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Abstract 

The aim of this study was to examine the effect of 
sodium pentosan polysulfate (SPP) in an undiluted urine 
system and to study its relative affinity to calcium 
oxalate (CaOx) crystals in the presence or absence of 
heparan sulfate (HS). CaOx crystals were induced with 
an overload of oxalate above the metastable limit in spun 
and filtered urine (SF) and ultrafiltered urine (UF). 
Then, the crystals were dissolved with EDT A ( ethylene­
diaminetetraacetic acid), electrodialysed and lyophilized. 
The polyanions, HS or SPP were added to the UF prior 
to the addition of oxalate. Polyanions in crystal matrices 
were examined by cellulose acetate electrophoresis. 
Crystal volume and size were suppressed according to 
the increase of the concentration of SPP when compared 
with those of the UF. Scanning electron microscopy 
(SEM) showed marked aggregation of the crystals in the 
UF and no aggregation in the presence of SPP. HS was 
the only polyanion found in CaOx crystals formed after 
overload of oxalate in SF. Crystals formed in UF did 
not contain any polyanions. When SPP was added to 
UF, SPP appeared in the crystal matrix in accordance 
with its concentration. Once HS in physiological con­
centration was added to the UF containing SPP, HS and 
SPP obtained from crystals were strongly stained with 
Alcian blue in electrophoretic study, where SPP is 
stained stronger than HS. These results suggest that 
SPP strongly binds to CaOx crystals as well as HS and 
that HS and SPP competitively bind to the crystal, then, 
as a result, they are incorporated into the crystals. The 
fact that SPP suppressed the aggregation of CaOx crys­
tals in undiluted urine showed the possibility that SPP 
might be one of the useful drugs for preventing CaOx 
urolithiasis. 
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Introduction 

Though a number of studies have clarified that some 
macromolecules are inhibitors of calcium oxalate (CaOx) 
crystalliz.ation, the role of macromolecules in the forma­
tion of CaOx stones remains unclear [15]. It is well 
known that glycosaminoglycans (GAGs) as well as pro­
teins are present in the matrices of urinary stones [2, 12, 
20, 38]. In normal urine, chondroitin sulfate (ChS) is 
the most abundant GAG at 60% and HS accounts for 
15% [9]. The pattern of GAGs in stones differs from 
that in urine. Nishio et al. [23] reported that hyaluronic 
acid (HA) and heparan sulfate (HS) were extracted from 
the matrices of CaOx stones. Roberts and Resnick [29] 
reported that ChS was usually absent from urinary stone 
matrix and the two of GA Gs in stones were HS and HA. 
Iwata reported the presence of HS in the matrix of uric 
acid crystals [14]. 

At present there are few reports about GAGs in the 
matrix of CaOx crystals. Yamaguchi et al. [ 46] 
reported that HS was the major GAG in CaOx crystal 
matrix. We found that HS was the only GAG in the 
newly formed CaOx crystals in spun and filtered urine 
(SF) and showed strong inhibition against crystal aggre­
gation in undiluted urine. Moreover, HS was shown to 
be selectively included into crystals due to its relative 
binding affinity [44] . Sodium pentosan polysulfate 
(SPP) is a semi-synthetic polyanion and reported to be 
a strong inhibitor of CaOx crystalliz.ation [4, 6, 17, 19, 
24, 25, 26, 41]. The role of SPP in an undiluted urine 
system as well as in crystal matrices has not been report­
ed in the literature. In this paper, we report on the 
crystal size distribution and the analysis of the poly­
anions in the matrix of newly formed CaOx crystals in 
the presence of SPP. We also examined the interaction 
of HS and SPP using an ultrafiltered urine system, and 
evaluated it by electrophoresis and scanning electron 
microscopy (SEM). 

Materials and Methods 

Materials 

All reagents were of analytical grade. SPP, heparan 
sulfate and Alcian blue 8 GX were obtained from Sigma 
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Chemical Co. (Tokyo, Japan). Cellulose acetate strips 
(CA-25010, 25 x 160 mm) were obtained from Schlei­
cher and Schell (Dassel, Germany). 

Collection and preparation of urine samples 

Twenty-four hour urine specimens were collected 
from 5 healthy men aged 30-43 years old, then pooled. 
None showed any sign of blood by chemical test. Urine 
specimens were centrifuged at 6,000 X g for 60 minutes 
(RS-206, TOMY, Tokyo, Japan) and filtered through 8 
µm followed by 0.22 µm Millipore GV filters (Millipore 
Corp., Bedford, MA, USA), being used as SF (spun and 
filtered urine), then ultrafiltered using hollow fiber 
bundle (AIP-1010, Asahikasei KK, Tokyo, Japan) with 
a nominal molecular cut-off of 10 kDa (UF; ultrafiltered 
urine). Urine samples were refrigerated until needed 
and were warmed to 37°C and refiltered (0.22 µm) just 
prior to use. Each 100 ml urine was prepared for 
further experiment. 

Crystal preparation 

The method of inducing CaOx crystallization in un­
diluted urine has been described elsewhere [5, 34, 35]. 
Briefly, the minimum amount of oxalate required to pro­
duce crystals in 200 µI of urine by adding 2 µI of graded 
concentration series of sodium oxalate was used to deter­
mine the metastable limit by microplate and inverted 
microscopy [42]. Once the metastable limit had been 
measured, an amount of oxalate, 0.3 mmol/1 (final con­
centration) in excess of this limit, was added to urine 
specimens drop-wise! y. A Coulter counter (Model TA 
II, fitted with a NEC personal computer, aperture size; 
100 µm; Coulter Co. , Tokyo, Japan) was used to moni­
tor the crystal particle size every ten minutes during a 
90 minute incubation period in a 37°C shaking water 
bath. After 90 minute incubation, samples for SEM 
were prepared. The same amount of oxalate was added 
after 90 minutes and 120 minutes to increase the yield of 
CaOx crystals. 

Into UF specimens, 0, 1, 2 and 10 µg/ml of SPP 
and/or HS were added just prior to use. 

Isolation of crystal matrix 

The crystals were washed on a 0.22 µm Millipore 
filter, 6 times with 0.1 M sodium hydroxide, and then 
with deionized and double distilled (d.d.) water to wash 
out surface substances completely, lyophilized, weighed 
and demineralized by the addition of 100 ml of 0.25 M 
EDTA (ethylenediaminetetraacetic acid; pH 8.0) to 
every 1 gram of crystals at 4 °C. 

The solution of demineralized crystal extracts was 
electrodialysed in the dialysis tube (Sigma, 10 kDa cut 
off) against 25 mM Tris, 192 mM glycine buffer (pH 
8.3) with 4 changes of the buffer at 80 V initially, with 
a gradual increase to 120 V, then against d.d. water 
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overnight at 4 °C (3 times), and lyophilized. Crystal 
matrix extract was dissolved in d.d. water and desalted 
with an Econo-Pac lODG column (6 kDa cut off; BIO­
RAD Co., Tokyo, Japan) and lyophilized. All the steps 
were repeated 6 times. Only mean values of results are 
depicted. 

Electrophoresis 

Two µl of dissolved samples (20 µg/20 µl of distil­
led water) were applied to cellulose acetate strips and 
electrophoresed at 80 V for 45 minutes. 0.2 M calcium 
acetate (pH 7.2) was used as a buffer solution [16, 45]. 
As a reference, HS and SPP (each in 1 µg/µl) were run 
simultaneously in wide mini sub cell (BIO-RAD). Cel­
lulose acetate strips were stained in 0.2 per cent Alcian 
blue 8 GX solution containing 0.05 M magnesium chlo­
ride, 0.025 M sodium acetate, 50% ethanol and 50% 
deionized water for 15 minutes and destained in same 
solution without Alcian blue for 120 minutes with 6 
changes of destaining solution. A laser densitometer 
(Ultroscan XL, Pharmacia Biotech, Tokyo, Japan) was 
used to determine the relative content of each GAG. 
This experiment was repeated 6 times. In the case of 
protein rich urine, papain digestion was performed. 
Heparitinase was used to digest HS. 

Scanning electron microscopic (SEM) study 

Urine samples for SEM were prepared at 90 min­
utes incubation. Each 500 µ1 urine was filtered on the 
0.22 µm (10 mm) Millipore filter. Crystals on the filter 
were dried in a desiccator at room temperature, then 
mounted on stub and coated for SEM. The stubs were 
examined with a JEOL-JSM 840 (JEOL, Tokyo, Japan) 
SEM operated at an accelerating voltage of 15 kV, a 
probe current of 6 x 10-9 A, and a working distance of 
15 mm. 

Results 

SF and UF as well as UF that contained HS(UF + 
HS) or UF that contained SPP(UF + SPP) showed the 
same metastable limit. The volume of additional oxalate 
required to form crystals was same in each solution. 
Crystal volume of UF was significantly increased in ac­
cordance with time (Fig. 1) . UF +SPP showed a slight­
ly lower volume after 10 minutes compared with UF. 
SF urine showed a significantly lower volume compar~ 
with UF or UF + SPP. Figure 2 shows crystal size-voi­
ume distribution at 90 minutes incubation. In UF, crys­
tal size and volume were larger than in UF + SPP and 
SF. 

The HS (1 µglµI) standard clearly identified on cel­
lulose acetate strip was completely digested and dis­
appeared from the strip by the use of heparitinase. 
Crystals derived from each 100 ml of SF contained HS 
only. This band showed the same migration distance 
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Figures 1 and 2. Crystal volume according to time 
course measured by Coulter counter (Fig. 1). Crystal 
size distribution at 90 minutes after load of oxalate 
measured by Coulter counter (Fig. 2). UF: ultrafiltered 
urine; SPPl, 2, 10: UF containing SPP at final concen­
trations of 1, 2, and 10 µglml, respectively; S&F: spun 
and filtered urine. 
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Figure 3 . Alcian Blue stained cellulose acetate strips of 
SPP and HS included in crystal matrix at each concen­
tration (µg/ml) of applied HA and/or SPP (Fig. 3A) . 
HS: heparan sulfate; SPP: sodium pentosan polysulfate. 
Densitometric analysis of Alcian-blue stained electro­
phoretic profile of HS and SPP at the concentration of 
1 µg/ µ1 as standards (Fig. 3B). 

Figure 4 (at left). Densitometric analysis of Alcian­
blue stained electrophoretic profile of SPP and HS after 
destained cellulose acetate strip. Relative percentage of 
HS (left) and SPP (right) included in crystal matrix at 
each concentration (µg/ml) of applied HS and/or SPP. 
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Figure 5. Scanning electron micrographs of calcium oxalate crystals formed in various concentrations of SPP (0, 1, 
2, and 10 µg/ml) and HS (0, 1 and 2 µg/ml) added to ultrafiltered urine (UF). SF: spun and filtered urine. (A) SPP 
0 I HS 0 (UF); (B) SPP 1 / HS 0; (C) SPP 2 / HS 0; (D) SPP 10 / HS 0; (E) SPP 1 / HS 2; (F) SPP 2 / HS 2; (G) 
SPP 10 / HS 2; and (H) SF. 

when compared with the migration of standard and dis­
appeared after heparitinase digestion and, though not 
shown in Figure 2, still remained after protein digestion 
using papain. In crystals derived from UF, no visible 
GAG bands were seen. These findings were same as 
previous report [44]. When SPP was added into UF in 
final concentration of 1 µg/ml, a single GAG band was 
observed. This band was considered to be the same as 
SPP from the migration distance of standard. 

In order to determine whether there might be a rela­
tionship between SPP and HS in forming the crystals, 
another experiment was performed. Various concentra­
tions (0, 1, 2, 10 µg/ml) of SPP and HS were added to 
UF, then crystals were prepared in the same manner. 
Table 1 shows each concentration of HS and SPP added 
to UF. Figure 3A shows the results of electrophoresis 
of GAGs from crystals. HS was found in crystals using 
UF + HS in concentration of 1, 2, 10 µg/ml, as well as 
SF. SPP from the samples of each concentration of 1, 
2, 10 µg/ml was clearly stained (Fig. 3A). GAG bands 
obtained from crystal matrix were examined by the use 
of densitometer. The densitometric result of electro­
phoresis when the mixture of HS and SPP at 1 µg/ml 
were added to UF is demonstrated in Figure 3B. Densi­
tometry of 1 µg/ml of HS and SPP showed that the av­
erage ratio of HS to SPP was 48 % to 52 % . The results 
of relative percentage of HS and SPP contained in crys­
tals are shown in Figure 4. At similar concentrations of 
SPP, the relative content of HS increased in accordance 
with its concentration. When the concentration of HS 
and SPP was the same at 2 and 10 µg/ml, it is apparent 
that the amount of HS incorporated into the crystals de­
creased in relation to increasing concentrations of SPP. 
This effect is most noticeable at the concentration of 10 
µglml. 
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Table 1. Concentration of HS and SPP added to 
ultrafiltered urine. 

HS (µg/ml) 

0 1 2 10 
SPP 1 1/1 1/2 1/10 
(µg/ml) 2 2/1 2/2 2/10 

10 10/1 10/2 10/10 

Scanning electron micrographs were obtained at 
each experiment (Fig. 5). In all samples, CaOx dihy­
drate crystals were precipitated. Interesting results were 
obtained from SEM study. In UF, CaOx dihydrate crys­
tals were formed and most of them were aggregated, 
which was confirmed in crystal size analysis shown in 
Figure 2. With increasing concentration of SPP, the 
crystals were shown not to be aggregated. HS showed 
almost the same results as those of SPP. Addition of 
HS at the concentration of 2 µg/ml to UF + SPP showed 
minimal aggregation which is thought to be almost same 
as SF. In SF, most of the crystals were single and 
somewhat aggregated. 

Discussion 

An undiluted urine seems to be the best system to 
observe the affinity of macromolecules for CaOx crys­
tals that might have inhibitory activity. Though many 
macromolecular substances have been reported to effi­
ciently inhibit growth or aggregation of CaOx crystals 
[35), undiluted urine may help to determine their relative 
inhibitory power. Though chondroitin sulfate (ChS), 
which is the most abundant GAG in normal urine, is re­
ported to inhibit crystal aggregation and growth when 
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used in seeded crystal system, it showed little or no in­
hibition against CaOx crystals in an undiluted urine sys­
tem [36]. A previous study [44] clearly demonstrated 
that HS was selectively incorporated into CaOx crystals 
when using the undiluted urine system. ChS was in­
cluded into crystals only when HS was added at O or 1 
µglml. 

In the normal concentration of urinary glycosamino­
glycans, HS is a stronger inhibitor than ChS. From the 
present study, HS and SPP bind the growing crystals 
competitively. SPP is stronger than HS when these sub­
stances are used at the same concentration. Fellstrom et 
al. [7] reported almost the same results. They measured 
the relative binding affinities of GAGs to CaOx crystals 
in organic media and reported that the inhibitory activity 
of GAGs is largely a function of their charge density, 
SPP > heparin > ChS. On the other hand, Angel and 
Resnick [1] reported the binding affmity of CaOx crys­
tals with various GAGs and obtained different results; 
heparin > hyaluronic acid > ChS > SPP, though the 
analytical method was different. 

How GAGs are involved or incorporated into CaOx 
crystals is unknown. Scurr and Robertson [39] reported 
that heparin , ChS and RNA became negatively charged 
in accordance with increasing concentration and this 
resulted in the increase of negative zeta potential, 
causing a repulsion between crystals and inhibition of 
aggregation. More precise characterization of GAGs, 
such as, charge or sulfation is needed to clarify the 
genesis of crystal formation. 

The studies of Robertson er al. [30, 31] suggest that 
a reduction in inhibitory activity could be related to a 
decrease of GAGs in about half of the cases of stone 
formation. The difference of GAG excretion in urine 
among the normal subjects and stone patients, has been 
confirmed by subsequent investigations [3, 10, 13, 18, 
21, 22, 32, 33, 37], though there was one report that no 
difference existed between healthy persons and CaOx 
stone patients [11]. Recently , Shum et al. [40] reported 
that urinary HS of normal control subjects showed 
higher inhibitory activity than that of stone formers. 

SPP is reportedly a powerful inhibitor of CaOx 
crystal aggregation and growth in seed crystal system [ 4, 
6, 17, 19, 24, 25, 26, 41]. SPP is an anticoagulant now 
used for treating interstitial cystitis [27]. Moreover, 
SPP has the possibility of preventing stone formation . 
In this report, we showed that SPP exists in crystals and 
that SPP has an inhibitory role on growth and aggrega­
tion of CaOx crystals in undiluted urine. It is thus rea­
sonable to assume that SPP might inhibit or prevent the 
CaOx crystal formation, growth and aggregation in vivo. 
HS and other macromolecules in urine could not be ex­
pected to increase from an oral load because of their 
molecular weights. SPP is reportedly excreted in the 
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urine at about 3 % of the oral dose [28]. Since the usual 
dose is 300 to 400 mg/day, the calculated excretion rate 
rises above 10 mg/I, that is enough to inhibit crystal 
aggregation. 

About clinical use, Fellstrom et al. [8] reported SPP 
had a role in the treatment of recurrent stone disease 
from the results that 48 % of the patients became stone 
free and half of the patients who continued to form 
stones had smaller ones which were easily passed. 
Though complete prevention was not obtained, their trial 
was thought to be valuable and the use of SPP might be 
beneficial. 

There are macromolecules other than HS in crystal 
matrix [ 43]. Doyle et al. [5] have isolated a 31 kDa 
crystal matrix protein (CMP) as a powerful inhibitor of 
crystal aggregation. Further studies are required to 
clarify the relationship between HS and CMP. 

In summary, this study indicates that SPP is a potent 
inhibitor of CaOx crystal aggregation and growth and 
that SPP as well as HS are incorporated into crystals in 
undiluted urine. The resultant relative content of SPP in 
the crystal matrix was higher than that of HS . 
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Discussion with Reviewers 

D. Kok: Could you please define the term "crystal ma­
trix"? Does the crystal matrix contain molecules which 
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were not removed by the washing treatment, e.g., be­
cause they were trapped inside aggregates? If the sub­
stances were actually inside crystals or particles, can you 
tell whether they are there because they induced nuclea­
tion or because they once got adsorbed to the crystal 
surface and subsequently got overgrown by crystal 
material. 
Authors: In this paper, crystal matrix means the 
macromolecular substances derived from the CaOx crys­
tals. Washing solution did not show any detectable 
amount of GAGs or protein. Matrices are thought to 
bind to the crystal surface and incorporate into the 
crystals. 

D. Kok: Did you perform quantitative comparisons, 
and if so how were these done? If you did not do these 
type of experiments, you can only state that SPP reduces 
the size of the particles formed. 
Authors: Crystal volume and size distribution study 
between UF and SF, UF + SPP/HS showed statistically 
significant results. Although it was difficult to perform 
quantitative comparisons in SEM, many aggregated crys­
tals were seen only in UF, not in SF or UF+SPP/HS. 

S.R. Khan: What is the physiological concentration of 
heparan sulfate in normal and stone formers urine? 
What is the origin of GAGs excreted in the urine partic­
ularly the heparan sulfate? Are GAGs present as GAGs 
or as a part of mucoprotein or associated with mem­
branes etc.? 
Authors: In human urine, both of normal and stone 
former, the concentration of HS was calculated to be 1-2 
/lg/ml (9 , 21, 22]. We did not examine the origin of HS 
or other GAGs in this experiment. Further study is 
needed to clarify the exact localization or characteri­
zation of HS in the kidney such as proteoglycans. 

S.R. Khan: SPP 1, 2, 10 results are very close togeth­
er in Figures 1 and 2, showing crystal volume and crys­
tal number. What were the standard deviations? Was 
there any significant difference between the three differ­
ent amounts of SPPs used? 
Authors: Statistically significant difference was ob­
served between UF and UF+SPPl0 for crystal volume 
in Figure 1 and for mean crystal size in Figure 2. 

L.C. Cao and E.R. Boeve: Could the binding behavior 
of urinary GAGs on CaOx crystals in this urine with 
such high ionic strength be different from original urine? 
Could the high oxalate concentration used to induce 
CaOx crystallization influence the binding behavior of 
urinary GAGs on the newly formed crystals? 
Authors: Since the urine with high ionic strength and 
high oxalate concentration was used, there is a possi-
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bility that binding behavior was slightly different from 
original urine. But, an undiluted urine seems to be the 
best system to observe the affinity of macromolecules 
for Ca Ox crystals that might have inhibitory activity. 

L.C. Cao and E.R. Boeve: The crystal matrix protein 
is supposed to be selected from the urine and incorporat­
ed in newly forming CaOx crystals as reported by Ryall 
in 1991. In the present manuscript, the authors describe 
a similar phenomenon for HS. Can the authors com­
ment on the reason why they have different results? Is 
the HS or crystal matrix protein located on the crystal 
surface only or both inside and outside the crystals? 
Authors: We already reported CMP and HS coexisted 
in crystal matrix extract [43]. The results of references 
[43] and [44] suggests that HS and CMP adsorbed on 
different binding sites; and HS and CMP were thought 
to locate both inside and on the surface of the crystals. 
Recently, we showed the presence of CMP using CMP 
antibody and immunogold by backscattered electron 
microscopy (International J Urol (1995) 2: 87-91). 

M.D.I. Gobel and D.K. Y. Shum: During the isolation 
of crystal matrix, the surface was washed out. The re­
viewers believe that if GAGs were to act as growth and/ 
or aggregation inhibitors, GAGs would be exerting its 
influence on the surface of the crystals and not in the 
crystal matrix. Those found in the crystal matrix are 
possibly promotors of nucleation. Hence, the surface 
washing should have been recovered for investigations 
of the nature and crystallization properties of macro­
molecules therein. 
Authors: Washing solution, which was concentrated, 
electrophoresed and examined by SOS-PAGE and cellu­
lose electrophoresis, did not show any detectable amount 
of GAGs or proteins. From the results of this experi­
ment and references [43, 44], matrices were thought to 
be bound to the crystal surface and finally incorporated 
into the crystals. 
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P. Binette: Does SPP bind to other crystals? 
Authors: We did not have any data of SPP about other 
crystals. There are some reports about other crystals as 
follows: Uric acid crystals {Grases et al. (1991) Urol 
Res 19: 375-380}; and CaP crystals {Boeve et al. 
(1990): Urol Res 18: 62}. 

P. Binette: A small percentage of SPP is secreted in 
the urine. Is it bound to crystals excreted in sponta­
neous crystalluria? 
Authors: We did not perform such an experiment yet. 

P. Binette: It is stated that SPP is an anticoagulant. 
What protein(s) does it bind to? 
Authors: We do not know the binding protein(s) of 
SPP. 

R.W. Norman: Is there any evidence to suggest that 
SPP might function differently in the urine of women or 
male/female stone-formers as opposed to healthy con­
trols? 
Authors: To answer the question, further experiment is 
needed. 

R.W. Norman: Do you have any evidence that oral ad­
ministration of thjs drug will allow reproduction of your 
findings when the drug is directly added to the pooled 
urine collections? 
Authors: We did not perform the experiment of oral 
administration. In near future , we want to try to clarify 
the usefulness of oral administration of SPP. 
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