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INTRODUCTXON 

With the rediscovery of Mendel’s -work at the turn of the 20th 

century, the tomato has played a prominent role in elucidating his 

laws (28). Subsequent studies in Drosophila by Morgan (27) enabled 

the assigning of genes to specific loci on chromosomes. The field 

of investigation, known as chromosome mapping, has advanced to the 

point that today fine structure analysis is being pursued on the very 

organism that Morgan originally studied (13)* 

In higher plants, tomato has become a favorite organism for 

chromosome mapping, second in importance to corn. To date, over a 

hundred genetic loci have been determined in eleven of the twelve 

tomato chromosomes (31)* 

The aim and purpose of this investigation was: 

(1) to determine from dihybrid crosses, the interrelationships 

among six chlorophyll-deficient mutants of tomato and to isolate 

and grow to maturity any resulting F double recessive recombinants, 

(2) to investigate possible pleiotropism and/or segregation in the 

yg^ syndrome, 

(3) to confirm the locus of the yg^ mutant, 

(4) to map the neg^ mutant on chromosome XI. 
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LITERATURE REVIEW 

Sine© 1954, a series of six ‘'yellow-green” chlorophyll-deficient 

mutants of tomato have arisen through spontaneous mutation and irradi¬ 

ation of seed (4,6,7,35)* These mutants are currently symbolized in 

the literature as yg^, yg^, yg^, yg^, yg, , and yg^ (32). Chiscon (12) 

found that yg.. yg , and yg are non-allelic and yg^ and yg appeared 
*<£ 5 6 O ^ 

to assort independently from hybrid material. From F^ tests it was 

also revealed that yg^ was non-allelic to yg^, yg or yg^, and limit¬ 

ed F^ repulsion data suggested that y~ was independently segregating 

from yg^ and yg . He indicated that yg^ was linked to vg^, and ex¬ 

hibited a recombination value of 39*72 - 4.56 (9)* Furthermore, 

yg gave a 28.72 - 4.97 recombination value with mottled-2 (md); ma 

is commonly used as a marker for chromosome VI. From this it was pos¬ 

tulated that both yg^ and yg were located'.on chromosome VI (9)* 

Whalen analyzed F^ repulsion data from a double intercross and 

found 13^ recombination between yg^ and hairless (hi), a marker gene 

for chromosome XI located at locus 37 (36). A three-point-backcross 

using markers hi and anthocyaninless^ (a^) confirmed this result; 

however, no recombination fraction could be calculated for vg^ and a,., 

because yg^ was found to be epistatic to a^. 

Whalen (36) compared the theoretical phenotypes expected (without 

epistasis) and those actually obtained with epistasis (Table 1), to 

determine the correct order of these three genes. 
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From tho comparison he found that one of the double crossovers in each 

of the three possible orders occurred as double crossovers only and not 

again as parentals or single crossovers for that particular order. Fur¬ 

thermore, the double crossover for one possible order appeared as a 

single crossover in the other two possible orders. Whalen proposed 

that the correct gene order is the sequence which gives the fewest 

number of segregates in any of these three classes. It may be noted 

in Table 1 that the double crossover 4-4-a^, of the hi a^ order has 

the fewest number of segregates. It was therefore concluded that 

hi was the correct sequence. The position assigned to yg^ on 

chromosome XI is indicated in Figure 1. 

Table 1. Expected and observed phenotypes for the three possible gene 
orders (modified Whalen (36)). 

Expected 
Phenotypic class 

“6 
hi a 
-1 

. hi 
% 

+ + ' + + ‘ 4* 4* 
v 

Parentals 
hi ^ hi + hi + 

ai 
4- 

Single crossovers “b 
hi a ' 
-1 

+ + a 
""1 + % 

4* 

region 1 
hi re 

o 

7L 
hi 4- + 4- 4- 4- 

V 

Single crossovers 
region 2 

+ v + 2^ a * 
“1 

4- 4- 

hi a 
-1 

4- 

+ hi + + 
“6* 

Double crossovers 
m hi hi IK 

b V + ai 

* + + (15) *4-4- + (55) * + + (34) 

These classes are phenotypically identical within each order be¬ 
cause of epistasis. 

♦ This phenotype occurs only as a double crossover in each order. 

The number in brackets is the observed number in that class from the 
three-point backcross. 



Figure 1. Diagrammatic section oi cnromosome XI of Lyconersicon 
esculent in illustrating the assigned position 
according to Whalen (37). 

ys6 gh hi o 

—-3-2-£---- 

17 24 32 37 57 

o - approximate position of centromere. 

Rick (29) reported that mutant neglecta^ (neg^) has a linkage 

tensity of 26^b with anthocyaninless^ (a^), a chromosome XI marker 

in- 

found at locus 57* 

Wnalen (36) observed that the yg.. mutant comprised a syndrome of 
o 

toree characters; yellow—green first true leaves, elongated hyoocotyl, 

and a greatly reduced amount of anthocyanin development. In analyzing 

over 10,000 segregates from heterozygote yg. plants, no recombination 
o 

of these three characters with wild types was observed. He suggested 

t-ha^ m may be a case oi pleiotropism rather than a complex locus., 
i 

Chiscon (10) found that the triple recessive mutant, md vg^ yg f 

vzas considerably more chlorotic than the single recessive mutants and 

was lethal in the early seedling stage. 

In studying several chlorophyll-deficient mutants of tomato, 

Wnalen found that most of them exhibited a more extreme mutant pheno¬ 

type when grown at 60 to 70 Farenheit degree temperatures (37). 

Certain Xantha and albino mutants are also lethal at the early 

seedling stage when grown under normal greenhouse conditions (19,20). 

However, elevated temperatures, high nitrogen content, and high light 

intensities stimulated chlorophyll synthesis and growth in these mu¬ 

tants (21,22). Lefort successfully grew a lethal Xantha mutant to a 

more advanced stage by culturing it in a Knopp 0,8/o agar medium con¬ 

taining 2j> sucrose (25). 
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METHODS A1MD MATERIALS 

The origin and source of the mutants used in this study are de¬ 

scribed in Table 2. 

Table 2. Origin and source of mutants used in this study. 

Gene Symbol Source Original Stock 

R.W. Robinson L. esculentum "Rutgers" 

A.B. Burdick L. DimoineHifolium Line 215 

R.W. Robinson L. esculentum "Kokomo" 

R.W. Robinson L. esculentum "Kokomo" m-123 

IK, A.B. Burdick L. esculentum var. cerasiforme 

IK, 
o 

A.B. Burdick L. esculentum var. cerasiforme 

C.M. Rick L. esculentum "Stubbe*s" grouo 

yg^ (yellow-green ) arose as a spontaneous mutation from a "late 

fruiting sport of Rutgers” (36). The foliage is yellow-green, es¬ 

pecially pronounced in the apical region. 

yg^ (yellow-green^) was produced by 36 hours of thermal neutron 

irradiation (6.5 x 10^ / cm^ / sec.) of Line 215 seed (4). It is 

golden-yellow in the apex and turns yellow-green as the leaves mature, 

the hypocotyl is etiolated and the cotyledons are yellow-green. 

yg^ (yellow-green.) was induced by 10 hours of thermal neutron 

treatment of "Kokomo" seed. The leaves are light green with deeply cut 

and curled edges, giving the plant a ragged appearance (6). 
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yg^ (yellow-green^) was produced in cadmium-pretreated, 15,000r 

x-ray irradiated "Kokomo" seed (4). The seedling has whitish-green foli¬ 

age and yellow-green cotyledons. Seed set and seed germination is ex¬ 

tremely poor. 

yg_^ (yellow-green^) was induced through irradiation of seed from 

line 018 of esculentum var. cerasiforme. The mutation is expressed 

as a golden-yellow seedling with no visible traces of chlorophyll; the 

cotyledons are pale-yellow. It is the most chlorotic of the mutants in 

this series. At maturity or under conditions of reduced growth, the 

foliage turns a very pale green (7). 

yg^ (yellow-green^) resulted from irradiation of esculentum 

var. cerasiforme line 018. The actively growing region is yellow-green 

with the leaves turning pale green at maturity. The cotyledons are a 

bright yellow and the hypocotyl is colorless and etiolated under nor¬ 

mal greenhouse and field conditions (7). 

neg (neglecta^) was one of a group of mutants induced through 

irradiation of seed by Stubbe (30)* The mutant phenotype is expressed 

in the advanced seedling stage as a mottling on the lower leaves. This 

develops into a condition of necrotic spotting over the entire surface 

of the lower leaves, eventually resulting in defoliation. The expression 

of this gene in the advanced stages is very similar to the symptoms 

expressed by a severe infestation of red spider mites. 

The genetic tester for chromosome XI used in the neg^ and yg^ 

linkage studies was kindly supplied by Dr. L. Butler. It contains the 

marker genes .jointless (l), hairless (hi), anthocyaninless (a^) and 

fasciated (f^). The positions of these genes on chromosome XI is il¬ 

lustrated in Figure 1. 
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The g and hi genes were used as markers in this investigation. Plants 

homozygous recessive for hairless (hi) are characterized by the com¬ 

plete absence of trichomes except for some glands filled with watery 

fluid which often give a white speckled appearance. The stems are ex¬ 

tremely brittle and are subject to breakage (3). The plants homozy¬ 

gous for the recessive y gene lack an abcission layer in the pedicles 
1 

of the inflorescence (8). 

The relationships of the mutants in the yellow-green series. 

The six yellow-green chlorophyll-deficient mutants were cross- 

pollinated reciprocally in all possible combinations. The resulting 

F^ double heterozygotes were studied for extra-chromosomal inheritance and 

allelism. One or the other and in some cases both of the F^ plants from 

a cross were selfed and the F^ seed was sown in 12 x 15 x 3 inch seed¬ 

ling flats in a sterilized John Innes seeding soil (2 parts soil* 1 part 

peat moss, 1 part sand, and 60 grams each of superphosphate and ground 

limestone per bushel of soil mixture). The soil surface of each flat 

was then treated with diluted Ferradow, a commercial fungicide (1 T. to 

8 quarts of water) to prevent growth of molds. All seeds throughout 

these studies were treated with Arasan, a commercial seed disinfectant 

and protectant manufactured by DuPont & Co. Four rows, each of twenty- 

five F~ seeds were sown per flat, except for the yg^ x yg^, yg^ x yg^. 

and yg, x yg crosses. In these latter cases approximately 250 F£ seeds 

were sown per flat. 

A two-point backcross test was also performed with the vgy and yg„ 

mutants. The yg^, x yg^ F^ dihybrid was crossed with the F^ yg^/yg^ 

yg^/yg^ rQcombinant. The resulting seeds were sown in the manner de¬ 

scribed above 
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Classification of the ?2 and backcross segregates was made when 

any of the four expected phenotypes could be distinguished. The pro¬ 

cedure was to score and then remove those distinguishable phenotypes 

at the earliest possible stage to allow space for the other unidenti¬ 

fied types to develop. Generally, classification was done in the young 

seedling stages; however, in some cases it was delayed until maturity. 

In the latter case, the plants were transplanted into 4 inch clay pots 

containing the John Innes transplanting media (? parts soil, 3 parts peat 

moss, 2 parts sand and 60 grams each of superphosphate and ground lime¬ 

stone per bushel of soil mixture). 

Chromosome mapping of yg^ and neg, 

vv" i- 

The yg^ and neg^ mutants were crossed to the hi a^ f^ tester. 

The generation was selfed and the seed sown as indicated pre¬ 

viously. These plants were transplanted at the advanced seedling stage 

into 3 inch peat pots and grown in the greenhouse to the first fruit 

cluster stage, at which time they were transplanted into the field. 

1,108 F^ plants from the yg^ x tester cross were grown in rows and 

spaced 5* x 3'. The F^ plants from neg^ x tester were seeded in two lots, 

two months apart. The first lot of 634 plants were planted in the field 

in June 1965 at 3' x 2* spacing and the second lot of 406 plants were 

set out in August 1965 at 3' x 3' spacing. The plants from both crosses 

were scored at approximately the second cluster fruit-set stage when 

the jointless character could be easily distinguished. 
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Statistical Methods 

The chi-square method was used to test goodness of fit of certain 

ratios for possible linkage among the members of the yellow-green series 

and for the chromosome mapping studies with yg^ and neg^ (3,14,24,26). 

The level of significance was employed throughout the studies. 

Heterogeneity tests were conducted on all individual sets of data from 

each cross (24). Linkage was determined by the Product Method utili¬ 

zing Steven's tables (34). The statistical formulae used in this in¬ 

vestigation and the reasons for their use are described in Appendix A. 

Studies on the 
»6 

syndrome 

All crosses in which yg^ was segregating from a heterozygous 

plant were observed for possible recombination of the yg^ syndrome. 

If recombination was suggested, the plant in which it occurred was self- 

ed and its progeny observed for genetic continuity. 

The culture of the lethal double recessive recombinants 

The double recessive recombinants from the yg^ x yg^. yg^ x yg^« 

and yg^ x yg^ crosses succumbed soon after germination when grown under 

normal greenhouse conditions. When transplanted from the seedling flats 

into 4" clay pots and grown under a regime of a 75 Farenheit degree tem¬ 

perature and five and one-half hours of supplemental light, the plants 

grew reasonably well, allowing for phenotypic comparisons with close re¬ 

latives and other members of the yg. series. 
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RESULTS 

Interrelationship among the mutants of the yellow-green series 

When the six yellow-green mutants were crossed reciprocally in 

all possible combinations, the resulting F^'s were all phe no typically 

of the wild type. This suggested that the mutants are genetically in¬ 

herited, are non-allelic, and no indication of cytoplasmic inheritance 

was suggested. 

The observed F phenotypes for each of the fifteen yellow-green 

series of intercrosses, in Table 3> represent the family totals for in¬ 

dividual lots, homogeneous for chi-square A and B single factor segre¬ 

gation and for linkage. The results of these heterogeneity tests are 

recorded in the Appendix B. 
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Table 3* Observed F2 phenotypes for each of the fifteen yellow-green 

series of double intercrosses in repulsion, 

* F2 Phenotypes Total 
A x B + + + b a + a b Total Seeded 

208 92 88 25 473 V
jl

 
O

 
O

 

x Zg. 281 74 85 16 456 500 

335 55 107 12 509 600 

yg x vg. 295 97 86 19 497 600 
3 1 

yg. x yg. 405 142 A hC 36 729 800 
0 1 

x yg^ 367 110 78 27 582 600 

576 205 95 18 894 1000 

596 202 161 55 1014 

22$ x SSg 645 214 214 63 1136 

x yg^ 359 98 28 0 485 1000 

2^5 x ^ 362 88 87 21 558 600 

x yg^ 423 129 89 20 661 700 

y%x^5 946 305 12 1 1264 1501 

y^4 xyi6 511 72 26 4 613 700 

2^ X££5 453 176 143 38 - 810 810 

* A represents the maternal parent. 

Table 4, shows the three correct chi-square parameters on the F^ total 

for each cross. 
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Table 4. Analysis of the dihybrid crosses from all combinations of the 
yellow-green series of mutants. 

A x B X23 y?L 
Recombination 

Value 

2% * X&z 0.13 0.02 0.52 50 

1.98 6.74** 0 50 

0.71 38.04** 1.29 50 

IS* 3-98* 0.42 2.05 50 
5 i 

0 0.13 2.78 50 

^£3 x 15.03** 0.66 0.34 50 

2% ^ 72.84** 0 5.61 41.15 4 4.07 

yg x ^ 7.40** 0.06 0 50 
5 2 

1% x 2a, 0.23 0.23 0.56 50 

2^ x ^ 
94.60** 5-69* 6.25* 50 

9.48** 8.89** 0 50 
5 3 

aa6 x 25.53** 2.13 1.31 50 

2%x2a5 386.10** 0.38 1.15 50 

2^ *22.,* 131.09** 51.25** 0.02 50 

yg x yg 3.04 0.87 3.60 50 

6 5 

* indicates a % level of significance. 

** indicates a Vjo level of significance. 

a indicates reciprocal crosses. 



In the crosses involving yg. , the F segregates wrere transslanted from 
1 2 

the seed flat because of the inability to distinguish, at the seedling 

stage, between yg parental types and wild type recombinants as well 

as between the recessive recombinant and the other parental type. Thi 

difficulty was overcome by supplying the transplants with a high level 

of nutrition and supplemental light. The F segregates grew rapidly, 

accentuating the phenotypic differences among the four F segregates. 

Unfortunately, this was not completely successful with the F^ segre¬ 

gates from the yg^ x yg^ cross, since some of the yg F^ parental 

types were misclassified as F^ wild type recombinants. This can be 

seen from the data in Table 4, where a significant chi-square for yg^ 

segregation was obtained. However, the correction was made when the 

linkage chi-square was calculated. 

The F^ segregates from the other ten crosses shown in Table 3 

were easily distinguished in the advanced seedling stage and they were 

scored directly from the seed flats. 

lMon-significant chi-square values for linkage were obtained for 

all the combinations tested except for the yg^ x yg„ and yg^ x vg^ 

crosses (Table 4). Originally 532 F segregates were analysed from 

the ygj^ x yg cross, giving a contingency chi-square for linkage of 

4.61 and a recombination value of 39-^ - 8.65- By increasing the $ 

population to 894, the contingency chi-square for linkage increased to 

5.61 and the recombination value changed to 41.15 - 4.07 (Table 4). 

This drop in standard error by one-half, further strengthened the 

possibility of linkage. From 485 segregates of the yg^ x yg 

no yg^/yg^ yg/yg^ recombinants were isolated. 

cross 



The yg and yg^ 

(Tables 5 and 6), The results confirmed the independence of 

mutants were also tested in a double backcross 

and 
“3 

Table 5. Observed phenotypes from the and vg^ double backcross. 

A x B + + + IK ^ Total 
Total 
Seeded 

29 30 32 25 116 130 

Table 6. Analysis of yg^ x yg^ double backcross data 

A x B x* 2a x2b 
2 

X L 
Recombination 

Value 

0.03 0.31 0.55 0.50 

A total of 3179 F segregates were classified from the original 
2 

yg^ x population. The data were grouped according to levels of 

germination rather than tested for heterogeneity on a per flat basis. 

A significant chi-square value of 5*99 was obtained for segregation of 

yg in the total population. However, when the analysis was repeated 

on the F data, which exhibited 100 per cent germination, single factor • 
2 

segregation of yg^ was not significantly disturbed. Early in the inves¬ 

tigation, it was felt that yg^ segregates were initially scored before 

all the yg^ parental types had germinated. Later, classification was 

delayed until the late seedling stage. 

Generally, the F parental phenotypes appeared to be phenotypically 
2 

identical to the parents irrespective of the cross they were from. One 

exception was noted in the interspecific crosses involving yg, from 
2 
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L, nimninel 1 i fol -iand the other five yellow-green mutants from 

L. esculents. Here, the leaf size and shape of the yg^ F^ parental 

type generally was expressed as an internediate between the two spe¬ 

cies. In all cases, the F wild type recombinant resembled the F 
2 I 

parent. 

Description of the recessive recombinants 

In all the crosses involving y£^, the recessive recombinants re¬ 

sembled the other parent for all characters except cnloropnyll content. 

/yr /yg_ resembled neither parent completely, rrom ^ne 

recessive recombinant types examined, segregation of tne y;. cnaracter, 

etiolated hypocotyl, seems to be occurring. The leaflets of the seed¬ 

lings were marginally curled upwards to a much greated extent than with 

the yg^/vg +y-p parent. However, tne amount o>. anwnocjcvrmn xn ^ne ^-y- 

pocotyl closely resembled the level expressed by the yg^/'yg^ +/+ parent, 

Tne yr./y? yzJyz^ was lethal in the seedling stage. The coty¬ 

ledons appeared as albinos with only a trace of antnocyanin an tne 

hypocotyl. of the eighteen recessive recombinants studied had 

etiolated hypocotyls. The leaflets were completely white and the seed¬ 

lings died about one week after germination. 

The cotyledons and hypocotyl of the yg^/yg^ vera ver7’ 

similar to those of the yg^/yg +/+ parent. Under normal greenhouse 

conditions, the developing leaflets were white with faint traces of 

yellow color. These mutant combinations were lethal in the early seen 

ling stage. 
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The yg^/Z^ ^2 seSreSa^QS have pale yellow-green cotyledons, a 

colorless elongated hypocotyl and pale yellow leaflets with patches of 

white. This recessive recombinant was lethal at the mid-seedling stage. 

The yzJyz^ had yellow-white foliage and a ragged appearance 

characteristic of the yg . 

Chiscon’s description of yg^/yg^ yg^/lS^ agreed well with the twenty 

recessive recombinant segregates which appeared from the yg^ x yg^ cross 

(10). All the mutants had colorless elongated hypocotyls with deeply 

cut and curled, yellow-green leaflets. 

Only one recessive recombinant appeared in the F population from 
2 

the yg^ x yg^ cross. The cotyledons were albinotic and closely re¬ 

sembled the yg^ in shape. It died soon after germination and before the 

epicotyl fully developed. 

The yg^/yg^ yg^/yg died before the first true leaves appeared. 

It had a colorless elongated hypocotyl and albinotic cotyledons. 

The cotyledons of the yg^/yg. yg^/yg^ F^ segregate were a lighter 

bleached color than either of the parents. It had the elongated hypo¬ 

cotyl characteristics of the yg. and its leaflets were a pale yellow- 
6 

green with large patches of white. This combination proved to be lethal 

at the young seedling stage. In all cases, the recessive recombinant 

was more chlorophyll-deficient than either of the parents. 

The F2 recessive recombinants from the yg^ x yg^. yg x yg^. and 

yg^ x yg^ crosses which were grown at 70° F. and 16 hours of light, all 

grew to a more advanced stage. 

The yg^/yg^ yg^/yg continued to develop until maturity; however, 

recessive recombinants from yg^ x yg^ and yg^ x yg crosses died at the 

advanced seedling stage. 
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It is apparent from the data in Table 4 that the gene exhibits 

a very highly significant disturbed segregation within crosses where it 

participated. This is especially noticeable in the yy x yy cross 
4 5 

where a 386.10 chi-square value was obtained. 

The crosses designated by "a” in Table 4 were performed recipro¬ 

cally. Four of these crosses, yy x yg . yg x yy , yy x yy and 
3 5 3 6 3 

yg, x yy are particularly noteworthy because one or both of the single 
6 4 

factors exhibit disturbed segregation. A heterogeneity test performed 

on the reciprocal crosses of these data revealed that the direction of 
• N 

the cross had no effect on single factor segregation or linkage. 

Pleiotropism in the yg syndrome 

When the data from all crosses, segregating for yg. from the 
o 

heterozygotes were grouped, a total of 11,284 plants had been observed 

for possible recombination within the vy^ syndrome. In several in¬ 

stances it "was found that yy segregates had accumulated a small 
—b 

amount of anthocyanin in the hypocotyl but none of these approached the 

wild type in intensity of the pigment. Several yg, types containing 

anthocyanin were selfed but the resulting progenies all exhibited color¬ 

less hypocotyls. 
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Chromosome mapping of yg^ 

In the yg^ mapping studies, only the hi and marker genes were 

used from the multiple tester. The total F^ repulsion data were re¬ 

grouped according to separate yg^ x hi and yg^ x ±1 dihybrid crosses 

(Table 7). The analysis of these data indicated that yg was linked to 

both hi and g^, with recombination values of 16.43 - 4.51 and 29.06 - 5-09 

respectively (Table 8). Reconciling these values with the known positions 

of hi and on chromosome XI, the position of yg^ would fall between 

hi and a ,as shown in Figure 2a. Assuming 13 crossover units from hi 

(37), yg would be located 33 units from g and 7 units from a 
6 11 

(Figure 2b). 

Table 7. F repulsion data from yg x tester cross. 
2 6 

F2 Phenotypes 

AxB ++ + b a + ab Total 

yg/ x hi 

“6Xjl 

632 

635 

207 

204 

264 

252 

5 

17 

1108 

1108 

Table 8. 

AxB 

Analysis of F^ repulsion data from yg^ x tester cross 

2 2 2 
X A X B XL Recombination Value 

yg x hi 
6 

^ x4 

0.27 

0.31 

20.03** 

15.10** 

70.00** 

41.31** 

16.43 - 4.51 

29.06 - 5»09 
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Figure 2a. Approximate location of yg^ on chromosome XI, 

j. 20 hi 16.43 - 4.51 yg 

29.06 - 5.09 

Figure 2b. Suggested position of yg., on chromosome XI, 
0 

20 hi 13 yg,- 
o 

JB 

33 

Chromosome mapping of neglecta 

A heterogeneity test on the two lots of neg^ x multiple tester 

F repulsion data revealed that they were homogeneous for the three 

parameters under consideration (Table XX, XXI Appendix). The data 

in Table 9 show the number of individuals in the four segregation 

classes, when the total data from the two lots were regrouped as 

neg^ x hi and neg^ x a^ dihybrid crosses. Again, as with the yg^ 

mapping studies, only the hi and genes were considered from the 

multiple tester. 

Rick's data from his neg and a linkage studies (30) were in- 
1 1 

eluded in Table 9 as it is pertinent for the positioning of neg ^. 

His data were reworked according to the method outlined in the 

Methods and Materials. A 24.21 - 4.41 recombination value was ob¬ 

tained as shown in Table 10 along with the determined recombination 

» 

values for neg^ and hi and neg^ and If these recombination values 

are mapped relative to the known positions of hi, and a^, neg^ 

would be positioned between and hi (Figure 3a). Further, 

- 
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positions 28.65 to 30*28 inclusive is the range common to the three re¬ 

combination values. Consequently, ne?^ is positioned at approximately 

locus 29 on chromosome XI (Figure 3b). 

Table 9* F^ repulsion data from neg^ x tester cross. 

AxB ++ +b a + ab Total 

649 279 263 3 1194 

672 256 264 2 1194 

590 242 197 11 1040 

Table 10. Analysis of F repulsion data from neg x tester cross. 

AxB X^A X^B X^L Recombination Value 

neg^ x hi 4.57* 1.14 97*57** 11.33 - 4.04 

4.57* 7.15** 89.48** 9.85 - 3.43 

neg x a 
1 “1 

13.87** 0.25 51.19** 24.21 1 4.14 

neg^ x hi 

neg x j. 

neg. x a 

Figure 3a. Approximate location of neg on chromosome XI. 

neg. hi 20 

L 9.85 - 3*43 ^ L 24.21 - 4.14 

Figure 3b. Suggested positions of neg^ on chromosome XI. 

neg. hi 

—• 
1 . 

17 29 37 57 

Table 11 records the amount of information obtained relative to the 

testcross for all the ? repulsion crosses performed in this study. 
£0 
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Table 11. Efficiency of F 
cross. ^ 

repulsion data relative to the double back- 

A x B 

Total F2 

Segregates 

Re combination 

Value % Efficiency Effective Wo. 

yg, x yg 473 0.50 44.44 210 

456 0.50 44.44 203 

509 0.50 44.44 226 

X&c x zs. 5 1 
497 0.50 44.44 221 

yg. x yg 
6 1 

. 729 0.50 44.44 324 

ZE^ x ZS^ 582 0.50 44.44 259 

894 0.37* 32.20 288 

Z&5 x Z^ 1014 0.50 44 44 451 

^x^ 1136 0.50 44.44 505 

^ x^3 485 0.50 44 44 T*T • TT 216 

ZE^ * Z^ 558 0.50 44.44 248 

yg. X yg. 661 0.50 44.44 294 
o 3 

2%xy^5 1264 0.50 44.44 562 

2Sitx2£b 613 0.50 44.44 272 

Z^ x ZE^ 810 0.50 44.44 360 

ygp x hi 1108 0.13 11.79 131 v' 

1108 0.33 28.66 318 / 

neg x hi 1194 0.08 7.47 89 

neg^ x hi 1194 0.12 10.94 131 

neg x a 
1 ”1 

1040 0.28 24.35 253 

* The lower range of the recombination fraction was used to give the 
minimum possible efficiency. 
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DISCUSSIOxN 

The results from reciprocal crosses demonstrate that the inheri¬ 

tance of the yellow-green series of chlorophyll-deficient mutants is nu¬ 

clear and not under the influence of extra-chromosomal control. Chis- 

con*s observations that yg^. yg . and yg^ are non-allelic and that 

vg^ was non-allelic to yg^. yg^. and yg^ were confirmed (9,12). Also, 

the F^'s from the other nine possible combinations expressed themselves 

as "wild type". It was concluded therefore that all six of the yellow- 

green mutants in the series were located at separate genetic loci. 

The repulsion data from the yg^ x yg^ cross, suggested that 

these two genes were segregating independently. This was later con¬ 

firmed by a double backcross (Table 6). These findings are in conflict 

with the results of Chiscon (9) who reported that yg^ is linked to yg^ 

with a recombination value of 39*72 - 4*56. An analysis of his raw data 

(9), however, reveals an adjusted contingency chi-square for linkage of 

2.45 which is not significant at the 5^ level. It is general procedure 

to use the chi-square to first detect linkage, and if present, then to 

determine the recombination fraction (3). The possibility of having a 

recombination value of approximately 40^ with a non—significant chi- 

square for linkage becomes apparent when we consider that the recombi¬ 

nation between two distant genes is’usually an under estimate of the 

map distance (16). Therefore, it seems that yg£ and yg^ are indeed in 

dependent of one another. 
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Also, since yg was assigned to chromosome XI because of apparent link¬ 

age to yg^« further consideration must be given to this assignment in 

light of the above conclusion. 

The failure to observe any yg^/yg^ yg^/yg^ segregates from the 

yg^ x yg^ cross is consistent with the observations made by Chiscon (9). 

It is possible that a recessive recombinant was not observed because it 

was indistinguishable from the yg^ parental type. This seems plausible 

because yg^ is the more chlorophyll-deficient of the two parents. These 

two genes exhibited a significant chi-square for linkage mainly because 

of the absence of the recessive recombinant. A recombination value 

could not be determined for the same reason. 

Several of the F parental types were selfed, in hopes of obtaining 

a recessive recombinant through segregation but these attempts were unsuc¬ 

cessful. 

It seems likely that these mutants are independent since definite 

linkage has been obtained between yg^. (a gene marker for chromosome 

VI (9)) and yg^ has been shown to be loosely linked to anthocvaninless 

loser (al) which is on chromosome VIII (5)« 

F^ data from the yg^ x yg^ intercross consistently indicated loose 

linkage between these two genes (Table 4). If this were the case, it 

would not be inconsistent with the above results. As suggested pre¬ 

viously, however, a high recombination fraction is not a very accurate 

determination of map distance, bven though linkage is questionable in 

this case, it may merit further analysis with a marker gene from chromo¬ 

some VIII 
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It was demonstrated, that was not linked to yg. which is consis- 
^3 

tent with the results obtained by Chiscon (9). The results also indicated 

the other eleven possible relationships among the six yellow-green mutants 

were independent. The fourteen recessive recombinants studied from inter¬ 

crosses in the yellow-green series were more chlorophyll-deficient in 

all cases than either of the parents. This agrees with Chiscon*s results 

from chlorophyll determinations on four of the recessive recombinants (11). 

Several of these recessive recombinant combinations were lethal in 

the seedling stage under normal greenhouse conditions. Using elevated 

temperature and supplemental light, it was possible to grow the yg^/yg^ 

yg ./yg recombinant to maturity and to grow the ygr/yg. ygVyg. and 
j 5 ° o 3 1 

yg^/yg^ yg^/yg recombinants to an advanced seedling stage. 

Seed germination of the yg^ mutant is always extremely poor. It 

was thought initially that differential viability of yg^ F^ parental 

type seed could explain the highly significant, disturbed segregation 

of in combination with the five other yellow-green mutants. How¬ 

ever, a critical examination of the yg^ x yg^ F^ data revealed that this 

explanation alone was unsatisfactory. A significant chi-square value of 

66.19 was obtained for yg^ segregation when the portion of the F^ popu¬ 

lation that failed to germinate was assumed to be either yg /yg^ +/- 

and/or yg^/yg^ yg^/ygr plants. Apparently, the F^ produced a deficiency 

of yg^/yg^ +/- and yg^/yg^ yg_./yg^ seed, probably due to some irregu¬ 

larity occurring as late as embryonic development. The aberrant response 

is consistent with the observations made by Whalen (37)> who reported 

that seed set in dihybrid crosses on yg^ was extremely low. 
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This same phenomenon may be occurring in the x yg^ cross as 

a heterogeneity test indicates the F segregations from this and the 

x yg^ cross are behaving homogeneously with respect to yg^ segre¬ 

gation. If this is the case, the direction in which the cross is made 

appears to have no effect, i.e., data from yg^ x yg_. reciprocal 

crosses are homogeneous. 

Studies are presently under way to determine if the yg segre¬ 

gation of the reciprocal yg^ x yg_, cross is affected in the same 

manner. Although the other three crosses, in which yg^ participated, 

exhibit a highly significant disturbed segregation, the degree of dis¬ 

turbance was not homogeneous with yg^ x yg and yg^ x yg^ crosses. 

It was also noted that yg^ is from a stock of esculentum 

while yg and yg . are from esculent-urn var. cerasiforme. No cases 
j 6 

of differential gametic or zygotic lethality, however, have been re¬ 

ported as a result of the above intervarietal cross (37)- 

Limited pollen viability tests using tetrazolium red (33)> suggest 

that yg^/yg^ +/+ plants exhibit a high degree of pollen abortion as 

compared to +/+ yg^/yg^. In view of the above, the same phenomenon 

might be expected for the female gamete. 

The fact that yg segregation is not affected in the F , may sug- 
5 ^ 

gest that the irregularity is due to the yg gene (pleiotropism) or the 

presence of closely linked genes. It has been observed that those 

yg^/yg^ +/- F^ plants that do develop generally appear quite distorted. 

This distortion fails to manifest itself when homozygous lines of yg^ 

are selfed. This suggests a gametic incompatibility at fertilization or 

perhaps even later in zygotic development. 
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The collapse of zygotes during embryonic stages is often due to dis¬ 

turbances in embryo-endosperm relationships and has been alluded to as 

somatoplastic sterility by Allard (1). 

When all the yg segregates from this experiment are combined 
6 

with the 10,000 observed by Whalen (36), a total of more than 21,000 

from yg^/yg^ +/+ heterozygotes, it is especially noteworthy that re¬ 

combinations of characters within the syndrome had not occurred. 

Though, it seems that pleiotropism may be the case in the y-, 

syndrome, closely linked loci can not be disregarded until many more 

individuals are studied. An experiment is presently under -way which 

will result in the examination of more than 1000,000 segregates. 

As previously mentioned, the data from the yg^ x yg_, double 

intercross indicated that yg^ may be slower in germinating than either 

the wild type recombinants and/or the yg F parental types. A series 
j “ 

of germination studies were conducted using the six yellow-green mu¬ 

tants and it appeared that yg^ germination was delayed by approximate¬ 

ly three days when compared with the five other mutants. Examination 

of yg seedlings grown in tissue culture suggested poor rootlet initiation 

when compared to the extremely-deficient yg^. It may well be that late 

root initiation or restricted early development of some sort is yet 

another characteristic included within the yg. syndrome. 

A closer look at the three possible gene orders in Table 1 re¬ 

veals that the last column, hi yg^ order, can be disregarded be¬ 

cause the linear distance from hi to yg can not be greater than the 

distance between hi and a • 
— 
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It is clear that the selection of either yg^ hi or hi vg^ or¬ 

ders depends entirely on the classification of ++<1 and +++ double 

crossover classes. In previous studies -with a^, we noted that its 

phenotypic expression is under great influence from the environment 

and under certain conditions it is practically indistinguishable from 

wild type, hence discouraging its use in linkage studies. 

A goodness-of-fit test on Whalen's data using the recombination 

fractions of 33)6 and 7)6 as the distance between yg^ and a^ for the 

yg. hi a and hi yg. a orders respectively, resulted' in a signifi- 
o “1 6 i 

cant chi-square in both cases. 

It is seen from Table 8 that 16.43 - 4.51 falls within the 13/6 

crossover range for yg^ and hi. confirming Whalen's initial results 

(37). However, the 29.06 ± 5.09)6 recombination between vry and 

agree with the 33 crossover units rather than the 7 crossover units 

that would be expected according to Whalen's suggested position. The F, 

repulsion data from the yg^ x cross is as efficient as studying 318 

segregates from a double backcross (Table 11). 

Therefore, it is suggested that y^ , instead of being at position 
6 

24 on chromosome XI (37)> is really located at position 50> between 

hi and a., (Figure 4). A confirmatory three-point backcross test with 

hi and ^ is presently in progress. 

As suggested in the results, neg^ is positioned between and hi 

at approximately locus 29 on chromosome XI (Figure 4). A homozygous 

triple recessive, neg^ hi. is currently being synthesized for the 

confirmatory three-point backcross. 
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Figure 4 

A 

Suggested positions of neg and yjg on chromosome XI. 

L7 

neg hi yg a 
-. - - ■» & • 

29 37 50 57 
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SUMMARY 

Studies -were conducted to determine the genetic interrelations of 

six yellow-green mutants and to map the neglecta and vy genes on chromo- 
1 6 

some XI of tomato. 

(1) The inheritance of yg^. yg^. ygy yg^, yg, , and vg. chlorophyll- 

deficient mutants was found to be genetically controlled and non-allelic. 

(2) repulsion data from double intercrosses of all these mutants in¬ 

dicated that they assorted independently, except for possibly yg and 

(3) In all cases, the double recombinant mutants appeared to be more 

chlorophyll-deficient than either of their parents. 

(4) The same phenomenon of disturbed segregation of the yg mutant was 

considered, as well as the level at which it may be occurring. 

(3) Evidence was presented which suggests that yg^ is located at posi¬ 

tion 50 rather than 2k on chromosome XI. 

(6) neglecta appears to be located at approximately locus 29 on chro¬ 

mosome XI. 

(7) Since no recombination was observed in the characters of the yg.. 

syndrome, it must still be considered a case of pleiotropism rather 

than independent effects of a complex locus. 



-30- 

LITERATURE CITED 

1. Allard, R. W. I960. Principles of plant breeding. John Wiley & 
Sons. New York. p. 471. 

2. Bailey, N. T. J. 1949. The use of the product formula for the 
estimation of linkage in intercrosses when differential viability 
is present. R. A. Fisher and N. T. J. Bailey. The estimation of 
linkage with differential viability. Heredity. 3:220-225. 

3. Bailey, N. T. J. 1961. Introduction to the mathematical theory of 
genetic linkage. Oxford University Press. Oxford, p. 26-90. 

4. Burdick, A.'B. 1936. New mutants. Tomato Genetics Coop. 8:9-11. 

5. 

6. 
>7. 

8. 

9. 

10. 

11. 

Burdick, A. B. 1959* Additional linkage data for a^., > 
and yg^ . Tomato Genetics Coop. 9:19* ^ ^ <Zo2 

Burdick, A. B. 1939* Hew mutants. Tomato Genetics Coop. 9:21-23. 

Burdick, A. B. I960. New gene symbols. Tomato Genetics Coop. 

10:8-9. 

Butler, L. 1932. The linkage map of the tomato. J. Heredity. 

43:24-33* 

Chiscon, J. A. I960. F2 linkage data. Tomato Genetics Coop. 
10:10-11. 

Chiscon, J. A. I960. Seedling identification. Tomato Genetics 

Coop. 10:12. 

Chiscon, J. A. 1961. A comparison of the content of chlorophylls 
a and b in some chlorophyll mutants. Tomato Genetics Coop. 11:8-9. 

12. Chiscon, J. A. and A. B. Burdick. 1962. Pleiotropism in three 
chlorophyll mutants. Tomato Genetics Coop. 12:20. 

13. Chovnick, A., A. Schalet, R. P. Kernaghan, and M. Krouss. 1964. 
The rosy cistron in Drosophila melanagaster: genetic fine struc¬ 

ture analysis. Genetics. 30:1245-1239* 

14. Cochran, W. G. 1941. The X2 correction for continuity. Iowa 
State College Jour, of Sci. 16:421-436. 



-31- 

15. Collins, G. N. 1924. Measurement of linkage values. J. Agr. Res. 
27:881-891. 

i 

16. Crow, J. F. I960. Genetics notes, Ed. 2. Burgess Publishing Co. 
Minneapolis, Minn. p. 36. 

17. Fisher, R. A. and B. Balmukand. 1928. The estimation of linkage 
from the offspring of selfed heterozygotes. J. Genetics. 
20:79-92. 

18. Fisher, R. A. 1939* The precision of the product formula for the 
estimation of linkage. Ann. Eugenics. 9:50-54. 

19. Grober, K. I960. Pigment formation in lethal chlorophyll mutants 
by artificial illumination. Tomato Genetics Coop. 10:17-18. 

20. Grober, K. 1963* Genetical and physiological behavior of a domi¬ 
nant chlorophyll mutant of tomato. Tomato Genetics Coop. 13:48. 

21. Grober, K. and C. Machold. 1964. Effect of kinetin and nitrogen 
on growth and chlorophyll production of the tomato mutant 
Xanthophvllic. Tomato Genetics Coop. 14:12-13. 

22. Machold, 0. and K. Grober. 1964. Effect of nutrition on growth and 
chlorophyll production of the tomato mutant xantha„. Tomato Gene¬ 
tics Coop. 14:18. 

23. Jmmer, F. R. 1930. Formulae & tables for calculating linkage in¬ 
tensities. Genetics. 15:81-98. 

24. LeClerg, E. L., W. H. Leonard, and A. C. Clark. 1962. Field plot 
technique. Ed. 2. Burgess Publishing Co. Minneapolis, Minn. 
p. 60-68. 

25. Lefort, M. J., J. M. Galmiche, and E. Roux. 1950. The genetic, 
cytological, and biochemical study of a chlorophyllous mutant of 
tomato of the Xantha type obtained by irradiation of seeds. Proc. 
Sec. Inter. Conf. Peaceful Uses Atomic Energy. 27:270-274. 

26. Mather, K. 1963* The measurement of linkage in heredity. Ed. 2. 
Methuen's and Co. London, p. 32-103. 

27. Morgan, T. H. 1910. Sex-limited inheritance in Drosophila. 
Science. 32:120-122. 

28. Price, H. L. and A. W. Drinkard Jr. 1908. Inheritance in tomato 
hybrids. Va. Agr. Expt. Sta. Bui. 177* 



-32- 

29. Hick, C. M. and F. W. Martin, i960. Linkage tests with mutants of 
Stubbe's group I. Tomato Genetics Coop. 10:38-39. 

< 

30. Rick, C. M. ed. 1963. Revised linkage map. Tomato Genetics Coop. 
13:6. 

31. Rick, C. M. ed. 1965- Revised linkage maps. Tomato Genetics Coop. 
15:6. 

32. Rick, C. M. ed. 1965. List of tomato genes. Tomato Genetics Coop. 
15:11. 

33* Sarvella, F. 1964. Vital stain testing of pollen viability in 
cotton. J. Heredity. 55:154-156. 

34. Stevens, W. L. 1939* Tables of the recombination fraction estimated 
from the product ratio. J. Genetics. 39:171-160. 

35- Thompson, A. E. and R. W. Hepler. 1956. A new chlorophyll mutant. 
Tomato Genetics Coop. 8:36. 

36. Whalen, R. H. 1964. The linkage relations of yg. . Tomato Gene¬ 
tics Coop. 14:30-31. k 

37. Whalen, R. H. 1965* Genetic segregation in some interspecific and 
intergeneric hybrids of Lvcooersicon and Solan-urn. (Ph.D. disser¬ 
tation, Biology-Genetics, Purdue University), p. 190. 



-33- 

APPENDIX A 

Statistical Methods 

chi-square was portioned into chi-square for single factor segregation 

of A and B and chi-square for linkage between A and B, each with 1 de¬ 

gree of freedom. The formulae used are shown below (3). 

X^ A factor segregation = (a + b - 3c - 3d)^ 
3n 

2 2 
X B factor segregation = (a - 3b + c - 3d) 

3n 

X^ linkage between A and B = (a - 3b - 3c + 9d)^ 
9n 

pected phenotypes. Whenever the number of any class was less than 10, 

a correction for continuity was used (24). This was accomplished by re¬ 

ducing the quantity inside the brackets by two in absolute magnitude (14). 

If either factor A or B, or both, exhibited a disturbed segregation, the 

chi-square for linkage formula indicated above is not accurate and in¬ 

stead a contingency chi-square test is employed (26). 

2 2 
Contingency X for linkage between A and B = _(ad-bc) n 

( a+b) ( c+d) ( a+c) (b+d) 

When the need for a continuity correction is indicated in the contingency 

chi-square, the following short cut formula suggested by Leclerq, et. al. 

(24) was used. 

(a+b)(c+d)(a+c)(b+d) 

v 
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Tha following formula was used when a single factor disturbance 

was due to a recessive being classified as a dominant type (3). 

2 o 
X linkage between A and B = l6(ad-bc)^ 

3n(a+b)(c*fd) 

In the analysis of double backcross data, the following formulae 

were employed (3). 

X^ A factor segregation = (a+b-c-d)2 
n 

2 2 
X B factor segregation = (a-b-fc-d) 

n 

X^ linkage between A and B = (a-b-c+d)^ 
n 

Tests for Heterogeneity 

The additive property of the chi-square enables the testing for 

homogeneity among separate lots of F9 segregates from a particular F 

genotype (24), The F2 repulsion data from the yellow-green series of 

crosses were first tested on a per flat basis for factor A and 3 

segregation and possible linkage. The data from the homogeneous lots 

were grouped and the analysis repeated on the totals (3). 

Since Yates correction for continuity is non-additive (14), it 

was not used when testing for heterogeneity. It was used, however, 

in the analysis performed on the total from homogeneous lots. In 

crosses that exhibited single factor segregation, and where F^ data 

had also been gathered from reciprocal crosses, a test for heterogeneity 

was performed to determine if these disturbances could be attributed 

to non-chromosomal effects. 
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Determination of linkage intensities 

When single factor segregation is good, the product method is pre¬ 

ferred over the maximum likelihood for the determination of linkage be¬ 

cause of tho oaso of computation -when suitable tables are available (34). 

Several tables are available for the determination of linkage by the pro¬ 

duct method, Immer (23)> Fisher and Balmukand (18), and Stevens (34). 

However Fisher and Balmukand's and Immer's tables have the disadvantage 

of involving interpolation whereas in Steven's tables, the recombination 

fraction and standard error can be obtained directly and the interval 

between values is much smaller. Bailey (2) indicates that when one fac¬ 

tor exhibits disturbed segregation, there is a loss of efficiency in the 

product method. Mather (26) feels that this efficiency loss is only 

slight and advocates the product metnod over the maximum likelihood 

method, especially when the cross is in repulsion. In this case the 

recombination fraction from the table remains unchanged but the stand¬ 

ard error must be corrected (34). Fisher (18) has derived the following 

variance formula for crosses that exhibit disturbed segregation. 

= Q(l-e)(2+e) 2(a+b) +e(a+b4-9c+9d) 

(1+2©)2 4(a+b) (c+d) 

Where 0 is the recombination fraction squared (y^) for repulsion data 

— p 
and 0 = (1-y) for coupling data. From this variance, the standard 

error of the recombination can be determined by the following formula (3)* 

s.e. y = ve 
5b 
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When both single factors exhibit disturbed segregation, the pro 

duct method is fully efficient and the variance 0 can be obtained 

from the following formula (3). 

vft = eC2+e) (i-9)2 (x + 1 + l + u 
2(1+20) ''abed' 

The standard error is calculated above. 

It has been recognized for many years that the testcross is the 

most efficient method of mating to detect and determine linkage (15). 

A homozygous recessive for the genes under study is crossed to an F.,, 

heterozygote for these genes. A direct determination of the recombi¬ 

nant fraction can then be obtained by taking the number in the recom¬ 

binant classes as a percentage of the total population (15). Unfor¬ 

tunately it takes two generations to synthesize the recessive back- 

cross parent, and alt backcrosses must be hand-pollinated. For these 

reasons, the F intercross is generally analyzed in linkage studies 

with higher plants. The efficiency of the F2 intercross in repulsion 

and coupling varies as to the intensity of linkage (15). Because of 

this, it has been suggested that the efficiency for each mating be 

determined relative to the backcross (3). The following formulae 

were used to determine the efficiency oi the experiment relative to 

mating (3). 

Information from backcross — _n_ 

y(i-y) 

Information from F9 repulsion = 2n(l+2yf) 

(l-y'U (2+y2) 



Efficiency of repulsion = Information from F2 repulsion 

Information from backcross 
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APPENDIX B 

Table I, Heterogeneity tests on individual F^ lots of yr x vr„ 

A x2b x2l df 

Deviation 0.31 0.02 0.52 1 

Heterogeneity 1.76 0.87 1.54 2 

Total 2.0 7 0.89 2.06 3 

Table II. Heterogeneity tests on individual F 
2 

lots of ygo x 

x2a 
2 

X B X2! df 

Deviation 1.98 6.74** 0.66 1 

Heterogeneity 1.23 2.25 3-75 3 

Total 3.21 8.99 4.41 4 

Table III. Heterogeneity tests on individual F^ lots of yg^ x 

A x2b X^L df 

Deviation 0.?l 38.04** 1.29 1 

Heterogeneity 5.17 1.91 2.49 5 

Total 5.83 39.95 3-78 6 

Table IV. Heterogeneity tests on individual F^ lots of ygr x ZS^ 

*2a X23 A df 

Deviation 3.98* 0.42 U5b l 

Heterogeneity ' 6.83 2.43 0.28 5 

Total 10.81 2.85 1.82 6 

* indicates a 5$ level of significance. 
** indicates a 1 j> level of significance. 
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Table V. Heterogeneity tests on individual F^ lots of yg^ x yg^. 

x2a x2 b y?L dr 

Deviation 0 0.13 2.7 8 1 

Heterogeneity • 4.14 12.39 3.08 6 

Total 4.14 ±<c. 5.^7 7 

Table VI. Heterogeneity tests 

x?a 

on individual F^ 

2 
X B 

lots of 

2 
X L df 

Deviation 15.03** 0.66 0.34 1 

Heterogeneity 4.59 3.11 1.85 5 

Total 19.62 3.77 2.19 6 

Table VII. Heterogeneity tests on individual F^ lots of yg^ 1 

2 
X A Fb 

2 
X^L df 

Deviation 72.84** 0 3.22 1 

Heterogeneity 9.04 10.91 3.21 9 

Total 81.88 10.91 6.43 10 

Table VIII. Heterogeneity tests on individual F 
2 

lots of yg 

x2l 

x222- 
» 

x2a A df 

Deviation 7.40** 0.05 0 1 

Heterogeneity 1.57 3.38 1.03 4 

Total 8.97 
• 

3.44 1.03 5 
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Table IX. Heterogeneity tests 

x2a 

on individual F 
2 

X^ 

lots of yy^ x 

x2l 

YK • 
* *2 

df 

Deviation 0.23 0.23 O.56 1 

Heterogeneity 0.20 4.24 4.33 3 

Total 0.43 4.47 4.89 4 

Table X.' 
■ 0 

Heterogeneity tests on individual F^ lots of yy^ x 

x2a x2b 
2 

X L df 

Deviation 95.62** 5.94* 0.08 1 

Heterogeneity 1.43 8.77 1.60 8 

Total 97.0 5 14.71 1.68 9 

Table XI. Heterogeneity tests on individual F^ lots of yg^ x 

x2a 
2 

X 3 x2l df 

Deviation 9.48** 8.89** 0.13 1 

Heterogeneity 5.22 4.61 5.19 5 

Total 14.70 13.50 5.32 6 

Table XII. Heterogeneity tests on individual lots of yg£ x yg^. 

x2a 
2 

X B X2!. 

Deviation 25.53** 2.13 0.44 

Heterogeneity 6.93 7.91 6.19 

Total 32.46 10.04 6.63 7 
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Table XIII. Heterogeneity tests on individual Flot3 of y,y^ x y/,. 

2 2 2 ^ 
n X B ' X L df 

Deviation 

Heterogeneity 

Total 

337.38** 

1.81 

389.19 

0.42 

9.45 

9.87 

0 

3.47 

3.47 

1 

13 

14 

Table XIV. Heterogeneity tests on individual F lots of yg£ x 

x2a x2^ X^L df 

Deviation 132.16** 51.92** 11.60** 1 

Heterogeneity 7.46 7.78 0.75 6 

Total 139.62 59.70 10.&5 7 

Table XV. Heterogeneity tests on individual F£ lots of y;^ x 
“5* 

> 

2 2 2 
X A X B X L df 

Deviation 3.04 0.87 3.60 1 

Heterogeneity 0.53 1.75 1.07 1 

Total 3.57 2.62 4.67 2 

Table XVI. Heterogeneity tests on reciprocal F^ lots of X XiLy » 

x2a X2B X2! df 

Deviation 95.82** 5.94* 0.08 1 

Heterogeneity 0.01 0.03 0.02 1 

Total 95.63 5.97 0.10 2 
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Table XVII. Heterogeneity tests 

x2a 

on reciprocal $ 

X*B 

lots of yg. 

2 
X L 

x yg. 

df 

Deviation 9.48** 8.89** 0.13 1 

Heterogeneity 0 0 0.14 1 

Total 9.46 8.89 0.27 2 

Table XVIII. Heterogeneity tests on reciprocal F^ lots of yy x yg. 

A 
2 

X B A ° df 

Deviation 25.53** 2.13 0.44 1 

Heterogeneity 0.23 2.17 0.67 1 

Total 25.76 4.30 1.11 2 

Table XIX. Heterogeneity tests on reciprocal F lots of yg^ x*v 
x2a 

2 
X B x2l df 

Deviation 132.16** 51.92** 11.60** 1 

Heterogeneity 0.79 1.80 2.02 1 

Total 132.95 53.73 13.62 2 

'i 

Table XX. Hetero geneity tests on individual F^ lots of neg. x hi. 

2 2 
X A X B XL df 

Deviation 4.72* 1.22 83.98** 1 

Heterogeneity 1.53 0.49 0.02 1 

Total 6.25 1.71 84.00 1 
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Table XXI. Heterogeneity tests on individual F^ lots of neg^ x 

2 2? 
X A X B X L df 

Deviation 4.72* 7.33** 70.14** 1 

Heterogeneity 1.53 1.14 0 1 

Total 6.25 8.47 70.44 2 

/ 
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