
Directed Evolution in Live Coding Music
Performance

Sandeep Dasari and Jason Freeman

Georgia Institute of Technology
sdasari38@gatech.edu

Abstract. Genetic algorithms are extensively used to understand, sim-
ulate, and create works of art and music. In this paper, a similar ap-
proach is taken to apply basic evolutionary algorithms to perform music
live using code. Often considered an improvisational or experimental
performance, live coding music comes with its own set of challenges.
Genetic algorithms offer potential to address these long-standing chal-
lenges. Traditional evolutionary applications in music focused on novelty
search to create new sounds, sequences of notes or chords, and effects.
In contrast, this paper focuses on live performance to create directed
evolving musical pieces. The paper also details some key design decisions,
implementation, and usage of a novel genetic algorithm API created for
a popular live coding language.

Keywords: evolution, genetic algorithms, live coding music, AI

1 Introduction

In the past few years, there has been a significant amount of research in evolution,
genetic algorithms, and artificial intelligence due to developments in computing
power and accessibility. Using these powerful tools to understand, simulate, and
create art is an exciting and meaningful endeavor explored by inter-disciplinary
researchers in visual art and music (Johnson & Romero, 2002). While genetic
algorithms are applied in novelty search frequently, this paper presents an ap-
proach to apply evolutionary algorithms to generate and control musical evolu-
tions in a live performance.

Live coding music is a unique tool of musical expression enabling an artist to
interact with their instrument through code. The practice enables the artist to
efficiently control a vast list of parameters through algorithms as opposed to tra-
ditional music software with MIDI controllers, keyboards, and other interfaces.
Due to extreme granularity of control and slow interaction through code, live
coding music poses a few complex yet interesting challenges (Collins, McLean,
Rohrhuber, & Ward, 2003). The community has seen some key contributions
(McLean, Griffiths, Collins, & Wiggins, 2010; Lee & Essl, 2014) towards solving
these problems and consequently discovered novel approaches to music compo-
sition and performance (Kirkbride, 2017). In this direction, this paper proposes
an application of genetic algorithms to solve two specific challenges: long setup

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/359385637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Sandeep Dasari and Jason Freeman

times to reach a meaningful state of music, and complex interaction to create
evolving pieces of music.

This paper introduces evomusic, a genetic algorithm system for live cod-
ing music. With evomusic, an experienced live coder will be able to specify a
direction of musical evolution through a list of parameters and build layers of
evolving musical pieces. To achieve a level of control and predictability in live
performance, the problem domain is tweaked to determine a series of evolu-
tions in a path from a source node to a destination node. evomusic enables
intermediate and advanced live coders to access and control genetic algorithms
during a performance. This can be described as an API to generate a series of
directed evolutions that augment a live coder’s setup. Lastly, the project is an
open-source contribution to an existing live coding language FoxDot (Kirkbride,
2016) and a popular open-source hackable text editor Atom, encouraging the use
and development of this system.

2 Related work

Genetic programming (GP) is a technique of evolving programs using genetic
algorithms. Application of GP in creative arts and music has upsurged from
a small inter-disciplinary experiment to a complete area of research interest
including major conferences like EvoMUSART. Loughran and O’Neill (2020)
presents a detailed review of a large list of applications of GP in creating music.
The article describes a common motivation for applying these algorithms in
music: to appreciate the slow sonic evolution of a piece. The authors explore the
practice and discuss the inevitable unpredictability involved in the generation
process.

2.1 Applications in Music

Applications of evolution in music have largely been artistic or experimental
(exploring possibilities of creating or evolving new art). Examples of this work
can be seen in research in computational creativity (Boden, 2009) and creative
composition and computer interaction (Gartland-Jones, 2003). In contrast, a few
performance-oriented tools have been used in live performance to improvise with
jazz musicians (J. Biles, 1994) and autonomous evolution of piano performances
(Dahlstedt, 2007). Thus, the practice of generating music with GP has been stan-
dardized in the process yet diversified in application. The practice of live coding
itself has seen applications of generative algorithms in performance including
some detailed experiences documented by accomplished live coding duo aa-cell
in Collins et al. (2003). Drawing from these experiences and research, code cre-
ation using code generators and a balance between abstraction and complete
control of the generative process are two main directing design principles used
in the design and development of evomusic.

Pursuing an exploratory endeavor, Hickinbotham and Stepney (2016) presents
a networked environment with multiple live instances of genetically generated

2020 Joint Conference on AI Music Creativity 3

code. The system is an exciting experiment in tapping into the powerful Haskell
based live coding language TidalCycles (McLean & Wiggins, 2010) and a net-
worked environment ExtraMuros (Ogborn, Tsabary, Jarvis, Cárdenas, & McLean,
2015) wrapped with live coding interactions in a clean and user-friendly interface.
Evaluating the fitness of a mutation depends on the execution of the mutation
to generate audio and can be a slow system to create expressive mutations. The
author acknowledges this issue: “A key problem that needs to be addressed is the
relatively low fitness of newly-generated patterns compared with patterns that
exist in the population”. The system is a great tool for novelty searches and does
not set out to solve our identified challenges of slow setup time and control. In
contrast, evomusic proposes a directed evolution approach in a single text editor
with detailed access and control over the list of genetic evolution parameters.

2.2 Representation

In order to generate evolutions of a section of music, the algorithm needs to
be fed an understandable representation of the section. The networked system,
Extramuros uses a recursive parser to understand a subset of the Tidal lan-
guage and generates new code by using crossover operations on the branches
of the parse tree (mutations are completely avoided in this system). A similar
parser-generator approach is used in this paper to deal with understanding and
representing the state of a musical piece.

2.3 Why Directed Evolution

While advanced fitness functions and heuristics are ideal for creating refined
evolutions that follow music theory, the application of these algorithms in live
coding environments is blurred and often difficult to understand. The imple-
mentation of evomusic takes a much simpler approach that can be visualized by
the live coder. Directed evolution is a naive concept of moving or in GP terms
evolving from a source node towards a target node. Although not traditional
Darwinian evolution, the approach automates evolutions towards a goal solving
the famous fitness bottleneck described in J. A. Biles (2001). This simple yet ef-
ficient feature of evomusic makes it ideal to create evolving musical layers which
is often reflected in music production as automation lanes and sections of music.
Evolving a piece of music in this way is not entirely novel. Horner and Goldberg
(1991) explores music composition through a paradigm called thematic bridging.
In their own words, the authors define thematic bridging as “the transforma-
tion of an initial musical pattern to some final pattern over a specific duration of
time”. The results of this work were interesting but largely limited to sequences
of notes. Access to a wide range of musical parameters is simplified through live
coding languages, making directed evolution a perfect tool for composing simple
sequences of code with a vast range of sonic possibilities.

Research in deep learning with digital audio to generate and explore com-
puter music in NSynth (Engel et al., 2017) and MuseNet (Dong, Hsiao, Yang,
& Yang, 2018) produced great results compared to a regular genetic algorithm,

4 Sandeep Dasari and Jason Freeman

however, using deep learning in live performance is unsuitable. Firstly, the com-
putation power required to generate pieces on the fly while performing is inade-
quate. Secondly, the lack of active control in the generation i.e. deciphering the
deep learning parameters, the complex mapping of the hidden layers of a neu-
ral network makes it impractical for live performance. In this regard, a genetic
algorithm is simpler to understand (up to a certain degree of abstraction) and
control, making evomusic an instrument to control generative music rather than
an autonomous system.

3 Design Narrative

A considerable effort was spent in understanding the requirements of the system,
intended audience, design, and development of the software. One of the key
contributions of the system is to deliver a basic yet efficient and usable tool to
control meaningful evolutions in live coding. Studying documented experiences
and approaches of live coding practitioners helped in understanding two basic
challenges that were taken into consideration during the design phase.

3.1 Challenges in Live Coding Music

Setup time: Often live coding performers starting from scratch are forced to
have a few seconds of silence or a small piece of repetitive music playing in the
background as they set up the initial code for their performance. While evomusic
does not propose to eliminate the initial setup time, it enables the artist to create
instant evolving layers of music so that the artist can then focus on setting up
musical elements in the foreground. In Brown and Sorensen (2009), the authors
describe the need and usage of generative algorithms. In their own words: “While
it is possible to trigger sound events directly while live coding, it is much more
efficient to create generative processes that autonomously make music, freeing
the performer to build or modify code for the next stage of the performance”.

Control: Having access to a wide palette of parameters to readily tweak is a
strong feature of live coding, but the fine-grained control for each parameter can
be overwhelming. Brown and Sorensen (2009) suggests the balancing of control
and surprise is a constant challenge for generative sound artists and is better
handled by the performer than a computational agent. Although the authors are
cautious about autonomous generative agents, the requirement of human control
guiding generative algorithms is well established and used as a design guideline
for evomusic.

3.2 Software

The system uses some pre-existing standard tools in live coding music: text
editor, Atom1; Python Library for live coding, FoxDot; and an audio server, Su-

1 an open-source hackable text editor: https://atom.io

2020 Joint Conference on AI Music Creativity 5

percollider2. The functionalities of evomusic are built into an independent Atom
package. For a live coder, an interactive visual text editor is critical during a per-
formance. To start a new evolution, a Python method evolve is executed using
a key-binding Cmd/Ctrl+E. This is set apart from FoxDot’s inherent code exe-
cution key-binding Cmd/Ctrl+return to clearly differentiate between executing
a repetitive piece of code and starting an evolution of code. The parameters of
this method are parsed and used to set up the system for evolutions. In FoxDot
(Kirkbride, 2016), any sound is played through a Player(a SynthDef in Super-
Collider). A Player object is a sequencer that accepts a wide range of parameters
to generate repetitions of music. In order to start an evolution, a source player
and a destination player object are mandatory parameters to the evolve method.
Once an evolution is started, a new function is created, updated, and executed
at periodic intervals.

4 Implementation

4.1 Forming source and destination genomes

The parser evaluates each Player object into a parse tree that represents the
functionality of the Player Object and will be referred to as a genome. The
result of the parser is a JSON representation of the Player object displayed in
the Parser phase of Fig. 1. This representation is fed as input to the Genetic
Algorithm API. Traditional genetic algorithms convert all the parameters and
values into a single list of numbers. This leads to unpredictable results unsuitable
for live performance. For example, Player p1

p1 >> pads(degree=[4,6,7,2], dur=[2,2,4,0.5], amp=0.2, lpf=5000)

generates a genome [4,6,7,2,2,2,4,0.5]. Evolving this genome may create mul-
tiple generations of the following kind: [4.2,6,8.4...] where the degree(pitch) is
a microtonal value. In evomusic, this behavior can be avoided by setting step-
Size (quantization value for the current evolution) accordingly. Lastly, it must
be acknowledged that the parser is still far from an exhaustive parsing of the
FoxDot syntax. FoxDot pattern objects like PDur, PRand, PStep etc. are not
currently supported by the parser.

4.2 Implementing genetic algorithms

Genetic algorithms in JavaScript were implemented using an NPM package:
geneticalalgorithm3. The native mutation, crossover and fitness functions were
overridden to support the currently presented solution. The generated source
genome from the previous phase is used to populate the first generation of a
genetic algorithm. Default parameters for the evolve function were determined

2 platform for audio synthesis: https://supercollider.github.io
3 https://www.npmjs.com/package/geneticalgorithm

6 Sandeep Dasari and Jason Freeman

p1	>>	pads(degree=[4,6,7,2],	dur=[0.5,0.5,4,1],	amp=0.5,	chop=2)
p2	>>	pads(degree=[4,6,7,2],	dur=[0.5,0.5,4,1],	amp=0.5,	chop=2)
evolve(p1,p2,lifetime=0.5,stepSize=0.2,	population=5,	skipGenerations=300)

PARSER
{
 pname: "p1",
 type: "pads",
 attributes: {
 degree: [4,6,7,2],
 dur: [0.5,0.5,4,1],
 ..
 }
}

GENETIC ALGORITHMS

Generate directed evolutions:
1. p1 >> pads(degree=[4.2,6,2,7], ...)
2. p1 >> pads(degree=[4.7,3,6,7.2],
...)
.
.
.
.

SCHEDULER

Generate sequences of
execution based on
evolve parameters
1. lifetime
2. stepSize
3. skipGenerations
4. evolutions

@nextBar
def	evolve_p1_p2():
				p1>>pads(degree=[4,6,7,2],dur=[0.60,0.60,4.00,1.00],amp=[0.60],chop=[2])
evolve_p1_p2()
###	Evolving	from	p1	to	p2

EVOLVE	API

Fig. 1. Code generation process between text editor and evolve API displayed as a flow
diagram

through experimentation.

Mutation and Crossover: Mutation multiplies the constant mutationAmount
to create new mutations of code. Crossover applies only when the input genome
is a list of multiple values. The values of the list are swapped based on the
crossoverAmount.
Fitness Function: To facilitate a directed evolution from a source phenotype to
a destination phenotype, a trivial distance metric function, Euclidean distance,
is used.

4.3 Implementing text editor interactions

In order to control evolutions, three main operations are supported:

1. Selection and Generation of a block of code: Upon using the evolve keymap
Cmd/Ctrl+E, a new Python method is generated starting from the source
genome and executed asynchronously. @nextBar is a FoxDot specific deco-
rator that ensures that the generated function is synchronised to execute at
the beginning of the next musical bar.

2. Update player attributes: Player attributes can be overridden if needed to
allow the coder expressivity beyond the generated code.

3. Stop an evolution: An essential functionality for any musical system is to
be able to start and stop the system at will. Any evolution can be stopped
using the key map Cmd/Ctrl+Z.

2020 Joint Conference on AI Music Creativity 7

def evolve_c3_c4():

c3>>space(degree=[3,3,0,3],amp=[0.08],tremolo=[1])

c3.tremolo = 0; // override generated attributes

evolve_c3_c4()

#|########## Evolving from c3 to c4

Fig. 2. Generated function evolving Player c3 to c4

Visual feedback is added to display the progression by appending #’s in the
feedback string to reflect the states being executed. Additionally, the generated
function and the current evolution # is flashed in blue for 300ms to help the
coder keep time and control other code actions.

5 Results and Challenges

Observations drawn from personal experiences are presented to illustrate the
usage and capability of the system. The experiments or performances, in this
case, were recorded as live coding sessions and can be accessed at the project
repository4. The experiments were focused largely on expression, control, and
understanding the limitations of the system.

5.1 Expression and Control

Expression is evaluated based on the classic ceiling-floor discussion (Jack, Harri-
son, Morreale, & McPherson, 2018) in evaluating music instruments. The system
enables quick real-time interactions to start, stop and customize the generation
irrespective of the sound sources (limited only by the coding language and the
coder). The expressive possibilities of this system are rich and endless, giving it a
high ceiling of expression. However, it should be acknowledged that this system
is intended for intermediate and advanced live coders. The user is expected to set
up the system, understand and have experimented with FoxDot syntaxes, and
have knowledge of genetic algorithms and the parameters, making it a high-floor
instrument to master and perform.

During the performances, a key observation made was that the usage of
this system requires a clear structure of the piece to evolve in advance, as you
are expected to specify the end destination of the evolution. This need for a
structure can be a tool to write expressive improvisations for artists or search
for motivation between two musical nodes narrowed down by the artist. The
ability to run multiple parallel threads of evolutions is key to performing live
music. This enables the live coder to create complex textures and layers in the
track.

5.2 Limitations

Text editor interactions are limited in their expressive feedback ability. It can
be daunting to keep track of more than five evolutions happening within a code

4 https://github.com/sandcobainer/evomusic/#readme

8 Sandeep Dasari and Jason Freeman

window. A common issue observed during the performance was bugs related
to overwritten text buffers. Although limited to extreme situations, limitation
of computing resources should also be acknowledged. Generating a long piece of
more than 10000 evolutions can cause the system to crash or slow down affecting
the live performance drastically.

FoxDot allows extreme ranges of musical parameters to be executed without
validation. evomusic tries to solve this issue with a pre-compiled list to avoid
extreme parameter ranges subjectively. Although this is required to avoid upre-
dictable evolutions, the beam of search for the genetic algorithms is narrowed.
This can be perceived as a by-product rather than a limitation of the system.
The control of the system is limited beyond a certain threshold of musical ex-
pression. For example, the user currently can start evolutions and stop them.
However, the coder cannot pause an evolution or loop a section of the evolution
along the way. The coder is forced to accept the unpredictability of the system,
reducing the intended expressive capability.

6 Future Work

Drawing from the observations from Section 3 and Section 5, future work can be
done in a few different directions. This paper lacks a structured evaluation of the
system through multiple performances and users in various fields and comparison
to other similar generative systems (Hickinbotham & Stepney, 2016). The API
will be extended to support the traditional novelty search algorithm. The two
approaches will be contrasted and discussed quantitatively and qualitatively. The
system can be significantly enhanced visually and addressing the limitation of
control in pausing, looping evolutions. Evaluations should also consider the usage
of collaborative live coding frameworks as an interesting endeavor in evolving
music. These studies are critical to understanding the true potential of the system
beyond the solo performer approach.

7 Conclusion

evomusic is an initial effort to apply genetic programming in live coding mu-
sic. The system enables users to perform evolutions live and is aimed to solve
two main challenges in live coding: setup time and expressive control of genetic
algorithms. In this regard, the system is a successful endeavor in creating an
efficient framework to explore a vast array of sonic possibilities during a live
performance. The limitations of the systems are key by-products that help us
further understand live coding music requirements. The idea of applying contin-
uous evolutions in real-time in live coding is an interesting research step towards
musical creativity and formal live performance and is well worth exploring.

References 9

References

Biles, J. (1994, September). Genjam: A genetic algorithm for generating jazz
solos. In International Computer Music Conference (ICMC) (Vol. 94, pp.
131–137).

Biles, J. A. (2001). Autonomous GenJam: eliminating the fitness bottleneck by
eliminating fitness. In Proceedings of the 2001 Genetic and Evolutionary
Computation Conference Workshop Program, San Francisco.

Boden, M. A. (2009). Computer models of creativity. AI Magazine, 30 (3),
23–23.

Brown, A. R., & Sorensen, A. (2009). Interacting with generative music through
live coding. Contemporary Music Review , 28 (1), 17–29.

Collins, N., McLean, A., Rohrhuber, J., & Ward, A. (2003). Live coding in
laptop performance. Organised sound , 8 (3), 321–330.

Dahlstedt, P. (2007, September). Autonomous evolution of complete piano pieces
and performances. In Proceedings of Music AL Workshop.

Dong, H.-W., Hsiao, W.-Y., Yang, L.-C., & Yang, Y.-H. (2018). Musegan:
Multi-track sequential generative adversarial networks for symbolic music
generation and accompaniment. In AAAI Conference on Artificial Intelli-
gence. Retrieved from https://aaai.org/ocs/index.php/AAAI/AAAI18/

paper/view/17286

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck, D., & Si-
monyan, K. (2017, July). Neural audio synthesis of musical notes with
WaveNet autoencoders. In D. Precup & Y. W. Teh (Eds.), (Vol. 70, pp.
1068–1077). PMLR.

Gartland-Jones, A. (2003). MusicBlox: A Real-Time Algorithmic Composition
System Incorporating a Distributed Interactive Genetic Algorithm. In
S. Cagnoni et al. (Eds.), Applications of Evolutionary Computing (pp. 490–
501). Springer Berlin Heidelberg.

Hickinbotham, S., & Stepney, S. (2016). Augmenting Live Coding with Evolved
Patterns. In C. Johnson, V. Ciesielski, J. Correia, & P. Machado (Eds.),
Evolutionary and Biologically Inspired Music, Sound, Art and Design (pp.
31–46). Cham: Springer International Publishing.

Horner, A., & Goldberg, D. (1991). Genetic algorithms and computer-assisted
music composition. In International Computer Music Conference (ICMC).

Jack, R. H., Harrison, J., Morreale, F., & McPherson, A. P. (2018). Democratis-
ing DMIs: the relationship of expertise and control intimacy. In NIME
(pp. 184–189).

Johnson, C., & Romero, J. (2002). Genetic Algorithms in Visual Art and Music.
Leonardo, 35 , 175-184.

Kirkbride, R. (2016, October). Foxdot: Live coding with python and supercol-
lider. In Proceedings of the International Conference on Live Interfaces
(pp. 194–198).

Kirkbride, R. (2017). Troop: a collaborative tool for live coding. In Proceedings
of the 14th Sound and Music Computing Conference (pp. 104–9).

10 Sandeep Dasari and Jason Freeman

Lee, S. W., & Essl, G. (2014). Communication, control, and state sharing in
networked collaborative live coding. Ann Arbor , 1001 , 48109–2121.

Loughran, R., & O’Neill, M. (2020). Evolutionary music: applying evolution-
ary computation to the art of creating music. Genetic Programming and
Evolvable Machines, 21 , 55–85.

McLean, A., Griffiths, D., Collins, N., & Wiggins, G. (2010). Visualisation of
live code. Electronic Visualisation and the Arts (EVA 2010), 26–30.

McLean, A., & Wiggins, G. (2010). Tidal–pattern language for the live coding of
music. In Proceedings of the 7th sound and music computing conference.

Ogborn, D., Tsabary, E., Jarvis, I., Cárdenas, A., & McLean, A. (2015). Extra-
muros: making music in a browser-based, language-neutral collaborative
live coding environment. In Proceedings of the First International Confer-
ence on Live Coding (pp. 163–69).

