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ABSTRACT 

4.0 

The effects of Ca on the oxidation rates of mitochon¬ 

dria extracted from the flesh of apples (Malus pumlla Mill. 

cv Baldwin) were dependent upon the Initial oxidation rates. 

-4 +2 
If the oxidation rates were high, 10 M Ca Inhibited respi¬ 

ration. If they were low, 10"^ to 10“2M Ca+2 stimulated res¬ 

piration. It Is proposed that stimulation was due to active 

Ca+2 accumulation by the mitochondria, and Inhibition to cur¬ 

tailment of ATP turnover by ATPasej If this curtailment Is 

+2 
great enough, It may mask the stimulatory effect of Ca 

accumulation. 



2 

INTRODUCTION 

In intact Baldwin apples an inverse relationship between 

Ca+2 content and fruit respiration has been shown (Bramlage 

et al., 1974, Faust and Klein, 1974, Faust and Shear, 1972). 

This relationship might express a direct effect of Ca+2 on 

the functioning of the mitochondria, site of the TCA cycle 

and terminal oxidation. Such is suggested by the following 

facts i (1) Ca+2 can stimulate "U-Factor" formation leading 

to uncoupling of oxidative phosphorylation and mitochondrial 

swelling (Wojtczak and Lehninger, 1961)i (2) Ca+2 passively 

bound to membranes can alter membrane properties (Manery, 

1966); (3) active accumulation of Ca+2 can lead to precipi¬ 

tation of inorganic phosphate (Pi), necessary for ATP forma¬ 

tion (Elzam and Hodges, 1968). Therefore, studies were made 

of the effects of endogenous and exogenous Ca+2 on oxidation 

of mitochondria from apples the respiration rates of which 

+2 
were known to be influenced by Ca content. 
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MATERIALS AMD METHODS 

Mature Baldwin apples were held at 0#C from October to 

June. Between January and June, mitochondria were isolated 

from the flesh of the fruits according to the procedure of 

Shipway and Eramlage, 1973. Mitochondrial reactions were 

carried out in a 2.3 ml glass chamber maintained at 25*C and 

fitted with a Clark oxygen electrode (Gilson Medical Elec¬ 

tronic Co.). Polarizing voltage was maintained at 0.8 v, and 

oxygen uptake was recorded. All reaction media contained 

0.25M sucrose, 5mM MgCl2. 10mM TES (N-Tris (hydroxymethyl) 

methyl 2-amino ethane sulfonic acid) buffer, and l6mM succin¬ 

ate; in addition, 3 mg/ml bovine serum albumin and 2 mg/ml 

yeast extract were added immediately rrlor to assay. The 

reaction medium was maintained at pH 7.2. 

Mitochondrial protein was determined by the method of 

Lowry et_ al. (1951)* with bovine serum albumin standards. 

Calcium was determined by atomic absorption spectroscopy 

(Perkin-Elmer Model 214). Peel tissue was digested with ni¬ 

tric and perchloric acids. Mitochondrial preparations (0.5 

ml) were digested in 30% H2O2 after addition of 1 drop of 5N 

H2S04. The H2O2 was added in 2 ml aliquots until the sample 

no longer charred when evaporated to dryness. The digested 

sample was taken up in 10 ml of 1% LaCl3. Phosphate content 

of mitochondrial preparations was determined by the procedure 

of Martin and Doty (1949). 
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RESULTS 

Apples with relatively high peel Ca+2 levels yielded 

mitochondrial extracts which were significantly higher In 

Ca c than extracts from fruit with relatively low peel Ca+2 

levels (Table 1). This relationship was found whether or 

not EDTA, a chelator of Ca+2, was present In the extraction 

medium. 

The mitochondrial extracts exhibited oxidation rates on 

succinate that were positively correlated with their Ca+2 

levels (Figure 1). This correlation was significant when 

EDTA was present In the extraction medium (r=0.93t df=4); 

the correlation was high but not significant when EDTA was 

absent (r=0.65; df=6). Thus there appeared to be a relation¬ 

ship between endogenous Ca+2 levels of the mitochondrial ex¬ 

tracts and their oxidation rates, but this relationship was 

opposite that between whole fruit respiration and endogenous 

Ca levels, in which the relationship was significantly 

negative (Bramla^e e^t al_. , 197*0 . 

The effects of exogenous Ca+2 additions on the oxidative 

capacities of mitochondria were then examined. Only fruit 

with relatively high peel Ca content were used as mltochon- 

— 4 
d^lal sources. When 10 M CaCl2 was added to mitochondria 

extracted from apples stored for a relatively short time (3- 

4 months), succinate oxidation was reduced. In 6 experiments, 

this inhibition averaged 16$. However, by withholding sub- 
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Table 1. Calcium content of peel and of mitochondrial ex¬ 
tracts from flesh of Baldwin apples. Mitochondria were ex¬ 
tracted both with and without EDTA In the extraction medium. 

Peel Ca+2 
ppm 

EDTA In Mitochondrial Ca+2 
extraction medium ug/mg proteina 

1057 Yes 0.82 ± 0.06 

463 Yes 0.35 ± 0.15 

1057 NO 1.07 ± 0.07 

463 No 0.75 ± 0.10 

a Each value Is the mean of 3 replicates, with standard errors 
Indicated. 
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strate, i.e. adding the succinate 4 minutes after the addi¬ 

tion of mitochondria rather than prior to the mitochondria, 

the Ca* 2 effect was reversed. Now concentrations as high as 

10~3m CaClg stimulated oxidation. In 6 experiments, stimula¬ 

tion from 10“ ^M CaCl2 averaged 32$. 

In later experiments, mitochondria were extracted from 

apples stored for a relatively long time (7-8 months). Mlto- 

*2 
chondrla from these fruit were not Inhibited by Ca , but 

rather, were stimulated by 10 2 to 10 CaCl2 (Table 2). 

When ATP (0.1 mole) was added to the reaction medium, the 

stimulation from 10”3 and 10“2M Ca+2 was reduced. If sub¬ 

strate was withheld from these mitochondria extracted from 

the older fruit, their Initial oxidation rates declined, and 

as was expected, Ca*2 was a more effective stimulant (Table 

3). 

Mitochondria stimulated by Ca+2, both those from which 

substrate had been withheld and those extracted from apples 

stored for 7-8 months, had a common factor, namely, Initially 

low oxidation rates (Table 4). On the other hand, mitochon¬ 

dria Inhibited by Ca+2 (those from short term apples) had 

much higher Initial oxidation rates. Thus, whether Ca+2 

stimulated or Inhibited seemed to depend on the Initial oxi¬ 

dation rate of the mitochondria. Statistics confirmed this; 

there was a highly significant negative correlation (r—0.72i 

df*l4) between Initial oxidation rate and the Ca+2 effect on 

oxidation. 
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Table 2. Effects of ^ Ca*2 concentrations and ATP (0.1 mole) 
on mitochondrial oxidation. The reaction medium contained 
0.25M sucrose, 5mM MgCl2, 10mM TES buffer, l6mM succinate, 
3mg/ml bovine serum albumin and 2mg/ml yeast extract. In ex¬ 
periments with ATP, the ATP was added before the mitochondria. 
Ca*2 was added approximately 4 minutes after addition of the 
mitochondria (l-2mg of mitochondrial protein). 

■f ? 
Ca ** concentration ATP % Stimulation a 

10“2M No 55 

10’3m No 45 

10"4M No 17 

io_2h Yes 21 

10"3m Yes 16 

-4 
10 Yes 14 

a Each value is the mean of 6 experiments. 
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Table 3. Effect of substrate withholding on the oxidation 
rate and the Cav^ effect of mitochondria extracted from apples 
of long storage. Reaction medium as In Table 2. 

Treatment Initial Ca*2 % Stimulation a 
oxidation rate concentration 

ng atoms 0?/ 

rain-rag protein 

Substrate added 44 10-2M 33 

before mitochondria 49 10*3m 11 

50 io_4m 12 

Substrate added 32 io_2m 48 

4 minutes after 31 10"3m 50 

ml tochondrla 33 io-4m 57 

a Each value Is the mean of 4 experiments. 
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Table 4. Effect of storage length and substrate withholding 
on mltochondrlal oxidation rates and Ca+^ effect. Reaction 
medium as In Table 2. 

Treatment Initial 
oxidation rate 

ng atoms O2/ 
mln-mg protein 

Ca+2 % 

concentration 
Stimulation 

Short storage ^ 77 10-4M -16^ 

Short storage + 
substrate withheld 

30 10"3m 32# 

Long storage 37 10-4M 17% 

Long storage 31 io*3m 44# 

ft 
Each value Is the mean of 6 experiments. 

b Short storage equals 3-4 months» long storage equals 7-8 
months. 
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The lowest oxidation rates observed In these experiments 

were those for which data are presented In Table 2. It Is 

noteworthy that all 3 levels of Ca+2 used (10"^, 10"-^, 10“2M) 

were equally effective In stimulating oxidation, and that the 

addition of ATP significantly reduced the Ca+2 stimulation 

(Table 2). 

To determine the specificity of the Ca+2 effect on oxi¬ 

dation, 10" CaCl2, KC1, MgCl2» MnCl2# and SrCl2 were added 

to mitochondria extracted from apples stored 8 months. Oxi¬ 

dation was not stimulated by MgCl2, MnCl2, or KC1, but was 

stimulated by both CaCl2 and SrCl2. Thus, the response was 

not a general salt effect. 

Although mitochondria from fruit stored 7-8 months ex¬ 

hibited lower oxidation rates than those from fruit stored 

3-4 months, there was no effect of aging on the Respiratory 

Control Ratios of the mitochondria (Table 5)« However, Pi 

level within the extracts was distinctly different; Pi was 

significantly lower in extracts from the older fruit. 
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Table 5* Phosphate levels and respiratory control ratios of 

terms. 

Length of storage 
months 

a 
Phosphate level 

(umoles Pl/rag protein) State 
RCRb 

3 respiration 
State I f respiration 

3-4 0.064 ± 0.006 1.5 

7-8 0.041 ± 0.005 1.6 

a Each value Is the mean of 
Indicated. 

b Each value Is the mean of 

3 replicates, with standard errors 

6 experiments. 
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DISCUSSION 

Intact Baldwin apples deficient in Ca+2 exhibit accel¬ 

erated rates of respiration (Bramlage et al. , 197*0. but we 

heve found (Table 1) that the mitochondria from these fruits 

show the reverse relationship: lessened oxidation rates with 

lower endogenous Ca+2. Thus, it appears that the accelerated 

respiration rates of Ca+2-deficlent apples are due to extra- 

mitochondrial Influence. Perhaps this influence involves 

membrane permeability. Membranes are negatively charged at 

physiological pH (Manery, 1966). Calcium, by binding with 

these sites, changes the electrical properties by decreasing 

the net charge (Manery, 1966). This binding would also de¬ 

hydrate the membrane by causing loss of water of hydration 

(Manery, 1966). Both of these changes could markedly alter 

membrane configuration and hence permeability properties. 

Faust and Klein (1974) showed that incubation of disks of 

apple tissue in CaCl2 solutions subsequently reduced the up¬ 

take of uracil and valine by the disks. 

The addition of exogenous Ca+2 to apple mitochondria 

produced conflicting results. Under some conditions, oxi¬ 

dation was stimulated, while under other conditions it was 

inhibited. The key to understanding these data seems to be 

connected with the initial oxidation rates of the mitochon¬ 

dria (Figure 2). 
+2 

The presence of a respiratory stimulant other than Ca , 

possibly an ATPase, could account for the differing Ca 
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Figure 2. Effects of 10~^M CaCl2 addition on mito¬ 
chondrial oxidation rates. Mitochondrial extracts 
were from both short and long term apples of relative¬ 
ly high endogenous Ca+2 levels. Reaction medium as 
In Table 2. 
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feet. Mitochondria with high oxidation rates would reflect 

rapid turnover of ATPj those with low rates would reflect 

slow turnover of ATP. Turnover rate by ATPase would depend 

on the adenylate and PI supply within the mitochondria. The 

higher the Internal adenylate and PI supply, the more ATP 

that can be formed, and the more ATP formed, the more that 

can be degraded by the ATPase. The data support this hypo¬ 

thesis; mitochondria with high oxidation rates had signifi¬ 

cantly more PI than those with low rates (Table 5). 

Gamble and Hess (1966) showed that respiration Is nec¬ 

essary to maintain the lntramltochondrlal PI supply. Thus, 

when substrate Is withheld, PI may passively diffuse out of 

the mitochondria, making them similar to mitochondria of In¬ 

itially low PI content. Both types of mitochondria have low 

Initial oxidation rates and both types respond positively to 

Ca+2. This stimulation Is probably due to Ca*2 accumulation. 

Other researchers (Rasmussen et al., 19651 Hodges and Hanson, 

+2 
1965) have shown that mitochondria can accumulate Ca by 

means of an energy-requiring process that drives electron 

trans port. 

On the other hand, mitochondria with high oxidation 

rates were inhibited by Ca+2 . These high rates could be 

possibly due to a high rate of ATP turnover. It Is proposed 

that Ca+2 accumulation may still be stimulating oxidation, 

but that this stimulation may be masked by the inhibition 

due to Ca+2 curtailment of ATP turnover. This could occur 
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+2 
since the mitochondrial Ca carrier Is probably one of the 

high energy precursors of ATP, either I^X (Rasmussen e_t al., 

1965) or X~P (Hodges and Hanson, 1965). By binding with the 

ATP precursor, Ca would reduce ATP synthesis and hence Its 

turnover by ATPase. If the breakdown of Ca: I^X or Ca»X~P Is 

slower than the formation plus degradation of ATP, then oxi¬ 

dation will be Inhibited. 

With the lowest oxidation rates observed In these exper¬ 

iments, all 3 levels of Ca+2 used (1CT4, 10"^, 10“2M) were 

equally effective In stimulating oxidation. This Indicates 

that 10"^M Ca+2 was a saturating amount. In mitochondria 

with low oxidation rates, the Ca+2 stimulation was signifi¬ 

cantly reduced by the presence of exogenous ATP which will 

increase ADP availability through ATP turnover. 

If mitochondria have rapid ATP turnover, then their res¬ 

piratory control should be low. And It was; the highest 

respiratory control ratio observed was 1.8. It is not that 

these mitochondria are uncoupled; they do synthesize ATP. 

Rather, they are loosely coupled (Racker, 1970); i.e., they 

produce ATP but they degrade it as soon as It is formed. 

Perhaps, In some cases, loosely coupled mitochondria are the 

in vivo condition. Thermogenic brown fat mitochondria from 

newborn and cold-stressed guinea pigs possess (Christiansen, 

1970) all criteria of loose coupling as described by Ernster 

and Luft (1963). 

The divalent cations, Ca+2 and Sr+2, were equally effec- 
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tive In stimulating oxidation. Mg+2 and Mn+2 were not, and 

neither was K^. Similar results were obtained with animal 

mitochondria (Lehninger, 1970). Animal mitochondria can ac¬ 

tively accumulate Ca+2,Sr+2 and Mn+2 but not Mg+2 which can 

not penetrate the mitochondrial membrane. K+ can only be 

accumulated in the presence of ionophorous antibiotics, such 

as valinomycin and gramicidin. 

Since all of these cations were added as chloride salts 

and some of them resulted in no change, it appears that what 

we regard as a "Ca+2 effect" was not actually a "chloride 

effect". 
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APPENDIX 

Calcium can affect plant mitochondria in a number of 

■ p 

ways. In the absence of bovine serum albumin, Ca can sti¬ 

mulate "U-Factor" formation leading to uncoupling of oxida¬ 

tive phosphorylation and swelling of the mitochondria 

(Wojtczak and Lehnlnger, 1961). Calcium also can promote 

extramltochondrial NADH oxidation, probably by releasing 

some rate-limiting step (Miller et al. , 1970). Calcium pas¬ 

sively bound to membranes can alter their properties (Manery 

1966), and active accumulation of Ca*2 within mitochondria 

can stimulate respiration. The latter process in corn mito¬ 

chondria requires inorganic phosphate (Hanson et al., 1965). 

During swelling of rat liver mitochondria induced by 

Ca*2 , direct analytical measurements indicated a parallel 

intramltochondrial formation of U-Factor, a heat stable, iso 

octane-soluble uncoupling and swelling agent of fatty acid 

nature (Wojtczak and Lehnlnger, 1961). If BSA were present, 

the swelling due to Ca*2 was prevented, due to BSA binding 

of fatty acids. 

It Is welL known that Ca*2 stimulates enzymic hydroly¬ 

sis of neutral fats and phospholipids. In some cases, this 

stimulation is due to removal of products, l.e. fatty acids, 

which form insoluble Ca*2 salts, rather than a true activa¬ 

tion of enzymic hydrolysis. With U-Factor formation, how¬ 

ever, Ca*2 seems to be a true activator, since BSA, which is 

also a good acceptor for fatty acids, did not stimulate U- 
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Factor formation (Wojtczak and Lehninger, 1961). 

Plant mitochondria readily oxidize exogenous NADH. This 

oxidation is stimulated by salts in general and by divalent 

cations in particular. Hackett (1961) found that the greater 

divalent cation stimulation can not be explained, in terms of 

greater ionic strength alone. Be suggested that the stimu¬ 

lation was due to either an increased NADH permeability or 

the release of some limiting step in the respiratory chain. 

Miller et al. (1970) rejected the first suggestion. 

They reasoned that if divalent cations alter membrane permea¬ 

bility, this should affect the oxidation of all substrates 

and not just NADH. However, their experimentation showed 
4 

this not to be true. Nevertheless, there remained the pos¬ 

sibility that divalent cations were affecting a specific NADH 

transport system. 

Miller et al. (1970) proposed that divalent cations 

were probably stimulating a flavoprotein which directly re¬ 

duced exogenous NADH. That there might be such a flavopro¬ 

tein was suggested by the fact that divalent cations did not 

affect the reduction of endogenous NADH (produced by malate- 

pyruvate oxidation). That this stimulation occurred early 

in the respiratory chain was Indicated by the fact that di¬ 

valent cations did not affect succinate oxidation and there¬ 

fore were probably affecting the respiratory chain before 

cytochrome b. 

There are two types of passive calcium binding* (1) low 
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affinity binding which is half-saturated at 100 uM Ca+2, and 

(2) high affinity binding which Is half-saturated at 0.025 

uM Ca+2 (Van Dam and Meyer, 1971). The low affinity binding 

seems to depend on phospholipids (Scarpa and Azzi, 1968) and 

there is evidence suggesting that it is involved in the pro¬ 

cess of Ca+? translocation (Scarpa and Azzone, 1968). 

High affinity binding is uncoupler sensitive and this 

fact led Reynafaye and Lehninger (1969) to conclude that 

high affinity binding sites may represent specific membrane 

carriers for Ca+2 translocation. This idea has been dis- 

puted by Mela and Chance (1969)t for Ca+2 translocation is 

lanthamide sensitive and the number of lanthamide sensitive 

sites is one order of magnitude lower than the uncoupler 

sensitive sites. 

At physiological pH, the mitochondria are negatively 

charged and each of the negative sites is surrounded by wa¬ 

ter of hydration (Manery, 1960. When Ca+2 binds to these 

sites, it causes a change in electrical properties by de¬ 

creasing the net charge. This binding also dehydrates the 

membrane by causing loss of water of hydration. Both of 

these changes could markedly alter membrane configuration 

and hence permeability properties. 

+2 
In human red blood cells and brain slices, Ca is 

needed to maintain membrane permeability. Once the normal 

permeability of red blood cells to electrolytes is lost by 

lactose treatments, only Ca+2 can restore it (Bollngbroke 
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and Maizels, 1959). Furthermore, K+-cepleted train slices 

will not reaccumulate K* If Ca^is absent (Gardos, 1961). 

This Is so even In the presence of the transport-supporting 

metabolites glucose and glutamate. 

Calcium accumulation within mitochondria Is an active 

process driven by energy derived from either coupled res- 

d1ration or ATP hydrolysis (Van Dam and Meyer, 1971). 

Hodves and Hanson (1965) showed that corn mitochondria can 

accumulate Ca+2 in the presence of phosphate. The kinetics 

of these systems were determined by Elzam and Hodges (1963). 

The optimum pH was about ?.5 and 8.0 for the ATP- and sub¬ 

strate-driven systems, respectively. Both systems also 

• ® 
show similar temDerature optima of 30 to 35. The energies 

of activation, determined on the basis of Arrhenius plots, 

were 14,6 kcal/mole for the substrate-driven system and 

10.97 kcal/mole for the ATP-drlven system. On the basis of 

linear Llneweaver-Eurk plots the Km's for Ca ~ accumulation 

for the substrate- and ATP-drlven systems were 0.3?mM and 

l.OmM, respectively, and the Vmax's were 4.15 umoles/mg N/ 

min and 0.50 umoles/mg N/mln, respectively. On a molar 

basts the relative effectiveness of 3 Inhibitors on sub¬ 

strate-driven transDort Is DNi^ollgomyclr^azlde. For the 

ATP-drlven system the relative effectiveness of the Inhibi¬ 

tors Is ollgoraycli^>azld^DMP. 

The Ca*^ 1 Pi ratio for both systems approximated 1.6tl, 

which was similar to that found for animal mitochondria and 
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suggests the deposition of hydroxyapatite inside the mito¬ 

chondria (Elzam and Hodges, 1968). Magnesium, manganese 

and barium Ions acted as strong competitors of Ca+2 trans¬ 

port . 

As far back as 1949. Ca+2 was classified as an uncou¬ 

pler of oxidative phosphorylation. In these early experi¬ 

ments, Ca+2 was added in massive amounts which led to sus¬ 

tained respiratory stimulation, similar to that given by DNP 

(Slekevitz and Potter, 1953)* In later experiments, Ca+2 

was added in lesser concentrations. This led to a temporary 

burst of respiration, followed by a return to State 4 respi¬ 

ration, the "resting state" (Chance, 1963)* In these tempo¬ 

rary bursts of respiration Ca+2 is still in a sense an "un- 

+2 
coupler", for when respiratory energy is driving Ca accu¬ 

mulation, it is unavailable for ATP synthesis (Hanson, 1972). 

ip 
However, upon completion of Ca ^ accumulation, ATP can once 

more be formed. ATP synthesis and Ca+2 accumulation are, 

therefore, alternative processes; they do not occur at the 

same time but rather sequentially. 

The fact that ATP hydrolysis also supports Ca+2 accu¬ 

mulation suggests that an intermediate of oxidative phos¬ 

phorylation is responsible for Ca+2 transport (Rasmussen et 

al. , 1965, Hodges and Hanson, 1965). Hodges and Hanson 

(1965) proposed that this Intermediate was X P, since in 

corn mitochondria Ca+2 accumulation did not occur unless 

phosphate was present, Rasmussen e_t al. (1965). working 
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with rat liver mitochondria, found that phosphate was not 

essential for Ca+2 accumulation. They proposed that it is 

+2 the non-phosphorylated intermediate, that causes Ca 

transport. 

Doth of these theories are based on the Chemical Theory 

of oxidative phosphorylation. This theory was first pro¬ 

posed in principle by Slater (1953) and elaborated in detail 

by Lehninger (1953-1954) and Chance and Williams (1956). 

The hypothesis states that passage of a pair of electrons 

from each of 3 specific carriers in the respiratory chain to 

the next is coupled to the formation of an energy-rich bond, 

presumably an an anhydride linkage, between one of the two 

electron carriers and a third entity, an unidentified "cou¬ 

pling factor". This high-energy intermediate, directly or 

indirectly, can react with phosphate to form a phosphorylated 

high—energy intermediate which can donate its phosphate to 

ADP (Lehninger et al., 196?). This is illustrated in the 

following reactions, where C represents carrier, I repre¬ 

sents inhibitor, and X represents unknown. 

C~I & X^±C I~X 

I-VX & Pi^A^P & I 

X'VP & ADPf^<- & ATP 

It was noted that the accumulation of Ca+2 led to the 

ejection of hydrogen ions (Saris, 1963)* The appearance of 

the hydrogen ions can be explained by the modified Chemical 

Theory as follows. The high-energy intermediate is an acid 
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anhydride (tfanson et_ al. , 1972). The water that Is released 

upon its formation Is separated Into ions. The hydrogen ions 

are ejected to the outside of the mitochondria - the hydroxyl 

ions to the Inside. 

The Chemiosmotic Theory is a second theory of how res¬ 

piration is coupled to oxidative phosphorylation; its chief 

proponent is the British biochemist Mitchell. According to 

this theory, the energy derived from respiration is conserved 

in a separation of charges, hydrogen ions on the outside of 

the mitochondria, hydroxyl ions on the inside (Mitchell, 

1966). In the Chemical Theory, there was likewise a separa¬ 

tion of charges. The Chemiosmotic Theory differs from the 

Chemical Theory in that there is no formation of a chemical 

high-energy intermediate; thus, the hydrogen and hydroxyl 

ions do not come from the formation of an acid anhydride. 

The Chemiosmotic Theory has further been described in a 

review article by Lehninger et al.(196?) who states* "There 

are several steps in the electron transport chain which in¬ 

volve either uptake or formation of protons. Mitchell has 

proposed that the enzymes catalyzing these steps are arranged 

in the plane of a hydrogen ion impermeable membrane in a 

folded manner, geometrically speaking, so as to form three 

'loops*. The active sites of the enzymes carrying out the 

three H+-.yieldlng reactions are proposed to be oriented in 

the plane of the membrane so as to eject protons to the out¬ 

side, and the active sites of the enzymes catalyzing the 
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three H+-absorblng reaction steps are oriented, so as to ex¬ 

tract protons from the intramitochondrial compartment. The 

three oxidation-reduction loops are thus functionally equiva¬ 

lent to the three energy-conserving sites in the traditional 

coupling hypothesis; in effect each loop is an energy-con¬ 

serving * site * . " 

According to the Chemiosmotic Theory, Ca+2 accumulation 

is an accidental feature of mitochondrial activity. Calcium 

freely diffuses into the mitochondria without the interven¬ 

tion of a carrier, since it is being exchanged for the 
i O 

ejected hydrogen. The accumulated Ca would, however, col¬ 

lapse the transmembrane potential which in turn would stimu¬ 

late respiration (Lehninger et al., 1967). 

It has been shown that K+ effluxing from mitochondria, 

moving down a concentration gradient of at least 200, re¬ 

sulted in ATP synthesis (Massari and Azzone, 1970). It is 

probable that a Ca+2 efflux can have the same result. Thus, 

Ca+2 accumulation probably is an energy storage phenomemon. 
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