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METRICS FOR PITCH COLLECTIONS 

Andrew J. Milne1, William A. Sethares2, Robin Laney1, David B. Sharp1 

 
 

ABSTRACT 
Models of the perceived distance between pairs of pitch 
collections are a core component of broader models of the 
perception of tonality as a whole. Numerous different distance 
measures have been proposed, including voice-leading, 
psychoacoustic, and pitch and interval class distances; but, so far, 
there has been no attempt to bind these different measures into a 
single mathematical framework, nor to incorporate the uncertain 
or probabilistic nature of pitch perception (whereby tones with 
similar frequencies may, or may not, be heard as having the same 
pitch). 

To achieve these aims, we embed pitch collections in novel 
multi-way expectation arrays, and show how metrics between such 
arrays can model the perceived dissimilarity of the pitch 
collections they embed. By modeling the uncertainties of human 
pitch perception, expectation arrays indicate the expected number 
of tones, ordered pairs of tones, ordered triples of tones and so 
forth, that are heard as having any given pitch, dyad of pitches, 
triad of pitches, and so forth. The pitches can be either absolute or 
relative (in which case the arrays are invariant with respect to 
transposition).  

We provide a number of examples that show how the metrics 
accord well with musical intuition, and suggest some ways in 
which this work may be developed. 

1. BACKGROUND AND AIMS 
A pitch collection may comprise the pitches of tones in a chord, a 
scale, a tuning, or the virtual and spectral pitches heard in response 
to complex tones or chords. Modeling the perceived distance (the 
similarity or dissimilarity) between pairs of pitch collections has a 
number of important applications in music analysis and 
composition, in modeling of musical cognition, and in the design 
of musical tunings. For example, voice-leading distances model 
the overall distance between two chords as a function of the pitch 
distance moved by each voice (see Tymoczko (2006) for a survey); 
musical set theory considers the similarities between the interval 
(or triad, tetrad, etc.) contents of pitch collections (see Castrén 
(1994) for a survey); psychoacoustic models of chordal distance 
(Parncutt, 1989; Milne, 2009) have treated tones or chords as  
collections of virtual and spectral pitches (Terhardt, Stoll, & 
Seewann, 1982; Zwicker & Fastl, 1999) to determine their affinity; 
tuning theory requires measures that can determine the distance 
between scale tunings and, notably, the extent to which different 
scale tunings can approximate privileged tunings of intervals or 
chords (e.g., just intonation intervals with frequency ratios such as 
3/2 and 5/4, or chords with frequency ratios such as 4:5:6:7). 

 

2. METHOD 

2.1 Pitch (Class) Vectors  
A pitch (class) vector contains elements whose values indicate 
pitches (typically in semitones). Standard metrics between two 
such vectors are based only on the pitch distances between 
elements in matching positions in the two vectors. For this reason, 
such pitch metrics are only meaningful when each tone in one 
pitch collection has a privileged relationship with a unique tone in 
another pitch collection; for example, when each element 
represents a different voice (bass, tenor, alto, soprano), or scale 
degree, or even metrical or ordinal position in a melody. 

Such metrics are not suitable when the pitches cannot be uniquely 
categorized in the manner described above. This occurs when two 
collections have a different number of pitches, or when there are 
so many pitches that categorization is inappropriate. For example, 
when modeling the distance between the large sets of spectral or 
virtual pitches heard in response to complex tones or chords, there 
is no unique way to reasonably align each spectral pitch of one 
complex tone or chord with each spectral pitch of another 
(Sethares, Milne, Tiedje, Prechtl, & Plamondon, 2009) and, even 
if there were, it is not realistic to expect humans to track the 
“movements” of such a multitude of pitches. 

2.2 Expectation Arrays  
We present a novel family of pitch embeddings (expectation 
arrays), and associated metrics, that can be applied to the above 
areas. Expectation arrays model the uncertainties of pitch 
perception by “smearing” each pitch over a range of possible 
values, and the width of the smearing can be derived directly from 
experimentally determined frequency difference limens (Moore, 
Glasberg, & Shailer, 1984; Roederer, 1994). The effect of this 
pitch smearing is significant whenever pitches in one collection 
are similar, but non-identical, to pitches in another; for example, 
when comparing scales with different microtonal tunings, or the 
collections of virtual and spectral pitches produced in response to 
different chords. 

The arrays can embed either absolute or relative pitches (denoted 
absolute and relative expectation arrays, respectively): in the latter 
case, embeddings of pitch collections that differ only by 
transposition have zero distance; a useful feature that relates 
similarity to structure. 

Depending on their number of dimensions, expectation arrays 
indicate the expected number of tones, ordered pairs of tones, 
ordered triples of tones, and so forth, that will be heard as having 
any given pitch, dyad of pitches, triad of pitches, and so forth. 
This enables different pitch collections to be compared according 

1The Open University, UK 
2University of Wisconsin-Madison, USA 

ISBN: 1 876346 62 0  2010 ICMPC11

Proceedings of the 11th International Conference on Music Perception and Cognition (ICMPC11).  Seattle, Washington, USA.

S.M. Demorest, S.J. Morrison, P.S. Campbell (Eds)

77



 

 

to their monad (single pitch), dyad, triad, tetrad, and so forth, 
content. To see why such comparisons are significant, consider a 
simple example using major and minor triads: These contain the 
same set of intervals (and hence they have zero dyadic distance) 
but these intervals are arranged in different ways (and hence have 
non-zero triadic distance). Thus the two types of embedding may 
capture the way major and minor triads are heard to be 
simultaneously similar and different. 

2.3 Derivation of Expectation Arrays  
Expectation arrays are derived by transforming each element of a 
pitch vector into a characteristic (indicator) function in the pitch 
domain (as shown in left side of Figure 1). These vectors are then 
weighted by their salience (probability of being heard (Parncutt, 
1989)) and convolved with a probability mass function, which 
“smears” the spikes over a range of pitch values to model 
perceptual uncertainty (see the right side of Figure 1).  

The salience value of tone i at pitch j is denoted              and these 
values are used to calculate the family of expectation arrays 
detailed below. 

If it is assumed that the hearing of any tone does not affect the 
probability of hearing any other tone, the expected number of 
tones that will be heard as having pitch (class) j is given by the 
absolute monad expectation array          , which contains elements 

 

 

 

where d is the number of tones.  

The expected number of tones that will be heard, regardless of 
pitch, is given by summing the absolute monad expectation array 
over j to give the relative monad expectation array            (this 
“array” is actually a scalar) 

 

 

 

The expected number of ordered pairs of tones that will be heard 
as having the dyad of pitches j and j + k2 is given by the absolute 
dyad expectation array          , which contains elements 

 

 
 
where D = {1, 2, …, d}. 

The expected number of ordered pairs of tones that will be heard 
as having the interval k2 is given by summing the absolute dyad 
expectation array over j to give the relative dyad expectation  
array           , which contains elements  

  

 

 

This process can be continued for triads of pitches, tetrads of 
pitches, pentads of pitches, and so forth. A generalized form for 
absolute r-ad expectation arrays can be written accordingly: 

 

 

 

where k1 = 0. Relative r-ad expectation arrays are given by 
summing over j. 

The time taken to calculate the arrays can be substantially 
decreased by using algebraic manipulations, only calculating for 
non-zero values, and taking advantage of symmetries in the 
resulting array to calculate only those values that are not 
duplicated. (A full description of these methods is beyond the 
scope of this short paper).  

3. APPLICATIONS 
We present here a few examples of applications of the expectation 
arrays. 

3.1 Tonal affinity 
Figure 2 shows the spectral distance between the spectral pitches 
(first ten harmonics of each tone) of a reference major triad and all 
12-tone equal temperament triads that contain a perfect fifth. The 
spectral distance is calculated using absolute monad expectation 
arrays and a cosine metric. The horizontal axis shows the pitch 
distance from the reference triad’s root and fifth, the vertical axis 
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Figure 1. Pitch domain embeddings of two tones—one with a pitch of 400 cents, the other with

a pitch of 401 cents. On the left, no smoothing is applied, so their distance under any standard

metric is maximal; on the right, Gaussian smoothing (standard deviation of 3 cents) is applied,

so their distance under any standard metric is small.

where [x] rounds x to the nearest integer and δ(k) is the Kronecker delta function that

is 1 when k = 0 and 0 for all k �= 0.

Example 3.1 Given q = 12, xpc = (0, 3, 3, 7) (i.e., a close position minor chord with a

doubled third), and xw = (1, .6, .6, 1), (4) gives the pitch class salience matrix Xpcs =�
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 .6 0 0 0 0 0 0 0 0
0 0 0 .6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0

�
.

Pitch values in the pc-vector are rounded to the nearest pitch unit (whose size is

determined by q and b) when embedded in the pitch domain. Using a low value of q (like

12 in the Example 3.1) makes such pitch domain embeddings insensitive to the small

changes in tuning that are important when exploring the distances between differently
tuned scales, or between collections of virtual and spectral pitches. Embedding into a

more finely grained pitch domain (such as q = 1200) must be done with care. For example,

under any standard metric, the distance between a tone with a pitch of 400 cents and a

tone with a pitch of 401 cents is maximally large (i.e., there is no pair of pitches that will

produce a greater distance, see the left side of Figure 1). This is counter to perception

since it is likely that two such tones will be heard as having pitches that are identical.

The solution is to smooth each spike over a range of pitches to account for perceptual

inaccuracies and uncertainties. Indeed, a central tenet of signal detection theory [11] is

that a stimulus produces an internal (perceptual) response that may be characterised as

consisting of both signal plus noise. The noise component is typically assumed to have a

Gaussian distribution, so the internal response to a specific frequency may be modelled as

a Gaussian centred on that frequency. It is this noise component that makes the frequency

difference limen greater than zero: when two tones of similar, but non-identical, frequency

are played successively, the listener may, incorrectly, hear them as having the same pitch.

The right side of Figure 1, for instance, shows the effect of smoothing with a Gaussian

kernel with a standard deviation of 3 cents. See Appendix A for a detailed discussion of

this parameter.

The smoothing is achieved by convolving each row vector in the pitch class salience

matrix Xpcs with a probability mass function. The pitch class response matrix Xpcr ∈
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4.1. Monad expectation arrays

The absolute monad expectation vector X(1)
e indicates the expected number of tones that

will be heard as corresponding to each possible pitch (class) j. It useful for comparing the

similarity of pitch collections where absolute pitch is meaningful; for example, comparing

the spectral or virtual pitches produced by two complex tones or chords in order to

determine their affinity or fit (see Ex. 6.2). The elements of X(1)
e are

xej =

d�

i=1

xpcri,j , (6)

which is equivalent to the column sum of Xpcr. Applied to Example 3.2, (6) produces

X(1)
e = (0.5, 0.25, 0.3, 0.6, 0.3, 0, 0.25, 0.5, 0.25, 0, 0, 0.25).
When there is no probabilistic smoothing, and every voice has a salience of 1, the

monad expectation vector is equivalent to a multiplicity function of the rounded pitch

(class) vector; that is, xej =

d�
i=1

δ(j −
�
xpci

�
). For example, given the pitch class vec-

tor for a four-voice minor triad with a doubled third (0, 3, 3, 7), a weighting vector

of (1, 1, 1, 1), and no smoothing, the resulting absolute monad expectation vector is

X(1)
e = (1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0).

The relative monad expectation scalar X̂
(0)
e gives the overall number of tones that

will be heard (at any pitch). It can be calculated by summing X(1)
e over j or, more

straighforwardly, as the sum of the elements of the weighting vector

x̂e =
q−1�

j=0

xej =

d�

i=1

xwi (7)

Applied to Example 3.2, (7) gives X̂
(0)
e = 3.2.

4.2. Dyad expectation arrays

The absolute dyad expectation matrix X(2)
e indicates the expected number of tone pairs

that will be heard as corresponding to any given dyad of absolute pitches. It is useful

for comparing the absolute dyadic structures of two pitch collections; for example, to

compare scales according to the number of dyads they share—the scales C major and F

major contain many common dyads and so have a small distance (.1548), the scales C

major and F� major contain just one common dyad {B, F} and so have a large distance

(.7818). (These distances are calculated with a cosine metric (17) and q = 12.)

INTRO NEEDED The indices k2, k3, . . . , kr indicate the pitch of tones relative to a

specified pitch j. Thus j, k2, k3 identifies a pitch collection with the pitches j, j+k2, and
j + k3. Given two tones indexed by 1 and 2, there are two ordered pairs (1, 2) and (2, 1);
the probability of hearing tone 1 as having pitch j and tone 2 as having pitch j + k2
is given by xpcr1,jxpcr2,j+k2

. Similarly, the probability of hearing tone 2 as having pitch

j and tone 1 as having pitch j + k2 is given by xpcr2,jxpcr1,j+k2
. Given two tones, the
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expected number of ordered tone pairs that will be heard as having pitches j and j + k2

is, therefore, given by xpcr1,jxpcr2,j+k2
+ xpcr2,jxpcr1,j+k2

.

Similarly, given three tones indexed by 1, 2, and 3, there are six ordered pairs (1, 2),
(1, 3), (2, 1), (2, 3), (3, 1), and (3, 2); the probability of hearing each pair as having
pitches j and j + k2, respectively, are xpcr1,jxpcr2,j+k2

, xpcr1,jxpcr3,j+k2
, xpcr2,jxpcr1,j+k2

,

xpcr2,jxpcr3,j+k2
, xpcr3,jxpcr1,j+k2

, xpcr3,jxpcr2,j+k2
. Given three tones, the expected num-

ber of ordered tone pairs heard as having pitches j and j+ k2 is given by the sum of the
above probabilities.

Generalising for any number of tones, the absolute dyad expectation matrix, X(2)
e ∈

Rq×q, contains elements

xej,k2
=

�

(i1,i2)∈D2:
i1 �=i2

xpcri1,j
xpcri2,j+k2

, (8)

where D = {1, 2, . . . , d}. Element indices j and k2 indicate the pitches j and j + k2. The
element value indicates the expected number of ordered pairs of tones heard as having
those pitches.
Equation (8) requires O(d2) operations for each element. Letting Xk represent the kth

column of the pitch class response matrix Xpcr and 1�d ∈ Rd be the vector of all ones,
this can be simplified to O(d) using Lemma B.1 to

xej,k2
=

�
1�dXj

� �
1�dXj+k2

�
−X�

jXj+k2
. (9)

For example, given the pitch class vector for a four-voice minor triad with a doubled third
(0, 3, 3, 7), a weighting vector of (1, 1, 1, 1), and no smoothing, the resulting absolute dyad

expectation matrix is X(2)
e =





0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 2 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




.

The relative dyad expectation vector X̂
(1)
e indicates the expected number of tone pairs

that will be heard as corresponding to any given dyad of relative pitches. It is useful
for comparing the intervallic structures of two or more pitch collections regardless of
transposition. For example, to compare the number of intervals that two pitch collections
have in common or to compare different pitch collections by the number, and tuning
accuracy, of a specific set of privileged intervals they each contain. See, for instance,
Example 6.4, which compares thousands of scale tunings to a set of just intonation
intervals.
Summing X(2)

e over j gives the relative dyad expectation vector

X̂
(1)
e =

�

j

xej,k2
∈ Rq (10)

The elements x̂ek2
of X̂

(1)
e , are indexed by k2 ∈ [0 .. q − 1] where the index indicates

interval class. Assuming the independence of voice saliences, the values are the expected
number of ordered tone pairs heard as having that interval, regardless of transposition.
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for comparing the intervallic structures of two or more pitch collections regardless of
transposition. For example, to compare the number of intervals that two pitch collections
have in common or to compare different pitch collections by the number, and tuning
accuracy, of a specific set of privileged intervals they each contain. See, for instance,
Example 6.4, which compares thousands of scale tunings to a set of just intonation
intervals.
Summing X(2)

e over j gives the relative dyad expectation vector X̂
(1)
e ∈ Rq with elements

x̂ek2
indexed by 0 ≤ k2 ≤ q − 1, where the index indicates interval class:

x̂ek2
=

�

j

xej,k2
(10)

Assuming the independence of voice saliences, the values are the expected number of
ordered tone pairs heard as having that interval, regardless of transposition.
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the probability of hearing tone 1 as having pitch j and tone 2 as having pitch j + k2
is given by xpcr1,jxpcr2,j+k2

. Similarly, the probability of hearing tone 2 as having pitch

j and tone 1 as having pitch j + k2 is given by xpcr2,jxpcr1,j+k2
. Given two tones, the
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4.1. Monad expectation arrays

The absolute monad expectation vector X(1)
e indicates the expected number of tones that

will be heard as corresponding to each possible pitch (class) j. It useful for comparing the

similarity of pitch collections where absolute pitch is meaningful; for example, comparing

the spectral or virtual pitches produced by two complex tones or chords in order to

determine their affinity or fit (see Ex. 6.2). The elements of X(1)
e are

xej =

d�

i=1

xpcri,j , (6)

which is equivalent to the column sum of Xpcr. Applied to Example 3.2, (6) produces

X(1)
e = (0.5, 0.25, 0.3, 0.6, 0.3, 0, 0.25, 0.5, 0.25, 0, 0, 0.25).
When there is no probabilistic smoothing, and every voice has a salience of 1, the

monad expectation vector is equivalent to a multiplicity function of the rounded pitch
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d�
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δ(j −
�
xpci

�
). For example, given the pitch class vec-
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The relative monad expectation scalar X̂
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e over j or, more
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x̂e =
q−1�
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xej =

d�

i=1

xwi (7)

Applied to Example 3.2, (7) gives X̂
(0)
e = 3.2.
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The absolute dyad expectation matrix X(2)
e indicates the expected number of tone pairs

that will be heard as corresponding to any given dyad of absolute pitches. It is useful

for comparing the absolute dyadic structures of two pitch collections; for example, to

compare scales according to the number of dyads they share—the scales C major and F

major contain many common dyads and so have a small distance (.1548), the scales C

major and F� major contain just one common dyad {B, F} and so have a large distance

(.7818). (These distances are calculated with a cosine metric (17) and q = 12.)
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expected number of ordered tone pairs that will be heard as having pitches j and j + k2

is, therefore, given by xpcr1,jxpcr2,j+k2
+ xpcr2,jxpcr1,j+k2

.

Similarly, given three tones indexed by 1, 2, and 3, there are six ordered pairs (1, 2),
(1, 3), (2, 1), (2, 3), (3, 1), and (3, 2); the probability of hearing each pair as having
pitches j and j + k2, respectively, are xpcr1,jxpcr2,j+k2

, xpcr1,jxpcr3,j+k2
, xpcr2,jxpcr1,j+k2

,

xpcr2,jxpcr3,j+k2
, xpcr3,jxpcr1,j+k2

, xpcr3,jxpcr2,j+k2
. Given three tones, the expected num-

ber of ordered tone pairs heard as having pitches j and j+ k2 is given by the sum of the
above probabilities.

Generalising for any number of tones, the absolute dyad expectation matrix, X(2)
e ∈

Rq×q, contains elements

xej,k2
=

�

(i1,i2)∈D2:
i1 �=i2

xpcri1,j
xpcri2,j+k2

, (8)

where D = {1, 2, . . . , d}. Element indices j and k2 indicate the pitches j and j + k2. The
element value indicates the expected number of ordered pairs of tones heard as having
those pitches.
Equation (8) requires O(d2) operations for each element. Letting Xk represent the kth

column of the pitch class response matrix Xpcr and 1�d ∈ Rd be the vector of all ones,
this can be simplified to O(d) using Lemma B.1 to

xej,k2
=

�
1�dXj

� �
1�dXj+k2

�
−X�

jXj+k2
. (9)

For example, given the pitch class vector for a four-voice minor triad with a doubled third
(0, 3, 3, 7), a weighting vector of (1, 1, 1, 1), and no smoothing, the resulting absolute dyad

expectation matrix is X(2)
e =





0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 2 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




.

The relative dyad expectation vector X̂
(1)
e indicates the expected number of tone pairs

that will be heard as corresponding to any given dyad of relative pitches. It is useful
for comparing the intervallic structures of two or more pitch collections regardless of
transposition. For example, to compare the number of intervals that two pitch collections
have in common or to compare different pitch collections by the number, and tuning
accuracy, of a specific set of privileged intervals they each contain. See, for instance,
Example 6.4, which compares thousands of scale tunings to a set of just intonation
intervals.
Summing X(2)

e over j gives the relative dyad expectation vector X̂
(1)
e ∈ Rq with elements

x̂ek2
indexed by 0 ≤ k2 ≤ q − 1, where the index indicates interval class:

x̂ek2
=

�

j

xej,k2
(10)

Assuming the independence of voice saliences, the values are the expected number of
ordered tone pairs heard as having that interval, regardless of transposition.

Figure 1: The effect of probabilistic smoothing on pitch domain embeddings. 
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Rd×q is given by

xpcri,j = xpcsi,j ∗ pj (5)

where pj is a discrete probability mass function (i.e., pj ≥ 0 and
�

pj = 1), and ∗ is
convolution (circular over the period q when a pc-vector is used). The result of (5) is
that each Kronecker delta “spike” in Xpcs is smeared by the shape of the probability
mass function and scaled so the sum of all its elements is the salience of the voice.

Example 3.2 Let the probability mass function be triangular with a full width at half
maximum of two semitones; this is substantially less accurate than human pitch percep-
tion and a much finer pitch granulation (like cents) would ordinarily be required, but it
illustrates the mathematics. Applying this to the pitch class salience matrix of Example

3.1 gives the pitch class response matrix Xpcr =

�
.5 .25 0 0 0 0 0 0 0 0 0 .25
0 0 .15 .3 .15 0 0 0 0 0 0 0
0 0 .15 .3 .15 0 0 0 0 0 0 0
0 0 0 0 0 0 .25 .5 .25 0 0 0

�
.

4. Expectation arrays

The values in the pitch class response matrix represent probabilities; this means it is
possible to derive two useful types of array embeddings: (a) expectation arrays indicate
the expected number of tones, ordered pairs of tones, ordered triples of tones, and so
forth, that will be heard as having any given pitch, dyad of pitches, triad of pitches, and
so forth; and (b) salience arrays indicate the salience of any given pitch, dyad of pitches,
triad of pitches, and so forth.
Example 3.2 will help to clarify this distinction: The expected number of tones heard

at pitch class 3 is 0.6 (the sum of elements with j = 3); this does not mean it is possible
to hear a non-integer number of tones, it means that over a large number of “trials” an
average of 0.6 tones will be heard at pitch class 3 (e.g., given one hundred trials, listeners
might hear two tones at pitch class 3 in nine trials, one tone at pitch 3 in forty two trials,
and hear no tones at pitch 3 in forty nine trials). The salience (probability of hearing) a
pitch class of 3 is 1−((1− 0)(1− .3)(1− .3)(1− 0)) = .51 so, given one hundred trials, we
expect listeners to hear pitch class 3 a total of fifty-one times (regardless of the number
of tones heard at that pitch). This paper focuses on expectation arrays.
Expectation arrays may be absolute or relative: absolute expectation arrays, denoted

Xe, distinguish pitch collections that differ by transposition (e.g., the scales C major and
D major), while relative expectation arrays, denoted X̂e, do not.
Expectation arrays enable different pitch collections to be compared according to their

monad (single pitch), dyad, triad, tetrad, and so forth, content. To see why such com-
parisons are significant, consider a simple example using major and minor triads (0, 4, 7)
and (0, 3, 7) with q = 12. These contain the same set of intervals (and hence they have
zero dyadic distance) but these intervals are arranged in different ways (and hence have
non-zero triadic distance). Thus the two types of embedding may capture the way major
and minor triads are heard to be simultaneously similar and different. matlab rou-
tines were used to calculate the arrays discussed below; they can be downloaded from
http://eceserv0.ece.wisc.edu/~sethares/pitchmetrics.html.
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Equation (11) requires O(d3) operations for each element, but can be simplified as in
Lemma B.2 to

xej,k2,k3
=

�
1�dXj

� �
1�dXj+k2

� �
1�dXj+k3

�
−
�
1�dXj+k3

�
X�

jXj+k2
(12)

−
�
1�dXj+k2

�
X�

jXj+k3
−
�
1�dXj

�
X�

j+k2
Xj+k3

+ 21�d (Xj .Xj+k2
.Xj+k3

) ,

where A.B means the element by element product of the vectors A and B and where
j+km is taken as j+km (mod q) when using pitch class vectors. Equation (12) requires

O(d) operations for each element of X(3)
e .

The relative triad expectation matrix X̂
(2)
e indicates the expected number of ordered

tone triples that will be heard as corresponding to any given triad of relative pitches. It
is useful for comparing the triadic structures of two or more pitch collections, regardless
of transposition. For example, to compare the number of triad types two pitch collections
have in common; or to compare pitch collections by the number, and tuning accuracy, of
a specific set of privileged triads they each contain. Example 6.4 compares thousands of
scale tunings against a just intonation triad.

Summing X(3)
e over j gives the relative triad expectation matrix

X̂
(2)
e =

�

j

xej,k2,k3
∈ Rq×q (13)

with elements x̂ek2,k3
. Element indices k2 and k3 indicate two intervals with j (which

together make a triad). Assuming independence of voice saliences, the element values
are the expected number of ordered tone triples that are heard as corresponding to that
triad of relative pitches.
For example, given the pitch class vector for a four-voice minor triad with a doubled

third (0, 3, 3, 7), a weighting vector of (1, 1, 1, 1), and no smoothing, the resulting relative

triad expectation matrix is X̂
(2)
e =





0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 2 0 0 0 0
2 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 2 0 0 0
2 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




.

4.4. r-ad expectation arrays

The definitions and techniques of Sections 4.1–4.3 can be generalised to an array with

any number of dimensions. An absolute r-ad expectation array, X(r)
e ∈ R

r� �� �
q × q × · · ·× q,

contains elements

xej,k2,...,kr
=

�

(i1,...,ir)∈Dr:
in �=io

r�

m=1

xpcrim,j+km
(14)
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shows the pitch distance from the reference triad’s third. All 
root-position major and minor triads lie on the central diagonal 
and some of these have been labeled for reference. The darker the 
grey the smaller the spectral distance from the reference triad (i.e., 
the greater the spectral affinity). 

 

 

 

 

 

 

 

 

 

 

 

 

This model suggests that the triad pair {C-major, d-minor} has 
greater spectral affinity (lower distance) than the neighboring triad 
pair {C-major, D-major}; the triad pair {C-major, F-major} has 
greater spectral affinity than the neighboring triad pair {C-major, 
F!-major}; the triad pair {C-major, e-minor} has greater spectral 
affinity than the neighboring triad pair {C-major, E-major}; and so 
forth. These results seem indicative of the tonal function of these 
triad pairings: the latter pair in each case is typically heard as 
requiring resolution, the former pair in each case is not (Milne, 
2009). This suggests that such metrics may provide effective 
models for the feelings of expectation and resolution induced by 
successions of chords in tonal-harmonic music. 

3.2 Tuning systems 
Figure 3 shows the distance (using relative dyad expectation 
arrays and a cosine metric) between all equal temperaments from 
2 steps per octave to 102 steps per octave. 

 

 

 

 

 

 

 

 

It is interesting to observe that the distances approach a flat line 
where increasing the number of divisions of the octave is no 
longer beneficial, and that the most prominent minima fall at the 
familiar 12-tone equal temperament and at other alternative equal 
tunings (e.g., 19-, 22-, 31-, 34-, 41-, 46-, and 53-edo) that are 
well-known in the microtonal literature. 

Figure 4 shows the distances between the relative expectation 
embeddings (dyadic on the right, triadic on the left) of a just 
intonation major triad {0, 386.3, 702} and the seven-tone scales 
generated by an interval whose size is incremented from 0 cents to 
1199.9 cents (in 0.1 cent increments). (Note that if the same 
distance measure is used for the whole tuning range, the chart is 
symmetrical about the line connecting 0 and 600 cents.) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is interesting to observe that for low-cardinality generated scales 
(such as this seven-tone scale) there are many tunings that provide 
a large number of good approximations to the intervals in the just 
intonation triad (the perfect fifth and major and minor thirds and 
their inversions), but only a few tunings provide a large number of 
good approximations to a complete major triad (and notably the 
best, in this model, is the familiar meantone tuning of 
approximately 696 cents). 

4. DISCUSSION 
We have presented a novel family of embeddings and metrics for 
determining the distance between pitch collections. The 
embeddings are based upon psychoacoustic principles (through the 
use of Gaussian smoothing) and may be useful as components in 
broader models of the perception and cognition of music. Indeed, 
to model any specific aspect of musical perception, a variety of 
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Figure 4. The distance (using the cosine metric on relative dyad expectation embeddings with a

Gaussian smoothing kernel of 3 cents standard deviation) between a just intonation major triad

(0, 386.3, 702) and all n-edos from n = 2 to n = 102.

Many useful musical pitch collections are high-dimensional; for example, just intonation

intervals and chords like 4:5:6 and 4:5:6:7 are three- and four-dimensional, respectively.

But lower-dimensional tunings (principally one and two-dimensional) also have a number

of musically useful features; notably, they facilitate modulation between keys, they can

generate scales with simply patterned structures (equal step scales in the case of 1-D

tunings, well-formed scales in the case of 2-D tunings [15]), and the tuning of all tones

in the scale can be meaningfully controlled, by a musician, with a single parameter [16].

Given the structural advantages of low-dimensional generated scales, it is useful to find

examples of such scales that also contain a high proportion of tone-tuples whose pitches

approximate privileged higher-dimensional intervals and chords. A familiar example is

the chromatic scale generated by the 100 cent semitone, which contains twelve triads

(one for each scale degree) tuned reasonably close to the just intonation major triad;

another familiar example is the meantone tuning of the diatonic scale (generated by a a

period of approximately 1200 cents and a generator of approximately 697 cents), which

contains three major triads whose tuning is very close to the just intonation major triad.

There are, however, numerous alternative—and less familiar—possibilities.

Given a privileged pitch class collection embedded in an expectation array, it is easy

to calculate its distance from a set of n-edos (up to any given value of n).

Example 6.3 1-D approximations to 4:5:6 (JI major triad). The just intonation major

triad contains all (and only) the common-practice harmonic consonances (i.e., the perfect

fifth and fourth, and the major and minor thirds and sixths). It is, therefore, interesting

to find tunings that produce simple scales containing many of these intervals. The just

intonation major triad with tuning ratios of 4 : 5 : 6 is approximated by (0, 386.3, 700)
cents. Figure 4 shows the cosine distance between the relative dyad expectation array

embeddings of the JI major triad and all n-edos from n = 2 to 102.

Observe that the distances approach a flat line where increasing n is no longer ben-

eficial, and that the most prominent minima fall at the familiar 12-edo and at other

alternative n-edo’s (e.g., 19-, 22-, 31-, 34-, 41-, 46-, and 53-edo) that are well-known in

the microtonal literature.

A two-dimensional tuning has two generating intervals with sizes, in log (f), denoted
α and β. All intervals in the tuning can be generated by α and β. A β-chain is generated

by stacking integer multiples of β for all integers in a finite range of values, so a 19-tone

β-chain might consist of the notes jα − 9β, jα − 8β, . . . , jα + 8β, jα + 9β. Given an

arbitrary set of privileged intervals with a period of repetition ρ (typically 1200 cents),

how can similar two-dimensional tunings be found? It is logical to make the tuning of

Figure 3: The distance between embeddings of a just intonation 
major triad and equal divisions of the octave. 
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Figure 3. The spectral pitch affinities (calculated with the cosine metric on monad expectation

vectors with 3 cents Gaussian smoothing) between a 12-edo reference major triad and all possible

12-edo triad containing a perfect fifth. The spectral affinity is plotted against the voice-leading

distances (calculated using an �p-metric on pitch vectors). The horizontal axis shows the voice-

leading distance (in cents) between the roots and fifths of the each possible triad and the root

and fifth of the reference triad; the vertical axis shows the pitch distance between the thirds of

each possible triad and the reference triad. The greyscale indicates the spectral pitch affinity (the

darker, the greater the affinity). A selection of triads is labelled.

Example 6.2 Affinities of triads. Figure 3 shows the spectral pitch affinities (darker color

indicates greater spectral affinity) between a 12-edo reference major triad (with three

voices) and all possible 12-edo triads containing a perfect fifth. All possible root-position

major and minor triads lie on the central diagonal, some of which are labelled.

Observe how there is a more complex patchwork of differing affinities than in Figure 2;

this model suggests that the triad pair {C major, d minor} has greater spectral affinity

than the neighbouring triad pair {C major, D major}; the triad pair {C major, F major}
has greater spectral affinity than the neighbouring triad pair {C major, F� major}; the
triad pair {C major, e minor} has greater spectral affinity than the neighbouring triad

pair {C major, E major}; and so forth. These results seem indicative of the tonal function

of these triad pairings: the latter pair in each case is typically heard as requiring resolu-

tion, the former pair in each case is not [3]. This suggests that such metrics may provide

effective models for the feelings of expectation and resolution induced by successions of

chords in tonal-harmonic music.

6.2. Temperaments

The embeddings and metrics can be used to find effective temperaments, which are lower-

dimensional tunings that provide good approximations of higher-dimensional tunings

[14]. The dimension of a tuning is the minimum number of unique intervals (expressed

in a log(f) measure like cents or semitones) that are required to generate, by linear

combination, all of its intervals.

Figure 2: Spectral distances between a reference C-major triad 
and all possible three-voice triads with a perfect fifth. 

Figure 4: Distances (dyadic on the right, triadic on the left) 
between a just intonation major triad {0, 386.3, 702} and the 
seven-tone scales generated by an interval whose size is 
incremented from 0 cents to 1199.9 cents. 
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Figure 6. The cosine distance between relative dyad embeddings (right) and relative triad embed-

dings (left) of a just intonation major triad {0, 386.3, 702} and a 7-tone β-chain whose β-tuning
ranges from 0 to 1,199.9 cents. The smoothing is Gaussian with a standard deviation of 3 cents.

cents) when embedded in relative dyad and relative triad expectation arrays. The left

side shows triad embeddings, the right side shows dyad embeddings.

Observe that, for low cardinality generated scales (like this seven-tone scale), only a

few tunings provide tone triples that are reasonably close to the just intonation major

triad: the meantone generated scale (β ∼ 696 cents) contains three major triads, the

magic scale (β ∼ 820 cents) contains two major triads, the porcupine scale (β ∼ 1, 037
cents) contains two major triads (but with less accurate tuning than the magic), the

hanson scale (β ∼ 883 cents) scale contains only one major triad (tuned extremely close

to just intonation). As the cardinality of the β-chain is increased, the distances between

the triadic embeddings approach those of the dyadic.

Example 6.5 2-D approximations to 3:5:7 (7-limit Bohlen-Pierce triad). The above two

examples have used familiar tonal structures (the octave of 1200 cents and the major

triad), but the methods are equally applicable to any alternative structure. One such

is the Bohlen-Pierce scale, which is intended for spectra containing only odd numbered

harmonics. It has a period of 3/1 (the “tritave”), which is approximated by 1902 cents.

The 3 : 5 : 7 triad, which is approximated by {0, 884.4, 1466.9} cents, is treated as a

consonance. Figure 7 shows the distance of a β-chain of 19 notes with 0 < β < 951 cents

with a Gaussian smoothing of 3 cents standard deviation. The closest tuning is found at

439.5 cents, which is almost equivalent to 3×1902/13 and so corresponds to the 13-equal

divisions of the tritave tuning suggested by Bohlen and Pierce.
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appropriate embeddings may be linearly combined, with their 
weightings, the weightings of the tone saliences (if appropriate), 
and the type of metric, as free parameters to be determined from 
experimental data. 

We have focused on expectation arrays, but the underlying pitch 
(class) response matrices can also be used to generate salience 
arrays, which give the probability of hearing any given r-ad of 
pitches. There may also be scope in applying Fourier transforms to 
the embeddings in order to determine similarities in the spectrum 
of equal temperaments that approximate various pitch collections. 

The methods are also applicable to any domain involving the 
perception of discrete stimuli. An obvious example is the 
perception of timing in rhythms, with time replacing pitch so the 
smoothing represents perceptual or cognitive inaccuracies in 
timing; for example, it might be possible to embed a rhythmic 
motif containing four events in a relative tetrad expectation matrix 
(in the time domain), and compare this with a selection of other 
similarly embedded rhythm patterns to find one with the closest 
match (i.e., one that contains the greatest number of patterns that 
are similar to the complete motif). 
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