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METRICS FOR PITCH COLLECTIONS

Andrew J. Milne', William A. Sethares®, Robin Laney', David B. Sharp'

'"The Open University, UK
*University of Wisconsin-Madison, USA

ABSTRACT

Models of the perceived distance between pairs of pitch
collections are a core component of broader models of the
perception of tonality as a whole. Numerous different distance
measures have been proposed, including voice-leading,
psychoacoustic, and pitch and interval class distances; but, so far,
there has been no attempt to bind these different measures into a
single mathematical framework, nor to incorporate the uncertain
or probabilistic nature of pitch perception (whereby tones with
similar frequencies may, or may not, be heard as having the same
pitch).

To achieve these aims, we embed pitch collections in novel
multi-way expectation arrays, and show how metrics between such
arrays can model the perceived dissimilarity of the pitch
collections they embed. By modeling the uncertainties of human
pitch perception, expectation arrays indicate the expected number
of tones, ordered pairs of tones, ordered triples of tones and so
forth, that are heard as having any given pitch, dyad of pitches,
triad of pitches, and so forth. The pitches can be either absolute or
relative (in which case the arrays are invariant with respect to
transposition).

We provide a number of examples that show how the metrics
accord well with musical intuition, and suggest some ways in
which this work may be developed.

1. BACKGROUND AND AIMS

A pitch collection may comprise the pitches of tones in a chord, a
scale, a tuning, or the virtual and spectral pitches heard in response
to complex tones or chords. Modeling the perceived distance (the
similarity or dissimilarity) between pairs of pitch collections has a
number of important applications in music analysis and
composition, in modeling of musical cognition, and in the design
of musical tunings. For example, voice-leading distances model
the overall distance between two chords as a function of the pitch
distance moved by each voice (see Tymoczko (2006) for a survey);
musical set theory considers the similarities between the interval
(or triad, tetrad, etc.) contents of pitch collections (see Castrén
(1994) for a survey); psychoacoustic models of chordal distance
(Parncutt, 1989; Milne, 2009) have treated tones or chords as
collections of virtual and spectral pitches (Terhardt, Stoll, &
Seewann, 1982; Zwicker & Fastl, 1999) to determine their affinity;
tuning theory requires measures that can determine the distance
between scale tunings and, notably, the extent to which different
scale tunings can approximate privileged tunings of intervals or
chords (e.g., just intonation intervals with frequency ratios such as
3/2 and 5/4, or chords with frequency ratios such as 4:5:6:7).

2. METHOD

2.1 Pitch (Class) Vectors

A pitch (class) vector contains elements whose values indicate
pitches (typically in semitones). Standard metrics between two
such vectors are based only on the pitch distances between
elements in matching positions in the two vectors. For this reason,
such pitch metrics are only meaningful when each tone in one
pitch collection has a privileged relationship with a unique tone in
another pitch collection; for example, when each element
represents a different voice (bass, tenor, alto, soprano), or scale
degree, or even metrical or ordinal position in a melody.

Such metrics are not suitable when the pitches cannot be uniquely
categorized in the manner described above. This occurs when two
collections have a different number of pitches, or when there are
so many pitches that categorization is inappropriate. For example,
when modeling the distance between the large sets of spectral or
virtual pitches heard in response to complex tones or chords, there
is no unique way to reasonably align each spectral pitch of one
complex tone or chord with each spectral pitch of another
(Sethares, Milne, Tiedje, Prechtl, & Plamondon, 2009) and, even
if there were, it is not realistic to expect humans to track the
“movements” of such a multitude of pitches.

2.2 Expectation Arrays

We present a novel family of pitch embeddings (expectation
arrays), and associated metrics, that can be applied to the above
areas. Expectation arrays model the uncertainties of pitch
perception by “smearing” each pitch over a range of possible
values, and the width of the smearing can be derived directly from
experimentally determined frequency difference limens (Moore,
Glasberg, & Shailer, 1984; Roederer, 1994). The effect of this
pitch smearing is significant whenever pitches in one collection
are similar, but non-identical, to pitches in another; for example,
when comparing scales with different microtonal tunings, or the
collections of virtual and spectral pitches produced in response to
different chords.

The arrays can embed either absolute or relative pitches (denoted
absolute and relative expectation arrays, respectively): in the latter
case, embeddings of pitch collections that differ only by
transposition have zero distance; a useful feature that relates
similarity to structure.

Depending on their number of dimensions, expectation arrays
indicate the expected number of tones, ordered pairs of tones,
ordered triples of tones, and so forth, that will be heard as having
any given pitch, dyad of pitches, triad of pitches, and so forth.
This enables different pitch collections to be compared according
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Figure 1: The effect of probabilistic smoothing on pitch domain embeddings.

to their monad (single pitch), dyad, triad, tetrad, and so forth,
content. To see why such comparisons are significant, consider a
simple example using major and minor triads: These contain the
same set of intervals (and hence they have zero dyadic distance)
but these intervals are arranged in different ways (and hence have
non-zero triadic distance). Thus the two types of embedding may
capture the way major and minor triads are heard to be
simultaneously similar and different.

2.3 Derivation of Expectation Arrays

Expectation arrays are derived by transforming each element of a
pitch vector into a characteristic (indicator) function in the pitch
domain (as shown in left side of Figure 1). These vectors are then
weighted by their salience (probability of being heard (Parncutt,
1989)) and convolved with a probability mass function, which
“smears” the spikes over a range of pitch values to model
perceptual uncertainty (see the right side of Figure 1).

The salience value of tone i at pitch j is denoted Zpcr; j and these
values are used to calculate the family of expectation arrays
detailed below.

If it is assumed that the hearing of any tone does not affect the
probability of hearing any other tone, the expected number of
tones that will be heard as having pitch (class) j is given by the
absolute monad expectation array Xe /> which contains elements

d
l'ej = E xpcri’j>
=1

where d is the number of tones.

The expected number of tones that will be heard, regardless of
pitch, is given by summing the absolute monad expectation array
over j to give the relative monad expectation array Xe (this
“array” is actually a scalar)

The expected number of ordered pairs of tones that will be heard
as having the dyad of pitches j and j + k, is given by the absolute
dyad expectation array xe2 , which contains elements
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where D= {1,2, ..., d}.

The expected number of ordered pairs of tones that will be heard
as having the interval &, is given by summing the absolute dyad
expectation array over j to give the relative dyad expectation

array )A(elz which contains elements

Ley, = Z Lej L,

J

This process can be continued for triads of pitches, tetrads of
pitches, pentads of pitches, and so forth. A generalized form for
absolute r-ad expectation arrays can be written accordingly:

.,
Z H Tperj,, itk

(31,0 )EDT: Mm=1

tnFlo

Te . =
e]7k27'“1kr

where k; =0. Relative r-ad expectation arrays are given by
summing over ;.

The time taken to calculate the arrays can be substantially
decreased by using algebraic manipulations, only calculating for
non-zero values, and taking advantage of symmetries in the
resulting array to calculate only those values that are not
duplicated. (A full description of these methods is beyond the
scope of this short paper).

3. APPLICATIONS

We present here a few examples of applications of the expectation
arrays.

3.1 Tonal affinity

Figure 2 shows the spectral distance between the spectral pitches
(first ten harmonics of each tone) of a reference major triad and all
12-tone equal temperament triads that contain a perfect fifth. The
spectral distance is calculated using absolute monad expectation
arrays and a cosine metric. The horizontal axis shows the pitch
distance from the reference triad’s root and fifth, the vertical axis



shows the pitch distance from the reference triad’s third. All
root-position major and minor triads lie on the central diagonal
and some of these have been labeled for reference. The darker the
grey the smaller the spectral distance from the reference triad (i.e.,
the greater the spectral affinity).

Thirds
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-600 -500 —400 -300 -200 100 0 100 200 300 400 500
Roots and fifths

Figure 2: Spectral distances between a reference C-major triad
and all possible three-voice triads with a perfect fifth.

This model suggests that the triad pair {C-major, d-minor} has
greater spectral affinity (lower distance) than the neighboring triad
pair {C-major, D-major}; the triad pair {C-major, F-major} has
greater spectral affinity than the neighboring triad pair {C-major,
F#-major}; the triad pair {C-major, e-minor} has greater spectral
affinity than the neighboring triad pair {C-major, E-major}; and so
forth. These results seem indicative of the tonal function of these
triad pairings: the latter pair in each case is typically heard as
requiring resolution, the former pair in each case is not (Milne,
2009). This suggests that such metrics may provide effective
models for the feelings of expectation and resolution induced by
successions of chords in tonal-harmonic music.

3.2 Tuning systems

Figure 3 shows the distance (using relative dyad expectation
arrays and a cosine metric) between all equal temperaments from
2 steps per octave to 102 steps per octave.

Distance

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10|
Number of Equal Divisions of the Octave

Figure 3: The distance between embeddings of a just intonation
major triad and equal divisions of the octave.
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It is interesting to observe that the distances approach a flat line
where increasing the number of divisions of the octave is no
longer beneficial, and that the most prominent minima fall at the
familiar 12-tone equal temperament and at other alternative equal
tunings (e.g., 19-, 22-, 31-, 34-, 41-, 46-, and 53-edo) that are
well-known in the microtonal literature.

Figure 4 shows the distances between the relative expectation
embeddings (dyadic on the right, triadic on the left) of a just
intonation major triad {0, 386.3, 702} and the seven-tone scales
generated by an interval whose size is incremented from 0 cents to
1199.9 cents (in 0.1 cent increments). (Note that if the same
distance measure is used for the whole tuning range, the chart is
symmetrical about the line connecting 0 and 600 cents.)

Figure 4: Distances (dyadic on the right, triadic on the left)
between a just intonation major triad {0, 386.3, 702} and the
seven-tone scales generated by an interval whose size is
incremented from O cents to 1199.9 cents.

It is interesting to observe that for low-cardinality generated scales
(such as this seven-tone scale) there are many tunings that provide
a large number of good approximations to the intervals in the just
intonation triad (the perfect fifth and major and minor thirds and
their inversions), but only a few tunings provide a large number of
good approximations to a complete major triad (and notably the
best, in this model, is the familiar meantone tuning of
approximately 696 cents).

4. DISCUSSION

We have presented a novel family of embeddings and metrics for
determining the distance between pitch collections. The
embeddings are based upon psychoacoustic principles (through the
use of Gaussian smoothing) and may be useful as components in
broader models of the perception and cognition of music. Indeed,
to model any specific aspect of musical perception, a variety of



appropriate embeddings may be linearly combined, with their
weightings, the weightings of the tone saliences (if appropriate),
and the type of metric, as free parameters to be determined from
experimental data.

We have focused on expectation arrays, but the underlying pitch
(class) response matrices can also be used to generate salience
arrays, which give the probability of hearing any given r-ad of
pitches. There may also be scope in applying Fourier transforms to
the embeddings in order to determine similarities in the spectrum
of equal temperaments that approximate various pitch collections.

The methods are also applicable to any domain involving the
perception of discrete stimuli. An obvious example is the
perception of timing in rhythms, with time replacing pitch so the
smoothing represents perceptual or cognitive inaccuracies in
timing; for example, it might be possible to embed a rhythmic
motif containing four events in a relative tetrad expectation matrix
(in the time domain), and compare this with a selection of other
similarly embedded rhythm patterns to find one with the closest
match (i.e., one that contains the greatest number of patterns that
are similar to the complete motif).
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