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Abstract 

Calcium oxalate crystals are found in 
association with the sporangia of Mucor 
hiemalis and Rhizopus oryzae. Crystals 
observed in each species vary in morphology 
from simple crystals consisting of single 
spines in M. hiemalis to complex crystals with 
twin spines, sometimes three-parted, on a 
common base in R. oryzae. The early 
development of the crystals7s similar in both 
species with a layer of the cell wall covering 
in the initial crystals. The spines of M. 
hiemalis rapidly emerge while the crystals of 
~ oryzae appear to remain covered with a layer 
of outer wall material. The crystals of both 
species become fully developed just prior to 
spore release. Details of crystal development 
are compared and possible mechanisms for 
crystal development are explored. 
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Introduction 

Calcium oxalate formation occurs commonly 
in a variety of fungi (Hamlet and Plowright, 
1877). Calcium oxalate has been found in 
association with the sporangia of the 
Mucorales, e.g., the spines on the sporangia of 
Mucor plumbeus and Cunninghamella echinulata 
(Jones et al., 1976) and the zygophores and 
sporangia or-Mucor mucedo (Urbanus et al., 
1978). The two reports confirm the presence 
of calcium oxalate di hydrate (weddel lite) in 
the spines produced by these species. 

The mechanism of formation of these crys
tals is unknown. Some reports of wood rotting 
fungi and soil fungi (Graustei n et al., 1977; 
Cromack et al . , 1979) suggest that oxalate is 
excreteda ndcombin ed with external calcium to 
form crystals. In contrast, some studies of 
leaf litter fungi (Arnott, 1982: Horner et al., 
1983) suggest the crystals may form internaTTy. 
Urbanus et ~ (1978) suggest the crysta l s 
formed in association with the zygophores of 
Mucor mucedo are covered by a layer of ce ll 
wallmaterial. 

This study expands observations of calcium 
oxalate crystals in the Mucorales and provides 
further evidence for the internal development 
of the crystals. 

Materials and Methods 

Cultures 
Strains of Mucor hiemalis and Rhizopus 

oryzae were isolated from leaf litter and soil 
samples at three locations in Arlington, Texas. 
The fungi were grown on commercially prepared 
Sabouraud's Dextrose Agar (Scott Laboratories). 
Crysta l Isolation 

Mature cultures grown in petri dishes were 
rapidly frozen in liquid nitrogen, and the 
sporangia were scraped from the frozen agar 
surf ace with a seal pe l blade. The sporang i a
crystal mixture was then transferred to a 
liquid nitrogen-cooled mortar and pestle and 
ground in a small portion of l iquid nitrogen. 
The resulting mixture was used for microchemi
cal analysis. 
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Microchemical analysis 
Ana lys 1 s was performed on whole sporangi a 

as we 11 as the powder extract des er i bed above. 
Reactions were observed at 400X with bright
field micr 'oscopy. Solubility tests (Frey, 
1925; Pohl, 1965) were performed using the fol
lowing reagents: 70% ethanol, 2% acetic acid, 
4% sodium hydroxide, 4% and 60% sulfuric acid, 
3% nitric acid, and 10% hydrochloric acid. 
ScanninT Electron Microscopy (SEM) 

Cu tu res were observed by means of light 
microscopy to determine maturity of the cul
tures. Mature cultures were then vapor fixed 
for 4-6 h over 4% osmium tetroxide in 0.1 M 
phosphate buffer (pH 7 .24) at 4° C. Specimens 
were a 11 owed to air dry and portions of the 
culture were affixed to the sticky side of a 
short piece of cl ear tape. The tape was then 
inverted and attached to SEM stubs using double 
stick tape. Specimens were sputter coated in a 
Polaron E5100 sputter coater. Observations and 
photographs were made on a JEOL JSM-35C 
scanning electron microscope at 15 kV and 
100 µA. 

Results 

Crystals found in association with sporan
gia of both Mucor hiemalis and Rhizopus oryzae 
have solubility characteristics consistent with 
calcium oxalate (Table 1). The crystals of 
these fungi show little or no birefringence 
under polarized light microscopy, though the 
small size of the crystals makes observation 
difficult. 

70% 

2% 

4% 

4% 

60% 

3% 

10% 

Table 1. Microchemical Analysis on 
Mucor hiemalis and Rhizopus oryzae 

Calcium 
Treatment Mucor Rhizopus Oxalate 

ethanol 

acetic acid 

sodium hydroxide 

sulfuric acid + + + 

sulfuric acid + + + 

nitric acid + + + 

hydrochloric acid + + + 

- =insoluble,+= soluble 

Young sporangia of Mucor hiemalis have a 
smooth, sometimes bumpy, surface, and sporan
giophores show no evidence of crystal formation 
(Fig. 1). As maturation continues, the crys
tals begin to appear tip first (Figs. 2 and 3), 
just protruding through the outer sporangial 
wall. Crystals usually develop uniformly on 
the sporang i al surf ace, sometimes bas i pet ally, 
but always within a short time span. After 
approximately 3-4 days, the crystals in matur
ing sporang i a become fu 11 y developed and more 
numerous (Fig. 4). 

184 

As the sporangia age the external layer, 
along with the crysta ls, begins to mold around 
the spores beneath (Figs . 5 and 6). Close 
examination of the sporangia reveals long, 
pointed spines protruding from the outer 
sporangial wall (Fig. 7), with the wall molded 
to spores beneath it (Figs. 8 and 9). The 
entire process, from appearance of the sporan
gium to its complete encrustation with crys
tals, occurs over a period of 3-4 days with the 
first crystals appearing as early as the first 
day. This process of encrustation appears to 
be uniform among all sporangia and no mature 
sporangia were noted without at least some cov
ered crystals present. 

The individual spines reach a length of 
about 2 µm and are composed of a basal pl ate 
and a terminal spine. Their shape resembles a 
carpet tack (Fig . 9). The spine sometimes 
appears to be uniformly tapered but occasion
ally the spine has a central "joint" where it 
quickly tapers. In the mature spines it is 
difficult to demonstrate an overlying eel l wall 
component with SEM (Fig. 9). 

Changes in environmental conditions seem 
to have some bearing on the numbers of crystals 
produced. More crystals are produced in cu 1-
tures grown in light than in darkness and at 
low (4-80 C) temperatures, though the develop
ment time is increased to 14-28 days. 

Crystal production in Rhizopus oryzae is 
similar to that of Mucor hi ema l is. The sporan
gi a of young culturessiiow few crystals (Fig. 
10) on a relatively smooth surface. During 
sporangial maturation, crystals appear to 
extrude through the outer sporang i al layer 
(Figs. 11-13) . The appearance of the crystals 
is rather rapid, occurring within 1-2 days of 
growth. As the sporang i a mature th e crystals 
become fully developed and much more numerous 
on the sporangial surface (Fig. 14). The indi
vidual crystal morphology is different from 
that of the spines found in Mucor (Fig. 15). 
The crystals have a flat rectangular base 
with two perpendicular spines rising from it. 

Figures 1-9. SEM views of crystals on the 
sporangia of Mucor hiemalis. 
Figure 1. Young sporang1a showing absence of 
exposed crystals. Bar= 10 µm. 
Figure 2. Early sporangium with newly exposed 
crystals. Bar= 10 µm. 
Figure 3. Early emergence of crystals. Bar = 
1 µm. 
Figure 4. Maturing sporangium. Note increased 
number and length of crystals. Bar= 10 µm. 
Figure 5. Mature sporangium showing molding to 
spores beneath. Bar= 10 µm. 
Figure 6. Mature sporangium at spore release. 
Bar = 10 µm. 
Figure 7. Closeup of spines in mature sporan
gium. Bar= 1 µm. 
Figure 8. Detail view of spines molded to 
spore beneath. Bar= 1 µm. 
Figure 9. Higher magnification of spines 
molded to spore beneath. Bar= 1 µm. 
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Figures 10-23. SEM views of sporangia of Rhizopus oryzae. 
Figure 10. Young sporangium with sparse crystals. Bar= 10 µm. 
Figure 11. Early crystal development. Note covering of some crystals . Bar =1 µm. 
Figure 12. Early sporangium with some exposed and some covered crysta l s. Bar= 1 µm. 
Figure 13. Early sporangium with some exposed crystals. Bar= 1 µm. 
Figure 14. Maturing spora ngium with many exposed crystals. Bar= 10 µm. 
Figure 15. Mature sporangium with fully exposed crystals. Note typical twin peaked crystal morphology. 
Bar= 1 µm. 
Figure 16. Emerging spines showing similarity to spines of Mucor. Bar= 1 µm. 
Figure 17. Emerging spines in side view. Note similarity to spines of Mucor. Bar =l µm. 
Figure 18. Top view of mature crysta l s. Note the twin nature of spines. Bar= 1 µm. 
Figure 19. Maturing sporangium with emerging crysta l s. Note variance in morphology. Bar 10 µm. 
Figure 20. Mature crystals showing three-parted spines. Bar = 1 µm. 
Figure 21. Mature sporangium with atypica l crystal morphology. Bar= 1 µm. 
Figure 22. Mature sporangium just prior to spore re l ease . Note total loss of outer l ayer and 
crystals. Bar= 100 pm. 
Figure 23. Mature spora ngium wit h outer laye r intact. Note slight molding to spores beneath. Bar = 
10 µm. 

In some ways each of the two spines in 
this case bear a strong similarity to the 
spines of Mucor hiemalis in that they have an 
expanded basai-port1on attached to a flat plate 
(Fig s. 16 and 17). Rather than being attached 
in the center of the flat plate, however, each 
sp ine is attached at the opposite edge of the 
basal plate (Fig. 18). As the culture ages 
some of the spikes occasionally show somevar i a
tion in shape (Figs . 19-21), though most 
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remain pointed. Prior to spore rel ease a spo
rangium lo ses its outer layer along with the 
associated crystals (Fig. 22). The loss of the 
outermost layer is also seen if ethanol is used 
to dehydrate in the preparation for critical 
point drying. This can be contrasted with 
mature sporangi a with the outer 1 ayer intact 
(Fig. 23). Some molding onto the underlying 
spores can be noted in these older sporangi a 
but not as pronounced as that in Mucor (Fig. 5). 
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Most hyphae of both Rh i zopus oryzae and 
Mucor hiemalis show no crystals, but sporangio
phores of both have crystals on their surface 
(Figs. 24 and 25). The morphology of these 
crystals is somewhat similar to that found on 
the sporangia. 

Figure 24. SEM view of mature sporangiophore of 
Rhizopus oryzae. Bar= 10 µm. 

Figure 25. SEM view of mature sporangiophore of 
Mucor hiemalis. Bar= 10 µm. 

Discussion 

Members of the Mucora l es make convenient 
subjects for the study of calcium oxal ate for
mation in fungi. They are common inhabitants 
of soi l and l eaf litter and are readily grown 
in vitro on common media. Their rapid growth 
al lows the study of complete development in a 
short time span. 

The question of whether the crysta l s are 
formed external to or within the lay er of cell 
wall remai ns unknown. Graustein et al. (1977) 
suggests that oxalic acid is excretec1through 
the cell wall and combines with external cal
cium ions in the environment to form the crys
tals. Conversely, Arnott (1982) and Horner et 
~ (1983) give evidence that the crystals are 
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produced internally and are covered by a layer 
of eel l 1~al l. Our observations favor the lat 
ter mechanism in the organisms in this study. 
In Mucor hiemalis there is a short period where 
crystals are absent or very sparse followed by 
the appearance of the tips of the crystals 
across the entire surface of the sporangium. 
Likewise in Rhizopus oryzae there is a period 
where crystals are absent fo ll owed by rapid 
appearance on the surface. Clearl y, in this 
organism there is a period where the crysta ls 
are covered by a thin l ayer of cell wall. It 
appears that as the sporangi a mature the outer 
layer of the cell wall is stretched over the 
crystals. This type of crystal development is 
known in higher plants (Horner and Franceschi, 
1978). 

During early development of sporangi a the 
outer l ayer covering the crystals can be 
removed by treatment with alka li . Urbanus et 
al. (1978) described a similar situation in 

zygophores of Mucor mucedo and speculated that 
this outer layer may consist of carbohydrate 
materia l. This seems likely since the cell 
wa 11 material of Mucor mucedo is known to con
tain glucuronic ac'fa (Uafema et al., 1977). 
Current views on the ultrastructure of the fun
gal cell wa 11 consider it to be a network of 
fibrils with the spaces filled by matrix poly
mers such as carbohydrates or g l ucuron i c acid 
(Rosenberger, 1976). Such a structure can 
serve as a sink for reserve materials 
(Zonneveid, 1972) or possibly for metabolic end 
products (Dennis, 1949; Hodgkinson, 1977): 
Urbanus et al., 1978). It seems possible that 
calcium oxalate, formed as an end product of 
metabolism, is excreted through the plasma mem
brane (Genti l e, 1954) and crysta lli zed within 
the carbohydrate layer. Later, as the outer 
layer is stretched thin by sporangial growth, 
the crystals become exposed. 

Still, many basic questions regarding the 
metabolic pathways of oxalate production and 
mechanisms contro ll ing crystal development and 
shape are yet unanswered. While some evidence 
presented here suggests that crystal production 
in these fungi is internal, additional studies 
utilizing transmission electron mi croscopy are 
needed to investigate crystal origin. 
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Oiscussion with Reviewers 

H.T. Horner: ~Jill you be abl e to grow enough 
sporang,a crystals in culture to carry x-ray 
diffraction analysis in order to determine the 
hydration form? 
Authors: To date this has not been poss i b 1 e. 
The extremely small size of the crystals makes 
isolation of large enough aggregates to test 
difficult. It is possible that some sort of 
concentration technique such as centrifugation 
may provide sufficient material. 

H.T. Horner: Have you attempted to add calcium 
to the culture medium to see if it increases 
crystal production? 
Authors: Calcium chloride was added to basal 
media in increments of a tenth of a gram per 
liter up to one gram. No effect on numbers of 
crystals was noted on either species. Attempts 
are being made to formulate a calcium free 
medium to test for the effect of lack of cal
cium, but total lack of calcium has yet to be 
achieved. 

W.C. Graustein: In dilute abiotic solutions, 
weddell ite, calcium oxalate monohydrate, is 
observed to form when the temperature is about 
50 C. Whewellite, ca lcium oxalate monohydrate, 
is the form that precipitates from so lution at 
higher temperatures. Did you observe any d if -
ference in the morphology of the crystals pro
duced by the fungi that you cultured at l ow 
temperatures? 
Authors: Individual crystal morphology remained 
unchanged in both species at 1 ow temperatures. 
The arrangement of crystals appeared more dense 
as temperatures were l owered. We speculate 
that this difference may be due to changes in 
physiology at lower temperatures. 
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