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Abstract 

Calcium oxalate dihydrate (CaC20 4.(2+x)H20; 
COD; x ~ 0.5) does not readily crystallize from elec
trolytic solutions but appears as a component in crys
talluria. In this paper, we review in vitro studies on the 
factors responsible for its nucleation and growth with 
special attention given to the role of surfactants. The 
following surfactants were tested: dodecyl ammonium 
chloride (cationic), octaethylene mono-hexadecylether 
(non-ionic), sodium dodecyl sulfate (SOS, anionic), 
dioctyl sulphosuccinate (AOT, anionic), and sodium 
cholate (NaC, anionic). The cationic and some of the 
anionic surfactants (SOS, AOT) induced different habit 
modifications of growing calcium oxalate crystals by 
preferential adsorption at different crystal faces. In 
addition, the anionic surfactants effectively induced crys
tallization of COD at the expense of COM, the propor
tion of COD in the precipitates abruptly increasing 
above a critical surfactant concentration, close to, but 
not necessarily identical with the respective CMC. A 
mechanism is proposed, whereby crystallization of COD 
in the presence of surfactants is a consequence of the in
hibition of COM by preferential adsorption of surfactant 
hemimicelles (two-dimensional surface aggregates) at the 
surfaces of growing crystals. 

Key Words: Urolithiasis, kidney stone, crystalluria, 
calcium oxalate, surfactants, micelles, crystallization, 
adsorption, morphology. 
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Introduction 

Calcium oxalate hydrates, i.e., the monoclinic 
monohydrate (CaC20 4.H20; COM) and the tetragonal 
dihydrate (CaC20 4.(2+x) H20; x ~ 0.5; COD) are 
among the main constituents of kidney stone. The 
triclinic calcium oxalate trihydrate (CaC20 4.(3-x) H20, 
x ~ 0.5, COT) is rarely found in kidney stone (Heijnen 
et al., 1985) but has been extensively investigated in the 
laboratory (Gardner, 1975, 1976; Tomazic and 
Nancollas, 1979; Markovic et al., 1984; Skrtic et al., 
1984, 1987; Babic-Ivancic et al., 1985; Cody and Cody, 
1994). 

Crystallization of COD has been of particular inter
est because it does not readily crystallize from electro
lytic solutions but appears as a component in crystalluria 
and the average sizes of crystals and/or crystal aggre
gates are greater than those of COM crystal habits 
(Elliot and Rabinowitz, 1980; Wemess et al., 1981). 
This paper will review in vitro studies which were car
ried out with the purpose to define the factors responsi
ble for COD nucleation and growth from solutions su
persaturated to all three crystal hydrates and to under
stand the underlying mechanisms. Special attention will 
be given the influence of surfactants which, because of 
their unique properties and ready availability in different 
designs, constitute ideal model additives for the study of 
interfacial phenomena which are the basis of interactions 
of stone-mineral with urinary organic molecules. The 
paper also includes new results on the influence of some 
anionic surfactants on the morphology and crystal 
hydrate distribution of calcium oxalates. 

Factors Influencing Crystallii;ation of 
Calciwn Oxalate Hydrates 

Many authors sought to define the factors responsi
ble for crystallization of COD for preparation purposes 
because pure dihydrate crystals were needed for crystal
lographic, crystal growth kinetic, surface and/or other 
studies. Others were primarily interested in the mecha
nisms controlling nucleation, growth and aggregation of 
calcium oxalate hydrates. In the following sections, we 
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will describe some of the more comprehensive reports 
available on these subjects. 

Crystallization from high ionic strength solutions 

When calcium oxalate crystallizes from supersatu
rated solution, the distribution of crystal hydrates in the 
precipitate as well as the morphology, number and size 
distribution of the crystals depend on factors controlling 
the kinetics of one or several of the main crystallization 
processes, nucleation, crystal growth, aggregation and 
phase transformation. Such factors are the supersatura
tion, reactant concentration ratio, temperature, mode of 
mixing and stirring, additives, etc. (Fiiredi-Milhofer et 
al., 1988, 1990). Babic-Ivancic et al. (1985) presented 
a comprehensive precipitation diagram showing the dis
tribution and morphology of calcium oxalate hydrates as 
a function of the initial reactant concentrations (condi
tions: 298K, 0.3 M NaCl, pH = 6.5, unstirred sys
tems). Under the given experimental conditions, typical 
octahedral bipyramids of COD formed at medium react
ant concentrations and were stabilized by an excess of 
calcium ions. However, if COD crystallized, it always 
appeared as a minor component in mixtures with COM. 
Kinetic crystallization studies, carried out in high ionic 
strength solutions containing a large calcium to oxalate 
ratio, also demonstrated that regardless of other condi
tions in solutions without additives, COD always appears 
as a minor component {up to ~25 weight percent 
(w%)} in mixtures with COM and/or COT (Brecevic et 
al. , 1989). If calcium oxalate was precipitated in the 
presence of some amino acids (histidine, tryptophane; 
Brecevic and Kralj , 1986b), the yield of COD increased 
by approx. 20 w%. 

Crystallization from urine and artificial urine 

Many procedures for exclusive COD crystal growth 
involve the addition of calcium and oxalate solutions to 
urine and/or artificial urine (for a comprehensive list of 
relevant references, see, Brown et al., 1989). Systemat
ic studies of the influence of temperature, supersatura
tion and reactant concentration ratio on the crystalliza
tion of COD from artificial urine were carried out by 
Brown et al. (1989). The results were presented in the 
form of precipitation diagrams from which it appears 
that COD is favored by low temperature, high calcium 
to oxalate ratio, and low relative supersaturation. 

In the search for likely promoters and stabilizers of 
COD crystallization from urine supersaturated to all 
three calcium oxalate hydrates, a number of different 
additives have been investigated. Brown et al. (1989) 
studied the effect of various concentrations of the com
ponents of artificial urine and some other macromole
cules and concluded that magnesium ions, citrate, and 
RNA promote COD crystallization. Using these results, 
Brown et al. (1989) defined a simple solution (contain-
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ing sodium citrate, magnesium ions, and potassium chlo
ride) which was suitable for routine production of pure 
COD crystals. Hesse et al. (1976) reported that small 
amounts of divalent cations stabilize the dihydrate, but 
the formation of mixed crystal phases could not be 
excluded. 

In a kinetic study Gardner and Doremus (1978) 
crystallized calcium oxalate from synthetic urine at 
conditions under which COT was the principal growth 
form. By adding a small amount of normal urine (10 
vol%) the authors succeeded to change the composition 
of.the solid phase from 100 w% COT to 100 w% COD. 
A similar effect was achieved by the addition of high 
molecular weight fractions isolated from the urine and/or 
high molecular weight mucopolysaccharides such as 
heparin. It was suggested that urine contains inhibitors 
which inhibit crystal growth of calcium oxalate monohy
drate and/or trihydrate to the extent that the dihydrate is 
formed . Effective inhibitors of COT are negatively 
charged with high molecular weights, high charge den
sity, and sulphonated functional groups as part of the 
molecule. 

Control of crystallization of calcium oxalate phase(s) 
by synthetic organic molecules 

In recent years, several groups presented additional 
evidence that the hydrate form of calcium oxalate, which 
precipitates from solution, can be controlled by negative
ly charged organic molecules (Skrtic and Filipovic
Vincekovic, 1988; Manne et al . , 1990; Cody and Cody, 
1994). Manne et al. (1990) investigated a series of syn
thetic anionic polymers (carboxylates and sulphonates) 
and found that the type of the precipitating crystal 
hydrate depended on the concentration of the polymer. 
For all investigated polymers, inhibitor concentration at 
phase appearance followed the order COM < COT < 
COD. As an example, at low concentrations (up to 1 
ppm) of low molecular weight (MW; 5000) polyacrylic 
acid, COM was the precipitating phase, at medium con
centrations (between 1 and 5 ppm), COT crystallized, 
while at high concentrations ( > 50 ppm), COD was 
exclusively formed. The efficiency of the respective 
polymer decreased with increasing molecular weight. In 
addition to the changes in the precipitating crystal hy
drate, morphological changes were also observed. 

Cody and Cody (1994) tested a large number of 
mono- di-, tri-, and polycarboxylic acids for their ability 
to change the crystallizing polymorph of calcium oxa
late. While monocarboxylates showed no effect, the ef
ficiency of di-, tri-, and polycarboxylates depended on 
the structure and concentration of the molecule. As in 
the work of Manne et al. (1990), increasing concentra
tions of the effective molecules induced phase changes 
in the order COM < COT < COD. In addition, mor-
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phological changes of the precipitating crystals were also 
observed. Both groups explained their results by prefer
ential adsorption of the additives at the crystal/ solution 
interface of COM ( enabling the appearance of COT) and 
COT (enabling the appearance of COD), respectively. 
Cody and Cody (1994) supported their thesis by comput
er modeling, demonstrating a structural match between 
effective carboxylates and calcium spacings in the crystal 
lattices of COM, COT and COD, respectively. 

In 1988, some of us (Skrtic and Filipovic-Vince
kovic, 1988) reported the observation that micellar solu
tions of an anionic surfactant, sodium dodecyl sulfate, 
(SDS) cause almost complete reversal of the precipitat
ing crystal hydrate, COM into COD. This result was 
significant for two reasons: (a) although it was known 
that surfactants interact with crystals controlling their 
size and morphology, this was the first time that control 
of the crystallizing phase by surfactants has been ob
served; and (b) as stated in the Introduction, surfactants 
lend themselves as ideal model additives for studies of 
the complex interactions that occur in pathological min
eralization at mineral/matrix interfaces. For these rea
sons, we embarked on a program of systematic investi
gations of the possible role of surfactants in the crystal
lization of calcium oxalates. 

In the following sections, we discuss some results of 
these studies. Since adsorption at the crystal /solution 
interface seems to be the underlying mechanism to most 
observed phenomena, a short discourse on the adsorption 
of surfactants at mineral/solution interfaces has been 
included. 

Adsorption of surfactants at mineral/solution 
interfaces 

Surfactants are amphiphilic molecules, compnsmg 
a hydrophilic head and hydrophobic tail(s), which cause 
them to exhibit unique properties in aqueous solutions 
and at solid/solution interfaces. At low concentrations, 
surfactants cumulate at the air/liquid interface causing 
lowering of the surface tension. An example is the 
biological surfactant molecules, such as bile salts, which 
are responsible for the lowering of the surface tension of 
urine (Mills et al., 1988). When the chemical potential 
of monomers in solution has risen to an appropriate lev
el, further addition of surfactant molecules causes their 
aggregation into micelles, while the surface tension at 
the air/solution interface stays nearly constant. The sur
factant concentration at which aggregation commences is 
called the critical micellar concentration, CMC. 

Our present understanding of the adsorption of sur
factants at crystal/solution interfaces stems from investi
gations of their adsorption at silica and mineral oxide 
surfaces which were carried out with the purpose of bet
ter understanding flotation (Scamehorn et al., 1982a, b; 
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Figure 1. Schematic presentation of the mechanism of 
adsorption of ionic surfactants at polar crystal surfaces. 
(a) Adsorption of surfactant molecules at c < HMC; 
(b) formation of surface aggregates (hemimicelles) at c 
~ HMC; (c) adsorption isotherm showing the two-step 
adsorption process. CMC: critical micellar concentra
tion; HMC: critical concentration for the formation of 
hemimicelles. After Scamehorn et al. (1982 a,b) and 
Rupprecht and Gu ( 1991). 

Harwell et al. , 1985; Rupprecht and Gu, 1991; Zhu and 
Gu, 1991). In these systems, adsorption occurs in two 
steps. In the first step, surfactant molecules are adsorb
ed through direct interactions (electrostatic and/or van 
der Waals) with the solid surface (Fig. la). In the sec
ond step, the amount of surfactant adsorbed increases 
dramatically because of hydrophobic interactions be
tween adsorbed and dissolved surfactant molecules which 
cause the formation of two-dimensional surface aggre
gates, so called, hemimicelles or admicelles (Fig. lb). 
Micelles, that have been formed in solution, do not ad
sorb significantly at the mineral/solution interface 
(Scamehorn et al., 1982a,b). 

A typical adsorption isotherm (Fig. le, after 
Rupprecht and Gu, 1991) reflects these considerations by 
displaying a region of low and a region of high adsorp
tion with a sharp transition between them. The low 
adsorption region corresponds to the gradual formation 
of surfactant monolayers while at higher concentrations, 
an abrupt transition indicates the formation of two-di
mensional surface aggregates. The leveling off of the 
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Table 1. The effect of surfactants on the crystallization of COD at concentrations > CMC. 

Name 

dodecyl ammonium 
chloride 

Type 

cationic 

octaethylene n mono . . 
non-1omc hexadecyl ether 

Sodium dodecyl 
sulfate SDS amomc 

Formula Effect Reference 

none Skrtic et al. (1991, 1993a) 

none Fiiredi-Milhofer et al. (1993, 1994) 

yes 
Skrtic et al. (1988, 1993a), 
Fiiredi-Milhofer et al. (1993) 

Sodium dioctyl 
sulphosuccinate, 
AOT 

rCH3 
o~c_....o_c~cH3 

Tunik L, Fiiredi-Milhofer H, 
Garti N (in preparation) amomc .) yes NaO3SCH, 

o.,.c_o"'cft--/'cH
3 

LCH3-

sodium cholate amomc 

isotherm above the CMC has been attributed to the con
stancy of monomer concentration in this region (Scame
horn et al. , 1982a,b). Based on the two-step adsorption 
model and the mass action treatment, a general adsorp
tion isotherm has been derived and successfully applied 
to various types of surfactant adsorption systems (Zhu 
and Gu, 1991). 

Crystallization of calcium oxalates in the presence of 
surfactants 

Strategy and experimental design. The investiga
tions discussed in this and the following sections have 
been designed to understand the mechanism(s) that lead 
to preferential crystallization of COD in the presence of 
surfactants. With this question in mind, we investigated 
the influence of the head-group charge, aggregation 
state, and the structure of the hydrophobic group of the 
surfactant on the kinetics of precipitation and the mor
phology and composition of the precipitating solid 
phases. One cationic, one non-ionic, and three anionic 
surfactants with very different hydrophobic entities were 
chosen as representative (Table 1). Sodium cholate 
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yes 
Skrtic et al. (1991, 1993a, 
1993b, 1994) 

(NaC) was included as a model for bile salts which are 
the main surfactants occurring in the urine. All sur
factants were used at concentrations below, at, and 
above the CMC. 

To keep the experiments relevant to urolithiasis re
search, physiological temperature (37 ± 0.1 °C) was 
maintained throughout and precipitation was initiated at 
pH = 6.5 from high ionic strength solutions (in most 
cases, 0.3 molar in sodium chloride) which contained an 
excess of calcium ions and different concentrations of 
the respective surfactant. Typical initial reactant 
concentrations in mo! dm-3 were c(Ca) = 1 x 10-2 and 
c(C20 4) = 3 x 10-4_ In precipitates prepared without 
additives, COM was the dominant phase with less than 
2 w% of COD coprecipitated. Electrophoretic mobility 
measurements of the COM particles indicated a hetero
geneous distribution of charge densities (i.e., the pres
ence of both negatively and positively charged patches 
on the surfaces) with the negative charges prevailing at 
the crystal/solution interface (Skrtic et al. , 1993a). 

Data were collected by standard techniques: pre
cipitation kinetics was followed by particle size analysis 
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Figure 2. Typical X-ray diffraction powder patterns of 
calcium oxalate precipitated from supersaturated, high 
ionic strength solutions: (a) pattern characteristic of 
COM, obtained if calcium oxalate was precipitated with
out and/or in the presence of non-ionic, cationic and low 
concentrations (c < CMC) of anionic surfactants; and 
(b) pattern characteristic of intercrystalline mixtures of 
COM and COD (strong reflections corresponding to 
COD are marked with asterisks), as obtained at concen
trations of anionic surfactants exceeding the CMC. 

(Coulter counter), the composition of the precipitates 
was ascertained qualitatively by X-ray diffraction pow
der patterns and quantitatively by thermal analysis, and 
crystal morphology was observed by light and scanning 
electron microscopy. In a separate set of experiments, 
adsorption of SDS at the crystal/solution interfaces was 
determined by conditioning the precipitates with different 
concentrations of the surfactant and, after filtration, 
determining surfactant concentration in the supernatant 
(Skrtic et al., 1993a). 

Results 

In general, all ionic surfactants inhibited precipita
tion of calcium oxalate, while in the presence of the 
non-ionic surfactant, precipitation was accelerated 
(Fiiredi-Milhofer et al., 1993, 1994). However, only in 
the presence of the anionic surfactants at concentrations 
immediately preceding and/or above the CMC, did COD 
precipitate in any significant amount (Table 1 and Figs. 
2 and 3). Figure 2 shows two typical X-ray diffraction 
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-5 
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Figure 3. Comparison of the effect of different surfac
tants on the precipitation of calcium oxalate. The mass 
fraction of COD (in w%) in the precipitate is shown as 
a function of the surfactant concentration expressed in 
multiples of the respective critical micellar concentra
tion. Curve 1: SDS (CMC(SDS) = 5 x 10-4 mol dm-3); 

curve 2: NaC (CMC(NaC) = 2 x 10-3 mo! dm-3); and 
curve 3: AOT (CMC(AOT) = 1. 1 x 10-4 mo! dm-3). 

Data after Fiiredi-Milhofer et al. (1993; curve 1), Skrtic 
et al. (1993b, 1994; curve 2); and L. Tunik, H . Fiiredi
Milhofer, N. Garti (in preparation; curve 3). 

powder patterns obtained from calcium oxalate precipi
tates formed in the presence of surfactants. Pattern a, 
characteristic of COM, was obtained when calcium oxa
late was crystallized in the presence of low concentra
tions ( < CMC) of the anionic surfactants and/or in the 
presence of cationic and non-ionic surfactants at all con
centrations. Pattern b, showing a significant amount of 
COD admixed with COM, is typical for precipitates 
formed in the presence of anionic surfactants at concen
trations higher than the CMC (Skrtic and Filipovic
Vincekovic, 1988; Skrtic et al., 1993a,b;, 1994; Tunik 
L, Fiiredi-Milhofer Hand Garti N, in preparation). 

In Figure 3, the proportion of COD (w%) precipi
tated in the presence of different concentrations of an
ionic surfactants is compared. In order to facilitate com
parison, concentrations are expressed in multiples of the 
respective CMC (actual critical micellar concentrations 
are given in the figure caption). It is seen that an up
surge of the amount of COD in the precipitate occurred 
in the presence of all investigated anionic surfactants in 
the region around the CMC with the effect decreasing in 
the order of SDS > sodium cholate > AOT. 

In Figure 4, thew% COD versus SDS concentration 
curve (same as curve 1 in Fig. 3) is correlated with the 
adsorption isotherm showing the amount of SDS adsorb
ed at the interfaces of crystals formed under the same 
experimental conditions. Clearly, the upsurge in w % 
COD corresponds to the inflection on the adsorption 
isotherm. At c(SDS) > CMC, the leveling off of the 
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Figure 4. Precipitation of calcium oxalate in the presence of SOS. The mass fraction of COD (w % ) in the precipitate 
as a function of the surfactant concentration (full dots corresponding to curve 1 in Fig. 3, after Fiiredi-Milhofer et al., 
1993). Superimposed is the corresponding adsorption isotherm (empty circles, data after Skrtic et al., 1993a). HMC 
= 2.5 x 10-4 mol dm-3; CMC = 5 x 10-4 mol dm-3. 

adsorption data coincides with that of the data obtained 
by thermal analysis which show that the COD/COM 
ratio stabilized at about 85 w% of COD. 

The cationic and some of the anionic (SOS and 
AOT) surfactants induced habit modification of growing 
calcium oxalate crystals as represented by the scanning 
electron micrographs shown in Figures 5 and 6 (for mo
lecular structure of the respective surfactants, see Table 
1). At low concentrations of the surfactants, the crystal 
morphology of COM was unaffected (Fig. Sa) but at 
concentrations above the CMC, the cationic DDACl in
duced the formation of rombohedral platelets (Fig. Sb; 
see also, Skrtic et al., 1991), while the anionic AOT 
induced the formation of elongated, needle-like COM 
crystals and, in addition, promoted their aggregation into 
peculiar structures (Fig. Sc). If crystal faces of COM 
are assigned after Deganello (1991), it follows_that 
DDACI preferentially adsorbs at the { llO} and { 110} 
and AOT at the {010} crystal faces. (L. Tunik, H. 
Fiiredi-Milhofer and N. Garti, in preparation). 

The habit of COD crystals grown in the presence of 
AOT was generally unaffected (Fig. 6a). When the 
same crystals were grown in the presence of SOS or 
high concentrations of AOT (c > 2.5 CMC) they ap
peared in the form of inverted bipyramids often with a 
hole in the middle (Fig. 6b), most probably, as a conse
quence of adsorption of the surfactant at the high energy 
tip of the bipyramid. 
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Discussion 

From all the evidence discussed in this paper, it ap
pears that organic molecules which effectively induce 
COD crystallization are negatively charged. They may 
be polymers with high charge density (Gardner and 
Doremus, 1978; Manne et al., 1990), anionic surfactants 
(this paper), and high solution concentrations of di-, tri
or multicarboxylates which structurally match the ionic 
arrangement at crystal faces of the COM and COT, re
spectively (Cody and Cody, 1994). Most effective mol
ecules induce, in addition, habit modification of calcium 
oxalate crystal hydrates. Consequently, it has been as
sumed (Manne et al., 1990; Cody and Cody, 1994) that 
COD crystallization is promoted because of preferential 
adsorption of additive(s) at the crystal/solution interfaces 
of COM and COT respectively. The only direct evi
dence has so far been presented by Tomazic and Nan
collas (1980) who showed, by example of polyphosphate 
ions, that the adsorption capacity of calcium oxalate seed 
crystals decreases in the order COM > COT > COD. 

We have shown that anionic surfactants effectively 
induce COD crystallization from solutions from which, 
without surfactant, COM forms as the predominant crys
tal phase (Table 1). The formation of COT has not been 
observed under our experimental conditions which re
semble the conditions in urine inasmuch as precipitates 
were formed at physiological temperature from solutions 
of high ionic strength and urinary pH. 
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Figure 5 (above). Scanning electron rnicrographs show
ing COM crystals grown in the presence of DDACl (a 
and b) and AOT (c). Surfactant concentrations in mol 
dm-3: (a) c(DDACI) = 3 x 10-4 (unaffected crystals); (b) 
c(DDACI) = 5 x 10-3; and (c) c(Aon = 1.6 x 10-4

. 

CMC(DDACI) = 1 x 10-3 mol dm-3 {Skrtic et al., 1991); 
CMC(Aon = 1. 1 x 10-4 mol dm-3 Bars = 1 µm (in a 
and c) and 10 µm (in b). 

Figure 6 (in colwnn 2). Scanning electron micro graphs 
showing COD crystals grown in the presence of 1.6 x 
10-4 mol dm-3 AOT (a), and 1 x 10-3 mol dm-3 SDS 
(b). Bars = 10 µm. 
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Another significant result is the observation that the 
amount of COD precipitated at the expense of COM ab
ruptly increases at a certain critical surfactant concen
tration which is close to, but not necessarily identical 
with, the CMC of the respective surfactant (Figs. 3 and 
4). The isotherm characterizing the adsorption of SDS 
on the precipitates (empty dots in Fig. 4) shows that ad
sorption also proceeds in two consecutive steps, i.e., a 
region of relatively low and a region of higher adsorp
tion divided by an inflection which coincides with the 
w % COD versus SDS concentration curve {black dots in 
Fig. 4) . Similarly shaped adsorption isotherms, charac
terizing the adsorption of surfactants at silica and metal 
oxide/solution interfaces (Fig. le), have been interpreted 
by assuming the formation of hernimicelles (surface ag
gregates as shown schematically in Fig. lb) commencing 
at a critical surfactant concentration, HMC (Scamehorn 
et al., 1982a,b; Rupprecht and Gu, 1991; Zhu and Gu, 
1991). It seems reasonable to propose a similar mecha
nism causing the preferred crystallization of COD above 
a certain critical surfactant concentration. 

We thus assume that the upsurge in COD content is 
a consequence of preferred adsorption, in the form of 
two-dimensional surface aggregates , of the respective 
anionic surfactant at the COM/solution interface. Such 
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Table 2. The influence of micellar concentrations of 
SDS (2 x 10-3 mol dm-3) and DDACl(l x 10-3 mol 
dm-3) on the kinetics of calcium oxalate precipitation (Vt 
= total precipitated volume). 

Time Vt (x 10-6) Vt (x 10-6) Vt (x 10-6) 

(minutes) control SDS DDACl 

20 4.0 2.0 1.0 
40 6.5 3.0 1.3 
80 8.0 4.0 1.8 

120 10.0 5.0 1.8 

•oata after Skrtic and Filipovic-Vincekovic (1988) and 
Skrtic et al. (1991). 

surfactant double layer could sufficiently inhibit growth 
of COM crystals to allow crystal growth of the less or 
uninhibited COD to proceed. The strong interaction of 
anionic surfactants with negatively charged COM parti
cles may be explained by the involvement of calcium 
ions, which, as counter ions, move in close proximity to 
the surfactant head group and may serve as anchor at the 
crystal surfactant interface. 

Although no direct comparison between the above 
in vitro results and the in vivo situation is possible, the 
information presented above nevertheless invokes certain 
important considerations concerning calcium oxalate 
lithiasis: 

We assume that in the urine of healthy persons, the 
proper balance between the concentrations of various in
hibitors exists, and therefore, crystalluria is either non
existent or, if present, consists of small non-aggregated 
calcium oxalate crystals. If this balance is upset in any 
way, for instance, by hyper excretion of some anionic 
inhibitors, such inhibitors may, by selectively inhibiting 
COM crystallization, effectively promote crystallization 
of large, inter-grown, and/or aggregated COD crystals 
which may be trapped in the nephron and serve as nuclei 
for stone growth. In such cases, the total inhibitory ac
tivity of the urine may appear appreciably reduced. This 
is illustrated in Table 2 (data after Skrtic and Filipovic
Vincekovic, 1988, and Skrtic et al., 1991) in which the 
total volumes of calcium oxalate precipitated without 
surfactant and in the presence of SDS and DDACl, re
spectively, are compared. It is seen that between 20 and 
120 minutes, the COD producing anionic surfactant, 
SDS, reduces the total precipitate volume by a factor of 
2. If, however, calcium oxalate was precipitated in the 
presence of the cationic DDACl (no COD production; 
Skrtic et al., 1991) the resulting total precipitate volume 
was about 4 to 6 times lower than in the controls. 

In view of the above considerations, it would seem 
that one must look, not only for a lack of inhibitors in 
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stone forming patients, but for an imbalance of the 
inhibitors which are beneficial in healthy individuals. 
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Discussion with Reviewers 

A. Hesse: What role has your research revealed for cal
cium oxalate trihydrate in stone formation? Is there 
such a thing as primary crystallization of trihydrate with 
in vivo transformation via dihydrate to monohydrate? 
Authors: Since urine is supersaturated with respect to 
all three calcium oxalate hydrates, the phase that will 
form first is determined by kinetic factors and by the 
presence of non-constituent ions and molecules (see also, 
Skrtic et al. , 1987; Brecevic et al., 1989). Calcium ox
alate trihydrate could thus play a role as precursor to 
monohydrate in calcium oxalate lithiasis (see also, 
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Gardner, 1975; Tomazic and Nancollas, 1981) and has 
indeed been found in several cases as a component in 
kidney stone (Heijnen et al., 1985). However, the 
transformation of COT into COM via COD is unlikely. 
It has been shown by several authors (Gardner, 1976; 
Tomazic and Nancollas, 1981; Brecevic et al., 1986a) 
that both COT and COD transform directly into COM, 
transformation of the trihydrate via the dihydrate has not 
been observed. 

A. Hesse: Which surfactants are important in urine and 
how can they be influenced? 
Authors: According to Mills et al. (1988), bile salts are 
probably responsible for most of the surfactant activity 
of urine. In our studies, sodium cholate was used as a 
model for these surfactants (Skrtic et al., 1993b, 1994). 

A. Hesse: Is crystalluria with COD a more critical 
signal than COM? 
Authors: Unequivocal proof of a direct link between 
crystalluria and stone formation is not yet available. It 
has, however, been reported (Elliot and Rabinowitz, 
1980), that the mean size of COD crystals and crystal 
aggregates found in crystalluria is significantly larger 
than the mean size of COM crystals. This appears also 
from the scanning electron micrographs of samples of 
crystalluria published by Wemess et al. (1981). In 
addition, COD shows a tendency to form large aggre
gates or intergrown crystals with COM, uric acid and/or 
calcium phosphates (Wemess et al., 1981). Thus, it 
would seem that crystalluria consisting of large, aggre
gated COD and/or mixed crystal aggregates containing 
the dihydrate could signal an enhanced risk of stone 
formation. 

J.P. Kavanagh: With SDS, the maximum COD was 
85 % , what are the corresponding values for sodium 
cholate and AOT? 
Authors: 81 % for sodium cholate and 38 % for AOT 
(see also, Fig. 3). 
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J.P. Kavanagh: Have the authors any data on adsorp
tion of the surfactants studied to differently hydrated 
seed crystals, and do these support their thesis that COD 
production is favored as a result of preferential inhibi
tion of COM/COT nucleation? 
Reviewer ID: Did the data shown in Figure 4 come 
from the same experiment? 
Authors: So far, data on the adsorption of surfactants 
on seed crystals of COM, COD or COT are not availa
ble but experiments to that effect are in progress. Our 
thesis is supported by data on the adsorption of SDS on 
precipitates formed under the same conditions as in the 
precipitation experiments (empty dots in Fig. 4) and by 
data in literature (Tomazic and Nancollas, 1980; Manne 
et al., 1990, Cody and Cody, 1994). 

Reviewer ID: Are these COD crystals in Figure 6b? 
Authors Indeed, these are COD crystals as follows 
from X-ray diffraction powder patterns (similar to 
pattern b in Fig. 2) and thermal analysis data obtained 
from the corresponding samples (Figs. 3 and 4). 

S. Deganello: It is no longer necessary to achieve low 
temperatures to crystallize COD. Over the last four 
years, COD has been crystallized reproducibly and rou
tinely from aqueous solutions in the temperature range 
18-45°C (i.e., Deganello, Science and Technology for 
Cultural Heritage, 1, 1-8, 1992). 
Authors: Our aim was not to give an exhaustive list of 
methods for COD production but to define the factors 
which favor the crystallization of COD from electrolyte 
solutions and from urine. That low temperature is one 
of these factors is apparent from the precipitation dia
grams published by Brown et al. (1989) described under 
the heading: Crystallization from urine and artificial 
urine. 
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