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Abstract 

Recently , red blood cells have been investigated 
mainly for alterations in ion transporting capacity, mem
brane bound enzymes or modifications in the structure 
of its individual constituents in clinical and experimental 
urolithiasis. However, the implication of such modifica
tions on the physical state or morphology of cells has 
not been investigated. Scanning electron microscopic 
studies performed in vitamin B6 deficient and/or galac
tose fed rat (established hyperoxaluric models) erythro
cytes, showed the presence of large number of stomato
cytes, spherocytes and other variously deformed cells as 
compared to discocytic cells seen in normal control 
group. These changes in shape were in concurrence 
with red cell osmotic fragility, which decreased both in 
vitamin B6 deficient and vitamin B6 deficient + galac
tose fed group (19 % and 33 % hemolysis at 4 g/1 NaCl, 
respectively) while it increased in galactose control 
group (73 % hemolysis at 4 g/1 NaCl) as compared to 
normal control group (55 % hemolysis at 4 g/1 NaCl). 
These morphological and physical state alterations could 
be correlated with red blood cells' membrane cholesterol 
and phospholipid sub-class distribution. These findings 
suggest that some structural membrane changes occur 
due to vitamin B6 deficiency and/or galactose feeding, 
which may be responsible for the altered membrane 
functions known to be associated with pathogenesis of 
urolithiasis. 

Key Words: Scanning electron microscopy, erythrocyte 
shape, osmotic fragility, vitamin B6 deficiency, galac
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Introduction 

Extensive research in the field of membrane bio
chemistry in the last decade has attributed a number of 
metabolic defects, inherited or acquired, to the altered 
state of membrane. Several lines of evidence, for exam
ple, increased oxalate transport in intestine and kidney 
(Gupta et al., 1988), enhanced oxalate binding to inner 
mitochondrial membrane and intestinal brush border 
membrane (Laxmanan et al., 1986; Kou) et al., 1991), 
crystal induced membranolysis (Wiessner et al., 1986), 
indicate involvement of membrane in calcium oxalate 
urolithiasis. 

Erythrocytes, form a prototypal system for enquiries 
into the structure and functions of biological membranes 
and reflect the membrane alterations existing elsewhere 
in the body (Garay et al., 1980). Two unique features 
of mammalian red cell, i.e., its discoid shape and ability 
to undergo passive deformation during passage through 
microvasculature, are maintained by the lipid bilayer and 
submembrane reticulum of membranous proteins (Good
man and Kathleen, 1983; Nakao et al. , 1990; Elgsaeter 
and Mikkelsen, 1991). Perturbations in the skeletal 
assembly are known to cause increased rigidity and 
irrecoverable membrane flow (Evans and Hochmuth, 
1976), leading to cellular deformity and fragmentation 
(Palek and Jarolim, 1993). 

Vitamin B6 deficiency (Gershoff, 1970; Nath et al. , 
1990) and excess consumption of refined sugars (Ribaya 
and Gershoff, 1984; Kaul et al., 1993) have been shown 
to produce hyperoxaluria and nephrocalcinosis in experi
mental animals. Hyperabsorption of oxalate by the in
testinal and renal brush border membrane in vitamin B6 
deficient rats (Gupta et al., 1988), suggests an underly
ing defect in cellular transport of oxalate in vitamin defi
cient conditions. This was also demonstrated by signifi
cantly increased transmembrane oxalate flux observed in 
erythrocytes of vitamin B6 deficient rats (Kaul et al., 
1993). Alterations in the erythrocyte oxalate transport 
have also been reported in idiopathic calcium oxalate 
stone formers (Baggio et al., 1986; Narula et al., 1991). 
This increased oxalate flux in the erythrocytes of stone 
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Table 1. Composition of the diet. 

Ingredient (g/100 g) 

Casein1 

Carbohydrates 

Groundnut oil 

25.0 

23.0 (Sucrose) 
+ 

28. 7 (Starch) 

15.0 

Salt mixture2 6.1 

Vitamin B6-free 
Vitamin mixture3 2.2 

51. 7: Galactose 

1Commercially available casein was made vitamin free 
by repeated washings with ethanol and water. 
2Procured from SISCO Research Laboratory, Bombay. 
3Prepared as described in ICN catalogue (Nutritional and 
Biochemical Division of ICN, Cleveland, Ohio) 

formers has been speculated to be due to altered phos
phorylation of band-3 protein (Baggio et al., 1990, 
1991). Increased band-3 protein phosphorylation is 
known to produce morphological changes in erythrocytes 
as reported in South-East Asian ovalocytosis (Jones et 
al., 1991) and hereditary spherocytosis (Jarolim et al., 
1990). 

Therefore, to investigate if functional alterations in 
erythrocytes, similar to ion transporting capacity, mem
brane bound enzymes (Selvam and Sumathi, 1987) or 
lipid peroxidation (Selvam and Ravichandran, 1991) ob
served in urolithic conditions, are also associated with 
changes in red cell shape and physical properties, the 
present study was conducted to determine alterations in 
morphology [ using scanning electron microscopy (SEM)] 
and physical state (osmotic fragility) of erythrocytes in 
experimental hyperoxaluria, induced by feeding vitamin 
B6 deficient diet with or without galactose to male rats. 
Studies were also performed to correlate these changes 
with erythrocyte membrane lipid composition. 

Materials and Methods 

Male albino rats of Wistar strain (body weight 40-50 
grams) were divided into four groups of 8 animals each. 

Group A: Vitamin B6 deficient: Fed ad libitum on 
vitamin B6 deficient diet (Table 1). 

Group B: Vitamin B6 control: Pair-fed with group 
A with same diet supplemented with 24.0 mg pyridoxine 
HCl/kg diet. 

Group C: Vitamin B6 deficient + galactose: Fed 
ad libitum on vitamin B6 deficient diet containing galac
tose (51. 7 % ) as sole source of carbohydrate. 
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Figures 1 (above) and 2, 3 and 4 (on the facing page). 
Scanning electron micrographs of rat erythrocytes. 
Figure 1. Vitamin B6 control group. Figures 2A and 
2B. Vitamin B6 deficient group. Figures 3A and 3B. 
Vitamin B6 deficient + galactose group. Figures 4A 
and 4B. Galactose control group. Bars = 1 µm in all 
micrographs except Figure 3A, where bar = 10 µm. 

Group D: Galactose control: Pair-fed with group 
C with the same diet supplemented with 24.0 mg pyri
doxine HCl/kg diet. 

Rats were fed their respective dietary regimen for a 
period of four weeks. At the end of experimental peri
od, the clinical symptoms of vitamin B6 deficiency, i.e., 
acrodynia and alopecia, were prominent in group A and 
C and the deficiency was biochemically confirmed by as
saying erythrocyte alanine transaminase activity and its 
pyridoxal phosphate stimulation index (Kishi and 
Folkares, 1976). The animals were placed in metabolic 
cages for 24 hours urine collection, which was analysed 
for oxalate (Hodgkinson and Williams, 1972) and 
creatinine (Natelson, 1963). Blood was drawn into 
heparinised tubes from the optic sinus of rats under mild 
anaesthesia and processed for further studies. 

Scanning electron microscopy 

Scanning electron microscopy of red blood cells 
(RBC) was performed by the method of Dershwitz et al. 
(1985). Fresh RBC gently suspended in excess of 3 % 
phosphate buffered glutaraldehyde (pH 7.4) were al
lowed to fix for 30 minutes. The preparation was 
washed twice with phosphate buffered saline (PBS) to 
remove excess glutaraldehyde and cells refixed with 1 % 
osmium tetroxide. The cells were then dehydrated by 
step-wise exposure to increasing concentrations of etha
nol (50% to absolute). The cells were exposed to each 
ethanol concentration for 5-10 minutes and centrifuged. 
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Table 2 . Effect of vitamin B6 deficiency and/or galac
tose feeding on the osmotic-fragility of rat erythrocytes. 
Values are mean ± standard deviation (SD) of 8 obser
vations. 

Groups MCF" 

A: Vitamin B6 deficient 

3.55 ± 0.322 

B: Vitamin B6 control 

4.08 ± o.2sac 

C: Vitamin B6 deficient 

+ galactose 3.70 ± 0.36 1 

D: Galactose control 
4.60 ± 0_29abc2 

% Hemolysis at 
4 g/1 NaCl 

19 ± 4.23 

55 ± 4. lac 

33 ± 1.53 

73 ± 6.2abc3 

"MCF = Median corpuscular fragility: the concentration 
of saline causing 50% hemolysis. 
1p < 0.05, 2p < 0.01 and 3p < 0.001 as compared to 
vitamin B6 control (analysed by students unpaired t-test) . 

ahcDenote that the value is significantly higher from the 
value for the group represented by that letter, i.e., group 
A, B, C, respectively (analysis by ANOV A and 
Scheffe's test at p < 0.05) . 

Air-drying of the cells was avoided by keeping a small 
volume of ethanol above the pellet after each step. A 
few drops of cell suspension in absolute alcohol was put 
on a polished stub, air-dried, coated with gold (on a JFC 
1100, sputter coater JEOL) and examined in JEM 1200 
EX electron microscopy with ASID attachment (JEOL), 
operated at an accelerating voltage of 20 kV. 

Osmotic fragility test 

Osmotic fragility of erythrocytes was measured in 
terms of lysis in hypotonic saline by the method of 
Goda] and Heist (1981). Fifty microliters ofheparinized 
fresh blood was added to 10 ml PBS of varying concen
trations (1-9 g/1 NaCl). The tubes were kept at room 
temperature for 1.5 hours, remixed and centrifuged at 
250 g for 15 minutes. Hemoglobin content of supernat
ant was read on a spectrophotometer at 540 nm. The 
amount of lysis in each tube was compared with that in 
100% lysis tube (1 g/l NaCl). 

Erythrocyte lipids 

Lipids were extracted from the red cells by the iso
propanol chloroform extraction procedure of Rose and 
Oklander (1965). Aliquots of the lipid extract were used 
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Figure 5. Effect of vitamin B6 deficient, vitamin B6 de
ficient + galactose, and their respective control diets on 
rat erythrocyte osmotic fragiiity. Values are mean ± 
SD of 8 observations. Osmotic fragility was determined 
using the continuous dilution method described in the 
text. The extent of hemolysis is plotted for different salt 
concentrations in g/1. The test tube containing the low
est buffer salt concentration (1 g/1 NaCl) gives the level 
for 100% hemolysis. The curve for vitamin B6 deficient 
(•-•) and vitamin B6 deficient + galactose (0--0) 
groups are shifted to lower region, whereas galactose 
control group (x-x) curve is shifted to higher fragility 
region as compared to the vitamin B6 control group 
curve (•-•). 

for colorimetric estimation of cholesterol (Zlatkis et al., 
1953), glycolipids (Dubois et al., 1956) and total phos
pholipids (Marinetti, 1962). Different classes of phos
pholipids were separated by thin-layer chromatography 
(TLC) on silica gel-H using chloroform: methanol : am
monia (65: 25: 4 v/v) as the solvent system (Stahl, 
1969). The separated phospholipids were visualized 
with iodine vapors, scraped from the TLC plates and 
analysed for lipid phosphorus. 

Statistical analysis 

Statistical comparison of two groups (treated and its 
respective control) was done by Student's unpaired t
test. For multiple comparisons, with a single control 
and for all possible comparisons, analysis of variance 
(ANOV A) and Scheffe's test was used. The difference 
was considered statistically significant when the 
probability of chance occurrence was < 0.05. 

Results 

After 4 weeks of feeding respective diets, vitamin 
B6 deficiency was confirmed by a significant decrease in 
erythrocyte alanine transaminase activity in groups A 
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Table 3. Effect of vitamin B6 deficiency and/or galactose feeding on erythrocyte membrane lipid composition (values 
are mean ± SD of 8 observations). 

Groups (mg/ml packed cells) (molar ratio) 
--------------------------------------------------------------- Cholesterol/ 
Total lipids Phospholipids Cholesterol Glycolipid Phospholipid 

A. Vitamin B6 deficient 6.13 ± 0.57 3.88 ± 0.65 1.31 ± 0.092 0.74 ± 0.12 0.68 ± 0.063 

B. Vitamin B6 control 6.09 ± 0.62 3.56 ± 0.54 1.46 ± 0.11 8 0.78 ± 0.09 0.83 ± 0.088 

C. Vitamin B6 deficient 
+ Galactose 6.38 ± 0.86 3.71 ± 0.63 1.42 ± 0.14 0.82 ± 0.08 0.78 ± 0.06 

D. Galactose control 6.42 ± 0.41 3.40 ± 0.68 1.85 ± 0.llabc3 0.85 ± 0.09 1.12 ± 0.09abc3 

2p < 0.01 and 3p < 0.001 as compared to controls (analysed by Student's unpaired t-test). 
abcDenote that the value is significantly higher from the value for the group represented by that letter, i.e., group A, 
B, C, respectively (analysed by ANOV A and Scheffe's test at p < 0.05). 

and C (P < 0.001) and about 6-7 fold increase in pyri
doxal phosphate stimulation index as compared to con
trol groups (groups Band D). At the end of experimen
tal period, significant hyperoxaluria was induced in vita
min B6 deficient + galactose group (1.5 ± 0.022 mg 
oxalate/mg creatinine, p < 0.001), galact0se control 
group (0.89 ± 0.15 mg/mg creatinine, p < 0.001) and 
vitamin B6 deficient group (0.47 ± 0.12 mg/mg creatin
ine, p < 0.01) as compared to vitamin B6 control group 
(0.31 ± 0.07 mg/mg creatinine). 

Scanning electron microscopy 

Figures I to 4 show the scanning electron micro
graphs of erythrocytes in various experimental groups. 
Figure I shows the normal biconcave cells (discocytes) 
in the vitamin B6 control group (group B). In vitamin 
B6 deficient rats, with or without galactose feeding (i .e., 
groups C and A, respectively), the majority of cells have 
abnormal morphology and the field depicts cup-shaped 
(stomatocytes), flattened (leptocytes) and other variously 
deformed cells (Figs. 2A, 2B, 3A and 3B). However, 
among the two vitamin B6 deficient groups, extent of de
formity is more pronounced in the vitamin B6 deficient 
+ galactose group (Figs. 3A and 3B), showing almost 
all the cells in deformed shapes (Figs. 3A and 3B), in
cluding a few pitted cells (Fig. 3A). Most of the cells 
in galactose control group are spherical in shape, i.e., 
spherocytes (Figs. 4A and 4B). The cells in this group 
have abnormal surface appearances, with some of the 
cells showing pitted surfaces. 
Osmotic fragility 

Figure 5 shows the erythrocyte osmotic fragility 
curves in vitamin B6 deficient rats with and without ga
lactose feeding and their respective controls. The os
motic fragility curves for vitamin B6 deficient group and 
vitamin B6 deficient + galactose fed group are shifted 
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towards the left, whereas the curve for galactose control 
is shifted towards the right as compared to the osmotic 
fragility curve of normal rat erythrocytes (group B). 
Vitamin B6 deficiency, with and without galactose feed
ing (groups A and C), significantly lowered the median 
corpuscular fragility (MCF: concentration of saline caus
ing 50% hemolysis) in comparison to that of the vitamin 
B6 control (Table 2). The galactose control group 
(group D) had a significantly higher MCF when com
pared to the control (group B). These results indicate a 
decreased erythrocyte osmotic fragility in pyridoxine de
ficiency (groups A and C) and increased osmotic fragili
ty by galactose feeding (group D). This is also evident 
from the lower percentage of hemolysis at 4 g/1 NaCl 
concentration in vitamin B6 deficient groups (groups A 
and C) and the higher percentage hemolysis in the galac
tose control group (group D) than in the vitamin B6 con
trol group (group B) (Table 2). 

Erythrocyte membrane lipids 

Erythrocyte membrane lipid analysis depicted no 
significant change in total lipid, total phospholipid and 
glycolipid content in any of the groups studied (Table 3). 
However, the cholesterol content was significantly in
creased (p < 0.001) in the galactose control group 
(group D) and decreased (p < 0.01) in the vitamin B6 
deficient group (group A) when compared with the vita
min B6 control group (group B). Erythrocyte membrane 
cholesterol content was observed to be maximum in the 
galactose control group (group D). The molar cholester
ol-to-phospholipid ratio was significantly increased by 
35 % in the galactose control group (group D) and de
creased by about 18 % in the vitamin B6 deficient group 
(group A) and 6 % in the vitamin B6 deficient + galac
tose fed group (group C) in comparison to the vitamin 
B6 control group (group B) (Table 3). 
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Table 4. Effect of vitamin B6 deficiency and/or galactose feeding on various phospholipid fractions in rat erythrocyte 
membranes (values are mean ± SD of 8 observations) . 

% of total phospholipids 
-------------------------------------------------------------------------------------------------------

Lysophosphatidyl Sphingomyelin Phosphatidyl- Phosphatidyl- Phosphatidy 1-
GROUPS 

A. Vitamin B6 
B. Vitamin B6 control 
C. Vitamin B6 deficient + 

galactose 

choline 
(LPC) 

3.1 ± 1.4 
3.0 ± 1.5 
2.8 ± 1.2 

(SM) 

17.8 ± 2.41 

21.0 ± 2.8 
20.0 ± 2.2 

choline serine (PS) + ethanolamine 
(PC) Phosphatidyl- (PE) 

inositol (PI) 

35.6 ± 4.1 18.0 ± 3.8 25.3 ± 2_3b2 

34.4 ± 3.6 19.6 ± 3.6 22.0 ± 2.0 
34.0 ± 3.1 18.5 ± 3.2 24.7 ± 2.lbl 

D. Galactose control 2.0 ± 1.0 25.0 ± 3. label 31.6 ± 3.5 18.4 ± 3.0 23.3 ± 3.0 

1 p < 0.05 and 2 p < 0.01 as compared to vitamin B6 control group (as analysed by Student's unpaired t-test) . 
abc Denote that the value is significantly higher from the value for the group represented by that letter, i.e., group A, 
B, C, respectively (analysed by ANOVA and Scheffe's test at p < 0.05) . 

Among individual phospholipids (Table 4), sphingo
myelin (SM) was significantly Jess (p < 0.05) in the 
vitamin B6 deficient group (group A) and significantly 
higher (p < 0.05) in the galactose control group (group 
D) than in the vitamin B6 control group (group B). The 
SM content of erythrocyte membrane was higher in the 
galactose control group (group D) than in any other of 
the three groups (p < 0.05, analysed by Scheffe's test). 
When compared to that of the vitamin B6 control (group 
B), phosphatidylethanolamine (PE) content was signifi
cantly higher in both the vitamin B6 deficient group (p 
< 0.001) and the vitamin B6 deficient + galactose fed 
group (p < 0.05). Levels of other phospholipid frac
tions, viz., phosphatidylcholine(PC) , phosphatidylserine 
+ phosphatidylinositol (PS + PI) and lysophosphatidyl
choline (LPC), did not show any significant change in 
any of the experimental groups. 

Discussion 

The normal erythrocyte is capable of maintaining 
the discoid shape unstressed throughout its life-span. 
However, under certain instances, in which biochemical 
alterations lead to weak skeleton, applied stresses in cir
culation result in membrane fragmentation and genera
tion of spherocytes and other poikilocytes (Palek and 
Jarolim, 1993). Although the maintenance of shape has 
been mainly ascribed to spectrin-actin network underly
ing the erythrocyte membrane (Beaven et al., 1990; 
Nakao et al., 1990), lipids and other integral proteins of 
the cell membrane are also known to contribute to shape 
maintenance (Elgsaeter and Mikkelsen, 1991; Palek and 
Jarolim, 1993). Alterations in erythrocyte anion trans-
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porter (an integral membrane protein) have been report
ed in calcium oxalate stone formers (Borsatti, 1991) and 
hyperoxaluric animals (Kaul et al., 1993). The present 
study has revealed significant changes in membrane lipid 
composition in erythrocytes of animals fed pyridoxine 
deficient diet with and without galactose to produce hy
peroxaluria. These alterations are probably contributing 
towards morphological changes observed by SEM. Cho
lesterol depletion has been shown to induce discocyte to 
stomatocyte transformations (Chailley et al., 1981 ; 
Lange et al., 1982) which is in accordance with the re
sults of the present study showing stomatocyte formation 
in vitamin B6 deficient group (having reduced red cell 
membrane cholesterol levels) and spherocyte formation 
in the galactose control rats (which have significantly 
higher membrane cholesterol content). In proportion to 
their cholesterol-to-phospholipid ratio, discocyte-to-sto
matocyte transformation was more pronounced in vita
min B6 deficient group than in vitamin B6 deficient + 
galactose group. Lange et al. (1980) proposed that cho
lesterol constraints the membrane contour against invagi
nation leading to morphological alterations. The effect 
of membrane cholesterol levels on erythrocyte shape 
have also been suggested to be mediated through altered 
protein and lipid phosphorylation by membrane bound 
kinases (Chailley et al., 1981). The erythrocyte shape 
abnormalities are also produced because of the asym
metry in distribution of membrane lipids between the 
two halves of RBC lipid bilayer (Daleke and Huestis, 
1989). Higher sphingomyelin content (primarily found 
in the outer leaflet; Devaux, 1992) in galactose control 
group (group D), and higher phosphatidylethanolamine 
(present in the inner leaflet of the bilayer) in vitamin B6 
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deficient groups (groups A and C), is also probably con
tributing to spherocytic and stomatocytic transformations 
observed respectively in these groups. Selective inser
tion or removal of phospholipids from inner or outer 
membrane leaflets has been shown to induce echinocytic 
or stomatocytic transformations (Lange and Slayton, 
1982). In addition to alterations in shapes, surface pits 
were observed in vitamin B6 deficient + galactose 
(group C) and galactose control (group D) groups. Such 
surface pits have been reported in neonatal red cells and 
splenectomized adult red cells (Matovcik and Mentzer, 
1985) and are described as sites of formation of endo
cytic vacuoles (Holroyde et al., 1969). Scanning elec
tron micrographs of vitamin B6 deficient + galactose fed 
rats (Figs. 3A and 3B) showed the majority of cells in 
deformed shapes, which may also be because of reduced 
cellular deformability resulting from increased mem
brane rigidity probably due to a very high lipid peroxi
dation observed in erythrocytes of this group (unpublish
ed observation). Membrane rigidity is a primary cause 
of reduced cell deformability (Yip et al., 1983) and 
erythrocytes treated with hy9rogen peroxide have been 
shown to have reduced cell deformability due to 
peroxide induced membrane rigidity (Synder et al. , 
1988). 

Osmotic fragility used as a measure of the physical 
state of the cell-membrane is related to changes in both 
the structural proteins and composition of the lipid bi
layer. The shape of the erythrocyte also reflects its os
motic properties. The biconcave disc of the normal 
erythrocyte creates an advantageous surface area to vol
ume relationship, allowing the cells to undergo marked 
deformation while maintaining the constant surface area. 
Greater osmotic fragility of erythrocytes in the galactose 
control group (group D) than of normal erythrocytes can 
be explained both on the basis of increased membrane 
cholesterol and spherocytic shape. Cholesterol rich 
erythrocytes have been reported to have increased 
osmotic fragility (Uysal, 1986). Also, the spherocytic 
cells have an increased volume to surface area, and thus, 
have a limited ability to take up water before causing 
osmotic lysis. Similar increases in red cell osmotic 
fragility have been noticed in patients with hereditary 
spherocytosis (Becker and Lux, 1992). Erythrocytes of 
vitamin B6 deficient and vitamin B6 deficient + galac
tose groups were osmotically more resistant than normal 
cells, which is due to their stomatocytic (cup-shaped) 
and leptocytic (flattened) appearance, which gives them 
a lower volume compared to surface area. Flattened or 
oval erythrocytes of patients of South-East Asian ovalo
cytosis (Saul et al., 1984) and magnesium deficient rats 
(Tongyai et al. , 1989) have also been shown to have 
decreased osmotic fragility. 

Thus, the results of the present study indicate that 
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the altered red cell morphology and osmotic fragility in 
hyperoxaluric, vitamin B6 deficient and/or galactose fed 
rats is predominantly due to the altered membrane lipid 
composition. 
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Discussion with Reviewers 

P.O. Schwille: What is the impact of higher than nor
mal oxalate blood level on damage to transporting epi
thelia, isolated cells such as in blood? 
Authors: Although there are no reports available which 
directly correlate the blood oxalate levels to membrane 
damage, moderate increase in urinary oxalate has been 
shown to damage renal tubular epithelium as assessed by 
urinary excretion of tubula{ enzyme N-acetyl-8 glucu
ronidase (Khan et al., 1989). Increased levels of lipid 
peroxidation in erythrocyte membranes have been report
ed in kidney stone formers (Anuradha and Selvam, 
1989) suggestive of membrane alterations by increased 
oxalate levels. 

P.O. Schwille: ls there evidence from the literature that 
oxalate itself or oxalate-dependent processes interfere 
with carriers such as the Na+ /H+ antiporter, Cr/HCo3-

exchanger, etc.? 
Authors: Studies in our laboratory (Kaul et al. , 1994) 
on erythrocytes treated withisothiocyanoderivativeDIDS 
(a potent inhibitorofband-3 transport system), exhibited 
a significant inhibition (about 40-60 % ) of oxalate uptake, 
implying that major bulk of oxalate transport in erythro
cytes is mediated via band-3-anion transporter which is 
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known to mainly mediate Cr/HCo3- exchange. Inhibi
tion of erythrocyte oxalate flux by DIDS has also been 
reported in many idiopathic stone formers (Baggio et al., 
1984). 

In non-erythroid cells, several distinct transporters 
functionally related to band-3 have been reported 
(Aronson, 1989). In rat colon mucosa, oxalate and 
chloride share a common transport pathway and the er 
exchanges with HCo3- (Hatch et al. , 1984). In rat renal 
brush border membrane (BBM), oxalate has been shown 
to be transported via Na+ -SO4

2- co-transport system 
(Bastlein and Burckhardt, 1986), as well as by oxalate: 
OH- exchange via the anion transport system 
(Yamakawa and Kawamura, 1990). In the rabbit proxi
mal tubular BBM, a chloride (formate)/oxalate exchang
er has been identified (Kaminski and Aronson, 1987). 

Reviewer IV: When comparing the oxalate:creatinine 
ratio with visual morphological changes, small changes 
in membrane composition and structure seem to occur 
even at intermediate levels of oxalate. The cells in 
Figures 4A and 4B (group D) have the most abnormal 
shapes. The cells from group D shown in Figure 4A is 
pitted, while there is debris in Figure 4B. Oxalate levels 
in group D are two to three times higher than those 
found in control groups A and B. Group C is almost 
twice as hyperoxaluric as even group D. 
Authors: Pyridoxine deficiency in rats produces signifi
cant hyperoxaluria and is also known to cause a general
ized alteration at the membrane level indicated by in
creased oxalate uptake by intestinal and renal brush bor
der membrane (Gupta et al., 1988) and enhanced oxalate 
flux in the erythrocytes (Kaul et al., 1993). Hyperoxal
uria in galactose fed rats (group D) is mainly due to in
creased endogenous synthesis of oxalate, whereas high
est urinary oxalate levels observed in pyridoxine defi
cient rats fed galactose (group C), were due to cumula
tive effect of both enhanced endogenous synthesis and 
membrane alterations (Kaul et al., 1993). As observed 
in the present paper, vitamin B6 deficiency and galactose 
feeding lead to distinct alterations in membrane compo
sition (Tables 3 and 4) hence producing different altera
tions in shape and osmotic fragility even though both 
cause hyperoxaluria. 

In our previous paper (Kaul et al., 1993, to which 
the reviewer has referred) , it was observed that increase 
in urinary oxalate does not concurrently increase the 
transmembrane oxalate flux in erythrocytes; this was 
also reported by other investigators (Baggio et al. , 1986; 
Motola et al., 1992). It was suggested that increased 
erythrocyte flux is observed only when the defect is at 
the membrane level and not in all cases of idiopathic cal
cium oxalate lithiasis. 
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