
1

Parallel pipelined histogram architectures

J. Cadenas, R. S. Sherratt and P. Huerta

Proposed here is a unique cell histogram architecture which will process k data items

in parallel to compute 2q histogram bins per time step. An array of m/2q cells

computes an m-bin histogram with a speedup factor of k; k≥2 makes it faster than

current dual-ported memory implementations. Furthermore, simple mechanisms for

conflict-free storing of the histogram bins into external memory array are discussed.

Introduction: The real-time computation of a histogram is a common operation,

especially in computer vision and image processing such as tone reproduction and

contrast enhancement in image-processing engines of still digital cameras [1].

Parallel histogram methods do exist that exploit software and hardware techniques

[2]. The two most conventional techniques for hardware-based histogram

implementation use either an array of counters or a memory array. However, an

implementation with an array of counters suffers from inefficient use of resources [3],

therefore, most techniques use memory arrays. In general, the main challenge for

parallel histogram computation using a memory array is in handling updates to a

particular bin count when at least two data items map to the same bin resulting in a

memory write conflict. Most mechanisms for parallel histogram computation therefore

require multi-port memory arrays, where memory write conflicts have to be dealt with.

Due to practical limitations, a dual-port memory array is the common solution, but

then the maximum speedup is limited, up to a factor of two. This Letter argues that

these challenges are easily overcome by revisiting the original idea of an array of

counters, but to distribute the counting of bins in a fully pipelined manner.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/359196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Performance speedups, up to a factor of k, are achieved with the cell architecture

proposed here.

Firstly, a pipelined histogram of m bins is developed using m pipeline cells. The

histogram on an input data set of n items is completed in n+m-1 steps when

processing one data item per time step, where m-1 is the pipeline latency. Secondly,

this Letter develops pipelined arrays to process k data items per time step that

complete a histogram in   qmkn 2/1/  time steps, by computing 2q bins per cell

as particularly will be illustrated for k = 2 and 2q = 2.

A pipelined histogram array: A histogram for a data set of non-negative integers

where the data values correspond directly to histogram bins (such as pixels in a grey-

scale image) is described by the following pseudo-code:

for i=1,…, n do

 histogram[data[i]] = histogram[data[i]] + 1;

Assume item data[i] takes any value in the set of positive integers 0, …, m-1. Let rj,

sj, j = 0, …, m-1 be a set of values such that sj < sj+1. Values sj remain constant

across the histogram computation while rj represents the histogram bins. Initially, all rj

= 0. The histogram is then defined by an array of cells with each cell j computing:

if (data[i] == sj) rj = rj + 1;

else rj = rj;

This definition is a degenerative case of a scalar quantiser array encoder for a

uniform quantisation process with boundary distance d = 1 [4]. Unrolling the above

computation over j produces a linear array of m cells with connections between cells

left to right. Each cell is shown in Fig. 1. At step i, input xin = datai, sin = 0 is entered

in the first cell of the array. Data moves through the cells incrementing rj for the cell

where data matches sin; sin is updated for the next cell test. Each cell has a cost of a

comparison and an increment. For an array the cost is essentially m comparators

3

and m adders. Clearly, this array allows up to m increments to operate

simultaneously; a key difference to the traditional approach. The last data item enters

the array after n time steps and the histogram computation time is n+m-1 steps,

where a latency of m-1 steps is the cost for a data item to travel through the array.

Although the occupancy of cells has been improved, this architecture still performs

serial computation.

Cells for reducing array latency: Figure 2 shows a new cell architecture merging two

consecutive pipeline cells into a single new cell, hence reducing the array length from

m to m/2. In this case, each cell will generate histogram counts for 2j and 2j+1, j = 0,

…,   2/1m ; where either one bin (not both) may increment per time step. For a

data item width of p bits, a comparison between the p-1 MSB bits of a data item and

the sin value is performed. When the comparison matches, bit 0 (LSB) of the data

item acts as a select signal for a data multiplexer (selecting either r0out or r1out in

figure 2) and also as a capture enable signal for the bin count registers. It is clear that

the scheme can be tailored to compute 2q bins into a single cell. The comparison is

then performed on the p-q MSB bits of a data item, while q bits act as data selectors.

A q-to-2q decoder will be required to account for register enable signals. This scheme

will process a histogram of n data items in   qmn 2/1 time steps, hence

reducing latency of the array by a factor of 2q. Merging 2q pipelined cells into a single

cell will account for hardware savings and consequently this shallower array of m/2q

cells saves hardware compared to the previous pipelined array of m cells.

A k-way parallel pipelined histogram: Figure 3 shows cell architecture that processes

two data items per time step, labeled x0in and x1in. Two parallel comparisons are

performed between the p-1 MSB bits of both data items and the sin value, resulting in

c0, c1 bits. Either, or both, bin counters per cell, r0out and r1out, will be updated

4

depending on the internal computed c0, c1 bit values. No count update is performed

when c0, c1 are both zero. The specific bin count that should be updated depends on

the LSB values of the two input data items to be used (the task of the logic block in

figure 3.) For example, if both c0 and c1 are true, it may be the case that a bin count

must be updated by two instead of one; this is the case when both input data items

are actually of the same value. The actual value that must be updated for a bin is

computed in variable v. Signals e0, e1 are register enable signals that determine an

update for bin count r0out and r1out respectively. Figure 3 also shows the Boolean

logic equations for v, e0 and e1.

In general, for n data items, the histogram will be computed in   qmkn 2/1/ 

time steps with figure 3 showing an instance for k = 2, 2q = 2. A generic array is

composed of m/2q cells where each cell computes 2q bin counts, (namely, 2qi, for i =

0, …, 2q-1) in each of   qmj 2/1,,0   cells. A cell can be easily modified to

process k data items per time step while computing 2q bins to build arrays that can

deliver a speedup factor of k, while reducing pipeline latency by a factor of 2q.

Reading the histogram: After all data items have been processed by an array, the

final histogram bin counts are stored across all cells in the array. It is of practical

importance to have mechanisms to read the bins out from the array. One of such

mechanisms is shown at the bottom dashed box of figure 3. For the 2q = 2 case,

following the last pair of data items having been put through the pipeline array, signal

bri is set high to force the output Hout to be routed either from inputs r1out or Hin. In

turn, Hin signal is connected to the Hout output from the neighbouring cell to the

right. Input Hin on the rightmost cell in the array is set to zero. Histogram bin counts

start to emerge from the bins computed on the leftmost cell in the array. After m/2q-1

time steps, all histogram bins have been read out at the rate of one bin count every

time step; latency was hidden with the histogram computation for the last pair of input

5

data item. This is convenient for storing the histogram in an external single port

memory array. Similar arrangements are possible for different 2q cases.

Results: Table 1 presents computation time and latency for the three architectures,

expressed as time steps; the simple array of counters [3] and the parallel histogram

with dual-ported memories [2] are included for comparison. Notice latency

corresponds to the number of cells in the array. The k-way parallel architecture has

an efficiency of k2q/m [5]. The efficiency of the proposed array, compared to an array

of counters, is then improved by a factor of k2q. The pipeline cell is efficient, since the

k-speedup factor of the whole array is indeed due to the cell’s internal parallelism,

with a cell efficiency of k/2q. In fact, a cell of a k-way parallel architecture becomes

cost-optimal when compared to a cell of the (serial) pipeline architecture for the case

k = 2q. In this case, the pTP cost [5] of the k-way parallel cell is 2q(n/k) = n or O(n),

while the pTP of a (serial) pipeline cell is also O(n) as seen in Table 1.

Conclusion: A unique pipelined array of cells for the computation of a histogram with

a speedup factor of k is presented. This cell architecture is able to process k data

items per time step while computing 2q histogram bins; k and q are design

parameters. Significantly, no memory arrays are used for parallel histogram

computation, thus no write address conflicts to such memory arrays can occur, yet

the histogram bins can still be easily stored in external memory arrays. It is the

careful choice of k that offers a better speedup factor than the factor of two obtained

from common histogram solutions based on dual-port memories.

References

1 WEN-CHUNG, K.: ‘High dynamic range imaging by fusing multiple raw images and

tone reproduction’, IEEE Trans. Consum. Electron., 2008, 54, (1), pp. 10-15

6

2 SHAHBAHRAMI, A., HUR, J. Y., JUULINK, B., and WONG, S.: ‘FPGA

implementation of parallel histogram computation’, 2nd HiPEAC Workshop on Reconf.

Computing, 2008, pp. 63-72

3 MULLER, S.: ‘A new programmable VLSI architecture for histogram and statistics

computation in different windows’, Proc. Int. Conf. on Image Processing, 1995, pp.

73-76

4 MEGSON, G. M., and DIEMOZ, E.: ‘Scalar quantization using a fast systolic array’,

Electron. Lett., 1997, 33, (17), pp. 1435-1437

5 GRAMA, A., GUPTA, A., KARYPIS, G., and KUMAR, V.: ‘Introduction to Parallel

Computing’ (Addison-Wesley, 2003)

Authors’ affiliations:

J. Cadenas and R. S. Sherratt (School of Systems Engineering, University of
Reading, Reading, RG6 6AY, United Kingdom)

P. Huerta (Escuela Técnica Superior, Universidad Rey Juan Carlos, Madrid, Spain)

E-mail: o.cadenas@reading.ac.uk

7

Figure Captions:

Fig. 1 Left: cell architecture and Right: cell computation for a pipelined histogram

Fig. 2 Left: cell architecture and Right: a cell computation to process two bins per cell

in a pipelined histogram. Latency of the array is reduced by 2.

Fig. 3 Left: cell architecture and Right: cell computation for a 2-way parallel pipelined

histogram.

Table Captions:

Table 1: Parameterised performance of the presented architectures against previous
implementations [2], [3].

8

Figure 1

xout

sout

xin

sin

1 sout=sin+1;
xout=xin;
if(xin==sin)
 rout=rout+1;
else
 rout=rout;

register

+

=

+

rout

9

Figure 2

xout

sout

xin

sin

1

+

=

+

r1out

[p-1, .., 1] [0]

DEC
0

1

r0out

sout=sin+1;
xout=xin;
if(xin[p-1, ..., 1]==sin)
 switch(xin[0])
 case 0: r0out=r0out+1;
 case 1: r1out=r1out+1;
else
 r0out=r0out;
 r1out=r1out;

10

Figure 3

Hin

bri

Hout

e0

x0out

sout

x0in

sin

1

+

=

+

r1out

[p-1, .., 1]

[0]

Logic

r0out

x1out x1in

=
[p-1, .., 1]

c0 c1 [0]

+

e1
v

sout=sin+1;
x0out=x0in;
x1out=x1in;
c0=(x0in==sin);
c1=(x1in==sin);

 00inxa  ;

 01inxb  ;

switch({c0,c1})

case {0,0}: v=0; 00 e ; 01 e ;

case {0,1}: v=1; be 0 ; be 1 ;

case {1,0}: v=1; ae 0 ; ae 1 ;

case {1,1}: v=1+a xnor b;

bandae 0 ; borae 1 ;

if(e0==1) r0out=r0out+v;
if(e1==1) r1out=r1out+v;

bro

0 1 0 1

11

Table 1

Histogram architecture Computation time Latency Speedup

Parallel histogram [2] n/2+m/2 m/2 2

Array of counters [3] n 0 1

Pipelined array n+m-1 m-1 1

Low latency array n +   qm 2/1   qm 2/1 1

k-way parallel array   qmkn 2/1/    qm 2/1 k

