were performed to study the 

effects of several other inhibitors on PD, Sodium azide, 

a respiratory inhibitor, DNP and CCCP, uncouplers of 

oxidative phosphorylation, and NEM, a sulfhydryl inhibitor, 

were studied. When added to tissue in the dark, ImM azide 

caused a gradual depolarization of up to 68 mV, PD con¬ 

tinued to depolarize slowly for over 30 min. Similar 

results were obtained using O.lmM DNP, 0,lmM CCCP and 
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Figure 10, Effect of KCN, KCN followed by 
raffinose, and KCN + SHAM followed by glucose on 
membrane potential (PD) of sugarcane leaf paren¬ 
chyma cells in the dark. Inhibitor concentrations 
were maintained during addition of sugars. Solu¬ 
tions reached the chamber 30-^0 s after addition 
(arrow). 
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Table 6. Effect of ImM KCN + Imivi SHAM on PD and 

on PD depolarization by 25mM glucose and 25mM 

raffinose in leaf parenchyma cells of Saccharum 

clones 51 NG 97 and H50 7209.^ 

Depolarization (mV) 

51 NG 97 H50 7209 

ImM KCN + ImM SHAM 

+25mI/I Glucose^ 

+25mM Raffinose^ 

52 t 6 (6) 

3 t 3 (3) 

1 I 0 (3) 

^^8 i 9 (9) 

5 t 2 (4) 

1 t 0 (3) 

^ Experiments performed in the dark. Data expressed 

as mean 1 standard deviation, number of observations 

in parentheses. Clones not significantly different, 

P=0,05, according to the t-test, 

^ Depolarization by either glucose or raffinose in 

cells which had been maximally depolarized by ImM 

KCN + ImM SHAM. 
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0.5niM NEM. Increasing the concentration of any of these 

inhibitors caused more rapid depolarization aind cell death. 

Lower concentrations caused only partial depolarization of 

the energy-dependent PD, Because cells were unable to main¬ 

tain a stable diffusion potential in the presence of these 

inhibitors, no experiments with sugars were attempted. 

Sugar and Amino Acid Interactions 

Gli’cose, sucrose and 3-0-methyl-glucose are trans¬ 

ported via the same carrier sites in sugarcane, and com¬ 

pete with each other for uptake (2,3,4), A set of experi¬ 

ments was designed to see if this could be correlated with 

a competitive inhibition by glucose of membrane potential 

depolarization by sucrose, raffinose and 3-0-methyl-glucose. 

Glucose (25mM) was added externally to cells until maximal 

depolarization occurred. At this concentration glucose 

depolarization was saturated. About 4-6 min after the 

addition of glucose, before cells began to repolarize, 

glucose was removed, and either 25mM sucrose, raffinose or 

3-0-methyl-glucose was immediately added to see if further 

depolarization would occur. 

The results of this set of experiments are shown in 

Figure 11 and Table 7. Glucose strongly inhibited depolar¬ 

ization by the other sugars tested. Only sucrose caused 

an additional depolarization of PD, This was small, though, 

ranging from 1 to 4 mV b^'yond the depolarization caused by 
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Figure 11. Effect of glucose followed by 
raffinose, sucrose or 3-0-niethyl-glucose (MeGlu) 
on membrane potential (PD) of sugarcane leaf par¬ 
enchyma cells in the dark. Glucose was removed upon 
addition of other sugars. Solutions reached the 
chamber 30-^0 s after addition (arrow). 
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Table 7. Effect of initial depolarization of PD by 

glucose on subsequent depolarization by sucrose, 

raffinose and 3-0-methyl-glucose in leaf parenchyma 

cells of Saccharum clones 51 NG 97 and K50 7209.^ 

Depolarization (mV) 

51 NG 97 H50 7209 

X -♦■Glucose -^X Total -♦-Glucose -♦-X Total 

18 1 18 37 4 4l 

Sucrose 15 2 17 16 2 17 

14* 2 16 19 2 21 

11 0 11 18 0 18 

Raffinose l6 0 16 17 0 17 

16 0 16 19 1 20 

13 0 13 18 0 18 
3-0-Methyl- 24 0 24 18 0 18 

glucose 
22 0 22 24 0 24 

^ Glucose was added externally until cells were maximally 

depolarized. At this point, glucose was removed and 

replaced by another sugar (X), All sugars were at 25mM 

concentration. Presented data is results from single 

exoeriments. 
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glucose, Raffinose caused a further slight depolarization 

in one case, 

A similar pair of experiments was carried out using 

glucose and glycine. In one, 25mM glucose was added to 

cells until depolarization occurred, then glucose was 

removed and 25mlVI glycine was added. Glycine caused a second, 

substantial depolarization (Figure 12 and Table 8), This 

was smaller, though, than the depolarization caused by 

glycine alone. It appears that glucose only partially 

inhibits glycine depolarization. 

To understand this interaction more fully, the reverse 

of this experiment was performed. Glycine (25m^i) was added 

to cells, removed after 4 min, and replaced by 25mM glucose. 

Glucose depolarization was partially inhibited, but some 

additional depolarization did occur. The total depolari¬ 

zation, by glucose and glycine together, in both of these 

experiments, was comparable to the depolarization caused by 

lm!.l XCN and ImM SHAM (Table 6). 
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Figure 12, Effect of glycine followed by 
glucose and of glucose followed by glycine on 
membrane potential (PD) of sugarcane leaf paren¬ 
chyma cells in the dark. The first compound was 
removed upon addition of the second in both cases. 
Solutions reached the chamber 30-^0 s after addition 
(arrow), 
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Table 8. Effect of depolarization of PD by glucose or 

glycine on depolarization by glycine or glucose, respec¬ 

tively, in leatf parenchyma cells of Saccharum clones 

51 NG 97 and H50 7209.^ 

Depolarization (mV) 

51 NG 97 H50 7209 

A/B +A tB Total -♦•A +2 Total 

Glucose/Glycine 19 40 59 30 32 62 

16 29 ^5 27 38 65 

19 22 4i 17 24 4l 

Glycine/Glucose 56 12 68 52 5 57 

53 3 56 40 2 42 

y.ean Total a ?D 5^ 53 

Either glucose or glycine (A) was added externally until 

maximal depolarization occurred. At this point, the orig¬ 

inal (A) solution was removed and replaced by either glycine 

or glucose (2), respectively. Concentrations were 25Dr5:. 

Experiments were performed in the dark. Presented data is 

results from single experiments. 



CHAPTER IV 

DISCUSSION 

Pd in sugarcane leaf cells is due, in part, to an 

electrogenic pump. The evidence for this includes resting 

potentials too large to be diffussion potentials, transient 

changes in PD upon switching from dark to light and vice 

versa, and depolarization by metabolic inhibitors. Novacky 

and Karr (46) have provided similar evidence for an electro¬ 

genic pump in sugarcane. Electrogenesis is a prerequisite 

for cotransport of sugars and amino acids. 

Of the sugars which caused depolarization, glucose, 

galactose, 3-0-methyl-glucose, sucrose and fructose are 

all actively transported into sugarcane cells (2,3,13.54). 

There is no evidence for raffinose being transported, but 

it is present in sugarcane cells as a metabolic inter¬ 

mediate (2,64). Therefore, it is likely that cells do have 

the ability to transport it across the plasma membrane. Of 

the sugars which did not cause depolarization, mannitol is 

not transported in higher plants (4l), and the others have 

not been studied but are not likely to be transported. 

Lactose is of very limited occurrence in plants (l6), 

melibiose is not important in cellular metabolism, and 

l-O-methyl-clrgalactose is an unnatural sugar with no impor- 

tant metabolic analog. Novack-y, Karr and Van Sambeek (45) 

also observed a lack of depolarization of sugarcane cells 

56 
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to methyl-o(.-galactoside. It appears from these results that 

depolarization is due to transport across the plasma 

membrane. 

Depolarization increased with increasing glucose concen¬ 

tration until the response was saturated. This indicates 

a carrier-mediated process with a Km between 3 and 6mM 

glucose (Figure 6). Bowen (3) studied labelled glucose 

uptake as a function of concentration in immature storage 

tissue of sugarcane. Ke obtained a Km of 6.7mM for active 

uptake of glucose. Bieleski (2) reported a Km of 1.7mM 

for glucose uptake in mature storage tissue of sugarcane. 

This is good evidence that active transport of glucose is 

accompanied by membrane potential depolarization, and that 

the amount of depolarization is directly proportional to 

the rate of transport. 

Glucose, sucrose, fructose, 3“0”i^6'thyl-glucose and 

galactose compete with each other for uptake, and, there¬ 

fore, are probably transported via the same carrier sites 

(3.^#13.37). A. similar competitive inhibition occurred 

here when sucrose, 3-0-methyl-glucose and raffinose were 

added to glucose-depolarized cells. When the depolariza¬ 

tion due to glucose was saturated, no further depolariza¬ 

tion occurred when 3-0-methyl-glucose or raffinose was 

added. Sucrose caused a slight additional depolarization 

in all cases. This is probably due to the fact that 

sucrose is hydrolysed by a cell wall invertase in sugarcane. 
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and is transported as glucose and fructose (4,54). This 

has the effect of increasing the total sugar concentration 

at the plasma membrane and causing increased depolarization 

if the carrier sites are not already saturated by 25inIVI 

glucose, Novacky and coworkers (48) observed a similar 

inhibition of depolarization in Lemna. At 20mM glucose 

the depolarization response was saturated. Adding 20In^^ 

glucose plus 20m^': fructose did not increase the amount of 

depolarization. 

The lack of susequent depolarization was not due to a 

lack of energy. Depolarization by KCN aind SHAM showed that 

about 50 mV of PD is actively maintained and theoretically 

available for transport. Furthermore, even after depolar¬ 

ization with KCN and SHAM, both glucose and raffinose 

caused slight additional depolarizations. Bowen (3) found 

that cyanide and other metabolic inhibitors caused a strong 

■inhibition of sugar transport in sugarcane. This shows 

that energy is necessary for sugar-induced depolarization, 

and the amount of energy available for this process is 

equal to the active portion of PD, The lack of further 

depolarization by 3-0-methyl-glucose and raffinose, and the 

small additional A PD caused by sucrose after glucose depol¬ 

arization, show that the depolarization by all these sugars 

occurs by the same mechanism. Presumably this is the 

single carrier site involved in sugar transport. 

The amount of depolarization caused by glycine, alanine 
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and serine was much greater thsin that caused by the same 

concentrations of sugars. Several studies (9f10,11,47, 

53#67) have provided evidence for the cotransport of amino 

acids. Furthermore, Maretzki and Thom (3^) found that 

arginine and lysine transport in sugarcane is an energy- 

dependent, carrier-mediated process. It appears that 

glycine, alanine and serine are cotransported in sugarcane, 

and that they are taken up to a greater extent than the 

sugars studied. The larger depolarization due to these 

amino acids was not due to additional charges on the mole¬ 

cules themselves because all three are neutral at pH 5.7. 

These results do not provide evidence either for or 

against the model for amino acid transport proposed by 

Kinraide and Etherton (28), 

The depolarizations produced by glucose-glycine com¬ 

binations can best be explained by a cotransport mechanism 

with two separate carriers involved. When the addition of 

glycine followed maximal depolarization by glucose, an 

additional a PD occurred which was less than that caused by 

glycine alone. The reverse, glycine depolarization followed 

by glucose, caused a similar result. At first glance it 

appears that each partially inhibits depolarization by the 

other. But it is more likely that two separate active 

sites for sugars and amino acids are involved. The explan¬ 

ation which is most consistent with all the data is that 

the cell continues to depolarize to the second substrate 
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until the diffusion potential is reached. This is suppor¬ 

ted by a comparison of the average a PD caused by glucose 

plus glycine, 53 to 54 mV (Table 8), with the average a PD 

caused by KCN plus SHAM, 48 to 52 mV (Table 6), If the 

active portion of the potential was greater, depolarization 

to glucose and glycine would be expected to increase until 

both carriers were saturated. This same explanation of 

the limiting effect of the diffussion potential cannot be 

applied to the lack of depolarization to a second sugar 

after glucose, because PD is still well above the diffussion 

potential in this case. 

The time course of response of sugars and amino acids 

was generally similar. Depolarization occurred rapidly 

after the addition of substrate to the bathing medium. 

Time studies of accumulation of labelled glucose, fructose, 

sucrose, galactose and have shown that 

all are taken up immediately by sugarcane cells (3»13»37), 

so the time during which depolarization occurs corresponds 

to active transport. 

After maximal depolarization had occurred, cells were 

able to repolarize in most cases. Full recovery and hyper¬ 

polarization occurred after the substrate was removed from 

the bathing solution. No recovery occurred with 3-C-methyl- 

glucose, and repolarization occurred slowly upon removal 

of this sugar from the bathing solution. There was no 

subsequent hyperpolarization in this case, 3*'0-methyl- 
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glucose is a glucose analog which is transported like 

glucose but is not metabolized (37). Novacky et al. (48) 

reported, for Lemna, that recovery of PD to depolarization 

by 3-0-methyl-glucose was considerably slower than for 

other sugars. 

These results may be explained in terms of the cotrans¬ 

port model by a shift in cell metabolism after depolariza¬ 

tion. The electrogenic pump becomes more active in order 

to return PD to its original value, but it is unable to 

completely repolarize the cell while H*** influx due to 

cotransport is occurring. When the substrate is removed, 

the increased activity of the pump is no longer balanced by 

a H**" influx, and hyperpolarization occurs. After a short 

time the pump activity is again adjusted to the resting 

potential. Because of the long aging period in the dark, 

the tissues used in this study had extremely low energy 

reserves. Repolarization was dependent on ATP energy 

supplied by metabolism of the transported substrate. The 

nonmetabolized 3-0-methyl-glucose could not supply this 

energy, 

The amount of depolarization was different for dif¬ 

ferent sugars and amino acids. In both clones the amount 

of depolairization by 3-0-methyl-glucose was about 55% of 

the A PD due to glucose. In storage tissue of sugarcane, 

the rate of transport of 3-0-methyl-glucose is 60-90j5b that 

of glucose (3,13). Furthermore, the extent of depolariza- 



62 

tion by glucose is correlated to its rate of transport at 

different concentrations. From this, it appears that 

raffinose and 3-0-methyl-glucose have a lower affinity for 

the membraine carrier than the other sugars studied, and 

that the amino acids glycine, alanine and serine are trans¬ 

ported to a greater extent thain sugars. 

An alternate explanation for the observed a?D is 

stimulation of cation extrusion by mitochondria, caused 

by the metabolism of these substrates (48), This is not 

likely, since the nonmetabolized 3-0-methyl-glucose caused 

depolarization of ?D, Another explanation which can be 

ruled out is an osmotic effect on PD (26), If this were 

an osmotic phenomenon, all 25mM sugars would have produced 

the same amount of depolarization, 

Bowen (3) reported a pK effect on active transport 

which appears inconsistent with a cotransport mechanism. 

He found that the optimum pH for sorbose uptake in imma¬ 

ture intemodal parenchyma of sugarcane was 6,5. Uptake 

dropped rapidly at higher pH values, and more slowly as 

pH was lowered below 6.5. Hawker and Hatch (l8), though, 

found that the uptake of glucose was unaffected by pH 

between 4,0 and 7.0 in mature sugarcane tissue, A similar 

lack of effect of changing pH has been reported for other 

tissues (5,22) in studies where there has been otherwise 

strong evidence for cotransport. One explanation for this 

is that pH may not affect trainsport unless the concentra- 
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tion of K*** becomes limiting. 

In light of the previous trainsport studies in sugar- 

caine, the evidence presented here strongly supports a 

cotransport mechanism of membrane transport of sugars and 

amino acids. All of the data presented is consistent with, 

and best explained by, the cotransport model. Most evi¬ 

dence so far presented for cotransport in higher plants 

has been circumstantial. The use of fusicoccin and diethyl- 

stilbestrol, specific inhibitors of the H'*’-puinp, may pro¬ 

vide more conclusive evidence for a specific mechanism of 

membrane transport. 

The two clones of sugarcane studied here differ in 

their susceptibility to the fungal pathogen Helminthosoorium 

sacchari. causal agent of the eyespot disease of sugarcaine. 

Clone 51 NG 97 is resistant to the fungus and its host- 

specific toxin, helminthosporosidej clone H50 7209 is 

susceptible. Helminthosporoside appears to contain two 

(62) or three (Karr, personal communication) separate 

toxins, one of which has the proposed structure 2-hydroxy- 

cyclopropyl-oC-D-galactopyranoside. Strobel (63) found that 

the application of one of the <A-galactosides raffinose, 

melibiose or methyl-p(-galactopyranoside prevented symptom 

development due to this toxic compound, while other sugars 

did not block toxicity. The binding site of the toxin was 

reported to be a plasma membrane protein whose normal 

physiological role was oC-galactoside transport (64), This 
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transport function was not present in resistant clones of 

sugarcane. 

There was no significant difference between the two 

clones in their FD responses to sugars, c(.-galactosides and 

amino acids. Furthermore, raffinose appears to be cotrans¬ 

ported by the same carrier site as other sugars, while 

melibiose and 1-0-methyl-o(-galactoside are probably not co¬ 

transported. Therefore, the binding site reported for the 

toxin by Strobel does not seem to be involved in cotrans¬ 

port of o(rgalactosides. Cotransport does not appear to be 

related to resistance or susceptibility to the toxin. 

Whether the toxin enters the cell has not been deter¬ 

mined, It may act at the plasma membrane by siffecting 

permeability (65), or it may enter the cell and alter 

chloroplast function (45), or it may have some other mode 

of action. Van Sambeek, Novacky aind Karr (72) reported 

that helminthosporoside causes a rapid, reversible depolar¬ 

ization in both resistant and susceptible sugarcane leaves, 

followed by a second, irreversible depolarization in 

susceptible tissue and recovery in resistant tissue. 

Novacky (49) has speculated that the first depolarization 

is due to cotransport of the toxin into the cell, while 

the second depolarization is due to a toxic affect on a 

cellular organelle. 

No conclusions con be drawn from these studies (45, 46, 

72), however, because the toxin preparation used contained 
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high concentrations of other sugars which may have affected 

PD (NovaeIcy, personal communication). Studies are now being 

conducted by Karr and Da2rus (Karr, personal communication) 

aimed at obtaining a pure preparation of helminthosporoside. 

With a purified toxin preparation and an understanding of 

cotransport in sugarcane, membrane potential studies should 

yield more conclusive evidence for the mode of action of 

helminthosporoside. 
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