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ABSTRACT 

Amylase activity is present in three maize tissue systems, the 

developing kernel, the germinating kernel, and the incubated de-embryonated 

kernel. Reaction product patterns and physicochemical analysis of amylase 

activity iridicate the presence of both a and 3-amylases in the endosperm 

of developing and germinating kernels and in the incubated de-embryonated 

kernel. 

A maximum of four starch degrading zones are evident upon poly¬ 

acrylamide gel electrophoresis (PAGE) analysis of the activity from the 

three endosperm samples. Correlating with the sequential appearance of 

starch degrading zones in the activity from the endosperm of the germi¬ 

nating kernel and from the de-embryonated kernel, total amylase activity 

rises over time of incubation. 

Amylase activity in the de-embryonated kernel develops as a function 

of incubation, with the embryo removed and without the addition of 

gibberellic acid (GA3). Expression of amylase activity in the de-embryonated 

kernel is markedly dependent upon the pretreatment conditions of the 

kernel and upon the presence of the aleurone and pericarp layers. 

The action of GA3 on the incubated de-embryonated kernel is quanti¬ 

tative, as evinced by the enhanced level of amylase activity during early 

incubation and the earlier appearance of starch degrading zones on PAGE 

analysis. PAGE patterns, physicochemical analysis and reaction product 

patterns for GA3 and non-GA2 treated de-embryonated kernels yield similar 

results, negating a qualitative effect. 
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The nature of the amylase activity changes in the de'-embryonated 

kernel during incubation. Only {3-amylase activity is present during early 

incubation, in both soluble and latent forms. Alpha-amylase activity 

arises during incubation. Treatment with RITA and protein synthesis 

inhibitors implicates a de novo synthesis for this latter activity. A 

decrease in amylase activity is noted, and the more anodic starch degrading 

bands fail to appear upon incubation with actinomycin D and cycloheximide. 

On ion-exchange chromatography, the amylase activity purified from 

de-embryonated kernels in mid-course incubation (day 5) is resolved into 

three major activities. Peaks I, II, and III elute at 0.17 M, 0.42 M, and 

0.65 M, NaCl concentration, respectively. PAGE analysis verifies a sep¬ 

aration of the amylase electrophoretic complement into these three separate 

activities. Reaction product patterns and physicochemical analysis of 

the separated activities point to a 3-amylase in Peak I and a-amylase 

activities in Peaks II and III. 

Ion-exchange chromatography of a purified amylase extract from 

de-embryonated kernels during early incubation (day 1) indicates the 

presence of one peak (Peak I), eluting at 0.13 M NaCl. The activity of 

this peak is characteristic of 3-amylase. Similarity of physicochemical 

analysis, reaction product patterns, PAGE analysis and elution profile 

for Peak I from both early and mid-course preparations suggest that this 

is the same amylase, that the Peak I activities contain a 3-amylase 

existing in early incubation in both soluble and latent forms, and not 

requiring RNA or protein synthesis for expression. 

Data from this study thus supports the existence of two types of 
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amylase activity in the incubated de-embryonated kernel. Beta-amylase 

most likely exists preformed in the maize kernel with early expression 

during incubation in both soluble and latent forms. Alpha-amylase arises 

from the de-embryonated kernel during incubation, apparently via ^e novo 

synthesis and without the assistance of an embryo factor. 

iii 
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INTRODUCTION 

The germination of the cereal grain is a complex process. A host 

of factors are involved in the sequence of events leading to seed germi¬ 

nation. The breakdown of the storage carbohydrate in the endosperm of 

the germinating seed furnishes simple sugars to the growing embryo and 

is but one aspect of this complex process. 

Enzymes involved in the degradation of starch vary widely in their 

substrate specificity and mode of action. Hydrolytic enzymes, such as 

the debranching enzyme, play but a small part in supplying soluble carbo¬ 

hydrate to the growing embryo (17). Formation of sugars via the phosphory- 

lytic pathway adds little (55,65). By far, the bulk of the simple sugars 

is supplied by the complementary actions of a and 3-amylases (1). The 

amylases have been identified in a number of cereal grains (13). 

Investigation of the origin of amylases and elucidation of their 

in situ behaviour in cereal grains derives mostly from studies with barley 

(37, 82, 83, 93). It would appear that the expression of amylase activity 

in the germinating grain is dependent upon three factors, biochemical 

control mechanisms (which include new protein and RNA synthesis), hormonal 

control, and activation and secretion mechanisms. 

Previous work gives indication that the maize system is in some ways 

similar to that of barley (17, 27, 28, 35). However, further work is 

necessary to fully understand the expression of amylase activity in the 

developing and germinating seed. 

The present study is divided into two segments. The first of these 
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deals with the occurrence and development of amylase activity in the 

maize kernel. The latter deals with the isolation and characterization 

of part of this activity. The results of this study will be directed 

toward elucidating the origin and nature of amylases in the maize kernel. 

\ 



3 

LITERATURE REVIEW 

1. Definition and Classification of the Amylases. 

The amylases are hydrolytic enzymes. Hydrolysis of the starch sub¬ 

strate, a glucose polymer, is achieved by the cleavage of an a 1,4 bond 

with the transfer of a glucosyl fragment to water. 

Alpha-amylase (a 1,4 glucan 4 glucanohydrolase, E.C.3.2.1.1.) is 

termed thus because its hydrolytic reaction products possess the a config¬ 

uration (23, 32). Alpha-amylase is an endoamylase, i.e., it randomnly 

cleaves large linear substrates at internal bonds. In its attack the 

amylase has the ability to bypass a 1,6 linkages or branch points within 

the starch molecule. Thus, the enzyme's reaction products are of varying 

molecular weight and size (23). 

Beta—amylase (a 1,4 glucan maltohydrolase, E.C.3.2.1.2.) is an exoamylase. 

It cleaves alternate linkages in a linear glucose polymer from the 

non-reducing end. However, the enzyme does not have the ability to bypass 

branch points within a starch molecule. Thus, its sole reaction product 

is the dissaccharide, maltose, of the 3 configuration (88). 

Because starch, glycogen and related glucose polymers serve as 

universal sources of dietary carbohydrate, one would expect the starch 

degrading enzymes to be ubiquitous as well. Alpha-amylase, indeed, is 

found throughout the plant and animal kingdoms. In contrast, 3-amylase 

is limited to the plant kingdom, where it is found in seeds of higher 

plants, in cereal grains and in the sweet potato (88). 

Molecular weights for a and 3-amylases from a variety of sources are 

in the range of about 50,000 (88). For the most part, a and 3-amylases 
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exist in monomeric forms, although a tetramer 3-amylase has been reported 

for the sweet potato (88). The physical properties of the amylases are 

typically those of globular proteins. 

Differentiation between a and 3-amylases takes advantage of inherent 

physicochemical differences. These properties constitute the methods 

generally used by workers in the field to identify what are regarded as 

classical a and 3-amylases (86, 17, 25, 37, 97). 

All plant and animal a-amylases studied thus far contain calcium, and 

its removal results in either reversible or irreversible inactivation, or 

in great loss of thermal stability (88). Cereal a-amylases bind calcium 

weakly and its removal is easily effected by dialysis against EDTA, a metal 

chelating agent. Thermal inactivation of cereal a-amylases is greatly 

retarded at temperatures above 50°C when high concentrations of calcium 

ion are present (88). It would appear that the calcium ion not only 

stabilizes the structure of the a-amylase molecule, but helps to maintain 

the enzymatically active conformation as well. In contrast, 3-amylase 

does not appear to require calcium or any other metals for activation or 

stabilization (24). 

Beta-amylase is a sulfhydryl containing enzyme. The 3-amylase from 

wheat flour contains four sulfhydryl groups and one disulfide bond (90). 

Implication of 3-amylase thiol groups in direct substrate catalysis or 

binding seems unlikely. Chemical modification studies of 3-amylase activity 

indicate that the thiol sites may play a regulatory role in vivo, with 

the enzyme reversibly inactivated via disulfide interchanges (84). This 

observation is consistent with the diverse effects of a wide variety of 

sulfhydryl reagents of 3-amylase activity (71, 82, 83, 91). 



5 

Beta-amylase is also sensitive to the presence of heavy metal ions 

(Cu++, Hg++S Ag++, Pb++). These heavy metals act as non-competitive 

inhibitors of the enzyme. They form mercaptides with the free sulfhydryl 

groups, bringing about changes in enzyme activity due to alteration of 

the enzyme conformation (52). 

2. Alpha and Beta-Amylase Enzymes in the Developing Cereal Grain. 

An early report indicates that amylase activity appears in the cereal 

grain immediately after anthesis. As grains of wheat, oats, rye and barley 

ripen, total activity gradually decreases (13). 

Alpha-amylase is present in the immature grains of wheat (67, 7), 

barley (5, 15, 16, 50), and maize (22). Activity reaches a peak level 

in the immature grain (7, 15, 16). Thereafter, a-amylase activity de¬ 

creases to a low level during ripening and does not appear again in 

appreciable quantities until germination (7, 67). Olered and Jonsson 

(1970) postulate that the decreasing moisture level of the grain upon 

maturation may play a role in the decreasing levels of a-amylase in wheat. 

They found that a-amylase was continuously inactivated as the grain ma¬ 

tured. However, the process was reversed when evaporation of moisture 

from the grain was retarded. The a-amylase activity was thought to increase 

as a consequence of a higher amount of dissolved enzyme. 

The expression of a-amylase activity in the developing grain may be 

under hormonal control (15) . Duffus (1969) found that a-amylase in 

developing barley was mainly localized in the endosperm and aleurone layers. 

The formation of a-amylase was inhibited by application of the gibberellic 

acid synthesis inhibitor, chlorocholine chloride (CCC). Inhibition could 

be overcome by subsequent addition of gibberellic acid (GA^). Gibberellins 
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are known to be synthesized in the scutellum of developing barley (72, 73), 

and to be inhibited by the addition of CCC (72, 99). Duffus (1969) suggests 

that a-amylase synthesis in the developing barley may be controlled by 

gibberellins, similar to the mechanism found in the germinating barley, 

where GA3 induced de^ novo synthesis of a-amylase is known to occur (21, 37). 

Beta-amylase is thought to be stored in the ungerminated cereal grain 

in an insoluble and inactive zymogen form (82, 83). Zymogen granules 

containing an inactive glucosidase enzyme have been identified in un¬ 

germinated peas (58) . Evidence for the presence of both active and latent 

forms of 3-amylase in the developing grain have been reported by a 

number of researchers (5, 16, 22, 50, 82, 83). 

In the developing barley seed total 3-amylase appears to remain 

constant, while the free, soluble enzyme gradually decreases and the bound, 

insoluble enzyme gradually increases with maturation (16, 82, 83). On 

maturation portions of the active 3-amylase are most likely denatured, as 

with a-amylase, or changed into a latent form, due to rapid decrease 

in moisture levels of the grain in the latter stages of ripening (82). 

Early reports indicate 3—amylase to be stored in the sub—aleurone layers 

of barley, wheat and rye (18). However, latent and soluble forms of 

3-amylase have been found in the barley endosperm as well (16). 

The nature of zymogen granules and the mechanism of release of bound 

3-amylase have been studied in barley (82, 83) and in wheat (75, 76, 77, 78). 

The latent enzyme is believed to be chemically bound to cereal protein 

by disulfide bonds. Release of the enzyme is effected by treatment with 

sulfhydryl reagent (2-mercaptoethanol), which reduce disulfide linkages, 

or by proteolytic enzymes (papain), which split peptide bonds, releasing 
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the 3-amylase from its zymogen form (76, 78, 82, 83). Additions of GA3 

increased the active 8-amylase, probably via GA3 enhanced synthesis of 

protease, which subsequently releases the bound 8-amylase (33, 38, 77, 

78, 82). 

Alternatively, and consistent with the proposed regulatory role of 

8-amylase thiol groups, 8-amylase activation could be achieved by the 

action of protein disulfide reductase, known to be present in barley (84). 

The disulfide reductase may catalyze the reaction of disulfides to sulf- 

hydryls during germination, leading to 8-amylase conformational changes 

which activate the enzyme. 

The bulk of the research dealing with the occurrence of a and B-amylases 

in developing cereal grains has been with grains other than maize. 

However, evidence from electrophoretic studies (9, 22) indicate the 

presence of at least one 8-amylase in the liquid endosperm of developing 

maize kernels. Dure (1960) reported 8-amylase to be the only amylase 

present in the endosperm of the resting, mature seed, and concluded that 

the enzyme is formed in the endosperm during development of the grain. 

Evidence for the release of a latent 8-amylase in maize is supported 

by the work of Harvey and Oaks (1974a,b). These researchers found two 

types of protease in the maize endosperm. One protease is present in the 

endosperm prior to germination, responsible for the breakdown of the 

storage proteins (zein and glutelin), and regulated by the level of its 

amino acid reaction products. The other in GA3 enhanced, formed in the 

aleurone layer upon germination, and responsible for the activation of 

bound 8-amylase. 

The presence of at least one a—amylase in the endosperm of developing 

maize kernels has been confirmed by several researchers (9, 10, 22). 
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Total amylase activity in the developing maize endosperm reaches its 

maximum 30 to 35 days after pollination, thereafter decreasing. Dry, 

harvested maize kernels were found to have very low levels of activity (22) . 

3. Cereal Grain Physiology. 

The germination of the cereal grain involves two distinct processes. 

The synthesis of macromolecules in the embryo, and the degradation of 

storage materials in the endosperm (66). The development of the 

enzymatic machinery to convert polymeric reserves of the endosperm to 

supply the needs of the growing embryo presents one of the first challenges 

to the germinating seed. In the cereal grain the relevant enzymes are 

the amylases and the proteases (45). 

The endosperm of the cereal grain is a relatively inert tissue, 

characterized by lack of cell division, lack of photosynthesis, and a low 

respiration rate (45). Microscopic examination of endosperm cells from 

maize reveals the presence of starch granules and protein bodies composed 

of zein, both of which are held together by a glutelin protein matrix (12). 

Metabolic changes associated with germination first occur in the 

maize embryo, proceeding through the scutellum to the endosperm (36). It 

is inviting to assume that new activities in the storage endosperm are 

directly related to the new metabolic activities in the embryo. 

Changes in the endosperm during germination could be mediated via 

the aleurone layer, which surrounds the endosperm. The aleurone layer 

from mature barley is composed of highly differentiated cells, three to 

four cell layers in thickness (42). The morphological specialization 

which characterizes these cells is the presence of aleurone grains, 

single membrane bound storage organelles of protein and phytin (42). 
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Ultrastructural studies by Jones (1969) lend support to the role of 

aleurone storage proteins as substrates for enzyme synthesis, while phytin 

could be a principal phosphorous reserve. The aleurone layer is capable 

of both respiration and amino acid incorporation (95). 

4. Amylases in the Germinating Cereal Grain. 

In 1960 Paleg and others, working with barley, discovered that GA^ 

could substitute for the embryo in the initiation of events leading to 

substrate mobilization. Subsequently, Varner and associates (21, 38, 93) 

established the GA3 directed _de novo synthesis of a-amylase in barley 

endosperm and isolated barley aleurone layers. 

The relationship between the embryo and other seed parts in barley 

has now been fairly well established. Gibberellins similar to GA^ and 

GA^ are produced in the embryonic axis and/or scutellum and transported to 

the aleurone layer (45, 72, 73). The gibberellins induce de novo synthesis 

of hydrolytic enzymes within the aleurone layer (21, 38). These enzymes 

are secreted into the endosperm where hydrolysis of the stored substrates 

takes place (45, 44, 46). The products of enzyme hydrolysis are absorbed 

by the scutellum and translocated to the growing embryo to maintain 

early seedling development (45). 

At least four hydrolytic enzymes have been found to be controlled by 

QA3 and synthesized de novo in barley. 8 1,3 glucanase (a cell wall 

hydrolysing enzyme) (2), protease (38), ribonuclease (2, 11), and 

a-amylase (11, 21). 

Inhibition of a-amylase production in the barley aleurone by the 

protein synthesis inhibitor, cycloheximide, is consistent with the obser¬ 

vation that this synthesis is de novo (93). Likewise, de novo 
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synthesis of a-amylase has been implicated in other cereal grains. Addi¬ 

tions of cycloheximide prevented a-amylase expression in the maize endosperm 

(27, 28, 34). Palmiano and Juliano (1972) found inhibition of expression 

of protease and a-amylase in rice during germination when cycloheximide 

was added. 

In barley the production of a-amylase can also be inhibited by 

inhibitors of RNA synthesis, e.g. actinomycin D and 6 methyl purine (11, 

95). Studies by Goodwin and Carr (1972) show that actinomycin D inhibition 

in barley is especially evident during the 'lag phase', before the activity 

of a-amylase is measurable and during the period when gene activation 

and/or reactions preparatory to enzyme synthesis are most likely taking 

place. 

The GA3 enhanced de novo synthesis of a-amylase according to this 

scheme would obviate the need for biochemical apparatus necessary for new 

protein synthesis. This is borne out by the observation that during the 

'lag phase' of a-amylase production in GA3 treated barley aleurone layers, 

there is an increase in ribosomes, an increase in the percentage of ribosomes 

associated as polyribosomes, and an increase in membrane formation, parti¬ 

cularly in endoplasmic reticulum (ER), over that in the control tissue 

(19, 20). Evins and Varner (1972) speculate that these polysomes bound 

to ER are functional in hydrolase synthesis. GA^ could function quantita¬ 

tively to regulate changes in ribosome synthesis, or qualitatively to 

regulate changes in the amount of ER. Ultrastruetural studies on GA3 

treated barley aleurone layers confirm increases in the above cellular 

constituents, as well as showing degradation of aleurone grain protein, 

which could serve as substrate for new enzyme synthesis (47). 
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The exogenous GA^ enhancement of a-amylase synthesis lends itself to 

other interpretations. In studies with the aleurone layers of a domestic 

oat variety, incubation with GA3 showed only an enhanced rate of formation 

of a-amylase. The total amount of the enzyme formed was independent of 

the hormone (63). With wild oat, where a strong1 GA3 requirement was 

apparent for initiation of a-amylase synthesis, a partial effect could be 

obtained by replacing GA3 with an amino acid complement. As a consequence, 

Naylor (1969) suggested that the primary site of GA3 activity might be in 

proteolysis, thereby making available amino acids for synthesis of a 

broad, range of enzymes. The lack of requirement for GA3 in the domestic 

oat variety could reflect a genetic situation, where the endogenous supply 

of gibberellins is greater or autonomous proteolysis occurs. 

The maize kernel has been subjected to much less scrutiny than other 

grains, and germination studies have resulted in conflicting results. 

Bernstein (1943) first suggested separate origins for the amylases, 

a—amylase arising as an embryo characteristic, and 3-amylase formed 

in situ in the endosperm. Consistent with Berstein’s genetic studies, 

Dure (1960) reported 3-amylase to be present in the maize endosperm prior 

to germination, while a-amylase develops in the embryo during germination, 

is secreted into the endosperm, and accounts for the greater proportion of 

the endosperm amylase activity during germination. 

In line with studies on barley, Ingle and Hageman (1965) suggest 

that GA3 replaces an embryo factor produced during germination. These 

researchers found carbohydrate catabolism in the excised maize endosperm 

to be initiated and completely dependent upon exogenous GA3. Thus the 

implication that gibberellins control the synthesis of amylase enzymes 
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which arise in the endosperm and/or aleurone layers of the maize kernel 

during germination. 

More recent work suggests that the maize endosperm is capable of 

digesting its own starch reserves, independent of the embryo (27, 28, 

33, 34). Working with cultivars of Seneca Chief, Goldstein and Jennings 

(1975) reported the presence of both a and 3-amylase activities arising 

from incubated, de—embryonated kernels. Additions of GA^ to the 

de-embryonated kernels resulted in a quantitative effect, as evidenced by 

a faster increase in amylase activity. The nature of the amylase activity 

and the total activity realized in both GA3 and control samples was 

similar. Additions of actinomycin D and cycloheximide were capable of 

inhibiting amylase development during early incubation of the de-embryonated 

kernels, suggesting the involvement of protein synthesis in amylase 

expression. 

Harvey and Oaks (1974a,b) also present evidence for the de novo 

synthesis of amylase in the endosperm of the maize kernel. They propose 

that gibberellins are instrumental in the development of a-amylase, where 

they may function to overcome the abscisic acid (ABA) inhibition to 

a-amylase development. Variation in reported results on the effect of 

GA^ in the maize kernel could thus be due to differences in relative 

endogenous levels of gibberellins and ABA in the maize cultivar used for 

experimentation (34). 

ABA has frequently been implicated as a dormancy imposing factor 

in the resting seed (98), and has been shown to inhibit a-amylase synthesis 

in the barley aleurone (11). The counteracting of the GA3 response by 

ABA in a GA3 treated barley aleurone may be a direct effect where ABA 
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enhances the conversion of GA3 to inactive intermediates (61). Indirectly, 

ABA prevents the GA3 enhanced increase in polysome content in the barley 

aleurone, a phenomenum which may be preparatory to the GA3 controlled 

de novo synthesis of a-amylase (20). 

5. Isozymes and Genetic Control. 

In addition to the influences of environmental and hormonal factors, 

genetic controls play a role in the expression of amylase activity. Both 

a and B amylases have been found to exist in multiple molecular forms 

(25, 79, 80, 87, 90) in the cereal grain. These multiple forms may be 

separated by means of gel electrophoresis, indicating differences in 

size or net electrical charge of the enzymes (81). Different molecular 

forms of an enzyme which exhibit the same enzymatic specificity have been 

termed isozymes or isoenzymes (81). 

Isozymes, although catalyzing the same reaction, may differ in 

catalytic properties, such as substrate affinity, inhibitor sensitivity, 

pH optima, thermal stability and specific activity, pointing to possible 

variations in their in vivo roles (81). Although the above criteria may 

be used in characterizing isozyme activities, true evidence as to the 

existence of isozymes within a tissue comes from demonstration of isozyme 

structural differences or by demonstration that the isozymes are 

synthesized under independent genetic control (81). 

In this regard a number of researchers have shown multiple forms 

of amylases in cereal grains to be discreet entities, not arising from 

artifacts of preparation (89, 93). The level of acidic amino acids 

appears solely responsible for differences in net electrical charge of 
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the amylase isozymes, as evidenced by differences in amino acid composition 

and tryptic peptide maps (54). In addition, genetic evidence lends 

further support for the presence of real isozyme expression (9, 10). 

Amylase isozymes have been reported in developing wheat (67), and 

developing barley (5). Electrophoretic studies have been employed to 

identify a and 3-amylase variants in germinating barley (6, 25), germi¬ 

nating rice (87), germinating rye (97), and in wheat (49, 89, 90). 

In maize several researchers using the technique of starch gel 

electrophoresis to identify individual activities, have examined the 

genetic control mechanisms underlying the presence of multiple starch 

degrading enzymes (9, 10, 22, 79, 80). 

Finnigan (1969) found two zones of starch degrading activity in the 

endosperm of maize kernels harvested 30 days after pollination. The 

first zone was clear on starch gel electrophoresis, implying complete 

degradation of the substrate, and it was identified as an a-amylase. 

Three bands (A,B,C) in the seconizone appeared rust colored due to incom¬ 

plete hydrolysis of the substrate. That zone was identified as having 

3-amylase activity. 

In all progeny and crosses, the single clear band with a-amylase 

activity remained and exhibited the same mobility. However, the 3-amylase 

variants, A,B, and C, were found to be each controlled by a single allele, 

(Sd\ SdB, Sdc) with the heterozygote having two bands corresponding with 

its two alleles, but no hybrid banding (22). 

* Chao and Scandalios (1969) reported three zones of starch degrading 

activity from the liquid endosperm of 16 to 20 day old maize kernels. 

These were identified as a-amylase (zone 1), 3-amylase (zone 2), and 
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a-glucan phosphorylase (zone 3). Results from genetic crosses show that 

zone 2 was controlled by two co-dominant alleles (Amy^^, Amy^B). A and B, 

the respective fast and slow moving electrophoretic variants were thought 

to be each one type of 3-amylase monomer, with the heterozygote possessing 

both active variants. 

Chao and Scandalios (1971) subsequently investigated the Amy 1 

a-amylase. The two genetic variants (A and B) were found to be also con- 

trolled by two co-dominant alleles (Amy , Amy ) . The variants were 

identical in molecular weight, but differed in isoelectric pH and electro¬ 

phoretic mobility. Aberrant F2 segration of the Amy 1 variants supported 

a differential allelic expression for the Amy 1 locus which was found to 

be both tissue and age dependent. The maize endosperm is a triploid 

tissue, having two doses of maternal genes to one of paternal. Investigation 

of gene dosage effects in the endosperm of the germinating seedling 

indicated that for the Amy 1 amylase, gene dosage may be either additive 

or the result of preferential expression for one of the two alleles (10). 

6. Purification, Fractionation, and Characterization of Amylases. 

A. Purification. The amylases are typical protein and may be pur¬ 

ified by conventional protein fractionation techniques (23). For 

preliminary work, concentrations of ammonium sulfate or cold acetone 

have been used to flocculate protein containing the active enzyme fraction 

from a number of cereal grain preparations (27, 51, 89). The precipitation 

accomplishes two purposes. The active fraction is separated froiji 

extraneous materials and concentrated for further purification. 

Gel filtration chromatography is a purification technique primarily 
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based upon differences in size. The gel filtration medium consists of 

hydrated dextran, polyacrylamide or agarose gels. Gels of various 

fractionation ranges are used to effect separation of lower molecular 

weight substances from the higher molecular weight compact globular 

proteins, such as the amylases. Application of a gel with specific exclu¬ 

sion limit (molecular weight of the smallest molecule incapable of pene¬ 

trating the pores of the gel matrix and thus passing through the column) 

allows not only separation of components but preliminary information as 

to the molecular weight of the enzymes in question (6, 51, 82). 

B. Fractionation. The separation of multiple forms of amylases 

almose invariably takes advantage of differences in net electrical charge 

among the enzymes. Gel electrophoresis and ion-exchange chromatography 

are the techniques most commonly employed. 

Electrophoresis is presently the most powerful analytical technique 

available to separate enzymes. The theory underlying electrophoresis is 

relatively simple. The application of direct current separates the enzymes 

according to the different and characteristic electrical charge of each 

enzyme. Mobility of an enzyme on a solid support in gel electrophoresis 

may be altered by the substitution of a single amino acid in the enzyme, 

with a charge different from the one it replaces (81). 

Electrophoretic analysis has been widely used to study multiple 

forms of amylases in developing (5, 9, 22, 67) and germinating (25, 92) 

grains. In addition electrophoresis may serve as a means of verifying 

amylase homogeneity after purification procedures (89), and as an analytical 

tool to study the effects of physicochemical treatments (6, 37, 97) and 

hormone application (87, 93, 95). 
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Ion-exchange chromatography has been successfully employed for the 

resolution of multiple forms of amylases (59, 83, 89). Adsorption of the 

enzyme to ion-exchange celluloses involves the formation of multiple 

ionic bonds between charged groups on the enzyme and available groups of 

opposite charge on the adsorbent. Differential elution of the adsorbed 

enzymes is then effected by altering the charged enzyme state or by use 

of agents capable of competing with the adsorbed enzyme for charged sites 

on the adsorbent (35). 

Amylase variants have been fractionated by ion-exchange chromatography 

from extracts of barley (59, 83) and wheat (89). Tipples and Trachuk 

(1965) demonstrated the presence of distinct 3-amylase isozyme in wheat. 

These researchers analyzed bound 3-amylase by extraction with NaCl solutions, 

eliminating possible artifacts arising from the extraction of bound 

3-amylases with proteases or thiol reagents. 

C. Characterization. 1. Physicochemical Properties and Reaction 

Products. Differentiation between a and 3-amylases relies greatly upon 

analysis of their physicochemical properties and their reaction products. 

Differences in the physicochemical properties of classical or and 

p—amylasp.s have been discussed earlier (1. Definition and Classification 

of a and 3-Amylases). Selective denaturation of cr-amylase can be achieved 

by dialysis against calcium chelating agents, such as ethylenediamine- 

tetra-acetic acid (EDTA), or subjection of the cr-amylase to low pH (pH 3.5) 

(16, 17, 97). Denaturation of classical 3-amylase, insensitive to the 

above treatments, may be effected by incubation in the presence of excess 

calcium ions at a high temperature (70°C) for a time period which will 

not inactivate classical a—amylase (12 minutes). Also, 3—amylase denaturation 
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is effected by reaction with heavy metal ions, a treatment to which 

classical a-amylase is insensitive (16, 17, 97). 

Reaction product analysis by paper chromatography (74) yields data 

not only on the type of reaction products from amylase hydrolysis, but 

on their relative amounts and order of appearance, when incubation periods 

with the substrate are timed. Reaction products patterns for 8-amylase 

acting on a soluble starch substrate will yield only maltose as the 

initial reaction product. The presence of high molecular weight oliogo- 

saccharides occurs later, as the large polymer is cleaved (88). Alpha- 

amylase action characteristically shows the presence of a variety of 

oliogosaccharides earlier in the hydrolysis, an indication of more randomn 

attack on the glucose polymer (32). Glucose is present from a-amylase 

hydrolysis, but absent in 8-amylase hydrolysis, as the latter enzyme does 

not cleave maltose or maltotriose (88). 

2. Kinetic Analysis. The stability and catalytic efficiency of an 

amylase are pH dependent factors. Cereal a-amylases usually exhibit 

optimal activity between pH 5.0 and pH 6.0 (32). Below pH 5.0, irrever¬ 

sible inactivation occurs (32). Optimum pH values for crystalline malt a- 

amylase (pH 5.3) (60), and a-amylase from pea cotyledon (pH 5.3 to 5.9) 

(86) have been reported. Lee and Unrau (1969) found the pH optimum and 

pH stability range for wheat a-amylase to be pH 4.5 and pH 4.0 to 8.4, 

respectively. Rye a—amylase showed a pH optimum of pH 4.9 to 5.0, and 

a range of pH 4.0 to 8.1 (51). 

- The pH optima for 8-amylases lie between pH 4.0 and pH 6.0, and the 

enzyme is relatively stable at pH 3.5 (32). Values for pH optima within 

this range. pH 4.6 to 5.2 for wheat 8—amylase (90), pH 4.0 for rye 
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3-amylase (60), and pH 4.8 to 5.0 for sweet potato 3-amylase (60), have 

been reported. 

Rate constants for enzyme reactions universally exhibit temperature 

dependence. Temperature optima for amylases usually range between 50°C and 

65°C (51). Above this range, the reaction rate decreases due to the 

denaturation of the amylase. Disruption of intramolecular hydrogen 

bonding may cause changes in secondary and tertiary enzyme structure (51). 

Energy of activation (Ea) for amylase catalyzed hydrolysis may be 

evaluated from an Arrhenius plot of activity. The amylase activity in 

arbitrary units is plotted as a logarithm against the reciprocal of the 

absolute temperature. The Ea may then be calculated within a given 

temperature range from the slope of the resulting curve. The relationship 

is expressed by the following equation (57). 

Ea * -2.303 R(slope) 
gL 

Activation energies for amylases are usually about 14 Kcal/mole 

at 10°C, decreasing to a few Kcal/mole at 40 to 50°C (88). Activation 

energies at 10 to 20°C of 13.5 Kcal/mole for wheat a-amylase and 

8.2 Kcal/mole for rye a-amylase have been reported (51). 

Curvature of Arrhenius plots under widely varying conditions are 

usually interpreted as decreases in Ea with increasing temperatures. 

However, a decrease in Ea may also reflect an increase in the dissociation 

constant of the enzyme-substrate complex as well as greater denaturation 

rates at higher temperatures (32, 88). 

As the rate of an enzyme catalyzed reaction ordinarily increases 

with increasing substrate concentration, barring cases where the 
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reaction product(s) acts as an enzyme inhibitor, a rate curve may be 

plotted. Michaelis-Menten constants, and V , are determined from a 

Lineweaver-Burke plot. 

The Kjjj varies with the substrate used (60). Raw starch granules 

in addition to having generally complicated and undefined structures, are 

very resistant to amylase action for kinetic work (60) . Although perhaps 

not indicative of in situ substrate properties, the soluble starches, 

such as Lintner starch (which is acid-modified) have often been used in 

determination of kinetic parameters (60). The values for amylases 

are in the range of 2.0 z 10“* to 5.0 z 10"3 grams of soluble starch/ml 

(51, 32, 86). 
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MATERIALS AND METHODS 

1. Plant Material 

Seed of a commercial variety of field corn. Funk’s G-17, was used 

for all studies. 

2. Tissue Preparation 

a. Developing Kernels. Ears were harvested 24 days after pollination. 

Kernels were removed from several ears and intact embryos were separated 

from the soft kernels with a scalpel. Endosperm and embryo samples 

were kept at 0°C prior to enzyme extraction. 

b. Mature Kernels. The mature seeds, obtained commercially, were 

de-embryonated by hand, using a file and scalpel. Differences in color 

and texture were used as the criteria for the complete removal of the 

softer embryo from the hard endosperm. For some studies the pericarp and 

aleurone layeis of the intact kernels were mechanically removed by rotating 

the kernels in a sandpaper-lined canister over a 10 hour period. The 

kernels were then de-embryonated and any adhering outer layers were 

manually filed away. 

The de-embryonated kernels with or without pericarp and aleurone 

layers were stored at 4 to 6°C either in a humidity chamber (75% R.H.), or 

in a desiccator (less than 10% R.H.) for at least two months prior to 

experimentation. Intact kernels were stored at the low temperature in the 

high humidity environment. 

3. Tissue Incubation 

a. De-embryonated and Germinating Kernels. Either intact or 
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de-embryonated kernels were surface sterilized with 1% (w/v) calcium 

hypochlorite solution for 15 min. with constant agitation. This was 

followed by rinsing with 10 changes of sterile, de-ionized water. The 

kernels were transferred under sterile conditions to 9 cm diamter petri 

dishes, 10 kernels/plate. The incubation medium consisted of 10 ml of 

sterile water containing 50 ug Penicillin G and 3.0 ug of Streptomycin 

sulfate. The kernels were incubated at 30°C in the dark. 

4. Preparation of the Enzyme Extract 

a. Developing Kernels. Fifteen ml of 0.05 M Tris-HCl buffer, pH 7.6, 

were added to samples of 20 endosperms. The sample was homogenized for 

1.5 min. (0.5 min low speed, 1.0 min. high speed) in a Virtis 45 homogen- 

izer. The resultant homogenate was centrifuged at 20,000 g for 15 min., 

and the supernatant collected. The pellet was resuspended in 4 ml of the 

Tris-HCl buffer and centrifuged as above. The combined supernatants 

B - 

were decanted through 4 layers of cheesecloth, made up to a 20 ml volume 

with the Tris-HCl buffer, and served as the crude endosperm extract. 

Fine grade sand was added to samples of 20 embryos, which were ground 

with mortar and pestle. Ten ml of 0.05 M Tris—HC1 buffer, pH 7.6, were 

added to each sample. The homogenate was centrifuged as above. The pellet 

was resuspended with 2 ml of the Tris—HC1 buffer and again centrifuged 

as above. The combined supernatants were decanted through 4 layers of 

cheesecloth, made up to a 15 ml volume, and served as the crude embryo 

extract. 
- 

b. De-embryonated Kernels. After incubation for the specified period 

of time, 20 kernel samples with residual incubation medium plus 2 ml of 

Tris-HCl buffer, pH 7.6, were homogenized for two min. (0.5 min low speed, 
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0.5 min. medium speed, 1.0 min. high speed) using a Virtis 45 homogenizer. 

The homogenate was centrifuged at 20,000 g for 15 min.,and the supernatant 

collected. The pellet was resuspended with 4 ml of the Tris-HCl buffer, 

and centrifuged as above. The combined supernatants were decanted through 

4 layers of cheesecloth, made up to a 25 ml volume with Tris-HCl buffer, 

and served as the crude endosperm extract. 

For determination of bound enzyme in incubated, de-embryonated kernels, 

the pellet obtained from the above preparation was resuspended with 4 ml 

of the Tris-HCl buffer, centrifuged as above and the supernatant decanted 

through 4 layers of cheesecloth. This procedure was repeated three times, 

after which no amylase activity could be detected in the resulting, 

collected supernatants. The washed pellet was then resuspended in 20 ml 

of 0.05 M citrate buffer, pH 5.4, containing 0.1% papain and 0.1% cysteine. 

The suspension was incubated at 30°C with frequent stirring. At specified 

time periods, the suspension was centrifuged for 15 min. at 20,000g. The 

supernatant was collected and decanted through 4 layers of cheesecloth, 

and served as the source of soluble enzyme released from a bound form in 

the pellet. 

c. Germinating Kernels. After a specified incubation period, the 

embryo including root and shoot was separated from the endosperm with a 

scalpel. The endosperm fraction from 20 kernels with 2 ml of Tris-HCl 

buffer and the residual incubation medium was homogenized, centrifuged, 

and resuspended as described for incubated, de-embryonated kernels (4b). 

The collected supernatants were decanted through 4 layers of cheesecloth, 

made up to 25 ml volume with 0.05 M Tris—HC1 buffer, pH 7.6, and served 

as the crude endosperm extract. 
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Twenty ml of the Tris-HCl buffer were added to the germinating 

embryo fraction, including root and shoot, separated from the 20 kernels. 

The embryos were homogenized for 1.5 min (0.5 min low speed, 1.0 min. 

high speed) in a Virtis 45 homogenizer. The homogenate was centrifuged 

at 20,000 g for 15 min., and the supernatant collected. The pellet was 

resuspended in 3 ml of the Tris-HCl buffer and centrifuged as above. 

The collected supernatants were decanted through four layers of cheesecloth, 

made up to a 25 ml volume with the Tris-HCl buffer and served as the 

crude embryo extract. 

5. Determination of Enzyme Activity 

Total amylase activity for all crude and purified enzyme extracts 

was determined by the method of Bemfeld (1955) . The assay measured 

reducing sugars released from the amylase catalyzed hydrolysis of a soluble 

starch substrate. 

The standard reaction mixture consisted of 1 ml of 2% Merck soluble 

starch (prepared according to Lintner), 0.1 to 0.5 ml of the enzyme extract 

(depending upon activity), and 0.05 M acetate buffer, pH 5.0, adjusted to 

give a final volume of 5 ml for the reaction mixture. 

The soluble starch and buffer were equilibrated at 30°C. The assay, 

initiated by addition of the enzyme, was carried out at 30°C in a constant 

temperature water bath. At incubation times ranging from 5 to 20 min., 

1 ml aliquots of the reaction mixture were withdrawn and added to 3 ml 

of dinitroslicylic acid reagent (DNSA). Reducing power was determined 

spectrophotometrically (575 nm), according to Sumner and Somers (1949) . 

Standard curves using maltose as the reducing sugar, were prepared and the 

enzyme activity was expressed as mg maltose/unit time. 



25 

6. Determination of Protein 

Total protein for crude and purified enzyme extracts was determined 

by the method of Lowry et al. (1951), using the Folin-Ciocaltau reagent. 

A standard curve was prepared using bovine serum albumin. 

7. Determination of Enzyme Complement 

Crude and purified enzyme extracts were subjected to polyacrylamide 

gel electrophoresis (PAGE) as a method for determining the presence and 

number of starch degrading enzyme in the extracts. A modified method of 

Davis (1964) was used. 

Twenty ml of a small pore gel preparation containing 8.25% gel 

solution and 2.5 ml of a 4.0% iodometric starch solution were placed in 

12 cylindrical glass tubes (5 mm x 0.5 mm ID). Large pore gel (0.4 mm in 

depth) was placed on top of the solidified small pore gel. The enzyme 

extracts (0.1 to 0.3 ml) were placed on top of the gels, and the gels 

were run vertically at 3 mAmp/tube at 4 to 6°C for approximately one hour. 

A bromophenol blue tracking dye was used to determine when electrophoresis 

was completed. 

The gels were extruded from the tubes and incubated for 40 min. at 

room temperature with a 4% iodometric starch solution. At the end of 

incubation, the gels were washed and stained with an iodine solution 

(12 g KI and 1.2 g I2/L). Areas of starch degrading activity appeared as 

clear zones against a dark blue background. 

8. Enzyme Purification Procedures 

a. Bulk Enzyme Extraction. Bulk enzyme extracts from 200 de-embryonated 

kernels were prepared after one and five days of incubation. Day 1 kernels 
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with residual incubation medium were homogenized with 30 ml of 0.05 H 

Tris-HCl buffer, pH 7.6 and with 50 ml of the Tris-HCl buffer for the 

day 5 preparation. Homogenization times in the Virtis 45 homogenizer 

for day 1 kernels was 0.5 min low speed, 1.0 min. medium speed, and 1.5 

min. high speed. Homogenization time for the day 5 kernels was 0.5 min. 

low speed, 0.5 min. medium speed, and 1.0 min. high speed. The homogenates 

were centrifuged for 15 min. at 20,000 g and the supernatants collected. 

The pellets from both preparations were resuspended in 40 ml of the 

Tris-HCl buffer and centrifuged as above. The combined supernatants for 

both day 1 and 5 preparations were decanted through 4 layers of cheesecloth. 

The amount of buffer added to the kernels for homogenization and the 

time of homogenization were dictated by the amount of residual incubation 

medium and the softness of the kernels. 

Precipitation of the soluble enzyme from the supernatant was effected 

by the addition of ammonium sulfate to give 75% saturation (w/v). The 

ammonium sulfate was gradually added with constant stirring, and the 

mixture was allowed to stand for 15 min. at 4 to 6 C at allow flocculation 

of the protein. The pellet containing the precipitated protein was col¬ 

lected after centrifuging at 35,000 g for 15 minutes. 

b. Gel Filtration Chromatography. Elimination of low molecular 

weight compounds from the pellet containing amylase activity was effectd 

by the use of gel filtration chromatography. Sephadex G-50 (Pharmacia) 

was hydrated with 0.05 M Tris-HCl buffer, pH 7.6, packed into a 2.5 x 

20 cm column, and equilibrated with the buffer. A nylon mesh disk was 

placed over the top of the sephadex to eliminate mixing or uneveness of 

the gel surface. The pellet containing amylase activity was resuspended 
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with 2.5 ml of the Tris-HCl buffer and placed onto the column. The 

sample was eluted from the column with the Tris-HCl buffer by gravity 

flow at the rate of 5 ml/3 minutes. Active fractions obtained from the 

column were bulked and precipitated with ammonium acetate as described 

above (8a). 

9. Enzyme Fractionation Procedures 

a. Ion-Exchange Chromatography. Ion-exchange chromatography was 

employed as a method of separating the partially purified amylase com¬ 

plement into activities based on charge difference. The differential 

elution of activities from the column was effected by use of a linear salt 

gradient. Diethylaminoethyl cellulose (DEAE-cellulose) was used as an 

anion exchanger and was prepared according to the method of Peterson and 

Sober (1962). The matrix material was equilibrated with 0.05 M Tris-HCl 

buffer, pH 8.0, packed into a 2.5 x 20 cm column, and fitted with a 

nylon mesh disk. 

The pellet obtained from the precipitation of activity in the bulked 

Sephadex G-50 fractions was taken up in 2.5 ml of the Tris-HCl buffer, 

pH 8.0, and applied to the column. Elution of the active fractions was 

effected with a 200 ml linear gradient of 0.01 to 1.0 M NaCl in 0.05 M 

Tris-HCl buffer, pH 8.0. Five ml fractions were collected at the rate of 

seven minutes per fraction. 

Peak fractions containing amylase activity were subjected to 

characterization of activity or rechromatographed. The latter involved 

bulking active fractions from respective peaks, precipitating with 

ammonium sulfate (8a), and resuspending the pellet in 2.5 ml of the 

Tris-HCl buffer, pH 8.0. The sample was again applied to a DEAE-cellulose 



28 

column and eluted over the appropriate salt concentration range. 

10. Procedures for Enzyme Characterization 

a. Reaction Product Analysis. The reaction products of amylase 

hydrolysis of a soluble starch substrate were determined by paper chroma¬ 

tography according to the method of Robyt and French (1963). Pellets 

containing amylase activity from ammonium sulfate precipitation (8a) 

were taken up in 2.5 ml of 0.05 M Tris-HCl buffer, pH 8.0, and served 

as the source of enzyme for reaction product analysis. An enzyme aliquot 

(0.1 ml) was incubated with the standard reaction mixture (5a) for 10m 

20 and 30 min. intervals, at which time aliquots were withdrawn and 

placed into a boiling water bath to inactivate the enzyme. 

One hundred ul of the aliquots were spotted on Whatman No. 1 

Chromatography paper strips. The chromatograms were developed with a 

mixture of water-95% ethanol-nitromethane (21.44.35) for 14 hours by 

descending flow. Reaction products were visualized by first dipping the 

papers in an AgN03 solution (0.1 ml saturated AgN03/20 ml acetone), drying 

and dipping in a second solution containing 0.1 ml of 10 N NaOH/100 ml 

of 95% ethanol. Glucose and maltose were run as standards for comparison. 

b. Polyacrylamide Gel Electrophoresis. PAGE analysis as described 

previously (7) was applied to amylase activities at all stages of purifi¬ 

cation to verify homogeneity of activities during the purification 

procedures. 

c. Physicochemical Characterization. Physicochemical treatments 

were used alone or in conjunction with PAGE analysis as a criterion for 

differentiation between a and 8—amylases. The following treatments were 

performed on aliquots of crude and purified enzyme extracts prior to 
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standard amylase assay (5)t 

1. Calcium ions (Ca+^) Enzyme eliquot incubated with a final concen¬ 
tration of 10~3 M CaCl2 for one hour at 0 to 4°C. 

2. Heat (H) Enzyme aliquot incubated for 12 min. at 70°C in a constant 
temperature water bath. 

+2 
3. Calcium ions plus Heat (Ca + H) Procedure 1 followed by procedure 2. 

4. Mercury ions (Hg+^) Enzyme aliquot incubated with a final concen¬ 
tration of 10~5 M HgCl2 for 15 min. at 0 to 4°C. 

5. Dithiothreitol reagent (DTT) Enzyme aliquot incubated with a final 
concentration of 1 mM DTT for 15 min. at 0 to 4°C. 

4-9 
6. Mercury ions plus Dithiothreitol reagent (Hg + DTT) Procedure 4 

followed by procedure 5. 

+9 
7. Dithiothreitol reagent plus Mercury ions (DTT + Hg ) Procedure 5 

followed by procedure 4. 

d. pH Optima Determination. Effect of pH on amylase activities 

from purified extracts was determined over the range of pH 2.5 to pH 8.0. 

Buffers of 0.025 M concentration were prepared according to the method 

of Gomori (1955). They are as follows, citrate-phosphate (pH 2.6 to 3.5), 

acetate (pH 3.6 to 5.6), citrate-phosphate (pH 5.7 to 7.0), Tris-HCl 

(pH 7.0 to 8.0). Amylase activity was determined by standard assy (5), 

using 1 ml of soluble starch, 3.5 ml of the respective buffer, and 0.5 ml 

of the enzyme. The pH values of the reaction mixture were taken with a 

single probe electrode at the termination of the 20 min. assay. 

e. Determination of Temperature Optima and Energy of Activation. 

The temperature optima for the purified amylase activity was determined for 

a specified set of conditions. Standard assays (5) were run in a constant 

temperature water bath set at 5°C increments from 15°C to 55°C. The 

reaction mixture consisted of 0.5 ml of the enzyme, 1 ml of 2% soluble 
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starch and 3.5 ml of 0.05 M actate buffer, pH 5.0. 

Energy of Activation (Ea) for amylase activity over a specified 

temperature range was determined from data obtained from the temperature 

optima study. An Arrhenious graph of the reciprocal of the absolute 

temperature versus the log of the reaction rate was plotted. The Ea 

was calculated from the slope of the curve. 

f. Determination of Michaelis-Menten Constants. A determination 

was made by assaying the activity of the purified enzyme over a range 

of substrate concentrations. Reaction mixtures were prepared consisting 

of 2.0 to 40 mg of soluble starch/ml in 0.05 M acetate buffer, pH 5.0. 

The purified enzyme was added to the reaction mixture at 30°C and routine 

assays (5) were carried out for 20 minutes. The was determined from 

a Lineweaver-Burke plot of amylase activity (1/v vs l/(s)). 

11. Verification of Experimental Data 

For verification and unless otherwise noted, all experiments were 

repeated at least twice. The majority of the studies were repeated three 

times. 
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RESULTS 

Part I. Recurrence and Development of Amylase Activity in Maize Kernels. 

A. Amylase Activity in Incubated, De-embryonated Maize Kernels. 

1. Environmental effects. The time course development of amylase 

activity in incubated, de-embryonated maize kernels is shown in Fig. 1. 

Maize kernels kept under conditions of high relative humidity (75%) for 

two months prior to experimentation exhibited no detectable activity at 

zero time but did show some amylase activity after 24 hours of incubation. 

A sharp rise in activity follows, which begins to plateau after 7 days 

of incubation. Concomitant with the increase in activity was an increase 

in the number of starch degrading zones visualized using polyacrylamide 

gel electrophoresis (PAGE) (Fig. 2, zymogram 1). 

Maize kernels which have been kept in a desiccator at a R.H. of less 

than 10% for two months prior to experimentation, exhibited a low level 

of total amylase activity, extractable throughout the time course, when 

compared with the activity from the kernels in a high humidity environment 

(Fig. 1). A similar initial increase in activity occurred in both cases 

but after 9 days of incubation the kernels stored under high humidity had 

three times the activity as the low humidity stored kernels. An investi¬ 

gation of the electrophoretic banding pattern from the crude extracts of 

these ^dry*' kernels showed a maximum of two bands, the second one occurring 

at about 5 days of incubation (Fig. 2, zymogram 2). 

Table 1 indicates the moisture loss of whole and de-embryonated 

kernels previously subjected to humid or dry conditions. Surprisingly, the 

K II 
percentage of moisture loss is virtually the same for dry kernels, 
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FIGURE 1 

Time course development of total amylase activity in 

incubated, de-embryonated maize kernels stored for two 
months under humid (75% R.H.) or dry (less than 10% R.H.) 
conditions. 
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FIGURE 2 

Polyacrylamide gel electrophoresis zymograms of starch 
degrading bands from the time course development of 
amylase activity in incubated, de-embryonated maize 
kernels stored under humid (75% R.H.) or dry (less than 
10% R.H.) conditions for two months. 

Humid 

Day 

1 2 3 4 5 7 8 __9__ origin 

Dry; 

Day 

1 2 3 4_5_8_7_8_9 origin 
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whether they are intact or minus the embryo with the endosperm tissue 

u II 
exposed. The same observation holds true for humid kernels. As would 

be expected, however, moisture loss is almost three times as great from 

I* II 

the kernels exposed to humid conditions as it is for the dry kernels, 

suggesting that the free moisture in the kernels is a function of the 

environmental conditions. 

An indication that all free moisture has been removed from the 

kernels is supported by the observation that the average dried weights of 

the intact kernels are similar, regardless of pretreatment in either humid 

or dry environment. The same observation holds true for de-embryonated 

kernels from both environments. 

Developing maize kernels examined 24 days after pollination, weigh 

less than mature kernels from either humid or dry environments (Table 1). 

However, almost 60% of the weight of the developing kernel is moisture, 

li II 

versus the 11.9% moisture in the mature humid kernel. This is an indie- 

action that a reduction in free moisture occurs as the maize kernel matures. 

2. Physical effects. Several reports have indicated that only 

g-amylase is present in the ungerminated cereal grain and that it is 

located in the aleurone or sub-aleurone layers (17, 18). To further 

investigate the origin of the complement of amylase enzymes arising from 

the de-embryonated kernel upon incubation, the pericarp and aleurone layers 

were removed from the kernels. Samples of kernels kept under conditions 

of low and high relative humidity for two months as previously described, 

were subjected to mechanical abrasion to remove the pericarp and aleurone 

layers and then were manually de-embryonated. On incubation a complete 

absence of amylase activity in the crude extracts from both samples was 
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noted. In addition PAGE analysis failed to detect any starch degrading 

zones for either sample (results not presented). 

As the major amylase activity was obtained from de-embryonated 

kernels with the outer layers intact, and kept under conditions of high 

relative humidity at 0°C, all subsequent work was based upon this prior 

treatment of the maize kernels. 

B. Amylase Activity in Germinating Kernels 

Total amylase activity was determined in the endosperm and excised 

embryo from germinating kernels separated at time of sampling. Activity 

was present in both the endosperm fraction and the excised embryo, which 

included the developing root and shoot (Fig. 3). 

Initially amylase activity in the endosperm from germinating kernels 

was higher than that found in the endosperm from previously de-embryonated 

kernels (Fig. 3). Activity in the former began to plateau after 5 days 

of incubation, while maximum activity in the latter was reached after 7 

days of incubation. Approximately the same total activity was reached 

in both cases. Total activity from the excised embryo from germinating 

kernels was lower than that from the endosperm fractions, although an 

increase in activity was noted over the time course of incubation. 

PAGE analysis of the crude extracts from the three samples (Fig. 4) 

shows a complement of starch degrading bands appearing earlier in the 

endosperm from the germinating kernels than from the de-embryonated kernels. 

This earlier appearance of starch degrading bands correlates well with 

the higher amylase activity detected in the extracts (Fig. 3). Comparison 

of day 6 zymograms for the two endosperm fractions shows some similarity 

in banding patterns (Fig. 4). The slowest moving, least anodic starch 



FIGURE 3 

Time course development of total amylase activity in 
de-embryonated maize kernels and in the embryo and 
endosperm from germinating maize kernel. 

Days of incubation at 30°C 



FIGURE 4 

PAGE zymograms of starch degrading bands from extracts 
of de-embryonated kernels and extracts of the embryo 
and endosperm of germinating kernels after one and six 

days of incubation. 

origin 

I DAY”! I DAY 6 I + 

A- Extract from embryos of germinating kernels 

B- Extract from endosperm of germinating kernels 

C- Extract from de-embryonated kernels 
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degrading zone in the germinating endosperm sample consists of a cluster 

of bands, while that from the de-embryonated sample is one clear band. 

The increase in the number of bands from the embryo extracts correlates 

well with its increase in activity during incubation. 

The reaction product patterns produced by activity from the purified 

endosperm extracts indicates the presence of a-amylase activity, at least 

in part (Fig. 5). Similar reaction patterns for endosperm extracts from 

germinating and de-embryonated kernels suggest the presence of similar 

amylase activities (Fig. 5). 

C. Amylase Activity in Developing Maize Kernels 

To assess the amylase activity in developing kernels of the Funk's 

G-17 variety, ears were harvested 24 days after pollination and kernels 

removed. 

Total amylase activity in the endosperm and embryo of developing 

kernels was higher than that found for the respective activities from the 

germinating kernels on the first day of incubation (Table 2). PAGE 

analysis (Fig. 6) indicates a complex banding pattern for both the endo¬ 

sperm and embryo from the developing kernels. There is some similarity 

in PAGE patterns from the endosperm of day 6 germinating kernels (Fig. 4) 

and the endosperm of day 24 developing kernels (Fig. 6). The cluster of 

slow moving bands is again present in the endosperm of the developing 

kernel. 

Reaction of the crude extracts prepared from the endosperm and 

embryo of the developing kernels to various physicochemical treatments 

suggests the presence of a and 3-amylase activities in both of the tissues 

(Table 3). Beta-amylase activity is indicated by the protective effects 
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FIGURE 5 

Zymograms of paper chromatograms of reaction product 
patterns of amylase activity from de-embryonated maize 
kernels and from the endosperm of germinating maize 
kernels, after 6 days of incubation. 

I- De-embryonated kernels, 6 days of incubation 

II- Germinating maize endosperm, 6 days of incubation 

Gl- Glucose standard 

g2- Maltose standard 

ss- Soluble starch substrate 

NS- No substrate 
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TABLE 2 

Amylase activity in developing, geminating and 
incubated, de-embryonated maize kernels. 

Sample Amylase Activity 
mg maltose/tissue/hr 

developing kernels, 24 days after pollination 

embryo 1.71 

endosperm 4.02 

geminating kernels, after one day of incubation 
at 30°C 

embryo (including root and shoot) 1.00 

endospem 2.29 

de-embryonated kernels, after one day of incubation 
at 30°C 

1.26 



FIGURE 6 

PAGE zymograms of starch degrading bands from extracts 
of the embryo and endosperm of developing maize kernels 
24 days after pollination. 

A B origin 

A- Extract from embryos of developing kernels 

B- Extract from endosperms of developing kernels 
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TABLE 3 

Physicochemical analysis of amylase activity in the 
embryo and endosperm of developing maize kernels, 24 
days after pollination. 

Treatment Amylase Activity as %. o_f Control 

Control (-no treatment) 

Ca+2 (10-3 m, 1 hr, 0°C) 

Heat (12 min, 70°C) 

Ca+2 + Heat 

Hg+2 (10“5 M, 15 min, 0°C) 

DTT (ImM, 15 min, 0°C) 

Hg+2 + DTT 

DTT + Hg+2 

Endosperm Embryo 

100. 100. 

78.3 86.5 

' 13.5 14.9 

46.7 53.2 

41.3 80.0 

103. 100. 

50.3 75.9 

77.2 94.5 
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of dithiothreitol (DTT) against inactivation of some of the activity 

by mercury ions. However, a typical reaction of classical a-amylase 

is also seen in both embryo and endosperm extracts. Heat treatment 

(70°C for 12 min.) greatly reduces activity, but the amylase activity is 

partially protected upon addition of excess calcium ions prior to heat 

treatment. 

Amylase activity in the developing grain is thought to be in part 

a function of the grain moisture level, and hence the amount of soluble 

enzyme in the grain. Moisture level decreases as the grain matures (67). 

In this regard, moisture content for the developing kernel was found to 

be 59.8% versus the 11.9% for the fully mature kernel kept in a humid 

environment (Table 1). As well, activity from the de-embryonated kernel 

after one day of incubation was found to be only about one third of that 

from the endosperm of the developing kernel (Table 2). 

D. Incubation Studies with De-embryonated Kernels 

1. Gibberellic acid (GAq) effects. The hormone, gibberellic acid, 

has been implicated in the process of cereal grain germination since 

Paleg (1960) and others first discovered that GA3 could substitute for 

the embryo in the initiation of events leading to substrate mobilization. 

In barley, Varner and co-workers (21, 37, 93) subsequently established 

the GA3 directed de novo synthesis of a-amylase and protease. Protease, 

in turn, may play a role in the expression of latent 3-amylase (78). 

As a similar GA3 requirement for substrate mobilization has been 

reported for maize (36), it was thought of interest to determine the effect 

of GA3 additions on the incubated, de-embryonated kernel. 



Figure 7 shows the development of total amylase activity in the 

de-embryonated kernels incubated with concentration of GA3 (0.5 uM, 1.0 uM, 

2.0 uM). As with the control, GA3 treated kernels show an initial low 

level of activity which rises over time of incubation. However, between 

1 and 5 days of incubation, extracts from GA3~treated de-embryonated 

kernels exhibited a higher level of amylase activity than the control. 

The activities of all samples are similar after 7 days of incubation. 

PAGE analysis (Fig. 8) of 1 uM GA^-treated and control samples indicate 

the presence of one slow moving band on day 1 of the time course for both 

samples. However, the appearance of more anodic starch degrading bands 

in the GA3~treated sample precedes that of the control, correlating with 

the earlier increase in activity of the GA^-treated sample. The complete 

enzyme complement is present at day 4 for the 1 uM GA^-treated sample and 

at day 5 for the control. 

The order of appearance of starch degrading bands and the total of 

4 bands in both the GA3 and control samples may be one indication of a 

quantitative, rather than qualitative effect for the action of GA3 in 

this system. This quantitative GA3 effect has been observed, as well, in 

another study with incubated, de-embryonated maize kernels (27). 

Concentration of GA^ applied to the maize endosperm is reported to 

have a limiting value, after which higher concentrations of GA3 do not 

bring about a corresponding greater increase in amylase activity (36). 

Data from this study support this observation. Maximum effect with GA^ 

was achieved at 1 uM concentration, as higher concentration did not 

bring about an appreciably greater enhancement of amylase activity (Fig. 7). 

The quantitative nature of GA3 on amylase activity in the incubated, 
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FIGURE 7 

Effect of concentrations of GA3 on the time course 
development of total amylase activity from incubated, 
de-embryonated maize kernels. 

Days of incubation at 30°C 
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FIGURE 8 

PAGE zymograms of starch degrading bands from the time 
course development of amylase activity in GA3 (luM) and 
non-GA3 treated de-embryonated kernels. 

Control 

1_2_3 4_5 6 7 8 9 _ origin 

+ >r 

GA3 (luM) 

123456789 origin 
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de-embryonated kernel is further demonstrated by the lower GA3 concen¬ 

tration (0.5 uM) which shows less enhancement of amylase activity than 

the higher concentration 

For 1 and 2 uM GA3 additions, activity is increased two fold during 

early incubation. As full expression of amylase activity with GA3 was 

obtained at 1 uM concentration, this level was used in all further 

experimentation. 

2. Physicochemical effects. The number of starch degrading bands 

on PAGE analysis and the diversity of reaction products obtained by 

paper chromatography (Fig. 8, Fig. 5) suggested that both a and 3-amylases 

were present in the incubated, de-embryonated maize kernel. It was of 

interest, then, to determine the proportion of activity due to a and 

or. 8-amylases during the time course and what effect the addition of GA^ 

would have on this activity. 

Figure 9 illustrates the time course development of activities from 

kernels incubated with or without 1 uM GA^ and the effects of three 

physicochemical treatments used in the determination of a-amylase. 

Additions of calcium ions, alone, did not enhance the activity in either 

GA3 or control samples, indicating that if a-amylase is present in this 

system and requires calcium, the endogenous concentration is adequate. 

Loss of activity on heat treatment is indicative of the heat sensitivity 

of both a and 3—amylases. However, addition of calcium ions prior to 

heat treatment shows an increase in thermal stability of a portion of the 

amylase activity occurring later in the time course. This is an indication 

of the presence of a-amylase. Again, on heat treatment with or without 

calcium ions, the activities in GA3 and control samples respond in a similar 
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FIGURE 9 

Physicochemical analysis of the time course development 
of total amylase activity in GA3 (luM) and non-GA3 

treated de-embryonated maize kernels. Effects of 
Ca+2 (IQ”3 M), Heat (70°C, 12 min.), and Ca+2 plus Heat. 

Days of incubation at 30°C 
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fashion. 

PAGE patterns (Fig. 10) of the control and GA^ samples after 8 days 

of incubation, show the full complement of starch degrading bands for 

extracts with no treatment and calcium-treated extracts. Heat treatment 

eliminates two bands from each sample, but the lower one is stabilized by 

the addition of calcium ions before heat treatment, an indication of 

a-amylase activity. For these treatments GA3 and control samples respond 

in a similar fashion on PAGE analysis. 

Figure 11 indicates the time course development of activities from 

de—embryonated kernels incubated with or without 1 uM GA3 and subjected 

to three physicochemical treatments used in the determination of 8-amylase. 

Beta-amylase is a sulfhydryl enzyme, which may be inhibited by heavy metal 

ions, such as Hg+2. Thiol reagents such as dithiothreitol may be used to 

protect sulfhydryl enzymes against such inactivation. Addition of DTT 

increases the activity of both GA3 and control samples early in the time 

course. Addition of Hg+2 dramatically decreases the activity in both 

samples, especially early in the time course. Addition of DTT after 

-4-9 
treatment with mercury ions protects against the effects of Hg inhibi¬ 

tion for both samples early in the time course. 

PAGE analysis (Fig. 10) shows the full complement of bands for extracts 

+2 
with no treatment and DTT treatment in both samples. Treatment with Hg 

eliminates the upper band and some of the lower ones. The least anodic 

band is the only one present in the early stages of incubation, and it 

again appears in samples treated with DTT subsequent to Hg . However, 

one of the lower bands does not reappear on the double treatment. Both 

GA3 and control samples respond similarly to the treatments, on PAGE analysis. 
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FIGURE 10 

PAGE zymograms of starch degrading bands from physico- 
chemically treated amylase activity in GA^ (1 uM) and 
non-GA^ treated de-embryonated kernels after 8 days of 
incubation. Effects of Ca+2 (10”%) Heat (70°C, 12 min.), 
Ca+2 plus Heat, Hg+2 (10“5M), DTT (ImM), and Hg+2 plus DTT. 

Control (non-GA3 treated) 

C_Ca H • Ca + H Hg DTT Hg + DTT _ origin 

GA3 (1 uM) 

C Ca H Ca + H Hg DTT Hg + DTT 
origin 

+ >y 
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FIGURE 11 

Physicochemical analysis of the time course development of amylase 
activity in GAo (1 uM) and non-GA3 treated de-embryonated maize kernels. 
Effects of Hg+2 (10-5 M), DTT (1 mM), and Hg+2 plus DTT. 

(GA3) 

+ DTT (GA3) 

+ DTT 

(ga3) 

Days of incubation at 30°C 
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Physicochemical data thus point to the occurrence of 3-amylase 

activity early in the incubation and to the presence of both a and 

3-amylase activities later in the time course. Physiocochemical treat¬ 

ments, reaction product patterns and PAGE analysis all indicated that 

the de-embrycnated kernel develops both a and 3-amylase activities during 

incubation and that the action of GA3 on this system is quantitative, 

bringing about an earlier expression of activity. 

3. Inhibitor effects. Activity from the incubated, de-embryonated 

maize kernel may arise from latent enzyme present in the resting seed, or 

from the synthesis of new enzyme. To determine the extent to which the 

development of amylase activity is dependent upon RNA and protein synthesis, 

the respective inhibitors of these processes, actinomycin D and cyclo- 

heximide were added to the incubation medium. 

The inhibitors were added at the start of incubation or to controls 

at days 2, 4 and 6 of incubation (Fig. 12, Fig. 13). Addition of act¬ 

inomycin D or cycloheximide at the start of incubation suppresses the 

development of amylase activity previously observed in incubated, 

de-embryonated kernels. Addition of the inhibitors at later times during 

incubation results in a dramatic decrease in activity compared with the 

control. 

PAGE patterns (Fig. 14) indicated that the inhibitors prevented the 

appearance of the full complement of starch degrading bands, correlating 

with the observed decrease in activity. 

It would appear that both the full development of amylase activity 

and the appearance of the full complement of starch degrading bands are 

mutually related processes, both dependent upon RNA and protein synthesis. 



FIGURE 12 

Effect of Actinomycin D (20 ug/ral) on the time course 
development of amylase activity in de-embryonated 
maize kernels. 
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FIGURE 13 

Effect of cycloheximide (5 ug/ml) on the time course 
development of amylase activity in de-embryonated 
maize kernels. 

Days of incubation at 30°C 
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FIGURE 14 

PAGE zymograms of the effects of Actinomycin D (20 ug/ml) and Cycloheximide 

(5 ug/ml) on starch degrading bands appearing during the time course 
development of amylase activity in de-embryonated maize kernels. 

Control 

Day 

l_2_4_6_8 _ origin 

+ v 

Act. D 8 2 4 4 6 6 8 origin 

+ * 

CH origin 
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It is interesting to note that inhibitor additions at the start of incu¬ 

bation or later did not affect the appearance of the least anodic band 

on PAGE analysis (Fig. 14). This observation lends support to the idea 

that this starch degrading band, which is present after one day of 

incubation and has activity characteristic of a 3-amylase, is present in 

the maize kernel prior to incubation and does not require RNA or protein 

synthesis for its expression. 

E. Latent Amylase 

The presence of a latent or bound form of amylase has been reported 

to exist in barley (82, 83) and wheat (75, 76). To free the enzyme, 

numerous physical and chemical extraction techniques have been employed 

(89, 82, 75), the most effective of these being a combination of a pro- 

trolytic enzyme (e.g. papain) and a sulfhydryl reagent (e.g. 2-mercapto- 

ethanol) (82, 83). 

To determine if amylase exists in a latent form in the maize endosperm, 

de—embryonated kernels were incubated for 24 hours, the soluble amylase 

activity extracted, and the remaining pellet incubated with 0.1% papain 

and 0.1% cysteine. Results indicate that a bound amylase is present in the 

de-embryonated maize kernel (Table 4). Activity obtained after one hr 

of cysteine-papain treatment at 30°C is as great as that obtained with the 

soluble enzyme in the crude extract. Bound amylase activity was also 

found at later time of incubation, using a variety of extraction techniques 

(Appendix). 

PAGE patterns of the crude extract and extracts from cysteine-papain 

treatment were similar and showed the presence of one slow moving band 
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TABLE 4 

Extraction of soluble and latent amylase activity in 
de-embryonated maize kernels after 24 hours of incubation 

at 30°C 

Treatment Amylase Activity 
mg maltose/kernel/hr 

1. extraction of soluble amylase 

crude extract 2.13 

4th pellet wash with 0.05 M 0.00 
Tris-HCl buffer, pH 7.6 

2. extraction of latent amylase 

hrs of incubation (30°C) 

0.0 
0.5 
1.0 
1.5 
2.0 
7.0 

Control 
(pellet incubation 
with 0.05 M citrate 
buffer, pH 5.4) 

0.00 
0.00 
0.50 
0.32 
0.76 
0.92 

Cvsteine-papain 
(pellet incubation 
with 0.1% cysteine 
+ 0.1% papain in 
citrate buffer) 

0.00 
1.24 
2.09 
2.22 
2.50 
2.69 
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(results not presented). Physicochemical analysis indicated that this 

latent activity is characteristic of 0-amylase, reacting much like the 

soluble activity appearing in early incubation (Table 5, Figs. 9, 11). 

Results are consistent with the report of 0-amylase in the mature, 

resting maize seed (17). 

Some activity was also obtained in the control sample upon incubation 

of the pellet. This activity may be due to the action of maize protease 

on the bound amylase at incubation temperature (30°C), or to the gradual 

freeing of amylase due to the aqueous environment. A maize protease has 

been reported to exist in the endosperm (33). 
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TABLE 5 

Physicochemical analysis of latent amylase activity in 
de-embryonated maize kernels after 24 hours of incuba¬ 
tion at 30°C. 

Treatment Amylase Activity as % of_ Control 

Control (tio treatment) 100. 

Ca+2 (10-3 M> i hr, 0°C) 95.0 

Heat (12 min, 70°C) 12.2 

Ca+2 + Heat 14.9 

Hg+2 (10"5 M, 15 min, 0°C) 0.00 

DTT (1 mM, 15 min, 0°C) 99.1 

Hg+2 + DTT 44.3 

DTT + Hg+2 60.9 
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Part II. Isolation and Characterization of Amylase Enzymes in 
Incubated, De-embryonated Maize Kernels. 

A. Characterization of Amylase Activity After Days of Incubation. 

A preparation of amylase activity from day 5 extracts was purified 

by gel filtration chromatography and subjected to DEAE-cellulose chroma¬ 

tography (Fig. 1). The activity was resolved into three peaks, labelled 

I, II and III, according to their order of elution (0.17 M, 0.42 M, 

and 0.65 M NaCl, respectively). .To assure that the separated activities 

were not artifacts resulting from the procedure used, each peak activity 

was rechromatographed over the respective ranges of salt concentrations. 

The original peaks rechromatographed at the same corresponding NaCl 

concentrations (results not presented). Table 1 indicates the degree of 

purification obtained for each peak from the crude extract. 

PAGE patterns for bulked fractions from each peak are presented in 

Figure 2. To insure homogeneity of activity, fractions in which pre¬ 

liminary PAGE analysis had indicated overlapping of starch degrading bands 

from individual peaks, were discarded. Individual and discreet zones of 

starch degrading activity are indicated for each of the three peaks. 

Peak I is characterized by one slow moving zone, Peak II by one of inter¬ 

mediate migration, and Peak III has two zones showing the greatest 

anodic migration. 

As a means of determining what type of activity is associated with 

each peak, the reaction products of the respective amylase activities 

from a soluble starch substrate were studied. Figure 3 indicates the 

results of the reaction product analysis. The activity of Peak I 

is typical of 3-amylase. After 10 minutes of reaction with the substrate, 
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TABLE 1 

Purification scheme of amylase activity extracted from 
de-embryonated maize kernels after 5 days of incubation. 

Treatment 
✓ 

Protein Specific Activity 
(mg) («units/mg protein) 

Crude extract 1153 1.92 

Sephadex G-50 240 6.76 

DEAE-Cellulose 

Peak I 14.9 9.81 

Peak II 13.2 15.4 

Peak III 20.2 12.4 

one unit of activity = A 20 min., A575 of 0.010 for 0.5 ml of enzyme. 
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FIGURE 2 

PAGE zymograms of starch degrading bands from amylase 
activities in Peak I, II and III eluted from a DEAE- 

cellulose column. Amylase activity from de-embryonated 

maize kernels after 5 days of incubation at 30°C. 

Peak 

I II III _ origin 

+ \V 
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FIGURE 3 

Zymogram of paper chromatograms of reaction product patterns 
from amylase activties in Peaks I, II and III eluted from a 
DEAE-cellulose column. Amylase activity from de-embryonated 
maize kernels after 5 days of incubation at 30°C. 

“To 30 | To 30 J To 30 f 

minutes of enzyme reaction with soluble starch substrate 
at 30°C 

Gi~ Glucose standard 

g2- Maltose standard 
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the sole reaction product was maltose (Fig. 3). Further reaction with 

the substrate (30 min.) shows the appearance of high molecular weight 

oligosaccharides, formed as additional maltose units are cleaved from 

the substrate (88). The lack of glucose as a reaction product is 

additional confirmation of 3-amylase activity, as the smallest dextrin 

which 3-amylase hydrolyzes is a four glucose polymer, yielding two 

maltose units as products (88). 

The reaction product patterns from Peak II and Peak III are indica¬ 

tive of a-amylase activities (Fig. 3). Initial products from the two 

activities include glucose and higher oligosaccharides. Alpha-amylase 

generally acts very slowly on maltotriose, hydrolyzing it to glucose and 

maltose, but it cleaves the larger glucose polymers more rapidly (88). 

Thus, at the end of 30 minutes reaction with the soluble starch substrate, 

both maltose and glucose are evident, as well as a larger amount of the 

higher oligosaccharides. 

Physicochemical analysis is often used to distinguish between a and 

3-amylases. Results of various treatments on the activities from the 

three peaks are presented in Table 2. 

The data for Peak I again suggest 3-amylase activity. The activity 

is completely destroyed on application of heat, with no protection 

afforded by the addition of excess calcium ions prior to heat treatment. 

No exogenous requirement for calcium ions is shown. The activity is also 

destroyed by treatment with mercury ions, but is partially restored by 

additions of DTT either before or after mercury treatment. Dithiothreitol 

slightly enhanced the activity of Peak I. Protection by the thiol 

reagent against the effects of the heavy metal ion implicates the 
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TABLE 2 

Physicochemical analysis of amylase activities from 
Peaks I, II and III eluted from a DEAE-cellulose 
column. Activity from day 5 preparation of incubated, 
de-embryonated maize kernels. 

Treatment Amylase Activity as % of Control 

Peak I Peak II Peak III 

Control 100. 100. 100. 

Ca+2 (1CT3 M, 1 hr, 0°C) 100. 97.1 96.5 

Heat (12 min, 70°C) 0.00 25.2 36.6 

Ca+2 + Heat 0.00 63.0 74.5 

Hg+2 (1CT5 M, 15 min, 0°C) 0.00 34.2 45.2 

DTT (1 mM, 15 min, 0°C) 108. 96.0 101. 

Hg+2 + DTT 78.0 32.9 40.5 

DTT + Hg+2 84.0 44.6 36.9 

EDTA dialysis-24 hr 80.1 23.0 5.00 

EDTA dialysis-48 hr 74.2 0.00 0.00 
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involvement of free sulfhydryl groups known to be present in 3-amylase (84). 

Peak II and III exhibited a-amylase activities. Although requiring 

no exogenous source of calcium ions for full activity, both activities 

were partially protected against heat inactivation when calcium ions 

were added prior to the heat treatment. Reports indicating increased 

thermostability of a-amylase in the presence of high levels of calcium 

ions substantiate the a-amylase character of Peaks II and III (25, 32, 88). 

All a-amylases investigated appear to contain calcium, the removal 

of which may result in either reversible or irreversible loss of activity 

(23). Dialysis against a calcium chelator, such as EDTA, has been employed 

to inactivated a-amylases (86). Loosely bound calcium is easily removed 

by this treatment, while the one gram atom of calcium/mole remaining is 

only released by more exhaustive dialysis (88). 

Peak II exhibits a-amylase activity with the complete loss of activity 

after 24 hours of dialysis against EDTA (Table 2). Peak III has some 

activity remaining after 24 hr of EDTA dialysis, but is almost completely 

inactivated after 48 hours of the treatment. In contrast, Peak I retains 

the greater portion of its activity, even after the 48 hr treatment. Loss 

of some activity by this peak could be due to instability of the enzyme 

over time, or sensitivity to the physical conditions of the dialysis 

treatment. 

Addition of mercury ions to amylases from Peaks II and III resulted 

in substantial decrease in activity. In contrast to the data from Peak I, 

no protection against the reduction in activity on mercury treatment was 

shown by addition of DTT either before or after treatment with the heavy 

metal ion. Also, DTT alone did not enhance the activities from Peaks 
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II and III. The irreversible denaturation of a-amylase activity due 

to mercury effects has been described for a-amylases from other sources, 

as well (31, 37). 

Data from DEAE-cellulose column chromatography shows the separation 

into three distinct amylase activities of the full complement of starch 

degrading bands extracted from de-embryonated maize kernels after 5 days 

of incubation. Peak I data suggests the presence of a 3-amylase, while 

Peaks II and III exhibit a-amylase characteristics. 

3. Characterization of Amylase Activity After 24 hr of Incubation. 

A preparation of amylase activity from day 1 extracts was purified 

by gel filtration chromatography and subjected to DEAE-cellulose column 

chromatography (Fig. 4). The activity was eluted as one sharp peak at 

0.11 M NaCl concentration. Rechromatography of the active fractions 

resulted in the same sharp peak at 0.13 M NaCl (results not presented). 

The activity purification scheme is shown in Table 3. Approx¬ 

imately a six fold increase in specific activity was obtained from the 

DEAE fractions purified from the crude extract. The amount of protein¬ 

aceous material from the day 5 crude extract was much higher than that 
,0 

of the day 1 crude extract (Tables 1 and 3), reflecting an increase in 

soluble proteinaceous material in the de—embryonated maize kernels, as 

they are incubated. However, quantities of bound amylase were still 

found at later times of incubation (Appendix), as well as in the pellet 

from the day 1 preparation (Part I, Table 4). 

Figure 5 shows a comparison of the electrophoretic banding patterns 

for the day 1 crude extract, the day 1 bulked DEAE fractions, and a 
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FIGURE 5 

PAGE zymograms of starch degrading bands from activity in 
de-embryonated maize kernels incubated for 24 hr, and from 
activity of a commercial 3-amylase. 

A_B_G _ origin 

+ * 

A- Day 1 crude extract 

B- Day 1 bulked DEAE fractions from Peak I 

C- Commercial 3-amylase 
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TABLE 3 

Purification scheme of amylase activity extracted from 
de-embryonated maize kernels after 1 day of incubation. 

Treatment Protein 
(mg) 

Specific Activity 
(*units/mg protein) 

Crude extract 105 2.03 

Sephadex G-50 31.5 6.29 

DEAE-cellulose 

Peak I 12.2 12.9 

Peak I (rechromatographed) 11.5 11.8 

*one unit of activity = A20 min., A575 of 0.010 for 0.5 ml of enzyme 
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commercial 3-amylase. The presence of one slow moving starch degrading 

zone in both of the day 1 preparations indicates that, indeed, only one 

amylase was present in the early incubation of the de-embryonated kernel, 

and that this activity was not altered during the purification of the 

crude extract. Further support for the 3-amylase character of this 

activity was shown by the similarity of the PAGE patterns for the day 1 

preparations to that for the commercial 3-amylase. 

Data for physicochemical treatments and PAGE patterns for the 

treated DEAE fractions are presented in Table 4 and Figure 6, respectively. 

The presence of one slow moving starch degrading zone is evident in the 

control (bulked DEAE fractions with no treatment) and in all treated 

samples where the major portion of activity remains after physicochemical 

treatment. No alteration in the mobility or the number of bands was 

apparent. 

Physicochemical data for the crude extract and the bulked DEAE fractions 

was similar and indicates 3-amylase activity (Table 4). Calcium ions 

did not enhance activity, nor protect against the loss of activity on heat 

treatment. Dialysis against EDTA did not result in complete loss of 

activity as would be expected with an a-amylase (88) . Mercury ions 

eliminate activity entirely, but additions of DTT either before or after 

mercury treatment partially reverses this inhibition such that the 

activity remains about 50% of the control in the bulked DEAE fractions. 

Higher activities for the combined mercury and DTT treatments in 

the crude extract (Table 4) may indicate that the enzyme is more stable 

before purification, or that the presence of other substances in the 

crude extract may have a protective effect on the enzyme. Data for 
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TABLE 4 

Physicochemical analysis of amylase activity in the crude 
extract and in Peak I eluted from a DEAE-cellulose column. 
Amylase activity from de-embryonated maize kernels, incu¬ 

bated for 24 hr at 30°C. 

Treatment Amylase Activity as % of_ Control 

Control 

Ca+2 (1(T3 M 

Heat (12 min 

Ca+2 + Heat 

Hg+2 (10“5 M 

1 hr, 0°C) 

70°C) 

15 min, 0°C) 

Crude extract 

100. 
84.9 

0.00 

10.1 

0.00 

103. 

69.0 

83.1 

80.8 

77.1 

DEAE fractions 

100. 
92.3 

0.00 

0.00 

0.00 

93.3 

47.4 

53.4 

84.0 

75.4 

DTT (ImM, 15 min, 0°C) 

Hg+2 + DTT 

DTT + Hg+2 

EDTA dialysis-24 hr 

EDTA dialysis-48 hr 
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FIGURE 6 

PAGE zymograms of the effects of physicochemical treatments 
on starch degrading bands from amylase activity in Peak I 
eluted from a DEAE-cellulose column. Amylase activity from 
de-embryonated maize kernels incubated for 24 hr at 30°C. 

Ca H Ca + H 
Dialysis 

24 hr 
origin 

+ >Y 

Hg DTT Hg + DTT DTT + Hg origin 
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physicochemical treatments for the day 1 purified preparation (Table 4) 

parallel the data obtained for Peak I of the day 5 purified preparation 

(Table 2). 

The increased thermostability of a-amylase in the presence of 

high concentrations of calcium ions has been described previously. To 

further examine the nature of the amylase present in Peak I of the day 1 

preparation, the thermostability of the enzyme was studied. Results are 

presented in Figure 7. One hour pre-incubation with calcium ions was 

ineffective in protecting the amylase against thermal inactivation at 

at 70°C. Both the control and the CaCl2 treated sample were similarly 

inactivated within 6 minutes, a typical 3-amylase response. In contrast, 

Peaks II and III from the day 5 preparation, which had exhibited a-amylase 

characteristics, had over 50% of the activity remaining when CaCl2 (10" M) 

was added prior to a heat treatment at 70°C for 12 minutes (Table 2). 

Further evidence for the presence of 3-amylase was gained by a study 

of reaction product patterns (Fig. 8). Ten minutes of enzyme reaction 

with the soluble starch substrate yielded maltose as the sole reaction 

product. With longer times of incubation, the appearance of higher oli¬ 

gosaccharides is evident. The reaction product pattern for the activity 

from Peak I in this study bears a striking similarity to that from 

Peak I of the day 5 preparation (Fig. 3). 

To investigate the effects of temperature on enzyme activity 

routing assays were carried out in 5°C increments over a range of 15°C to 

55*0 (Fig. 9). Optimum temperature for amylase activity under these 

conditions was 45°C, with greater than 50% of the optimum activity 

of 30 to 55°C. Energy of activation (Ea) was occurring in the range 
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FIGURE 7 

_3 
The effect of calcium ions (10 M, 1 hr incubation) on 
the thermostability of amylase activity from Peak I eluted 
from a DEAE-cellulose column. Amylase activity from 
de-embryonated maize kernels after 24 hr of incubation 

at 30°C. 

12 

Minutes at 70°C 
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FIGURE 8 

Zymogram of paper chromatograms of reaction product patterns 
from amylase activity in Peak I eluted from a DEAE-cellulose 
column. Amylase activity from de-embryonated maize kernels 

after 24 hr of incubation at 30°C. 

t g2 NS ss Peak I 

P 
origin 

To 20 30 [ 

minutes of enzyme reaction with 
soluble starch substrate at 30°C 

Gl- Glucose standard 

G2~ Maltose standard 

NS- No substrate 

SS- Soluble starch 
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FIGURE 9 

Temperature activity profile of amylase activity from 

Peak I eluted from a DEAE cellulose column. Amylase 
activity from de-embryonated kernels after 24 hr of 

incubation at 30°C. 

Temperature °C 
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calculated from an Arrhenius plot of amylase activity, derived from 

the temperature optima data (Fig. 10). Ea was found to be 14.6 Kcal/mole 

between 20 and 30°C, decreasing to 8.3 Kcal/mole between 30 and 40°C. 

These values are somewhat higher than the 14.0 Kcal/mole at 10°C 

reported for amylases in the literature (51, 88). 

The pH activity profile of the amylase is presented in Figure 11. 

Activity was determined by routine assay over a range of pH 2.5 to 8.0. 

Buffers in the appropriate pH ranges were prepared according to the 

method of Gomori (1955). As pH stabilitiy of an amylase is a function 

of protein and salt concentrations (88), all assays were prepared using 

0.5 ml of the purified enzyme in a 0.025 M buffer solution. The anions 

of the buffers used (citrate-phosphate, acetate, Tris-HCl) are reported 

to have no deleterious effects on amylase activity (60). 

The pH optimum of 4.8 is similar to other reports for 8-amylases 

(24). Greater than 50% of the optimum activity was realized in the pH 

range of 3.4 to 6.6. The stability of an amylase in an acid environ¬ 

ment (pH3.5) is one criteria for 8-amylase activity (25, 87). 

The Michaelis-Menten constant, Km, was determined from a Lineweaver- 

Burke plot of amylase activity (Fig. 12). The range of soluble starch 

concentrations in the complete reaction mixture varied from 2 to 40 mg. 

The K determined was found to be 3.5 x 10 ^ grams soluble starch/ml, 
m 

and is similar to those found for 8-amylases from other sources (24, 32). 
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FIGURE 10 

Arrhenius plot of amylase activity from Peak I eluted 
from a DEAE-cellulose column. Amylase activity from 
de-embryonated maize kernels after 24 hr of incubation 

at 30°C. 
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FIGURE 11 

pH activity profile of amylase activity from Peak I 
eluted from a DEAE-cellulose column. Amylase activity 
from de-embryonated kernels after 24 hr of incubation 

at 30°C. 
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FIGURE 12 

Lineweaver-Burke plot of amylase activity from Peak I 
eluted from a DEAE-cellulose column. Amylase activity 
from de-embryonated maize kernels after 24 hr of incu¬ 

bation at 30°C. 

Kjh * 3.5 x 10 ^ grams soluble starch/ml 
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DISCUSSION 

Part I. Occurrence and Development of Amylase Activity in Maize Kernels. 

The data indicate that amylase activity is present in three different 

maize tissue systems^ the developing kernel, the germinating kernel, 

and the incubated de-emhryonated kernel, 

A. Amylase Activity in Developing Kernels. 

Physicochemical data for amylase activity in the endosperm of the 

developing maize kernel suggests the presence of both a and 3-amylase 

activities (Table 3). Both enzymes have been reported in the endosperm 

of developing maize kernels (9, 10, 22). Chao and Scandalios (1969) 

have reported three zones of starch degrading activity in the endosperm 

of 16 to 20 day old kernels, while Finnigan (1969) found two zones of 

activity in kernels harvested 30 to 35 days after pollination. Four 

zones of starch'degrading activity were found in this study with the 

endosperm from kernels 24 days after pollination (Fig. 6). The least 

anodic of these zones contained multiple bands, a situation observed in 

other studies, as well (9, 22). Variations of the isozymic complement 

in different studies might be the result of the different maize cultivars 

used for experimentation or from differences in times of sampling. 

A comprehensive time course study of the nature of the amylase 

activity in maize kernels during the entire developmental stage was 

beyond the scope of this investigation. However, it does appear that 

both a and 3-amylase activities are present at at least one time during 

kernel ontogeny. Chao and Scandalios (1969) report that the amylase 
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zymogram of activites from the maize endosperm did not vary from 7 

days to full maturity in the maize cultivars which they examined. 

Moisture content for 24 day old developing kernels was found to be 

59.8% versus the 11.9% for fully mature kernels from a humid environment 

(Table 1). Whereas four starch degrading zones were identified by PAGE 

analysis from the endosperm of developing kernels (Fig. 6), only one 

zone was present in the endosperm from mature kernels during the early 

stages of incubation (one day) (Fig. 2). Correlating with a reduction in 

the number of electrophoretic zones, total amylase activity in extracts 

from mature, de-embryonated kernels during early incubation was less than 

one third of that from the endosperm of developing kernels (Table 2). 

A number of researchers have reported a decrease in amylase activity 

in developing grains upon maturation (5, 13, 15, 16, 50, 67). Finnigan 

(1969) found maximum activity in the maize endosperm at 30 to 35 days 

after pollination, thereafter activity decreased. This decrease in 

amylase activity has been attributed in part ta decreasing moisture levels 

of the cereal grain upon maturation, which either reversibly inactivates 

or denatures the amylases present (13, 67, 82, 83). 

Assay for bound amylase activity in the endosperm from 24 day old 

developing kernels yielded negative results (Appendix). In the mature 

de-embryonated kernel during early incubation, however, as much activity 

was found in the latent form as in the soluble, active form (Table 4). 

Numerous researchers have reported the presence of bound 3-amylase in 

mature cereal grains (71, 82, 82, 91). In addition, work by Gibson and 

Paleg (1972) supports the presence of a structurally latent form of 

a-amylase in mature wheat aleurone cells. After treatment with GA3, 
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membrane rupturing chemical or mechanical treatments were required to 

release the amylase into its full active form. These researchers suggest 

that a-amylase exists within lysosomes, distinct membrane enclosed 

organelles, containing acid hydrolases. 

The following results with the maize kernel would suggest that 

developmental changes in a and 3-amylases during the ripening of the 

kernel are similar to those found for other cereal grains. 1. decrease 

in moisture level upon maturation, 2. decrease in soluble amylase activity 

and zones of starch degrading activity, 3. increase in latent activity 

upon maturation. It would appear therefore, that a and 3-amylases present 

in the maize endosperm and/or aleurone layers during early development 

are reversibly inactivated or denatured with increasing moisture loss. 

Activity in the mature kernel is thus a function of both soluble and 

latent forms of the amylases. The finding of little (17) or no (79) 

amylase activity in the mature, resting maize seed strengthens this 

argument. 

B. Amylase Activity in Germinating Kernels. 

The total amylase activity from the endosperm of germinating kernels 

is higher than that from de-embryonated kernels, most notably during early 

incubation (Fig. 3). Correlating with this faster increase in activity is 

the earlier appearance of starch degrading zones upon PAGE analysis (Fig. 4). 

Reaction product patterns for amylase activity from the endosperm of 

germinating kernels suggest that at least part of the activity was due 

to a-amylase (Fig. 5). The presence of a-amylase activity has been 

previously reported in the germinating maize kernel (80), and specifically 

in the endosperm of the germinating maize seed (17). 
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During germination, the embryo which is in contact with the endo¬ 

sperm also shows an increase in activity over time (Fig. 3), as well as 

a complex banding pattern on PAGE analysis (Fig. 4). The increased activity 

from the endosperm during germination could be due to interactions 

between the embryo and the endosperm. Similar to the biochemical events 

occurring in barley (45), amylase synthesis in the germinating maize 

endosperm may be enhanced by the action of gibberellins from the 

embryonic axis or scutellum (72, 73). In fact, the increase in amylase 

activity over time from the endosperm of the intact, germinating maize 

kernel parallels closely the enhanced activity of incubated, de-embryonated 

maize kernels when the latter are treated with 1 uM GA3 at the start of 

incubation (Fig. 3, Fig. 7). 

However, the presence of the embryo in the intact, germinating maize 

seed may not be solely responsible for the amylase activity and the 

complement of starch degrading bands arising from the endosperm during 

germination. Both of these phenomena also occur in the incubated, 

de-embryonated maize kernel (Fig. 2, Fig. 3), suggesting the activation 

of pre-existing amylase or the de novo synthesis of amylase in the 

endosperm, without the assistance of an embryo factor. Reaction product 

patterns for amylases from the endosperm of germinating kernels and from 

the incubated, de-embryonated kernel are similar (Fig. 5), suggesting 

similar amylase activities. In addition, a maximum of four electrophoretic 

starch degrading zones was observed in both of the tissues (Fig. 2, Fig. 4). 

C. Amylase Activity in De-embryonated Kernels. 

1. Physical effects. In de-embryonated kernels, amylase activity 
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develops during incubation, independent of the embryo or exogenous GA^. 

Pretreatment conditions of the mature kernels greatly affect the ex¬ 

pression of amylase activity upon incubation. Kernels kept in a 

desiccator, under dry conditions contain less than half the moisture of 

kernels kept under conditions of 75% R.H. (Table 1). Upon incubation, 

the dry stored kernels exhibited less activity and fewer starch degrading 

bands in comparison to the humid stored kernels (Fig. 1, Fig. 2). 

Moisture level in relation to the constancy of amylase expression was 

stressed by Dure (1960). He found that a median fresh weight range for 

maize experimental material must be maintained in order to achieve 

reproducible results for amylase activity. 

It has been suggested that the viability of a seed is related to 

its moisture level, and increase in moisture level will increase meta¬ 

bolic rates, and hence may alter the response of the seed upon imbibition 

and germination (96) . With wheat, Olered and Jonsson (1970) found 

decreased activity of a-amylase in developing grain subjected to dry 

conditions. A temporary increase in humidity stimulated an increase in 

a-amylase activity, during any time of the wheat development. Drying the 

kernels subsequent to harvesting also decreased the a-amylase activity in 

the ungerminated grain. 

Olered and Jonsson (1970) also found that the expression of 8-amylase 

activity was not dependent upon hydrolytic processes. Significantly, the 

only starch degrading activity consisitantly present in preparations 

from the endosperm of dry stored kernels was the slow moving band 

characterized as a 8-amylase (Fig. 2). The more anodic bands, which 

exhibited a-amylase activity on physicochemical analysis (Fig. 9, Fig. 11) 
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were only sporadically present in the dry stored kernels and then only 

after 5 to 6 days of incubation. 

Removal of the embryo prior to pretreatment of the kernels did not 

affect moisture losses from the kernels stored in either dry or humid 

environments (Table 1). It would appear that the embryo is not a 

determining factor in the moisture level of the mature maize kernel. 

Water held by maize kernels has been shown to be a function of the 

colloidal compounds of the endosperm as well as a function of the pericarp 

(62). 

It would seem then that the moisture level of the mature maize kernel 

is a function of both the environmental humidity and the physical 

characteristics of the endosperm and pericarp. In turn, the expression 

of amylase activity upon incubation of the de-embryonated kernel is 

dependent at least partially upon the moisture level of the mature seed. 

On removing the pericarp and aleurone layers from the de-embryonated 

kernels, a complete absence of amylase activity and a lack of starch 

degrading zones on PAGE analysis was noted throughout the incubation 

period. This negative observation would support the role of the cereal 

aleurone or sub—aleurone layers as a storage site for bound 3_amylase 

(15, 18) and as a site for de novo amylase and protease synthesis as 

reported for barley (21, 93, 95). 

However, the aleurone layers have been shown to function in other 

physiological processes, as well, which would be altered on the removal, 

subsequently affecting amylase expression. In barley the aleurone cells 

by their selective permeability and osmotic concentration function in 

the secretion and release mechanisms for the hydrolytic enzymes (4h, 46, 94). 
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Also, the aleurone layers may serve as the site of synthesis or action 

of endogenous gibberellins. Similar to the GA-controlled synthesis of 

a-amylase in barley (45, 93), endogenous gibberellins in maize may play 

a role in the expression of a-amylase. Gibberellins have been reported 

in the aleurone layers of barley (11), as well as in the barley embryo 

(72, 73). Finally, the synthesis or action of proteases, which have 

been shown to be GA3 controlled in the barley aleurone layers (38), 

and active in liberating bound 3-amylase (33, 78) could be altered by 

removal of the aleurone layers, thus affecting the expression of 8-amylase. 

Critical analysis of the results would thus indicate that, although 

the aleurone layers most probably play a primary role in amylase 

expression as a site of origin or synthesis, secondary factors must also 

be taken into account. One result is clear, without the aleurone layer, 

the expression of soluble amylase activity in the incubated, de-embryonated 

kernel is nil. 

2. Gibberellic acid effects. With aleurone layers intact, amylase 

activity in de-embryonated kernels increases as a function of incubation, 

without the addition of GA3 (Fig. 7). From a low initial level on the 

first day of incubation, amylase activity increased to a maximum at about 

7 days of incubation, with the presence of four starch degrading zones 

on PAGE analysis (Fig. 8). Additions of GA3 to the de-embryonated kernels 

at the start of incubation did not alter the maximum activity reached 

or the number of starch degrading zones present at the time of maximum 

activity (Fig. 7, Fig. 8). Rather, the effect of exogenously applied GA3 

is seen as a quantitative one. The rise in amylase activity and the 

appearance of starch degrading zones occurred sooner than in the control. 
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The quantitative effect of GA3 was further borne out by the response 

of the de-embryonated kernels to different levels of the hormone (Fig. 7) . 

At concentrations less than 1 uM GA3, the hormone enhanced amylase 

activity was less. Maximum GA^ enhancement of amylase activity was 

reached at 1 uM GA^, and a higher concentration did not bring about 

greater amylase activity. 

Analysis of physicochemical data for amylase activity in GA3~treated 

samples compared to controls over time of incubation further support 

the quantitative aspect for GA3 (Fig. 9, Fig. 11). For both samples 

amylase activity was predominanatly 3-amylase in character early in the 

incubation period. Later appearance of a-amylase activity and additional 

starch degrading bands on PAGE analysis occurred in both cases (Fig. 9, 

Fig. 10, Fig. 11). The response of total activity to physicochemical 

treatments for the GA3-treated sample was similar to that of the control, 

only occurring sooner in the incubation period. 

The development of amylase activity in the incubated, de-embryonated 

maize kernel which is partly a-amylase in character, independent of 

an embryo, and only quantitatively affected by exogenous GA3 is contrary 

to the results from several researchers (17, 36). 

Dure (1960) concluded that a-amylase activity arises only from 

the scutellum of the maize kernel and is secreted into the endosperm to 

form the bulk of the amylase activity during germination. Ingle and 

Hageman (1965) maintained that exogenous GA3 replaced a component 

produced in the embryonic axis and received by the endosperm on germi¬ 

nation, the initiation of sugar production being completely dependent 

upon this embryo factor in the germinating seed or upon exogenous GA3 
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in the incubated, de-embryonated kernel. Though both researchers 

(17, 36) used de-embryonated maize kernels for their studies, the intact 

kernels were allowed to imbibe water for several hours before dissection. 

Biochemical events initiated by early imbibition may, however, 

involve interaction between the embryo and endosperm, altering the 

amylase response of the subsequently de-embryonated kernel. Maize 

embryos are capable of early response upon imbibition. Embryos dissected 

from germinating kernels in this study showed amylase activity and a 

number of starch degrading bands within the first 24 hr of incubation 

(Fig.' 3, Eig 4). Marcus et al. (1960) demonstrated that the wheat 

embryo is capable of protein synthesis within the first 30 minutes 

of imbibition. 

In agreement with results from this study, other work indicates 

that the maize endosperm is capable of digesting its own starch reserves 

(27, 34, 63). Goldstein (1974) reported both a and 3-amylase activities 

arising from the de-embryonated maize kernel upon incubation. Exogenous 

GA.3 enhanced early amylase activity, although total maximum activity in 

GA^-treated and control samples was similar. Harvey and Oaks (1974) 

suggest a de novo synthesis for a—amylase from de-embryonated maize 

kernels, from evidence of inhibitor studies. These researchers did not 

find enhanced amylase activity on addition of GA3, but suggest that 

gibberellins are instrumental in the development of activity in overcom¬ 

ing' the inhibition of amylase synthesis by abscisic acid (ABA) (34). 

The quantitative effect observed for amylase expression on appli¬ 

cation of GA3 to de-embryonated maize kernels in this study, lends itself 

to several interpretations. Upon imbibtion the presence of endogenous 



93 

gibberellins could bring about the activation of de novo synthesis of 

amylases in the endosperm or adhering aleurone layers. There is some 

indication that cold treatment such as used in this study (4 to 6°C 

for at least two months prior to experimentation) will result in higher 

endogenous levels of gibberellins (69). Higher concentrations of 

gibberellins were found in a winter wheat variety after vernalization (69). 

Enhancement of amylase activity on GA^ additions during early 

incubation may indicate that initially the maize endosperm, itself, does 

not contain the level of endogenous gibberellins needed to effect full 

amylase expression. The maize embryo may be another source of these 

gibberellins. Gibberellins are known to be synthesized in the scutellum 

of germinating barley (72, 73). 

Alternatively, the endosperm or aleurone may possess the capacity 

to synthesize gibberellins during incubation or to release them from a 

bound form (45) , attaining the level of GA needed for full amylase ex¬ 

pression over time. It would appear that by some mechanism the full 

amylase activity is realized in the intact germinating seed. As 

previously noted, the total amylase activity from endosperm excised from 

germinating kernels paralleled that activity found when incubated, 

de-embryonated kernels were treated with exogenous 1 uM GA3 (Fig. 3, Fig. 7). 

Another explanation for the lower activity in non-GA^ treated, 

de-embryonated kernels is the possible interaction of gibberellins with 

other hormones or inhibitors. In barley abscisic acid (ABA) inhibits 

GA3 induced a-amylase synthesis (61). The inhibitory effects of ABA on 

a-amylase expression in maize can be overcome by exogenous GA3 (34). 

Enhanced amylase synthesis with exogenous GA3 in this study could thus 
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be due to the exogenous hormone overcoming the inhibitory effects of 

other hormones such as ABA. As only initial activities differed, while 

maximum activity levels for both GA^-treated and control de-embryonated 

kernels were similar (Fig. 7), endogenous levels of gibberellins and 

substances antogonistic to their action could be changing in relation to 

each other over the time of incubation. Inhibitory substances may be 

leached out or inactivated, or the level of endogenous gibberellins may 

be increased over the incubation period. 

3. Inhibitor Effects. Amylase activity in the incubated, de-embryonated 

kernel may arise from two sources? activation of latent forms of amylase 

residing in the ungerminated kernel, or de novo synthesis of new enzyme 

upon incubation of the kernel. 

A series of starch degrading zones on PAGE analysis is evident upon 

the development of amylase activity in incubated, de—embryonated kernels 

(Fig. 8). These electrophoretic variants may only be tentatively iden¬ 

tified as amylase isozymes, as structural and genetic studies have not 

yet extablished their true identity as such. However, isozymes of a and 

P_amylases based upon genetic work have been identified in the endosperm 

of developing maize (9, 10, 22) and in maize seedlings (80). 

Additions of cycloheximide or actinomycin D at the start of incubation 

restricted total amylase activity to a low, initial level and prevented 

the appearance of the full electrophoretic complement of starch degrading 

enzymes. Additions of the inhibitors at later times in incubation 

dramatically decreased activity from the level of the control and also 

reduced the number of electrophoretic variants (Fig. 12, Fig. 13, Fig. 14) 

after two days of incubation with the inhibitors. The results suggest 
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that development of amylase activity and the occurrence of starch 

degrading bands are related processes, partially dependent upon the 

continual synthesis of RNA and proteins. Similar results for the 

involvement of protein synthesis in amylase development were reported 

by Goldstein and Jennings (1975). They found a similar inhibition of 

amylase activity and the appearance of starch degrading bands during 

early incubation of de-embryonated maize kernels with cycloheximide (5 ug/ml) 

and actinomycin D (20 ug/ml). 

Inhibitor additions at the start of the time course or later 

did not affect the appearance of the least anodic starch degrading zone 

in this study, characterized as having 3-amylase activity (Fig. 14). 

Because this enzyme is present during early incubation and does not 

require continual RNA or protein synthesis, it would appear to exist 

preformed in the maize endosperm prior to incubation. The presence of 

3-amylase in the endosperm of the resting maize kernel has been reported 

previously (17). 

The more anodic amylase electrophoretic variants which show a 

continual requirement for RNA and protein synthesis (Fig. 14), may be 

synthesized d£ novo in the maize endosperm. Turnover of these amylases 

seems apparent from the reduction in both activity (Fig. 12, Fig. 13), 

and the appearance of the more anodic starch degrading bands (Fig. 14) 

after two days of incubation with the inhibitors. These starch degrading 

zones appear later in the time course of incubation (Fig. 8). They have 

been shown to be predominantly a-amylase in character, as evinced by 

preliminary studies of physicochemical treatments on the crude extracts 

(Fig. 9, Fig. 11) and studies of physicochemical treatments and reaction 

\ 
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product analysis for these purified electrophoretic variants on day 5 

of incubation (Part II, Fig. 3, Table 2). 

Working with barley aleurone layers, Goodwin and Carr (1972) 

have shown a high degree of specificity for actinomycin D inhibition of 

GA3 enhanced a-amylase development. Inhibition of GA3 controlled 

a-amylase synthesis by cycloheximide and actinomycin D occurs in 

barley (11, 95), rice (70), and wheat (49). Consistent with the results 

obtained in this study, cycloheximide inhibition of a-amylase production, 

and prevention of substrate mobilization in the maize endosperm, suggested 

to Harvey and Oaks (1974b) that a-amylase was synthesized de novo in 

the maize endosperm. 
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Part II. Isolation and Characterization of Amylase Enzymes in 
Incubated, De-embryonated Maize Kernels. 

Contrary to findings of other researchers (17, 36), it has been 

established that amylase activity arising from the incubated, de-embryonated 

kernel and accompanied by a series of starch degrading bands, does not 

require the presence of an embryo factor or additions of GA3. Further¬ 

more, at least part of this amylase activity from both GA3 and non-GA3 

treated samples appears to be a-amylase in character. Implication for 

possible de novo synthesis of part of this activity comes from the 

sequential appearance of amylase electrophoretic variants over the time 

course of incubation. The later appearing variants display a-amylase 

characteristics upon physicochemical treatments and require continual 

RKA and protein synthesis for their expression. 

The amylase activities arising during early and midcourse incubation 

were further investigated. The respective activties were purified, 

fractionated, and characterized as to type of activity. 

A. Criteria for the Validity of Separated Activities. 

As artifacts arising during enzyme purification are known to occur 

(32), several steps were taken to avoid this problem or the alteration 

of enzyme properties. Experimentation with two protein precipitants, 

cold acetone and ammonium sulfate, indicated that the latter was less 

harmful to the amylases. Ammonium sulfate at 75% saturation yielded the 

highest level of total amylase activity in the purified precipitate 

(results not presented). As some plant enzymes are known to be short¬ 

lived (39), all purification procedures were carried out at 0 to 4°C, 
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usually vithin one week, to maintain activity of the enzyme. 

Proteases known to be present in the maize endosperm (33, 66), 

ray rodify the amylases. However, the crude extract assayed for protease 

activity according to Yomo and Varner (1972) yielded negative results. 

Invertase, which hydrolyzes sucrose, would yield inaccurate results for 

an amylase assay based upon reducing sugar power. No invertase activity 

was found in the crude extract, as assayed by the method of Jaynes and 

Nelson (1971). In addition, invertase has been shown to have little 

activity at the low temperatures used for the purification procedures (39). 

Verification of the separated amylase activities as distinct and 

real entities was based upon several criteria. The enzyme banding patterns 

monitored by PAGE analysis at each step in the purification procedure 

were seen to be constant. Only fractions from a DEAE-cellulose peak 

with the same PAGE pattern were used for further study, i.e., fractions 

collected between peaks were discarded. Finally, each peak was rechroma- 

graphed to insure its homogeneity. The procedures used for fractionation 

of amylase activities in this study were previously employed in another 

study with incubated, de-embryonated maize kernels of the Seneca Chief 

variety (27). Goldstein (1974) obtained excellent resolution of the 

amylase complement into three separate activities on DEAE-cellulose chroma¬ 

tography. Fractionation of the activities was verified using PAGE analysis 

and isoelectric focusing (27). 

The ability of the purified enzyme preparations to satisfy these 

criteria and the excellent stability of the extracts over the time period 

of purification is good evidence that artifacts or changes in enzyme 

properties were not introduced during purification. 
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B. Activity After _5 Days of Incubation. 

To investigate the nature of amylase activity occurring in midcourse 

incubation (5 days), the amylase complement was purified according to 

Materials and Methods (sec. 8, 9). The fifth day of incubation was 

chosen as the kernels exhibited an amylase activity level conducive to 

purification, and the complete complement of starch degrading zones was 

present at this point (Part I, Fig. 1, Fig. 2). Amylase activity 

obtained from day 5 extracts was resolved into three separate activities 

on DEAE-cellulose chromatography (Fig. 1). 

Peak I eluted at the lowest salt concentration (0.17 M NaCl). PAGE 

analysis indicated that the activity in this peak was solely due to 

one slow moving band (Fig. 2). The amylase exhibited classical 8-amylase 

activity on physicochemical analysis (Table 2). It was afforded no 

protection by calcium ions at high temperatures and reaction with mercury 

ions completely inactivated the enzyme. However, additions of DTT, either 

before or after Hg+^ treatment showed that the thiol reagent would protect 

the major activity of the enzyme against effects of the heavy metal ion. 

Dialysis with EDTA did not dramatically decrease the enzyme activity, as 

is reported for a-amylase activity (88). Finally, maltose was the sole 

reaction product for the amylase during early hydrolysis (Fig. 3). A 

8-amylase with characteristics similar to the above has been isolated from 

incubated, de-embryonated maize kernel (27). 

Peaks II and III eluted at 0.42 M and 0.65 M NaCl concentration, 

respectively (Fig. 1). On PAGE analysis Peak II contained one band of 

medium mobility, and Peak III consisted of two faster migrating bands 

(Fig. 2). The electrophoretic variants corresponded with the starch 



100 

degrading zones appearing in the crude extract at later times in the 

incubation period (Part I, Fig. 2). 

Both peaks exhibited a-amylase characteristics (Table 2). Physico¬ 

chemical analysis showed a marked dependence upon added calcium ions 

for thermostability. Failure to retain all activity of the control 

sample on heat treatment in the presence of calcium ions may indicate 

that irreversible denaturation of the enzyme was beginning to occur at 

the high temperature after 12 minutes of incubation, resulting in rupture 

of hydrogen bonds and unfolding of the enzyme molecule (51). 

Surprisingly deleterious effects on activity were noted on addition of 

Hg+2 (10“5 m) with or without DTT treatments (Table 2). It would appear 

that in this case the heavy metal ion had a non-specific effect on 

amylase activity, with the ability to reversibly inactivate the 3-amylase 

from Peak I, and Irreversibly inactivate a-amylase activities from Peaks 

+2 
II and III. An a-amylase sensitive to Hg has been reported in puri¬ 

fied extracts from incubated, de-embryonated, maize kernels (27), and 

from the broad bean (31). 

Alternatively, a-amylase activities isolated from Peaks II and III 

may possess properties intermediate between those for classical a and 

3-amylases. Such has been found to be the case for two GA^ enhanced 

a-amylases from the barley aleurone, which are stable at pH 3.7, inactivated 

by Hg+2, but not inactivated by EDTA dialysis (37). The authors suggest 

that the calcium ion is bound very tightly in these amylases (37) . In 

germinating rye seed, two enzymes classified as modified a—amylases were 

only partially inactivated at pH 3.3, were resistant to EDTA dialysis, 

and exhibited the thermolability of 3-amylases (97). Reaction product 
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analysis, however, showed a typical a-amylase activity (97). 

Activities from Peaks II and III were both effectively inactivated 

by dialysis against EDTA (Table 2). Reaction product patterns showed 

glucose and oligosaccharides of varying size, characteristic of a-amylase 

hydrolysis (88) (Fig. 3). 

C. Relationship of Amylase Activities After _1 and _5 Days of Incubation. 

Analysis of DEAE Peak I activity from 5 day incubated kernels strongly 

suggests that this activity is the same as that extracted from 1 day 

incubated kernels. In both cases PAGE analysis indicated the presence 

of one slow moving starch degrading zone (Part I, Fig. 2, Part II, Fig. 2). 

Physicochemical analysis of both activities were similar and indicated 

classical 3-amylase activity (Part I, Fig. 9, Fig. 11, Part II, Table 2). 

Furthermore, all other activity isolated from 5 day incubated kernels 

demonstrated a-amylase characteristics (Table 2). 

Data previously discussed for the enzyme appearing in early incubation 

support the fact that it existed preformed in the endosperm or aleurone 

layers of the resting kernel prior to germination (Part I, Table A). 

Numerous researchers have cited the presence of 3-amylase in the ungermi¬ 

nated cereal grain, which is present in both active and zymogen insoluble 

forms (16, 75, 76, 82, 83). To verify whether this was true for maize, 

derembryonated kernels were assayed for bound 3-amylase. After one day 

on incubation, the activity liberated from the kernels by cysteine acti¬ 

vated papain was at least as great as the activity in the soluble form, 

determined by routine preparation of the enzyme extract (Materials and 

Methods, sec. Ab) (Part I, Table A). This latent activity also showed 

3-amylase characteristics (Part I, Table 5). PAGE analysis of the latent 
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activity indicated again the presence of one slow moving band, similar 

to that found for the soluble 3-amylase counterpart. 

D. Amylase Activity After 1 Day of Incubation. 

The correlation between the 3-amylase activity appearing early in 

incubation and 3-amylase activity in Peak I of the day 5 preparation was 

further investigated. A day 1 enzyme extract was prepared and purifiied 

under the same conditions as that for the day 5 preparation. 

The day 1 DEAE-cellulose chromatographic profile resulted in one 

peak, (Peak I) (Fig. 4). As in Peak I from the day 5 preparation, the 

activity from Peak I from the day 1 preparation contained one slow moving 

band (Fig. 2, Fig. 5). In addition, the activities from Peak I of both 

preparations were found to be eluted over the same range of salt concen¬ 

tration (0.11 M to 0.17 M NaCl) (Fig. 1, Fig. 4). Physicochemical analysis 

and reaction product patterns for activity from Peak I of the day 1 pre¬ 

paration were similar to those for activity from Peak I of the day 5 

preparation, again indication 3-amylase activity (Table 4, Fig. 8. Table 2, 

Fig. 3). 

Similarity of elution profile, activity characteristics, and PAGE 

analysis for Peak I for both times of incubation would indicate that both 

peaks contain the same 3-amylase activity', an enzyme which is present 

in both soluble and latent forms during early incubation. The electro¬ 

phoretic pattern for activities from the two peaks were similar to that 

for a commercial 3—amylase preparation (Fig. 5). 

E. Characterization of Activity After 1_ Day of Incubation. 

The amylase activity from the purified day 1 preparation was further 



103 

characterized. Temperature optimum for the enzyme was 45°C under the 

conditions tested (Fig. 9). Greater than 50% of the optimum activity 

was present in the temperature range of 30 to 55°C. Activity only 

gradually diminished at temperatures greater than 45°C. Temperature 

optima for amylases have been reported to be in the range of 50 to 

65°C, in the proximity of the results obtained in this study. 

Caution must be used, however, in placing too much emphasis on 

temperature optima, as the data could also reflect effects due to 

denaturation of the enzyme (88). In addition, the differential temperature 

dependence of the several different steps present in any enzyme mechanism 

must be taken into account. Duration of the assay (20 min.) may have 

an effect. Finally, the affinity of the enzyme for its substrate 

(soluble starch) may change with temperature, or the enzyme may be afforded 

thermal protection by the substrate (88). The latter case seems unlikely 

at a higher temperature (70°C), however, as the enzyme activity from 

Peak I of the day 1 preparation was reduced to less than 10% of its 

initial level in three minutes (Fig. 7). 

An Energy of Activation (Ea) of 14.6 Kcal/mole for the temperature 

range of 20 to 30°C, decreasing to 8.3 Kcal/mole at 30 to 40 °C, was 

determined from an Arrhenius plot of amylase activity (Fig. 10). Activation 

energies for amylases are usually about 14 Kcal/mole at 10°C, decreasing 

to a few Kcal/mole at 50°C (88). Although a decrease in Ea was apparent 

with increasing temperature, the Ea for the 3-amylase in this study is 

somewhat high for the temperature ranges indicated. The higher Ea may be 

an inherent property for this particular amylase. Also, a higher Ea may 

reflect less dissociation of the enzyme-substrate complex or a slower 
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denaturation of the enzyme at the higher temperatures of the assay. Data 

for the Arrhenius plot is taken from data for the temperature optimum 

study (Fig. 9). At 50°C the enzyme exhibited almost maxiumum activity, 

an indication that little denaturation occurred at temperatures slightly 

higher than the temperature optimum. Finally, the Ea calculated may 

reflect the experimental conditions, dependent upon the substrate used, 

or the conditions of the assay. 

The pH optimum for the 3-amylase was pH 4.8 (Fig. 11). Greenwood 

and Milne (1968) report pH optima for 8-amylases to be between pH 4.0 

and pH 6.0. Using a soluble starch substrate, Trachuk and Tipples (1966) 

found maximum activity for 3 8-amylases to occur at pH 5.4, pH 4.6, and 

pH 5.2 to 6.2. 

The optimum pH for a-amylases (pH 5.0 to pH 6.0) is usually higher 

than that for 8-amylases (32, 86). In addition, a-amylase is usually 

denatured at a low pH (pH 3.5) (17, 25, 87, 97). In this study, the 

amylase exhibited a broad pH activity profile, with greater than 50% of 

the optimum activity in the range of pH 3.4 to 6.6^ a characteristic 

of 8-amylase activity (25). 

The of 3.5 x 10~3 grams of soluble starch/ml (Fig. 12) agrees 

favorable with values of 2.0 x 10”4 to 5.0 x 10"3 grams soluble starch/ml 

reported for amylases (27, 32, 86). Goldstein (1974) reported a of 

5.0 X 10”3 grams of soluble starch/ml for a 8-amylase isolated from incub¬ 

ated, de-embryonated maize kernels. The Km values for 8-amylases are 

usually higher than those for a-amylases (51). Rye a-amylase has a Km 

of 2.78 x 10”^ grams soluble starch/ml (51), while the for an a-amylase 

isolated from germinating peas is 2.0 x 10 4 grams soluble starch/ml (86). 
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A low Km indicates a high enzyme affinity for the substrate in 

question. Alpha-amylase thus has a higher affinity toward soluble starch 

than 3-amylase (51). One explanation for the differences in values 

for the two types of amylases would be their differences in mechanisms 

of action on the starch molecule. As an endoamylase, a-amylase randomnly 

attacks internal and external a-1,4 linkages. Beta-amylase, an exoamylase, 

is capable of attacking polysaccharides only from the outer chains. Thus, 

the frequency of attachment of a-amylase to the polysaccharide is much 

greater than that for 3-amylase. 



110 

BIBLIOGRAPHY 

1. Abbott, I.R., Matheson, N.K. 1972. Starch depletion in germinating 
wheat, wrinkled-seeded peas and senescing tobacco leaves. 
Phytochem. II, 1261-1272. 

2. Bennett, P.A., Chrispeels, M.J. 1972. De novo synthesis of ribo- 
nuclease and 3-1,3 glucanases by aleurone cells of barley. Plant 
Physiol. 49, 445-447. 

3. Bernfeld, P. 1951. Enzymes of starch degradation and synthesis 
Advan. Enzymol. L2, 279-428. 

4. Bernstein, L. 1943. Hybrid vigor in corn and the mobilization of 
endosperm reserves. Amer. J. Bot. 11, 325-350. 

5. Bilderback, D.E. 1971. Amylases in developing barley seeds. Plant 
Physiol. 48^, 331-334. 

6. Bilderback, D.E. 1974. Amylases from aleurone layers and starchy 
endoseprm of barley seeds. Plant Physiol. 53_y 480-484. 

7. Bingham, J., Whitmore, E.T. 1966. Varietal differences in wheat 
in resistance to germination in the ear and a-amylase content 
of the grain. J. Agric. Sci. J66, 197-201. 

8. Briggs, D.E. 1968. Alpha-amylase in germinating, decorticated 
barley. II. Effects of physically damaging the grain. Phytochem 

7., 531-538. 

9. Chao, S.E., Scandalios, J.G. 1969. Identification and genetic 
control of starch degrading enzymes in maize endosperm. Biochem. 

Genetics _3, 537-547. 

10. Chao, S.E., Scandalios, J.G. 1971. Alpha-amylase of maize. 
Differential allelic expression at the Amy 1 locus and some 
physicochemical properties of the isozymes. Genetics 69_y 47-61. 

11. Chrispeels, M.J., Varner, J.E. 1967. Gibberellic acid enhanced 
synthesis and release of a-amylase and ribonuclease by isolated 
barley aleurone layers. Plant Physiol. 4_2, 398-406. 

12. Christianson, D.D., Nielsen, H.C., Khoo, U., Wolf, M.J., Wall, J.S. 
1969. Isolation and chemical composition of protein bodies and 
matrix proteins in corn endosperm. Cereal Chem. 4_6, 372-381. 

Chrzaszcz, T., Janicki, J. 1936. Amylase activity during the growth 
and ripening of grains. Biochem. J. 3(), 1298-1302. 

13. 



Ill 

14. Davis, B.J. 1964. Disc-electrophoresis. II. Methods and appli¬ 
cation to human serum proteins. In Gel Electrophoresis, 
Ann. New York Acad. Sci. 121, 404-427. 

15. Duffus, C.M. 1969. Alpha-amylase activity in the developing barley 
grain and its dependence on gibberellic acid. Phytochem. 8, 
1205-1209. 

16. Duffus, C.M., Rosie, R. 1973. Starch hydrolysing enzymes in the 
developing barley grain. Planta (Berl.) 109, 153-160. 

17. Dure, L.S. 1960. Site of origin and extent of activity of amylases 
in maize germination. Plant Physiol. 35, 925-934. 

18. Engel, C. 1947. The distribution of the enzymes in resting cereals. 
I. The distribution of saccharogenic amylase in wheat, rye and 
barley. Biochim. Biophys. Acta 1_, 42-49. 

19. Evins, W.H. 1971. Enhancement of polyribosome formation and 
induction of tryptophan-rich proteins by gibberellic acid. 
Biochem. TO, 4295-4299. 

20. Evins, W.H., Varner, J.E. 1972. Hormonal control of polyribosome 
formation in barley aleurone layers. Plant Physiol. 49, 
348-352. 

21. Filner, P., Varner, J.E. 1967. A test for de novo synthesis of 
enzymes, density labeling with H2O of barley a-amylase induced 
by gibberellic acid. Proc. Nat. Acad. Sci. U.S.A. 58, 
1520-1526. 

22. Finnigan, D.J. 1969. Genetically controlled electrophoretic 
variants of starch degrading enzymes in Zea mays. Aust. J. 
Biol. Sci. 22, 1055-1059. 

23. Fisher, E.H., Stein, E.A. 1960. Alpha-amylases. In The Enzymes, 
Vol. 4, P.D. Boyer, H. Lardy, K. Myrback, eds. Academic Press, 

New York, 313-343. 

24. French, D. 1960. Beta-amylases. In The Enzymes, Vol. 4, P.D. Boyer, 
H. Lardy, K. Myrback, eds. Academic Press, New York, 345-368. 

25. Frydenberg, 0., Nielsen, G. 1965. Amylase isozymes in germinating 

barley seeds. Hereditas _54, 123-129 

26. Gibson, R.A., Paleg, L.G. 1972. Lysosomal nature of hormonally 
induced enzymes in wheat aleurone cells. Biochem. J. 128, 

367-375. 

Goldstein, L.D. 1974. Amylase Enzymes of Incubated, De-embryonated 
Zea mays Kernels. Occurrence, Development, Isolation and Char¬ 
acterization. PhD. Dissertation, University of Massachusetts, 
Amherst, Massachusetts. 

27. 



112 

28. Goldstein, L.D., Jennings, P.H. 1975. The occurrence and develop¬ 
ment of amylase enzymes in incubated, de-embryonated maize 
kernels. Plant Physiol. ^5, 893-898. 

29. Gomori, G. 1955. Preparation of buffers for use in enzyme studies. 
In Methods in Enzymology, Vol. I. S.P. Colowick, N.C. Kaplan, eds. 
Academic Press, New York, 138-146. 

30. Goodwin, P.B., Carr, D.J. 1972. Actinomycin D and the hormonal 
induction of amylase synthesis in barley aleurone layers. 
Planta (Berl.) 106, 1-12. 

31. Greenwood, C.T., MacGregor, A.W., Milne, E.A. 1965. The a-amylase 
from broad beans. Arch. Biochem. Biophys. 112, 459-465. 

32. Greenwood, C.T., Milne, E.A. 1968. Starch degrading and synthesizing 
enzymes. A discussion of their properties and action patterns. 
Advan. Carbohydrate Chem. ^3, 281-366. 

33. Harvey, M.R., Oaks, A. 1974a. Characteristics of an acid protease 
from maize endosperm. Plant Physiol. 53>, 449-452. 

34. Harvey, M.R.., Oaks, A. 1974b. The hydrolysis of endosperm protein 
in Zea mays. Plant Physiol. _52, 453-457. 

35. Himmelhoch, S.R. 1971. Chromatography of proteins on ion-exchange 
adsorbents. In Methods in Enzymology, Vol XXII. W.B. Jacoby, ed. 
Academic Press, New York, Chap. 26. 

36. Ingle, J., Hageman, R.H. 1965. Metabolic changes associated with 
the germination of corn. III. Effects of gibberellic acid on 
endosperm metabolism. Plant Physiol. 4^, 671-675. 

37. Jacobsen, J.V., Scandalios, J.G., Varner, J.E. 1970. Multiple 
forms of amylase induced by gibberellic acid in isolated barley 

aleurone layers. Plant Physiol. 4_5, 367-371. 

38. Jacobsen, J.V., Varner, J.E. 1967, Gibberellic acid-induced synthesis 
of protease by isolated aleurone layers of barley. Plant Physiol. 

42, 1596-1600. 

39. Jaynes, J.A., Nelson, O.E. 1971. An invertase inactivator in 
maize endosperm and factors affecting inactivation. Plant Physiol 

47, 629-634. 

40. Jones, D.F., Macmillan, J., Radley, M. 1963. Plant hormones. 
III. Identification of gibberellic acid in immature barley and 

immature grass. Phytochem. 307-314. 

41. Jones, R.L. 1969a. Inhibition of gibberellic acid induced a-amylase 
formation by polyethylene glycol and mannitol. Plant Physiol. 

44, 101-104. 



113 

42. Jones, R.L. 1969b. The fine structure of barley aleurone cells. 
Planta 85, 359-375. 

43. Jones, R.L. 1969c. Gibberellic acid and the fine structure of 
barley laeurone cells.' I. Changes during the lag phase of 
a-amylase synthesis. Planta. 87_, 119-133. 

44. Jones, R.L. 1973a Gibberellic acid and ion release from barley 
aleurone tissue. Evidence for hormone-dependent ion transport 
capacity. Plant Physiol. _52, 303-308. 

45. Jones, R.L. 1973b. Gibberellins, their physiological role. Ann. 
Rev. Plant Physiol. 2A_t 571-598. 

46. Jones, R.L., Armstrong, J.E. 1971. Evidence for osmotic regulation 
of hydrolytic enzyme production in germinating barley seeds. 
Plant Physiol. 4f$, 137-342. 

47. Jone’s, R.L., Price, J. 1970. Gibberellic acid and the fine structure 
of barley aleurone cells. III. Vaculoation of the aleurone 
cell during the phase of ribonuclease release. Planta 94, 
191-202. 

48. Key, J.L. 1969. Hormones and nucleic acid metabolism. Ann Rev. 
Plant Physiol. 20_, 449-474. 

49. Khan, A.A., Verbeek, R., Waters, Jr., E.C., Von Onckelen, H. A. 
1973. Embryoless wheat grain, A natural system for the study 
of gibberellin-induced enzyme formation. Plant Physiol. 51, 

641-745. 

50. Laberge, D.E., Macgregor, A.W., Meredith, W.O.S. 1971. Changes in 
a and 3-amylase activities during the maturation of different 
barley cultivars. Can J. Plant Sci. 51^, 469-477. 

51. Lee, W.Y., Unrau, A.M. 1969. Alpha-amylase of an synthetic cereal 
species. J. Agric. Food Chem. _17_, 1306-1311. 

52. Lehninger, A.L. 1970. Biochemistry, 2nd ed. Worth Publishers, Inc. 

New York, Chap. 8,9. 

53. Lowry, O.H., Rosebrough, N.J., Farr, A.I., Randall, R.J. 1951. 
Protein measurements with folin phenol reagent. J. Biol. Chem. 

193, 265-275. 

54. Malacinski, G.M., Rutter, W.J. 1969. Multiple forms of a-amylase 

from rabbit. Biochem. 8_y 4382-4390. 

55. Marcus, A. 1971. Enzyme induction in plants. Ann. Rev. Plant 

Physiol. 22, 313-336. 



114 

56. Marcus, A., Feeley, J., Volcani, T. 1966. Protein synthesis in 
imbibed seeds. III. Kinetics of amino acid incorporation, 
ribosome activation and polysome formation. Plant Physiol. 41 
1167-1172. * 

57. Maron, S.H., Prutton, C.F. 1971. Principles of Physical Chemistry, 
7th ed. The Macmillan Co., New York, 548-597. 

58. Mayer, A.M. , Shain, Y. 1968. Zymogen granules in enzyme liberation 
and activation in peas seeds. Science £2, 1283-1284. 

59. Momotani, Y., Kato, J. 1966. Isozymes of a-amylase induced by 
gibberellic acid in embryo-less grains of barley. Plant Physiol. 
41, 1395-1396. 

60. Myrback, K., Neumuller, G. 1950. Amylases and the hydrolysis of 
starch and glycogen. In The Enzymes, J.B. Sumner, K. Myback, eds. 
Academic Press, Inc., New York, 653-724. 

61. Nadeau, R., Rappaport, L., Stolp, C.F. 1972. Uptake and metabolism 
of gibberellin A^ by barley aleurone layers. Response to 
ABA. Planta (Berl.) 107, 315-324. 

62. Nass, H.G., Crane, D.L. 1970. Effect of endosperm mutants on 
drying rate in corn (Zea mays L.) . Crop Sci. _10, 141-144. 

63. Naylor, J.M. 1969. Regulation of enzyme synthesis in aleurone 
tissue of Avena species. Can. J. Bot. 47, 2069-2072. 

64. Nelson, O.E., Burr, B. 1973. Biochemical genetics of higher plants. 
Ann. Rev. Plant Physiol. _24, 493-598. 

65. Nomura, T., Kono, Y., Akazawa, T. 1969. Enzymic mechanism of starch 
breakdown in germinating rice seeds. II. Scutellum as the site 
of sucrose synthesis. Plant Physiol. _44, 765-769. 

66. Oaks, A. 1965. The regulation of nitrogen loss from maize endo¬ 
sperm. Can. J. Bot. 43, 1077-1082. 

67. Olered, R., Jonsson, G. 1970. Electrophoretic studies of a-amylase 
in wheat. J. Sci. Food Agric. 2_1, 385-392. 

68. Paleg, L.G. 1960. Physiological effects of gibberellic acid. I. 
On carbohydrate metabolism and amylase activity of barley endo¬ 
sperm. Plant Physiol. _35, 293-299. 

69/ Paleg, L.G. 1965. Physiological effects of gibberellins. Ann. 
Rev. Plant Physiol. 16_> 291-322. 

Palmiano, E.P., Juliano, B.O. 1972. Biochemical changes in the 
rice grain during germination. Plant Physiol. 4^, 751-756. 

70. 



115 

71. Pollock, J.R.A., Pool, A.A. 1958. Enzymes of barley and malt 
III. The latent 3-amylase of barley. J. Inst. Brew. 64, 
151-156. 

72. Radley, M. 1967. Site of production of gibberellin-like substances 
in germinating barley embryos. Planta (Berl.) 75, 164-171. 

73. Radley, M. 1969. The effect of the endosperm on the formation of 
gibberellin by barley embryos. Planta (Berl.) 8_6, 218-223. 

74. Robyt, J., French, D. 1963. Action pattern and specificity of an 
amylase from Bacillus subtilis. Arch Biochim. Biophys. 100, 
451-467.- 

+ 

75. Rowsell, E.V., Goad, J. 1962. The constituent of wheat binding 
latent 3-amylase. Biochem. J. ^84^ 73p. 

76. Rowsell, E.V., Goad, J. 1962. Latent 3-amylase of wheat, its 
mode of attachment to glutenin and its release. Biochem J. 
84, 73p-74p. 

77. Rowsell, E.V., Goad, J. 1963. Some effects of gibberellic acid 
on wheat endosperm. Biochem J. &5, lip. 

78. Rowsell, E.V., Goad, J. 1963. The release of hydrolytic enzymes 
from isolated wheat aleurone layers activatied by gibberellic 
acid. Biochem. J. 8_5, 12p. 

79. Scandalios, J.G. 1964. Tissue-specific isozyme variations in 
maize. J. Heredity _55, 281-285. 

80. Scandalios, J.G. 1966. Amylase isozyme polymorphism in maize. 
Planta (Berl.). 6£, 244-248. 

81. Shannon, L.M. 1968. Plant Isozymes. Ann. Rev. Plant Physiol. 19, 

187-210. 

82. Shinke, R., Mugibayashi, N. 1971a. Studies on barley and malt 
amylases. XVII. Isolation and some properties of urea-soluble 
zymogen 3-amylase in barley. Agric. Biol. Chem. J5, 1381-1390. 

83. Shinke, R., Mugibayashi, N. 1971b. Studies on barley and malt 
amylases. XVIII. Determination of total 3-amylase activity 
and gibberellic acid-enhanced activation of zymogen 3-amylase 

during germination of barley. Agric. Biol. Chem. 35^, 1391-7. 

84. Spradlin, J.E., Thoma, J.A. 1970. Beta-amylase thiol groups, 
possible regulator sites. J. Biol. Chem. 245, 117-127. 

85. Sumner, J.B., Somers, G.F. 1949. Laboratory experiments in 
biological chemistry. Academic Press Inc., New York. 



116 

86. Swain, R.R., Dekker, E.E. 1966. Seed germination studies. II. 
Pathways for starch degradation in germinating pea seedlings. 
Biochim. Biophys. Acta 122, 87-100. 

87. Tanaka, Y., Ito, T., Akazawa, T. 1970. Enzymic mechanism of 

starch breakdown in germinating rice seeds. III. Alpha-amylase 
isozymes. Plant Physiol. 4f^, 650-654. 

88. Thoma, J.A., Spradlin, J.E., Dygert, S. 1972. Plant and animal 
amylases. In The Enzymes, Vol. 4, P.D. Boyer, ed. Academic 
Press Inc., New York, 115-189. 

89. Tipples, K.H., Trachuk, R. 1965. 
Cereal Chem. 4_2, 111-125. 

Wheat 8-amylases. I. Isolation. 

V
O

 
o

 
• Trachuk, R., Tipples, K.H. .1966. 

terization. Cereal Chem. 43, 
Wheat 
62-69. 

8-amylases. II. Charac- 

91. Troriier, B., Ory, R.L. 1970. Association of bound 3-amylase with 
protein bodies in barley. Plant Physiol. 47, 464-470. 

92. Van Onclcelen, H.A., Verbekk, R., Khan, A.A. 1974. Relationship of 
ribonucleic acid metabolism in embryo and aleurone to a-amylase 
synthesis in barley. Plant Physiol. _53, 562-568. 

93. Varner, J.E. 1964. Gibberellic acid controlled synthesis of 
a-amylase in barley endosperm. Plant Physiol. J39, 413-415. 

94. Varner, J.E., Mense, R.M. 1972. Characteristics of the process of 
enzyme release from secretory plane cells. Plant Physiol. 

49, 187-189. 

95. Varner, J.E., Ram Chandra, G. 1964. Hormonal control of enzyme 
synthesis. Proc. Nat. Acad. Sci. 52_, 100-106. 

96. Villiers, T.A. 1974. Seed aging, chromosome stability and extended 
viability of seeds stored fully imbibed. Plant Physiol. 53, 

875-878. 

97. Wagenaar, S., Lugtenborg, T.F. 1973. Alpha isoamylases of rye seeds. 

Phytochem. 12_, 1243-1247. 

98. Wareing, P.F., Saunders, P.F. 1971. Hormones and dormancy. Ann. 
Rev. Plant Physiol. 22, 261-288. 

99. Yomo, H., Iinuma, H. 1966. Production of gibberellin-like substances 
in the embryo of barley during germination. Planta (Berl.) 

71, 113-118. 

Yomo, H., Varner, J.E. 1972. Control of the formation of amylases 
and proteases in the cotyledons of germinating peas. Plant 

Physiol. 51, 708-713. 

100. 



106 

SUMMARY AND CONCLUSIONS 

Based upon the results of this study, the following observations 

can be made concerning amylase activity in the maize kernel; 

Part I. Occurrence and Development of Amylase Activity in Maize Kernels. 

1. Amylase activity exists in the embryo and endosperm of the develop¬ 

ing maize kernel, 24 days after pollination; in the embryo and endosperm 

of the germinating kernel; and in the incubated, de-embryonated kernel. 

2. Incubated, de-embryonated maize kernels and the endosperm from 

developing and germinating kernels contain both a and 3-amylase activities. 

3. - Amylase activity in the endosperm of the developing kernel is greater 

than that found in the endosperm of mature kernels during early incubation 

with or without the intact embryo', an indication that a reduction in 

amylase activity during maturation of the maize grain has taken place. 

4. Upon incubation, total amylase activity increases in both the endo¬ 

sperms from germinating and de-embryonated kernels. PAGE analysis indi¬ 

cates the sequential appearance of four electrophoretic zones with starch 

degrading activity on development of amylase activity in both samples, 

pointing to a mutual relationship between the two phenomena. 

5. The development of amylase activity in incubated, de-embryonated 

kernels is not dependent upon the presence of an embryo factor or exo¬ 

genous GA^. 
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6. The development of amylase activity in the incubated, de-embryonated 

maize kernel is markedly dependent upon the relative humidity of the 

kernel environment prior to incubation. 

7. No amylase activity in the de-embryonated kernel is realized as a 

function of incubation when the aleurone and pericarp layers are re¬ 

moved prior to incubation. 

8. Amylase activity in the incubated, de-embryonated kernel is present 

in both soluble and latent forms during early incubation (1 day). The 

latent form exhibits 8-amylase characteristics. 

9. Addition of GA^ to de-embryonated kernels has a quantitative effect 

during early incubation, as evidenced by the higher initial level of 

amylase activity and the earlier appearance of starch degrading zones 

upon PAGE analysis 

10. In de-embryonated kernels during incubation, amylase activity 

reaches its maximum enhanced level with the addition of 1 uM GA^, para¬ 

lleling the rise of activity from the endosperm of germinating kernels. 

11. Early and late additions of actinomycin D or cycloheximide during 

the time course incubation of de-embryonated kernels do not effect the 

appearance of the slow moving starch degrading zone present during early 

incubation and characterized as a 8-amylase. 

12. Early and late additions of actinomycin D or cycloheximide during 

the time course incubation of de-embryonated kernels prevented the 

appearance of starch degrading zones with a-amylase activity occurring 
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later in the time course and reduced the total amylase activity. This 

inhibitor action suggests that RNA and protein synthesis are necessary 

for the full expression of amylase activity in the de-embryonated kernel. 

Part II. Isolation and Characterization of Amylase Enzymes in 
Incubated, De-embryonated Maize Kernels. 

1. The purified amylase activity from de-embryonated kernels after 5 

days of incubation was resolved into three separate activities on ion- 

exchange chromatography with a linear salt gradient. Reaction product 

patterns and physicochemical analysis indicated that Peak I (0.17 M NaCl) 

has classical 8-amylase activity. Peaks II and (0.42 M NaCl) and Peak 

III (0.64 M NaCl) contained a-amylase activity. 

2. The resolution of purified amylase activity from de-embryonated 

kernels during early incubation (1 day) showed one peak (Peak I) eluting 

at 0.13 M NaCl. Activity from Peak I was characterized as 8-amylase. 

Similarity of physicochemical analysis, reaction product patterns, and 

DEAE-cellulose elution profile for Peak I activities of early and mid¬ 

course incubation preparations suggest that the same amylase is present 

in both peaks. The amylase activity in both peaks migrates as a single 

starch degrading band on PAGE analysis. 

3. Physicochemical analysis indicated that the 8-amylase activity from 

Peak I of the day 1 preparation is afforded no protection against thermal 

inactivation by the additions of calcium ions. Mercury ions completely 

inactivate the enzyme, although the major activity is restored upon 

treatment with DTT either before or after treatment with the heavy metal 
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ion. Extended dialysis against EDTA does not inactivate the enzyme. 

The sole initial reaction product for Peak I was maltose. 

4. Characterization of Peak I activity from the day 1 preparation is 

as follows^ 

pH optimum 

pH range* 

temperature optimum 

temperature range* 

Energy of Activation 

pH 4.8 

pH 3.4 to pH 6.6 

45°C 

30°C to 55°C 

14.6 Kcal/mole (at 20 to 30°C) 

_3 
3.5 x 10 grams soluble starch/ml 

* greater than 50% of the optimum activity 
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PAGE zymograms of starch degrading bands from amylase 
activity treated with concentrations of dithiothreitol. 
Amylase activity from de-embryonated kernels after 7 
days of incubation at 30°C. 

Concentration of DTT (mM) 

Control 0.05 0.50 5.00 10.0 25.0 _ origin 

yy 

Procedure- Aliquots of crude extract from incubated, 
de-embryonated maize kernels after 7 days of incubation 
treated with final concentrations of DTT from 0.05 mM to 
25.0 mM. The enzyme extracts were incubated with the 
DTT for 30 min. at 0 to 4°C prior to PAGE analysis. 



The effect of low pH (pH 3.5) assay on the time course 

development of amylase activity from de-embryonated 
maize kernels incubated at 30°C. 

119 

Days of incubation at 30°C 

Procedure- Crude extracts prepared during the time course 
development of amylase activity in incubated, de-embryonated 
maize kernels. Control assayed using the standard reaction 
mixture with 0.05 M acetate buffer, pH 5.0 (Materials and 
Methods, sec. 5). Low pH samples assayed using standard 
reaction mixture with 0.025 M citrate—phosphate buffer, pH 3.5. 
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Extraction of soluble and latent amylase activity in 
de-embryonated maize kernels after 7 days of incubation 
at 30°C. 

Treatment Amylase Activity 
mg maltose/kemel/hr 

1. extraction of soluble amylase 

crude extract 40.1 

1st pellet wash with 0.05 M 
Tris-HCl buffer, pH 7.6 39.7 

2nd wash 15.2 

3rd wash 3.91 

4 th wash 0.00 

2. extraction of latent amylase Control Cysteine-papain 

hrs of incubation (30°C) 

0.0 0.00 0.00 

1.0 8.10 31.2 

2.0 7.65 28.4 

Procedure- A crude extract was prepared from de-embryonated maize kernels 
after 7 days of incubation (Materials and Methods, sec. 4b). The resulting 
pellet was washed 4 times with 10 ml of 0.05 M Tris-HCl buffer, pH 7.6. 
The control pellet was resuspended with 10 ml of 0.025 M citrate-phosphate 
buffer, pH 5.4. Cysteine-papain pellet was resuspended in 10 ml of the 
citrate—phosphate buffer, containing 0.1 % cysteine and 0.1 % papain. 
Pellets were incubated for 1 and 2 hr at 30°C with frequent stirring. The 
latent amylase activity was determined using standard assay (M + M, sec.5). 
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The effects of successive extraction procedures on latent amylase 
activity from de—embryonated maize kernels after 5 days of incubation. 

Treatment Amylase Activity 
mg maltose/kernel/hr 

1. extraction of soluble amylase 

2. 

crude extract 23.0 

1st pellet wash with 0.05 M • 

Tris-HCl buffer, pH 7.6 15.4 

2nd wash 9.20 

3rd wash 4.24 

4th wash 0.00 

extraction of latent amylase 

pellet treatment I 
0.5% deoxycholate 4.92 
0.2 M NaCl 4.62 
0.6 M NaCl 5.21 
1.0 M urea 10.9 
0.1% papain 4- 0.1% cysteine (1 hr) 11.4 

pellet treatment II 
1.0 M urea 10.3 
1.0 M urea 9.31 
0.1% papain + 0.1% cysteine (1 hr) 16.7 

successive treatments 

successive treatments 

Procedure- A crude extract was prepared from de-embryonated kernels after 
5 days of incubation at 30°C (M + M, sec. 4b). The resulting pellets were 
washed 4 times with 10 ml of 0.05 M Tris-HCl buffer, pH 7.6. The pellets 
were subjected to successive treatments with extracting reagents of in¬ 
creasing strengths (10 ml/pellet) for 20 min. with constant stirring in an 
ice bath. Final extraction was effected by incubating the pellet with 
0.1% papain and 0.1% cysteine in 10 ml of 0.025 M citrate-phosphate buffer, 
pH 5.4 for 1 hr at 30°C. Latent amylase activity was collected in the 
supernatant after centrifuging at 20,000 g for 15 min. and was determined 

using standard assay (M + M, sec. 5). 
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Extraction of soluble and latent amylase activity from the endosperm 
of developing maize kernels 24 days after pollination. 

Treatment Amylase Activity 
mg maltose/kernel/hr 

1. extraction of soluble amylase 

crude extract 3.82 

1st pellet wash with 0.05 M 
Tris-HCl buffer, pH 7.6 2.20 

2nd wash 0.84 

3rd wash 0.21 

4th wash 0.05 

2. extraction of latent amylase Control Cysteine-papain 

hrs of incubation 
0.5 0.02 0.11 

1.5 0.00 

Procedure- A crude extract was prepared from de-embryonated, developing 
maize kernels 24 days after pollination (M + M, sec. 4a). The resulting 
pellet was washed 4 times with 0.05 H Tris-HCl buffer, pH 7.6 (20 ml/wash). 
The control pellet was resuspended with 10 ml of 0.025 M citrate-phosphate 
buffer, pH 5.4. Cysteine-papain pellet was resuspended in 10 ml of 
the citrate-phosphate buffer containing 0.1% cysteine and 0.1% papain. 
The pellets were incubated for 0.5 and 1.5 hr at 30°C with frequent 
stirring. The latent amylase activity was collected in the supernatant 
after centrifuging at 20,000 g for 15 min., and was determined using 

the standard assay (M + M, sec. 5). 
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