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Abstract 

In the frame of the Self-Energy formalism, we study 
the interaction between STEM electrons and small parti­
cles in the range of the valence electron excitations. We 
first calculate the energy loss probability for an isolated 
sphere and study the loss spectrum dependence on the 
size of the particle and on the relative impact parameter. 
Then we analyze the loss spectra in more realistic situa­
tions: (a) the effect of the coupling between the particle 
and supporting surface is studied in a simple geometrical 
model ; and (b) we analyze the dependence of the losses 
on the geometrical shape of the target by considering 
hemispherical particle. Our results are in a good quali­
tative (and in simple cases, quantitative too) agreement 
with several experimental results which show anomalous 
excitations. We restate the suitability of the dielectric 
theory to study the surface excitations of these systems. 

Key Words: Scanning transmission electron microscopy 
(STEM), electron energy losses, plasmons, small 
particles, surfaces. 
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Introduction 

In the last decade, electron energy loss spectroscopy 
(EELS) in scanning transmission electron microscopy 
(STEM), has been widely used in the study of small 
catalysts and semiconductor devices . The first small 
particle EELS experiments were performed by Fujimoto 
and Komaki (1968), by using a broad beam. The fur­
ther development of the STEM has allowed one to use 
a narrow 100 KeV beam of about 0.5 nm width. Under 
those conditions, Batson (1980; 1982a,b; 1985), Cowley 
(1982) , and Howie (1983) performed the first experi­
ments showing the ability of this technique to reveal 
structural details of the target. In those experiments, 
some anomalous energy loss peaks where related to the 
coupling between the particle and the support. Wang 
and Cowley (1987a,b ,c,d) , working with Al particles 
and different supports, and Ugarte et al. (1992) , with Si 
spheres, have reported similar effects. Ouyang et al. 
(1992) studied the size dependence of the surface plas­
mon energy in Ag particles lying on a carbon surface. 
They found that the classical dielectric theory does not 
explain these data, and suggested that for particles larger 
than 10 nm some quanta! effect occurs. Walsh (1989) 
found results for small Al particles in an AlF3 matrix, 
and discussed them in terms of dielectric excitation 
theory of a two-phase medium. They showed that the 
experiments cannot be interpreted in terms of any avail­
able effective medium theory. 

The classical dielectric theory using a bulk local 
dielectric description of the target, has described in 
detail the surface excitations in some electron energy 
loss experiments (Howie and Milne, 1984, 1985; Marks 
1982; Schattschneider, 1989). For STEM electrons, 
non-local corrections are relevant only if the electron 
travels at very small distances from the interface during 
most of its flying time (Echenique, 1985; Zabala and 
Echenique, 1990). The first theoretical approach to the 
problem of a sphere was made by Fujimoto and Komaki 
(1968) considering a broad beam and a Drude dielectric 
function. Schmeits (1981) , Kohl (1983), and Ferrell and 
Echenique (1985) studied the case of a well focused 



A. Rivacoba, J. Aizpurua and N. Zabala 

P(w) 

W(r,r',w) 

<Po(r) 

g(r-b) 

V 

r 

a 

b 

w 

WI 

WP 

E(W) 

p(r,w) 

/31(w) 

kc 

Y1m(x) 

Ci(x) 

P1m(x) 
Km(x) 

Symbol Table 

Energy loss probability. 

Screened interaction. 

Microprobe wave packet. 

Transversal profile of the beam. 

Velocity of the charge. 

Position of the charge. 

Radius of the sphere. 

Impact parameter. 

Half the distance the charge travels in the 
medium. 

Energy of an elemental excitation. 

energy of the Ith mode in a sphere. 

Bulk plasmon energy. 

Dielectric response function. 

w-component of the charge density. 

Surface response function. 

Cut-off momentum. 

Spherical harmonic. 

Cosine integral function. 

Legendre functions. 
Modified Bessel function of order m. 

beam interacting with a sphere. This problem has been 
generalized to the cases of coated spheres (Echenique et 
al., 1987a), penetrating trajectories (Bausells et al., 
1987; Echenique et al., 1987b; Rivacoba and Echenique, 
1990; Tran Thoai and Zeitler, 1988a,b), and spheroids 
(Illman et al., 1988). The coupling between two 
metallic spheres has been worked out by Schmeits and 
Dambly (1991). Fusch and Barrera (1995), and Martin 
Moreno and Pendry (1995) have solved the dielectric 
response of a system of spheres. Rivacoba et al. (1995) 
have studied cylindrical surfaces. 

In this paper, we present a procedure to calculate 
the energy loss probability which is suitable in many sit­
uations of interest in STEM. It is useful in the case of 
EELS from small particles. To illustrate the process of 
using this method, the problem of the isolated sphere is 
solved in a general case. Then, we analyse the effects 
in the loss spectra introduced by the support surface and 
by the shape of the particle in relation to the isolated 
sphere case. These results agree with many experi­
mental results. 

Theoretical approach 

The probability P(w) of losing energy w experienced 
by a probe interacting with a surface has been calculated 
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in the frame of a self-energy formalism, where the mi­
croprobe is described by means of a quanta] wave pack­
et, while the target excitations are given by the local 
bulk dielectric function of the target (Echenique et al., 
1987b). In the case of a very narrow electron beam, 
travelling along the z-axis at impact parameter b, the 
energy loss probability is given by the following equa­
tion (we use atomic units throughout this paper): 

P(ro) = 7t:2 f dz f dz' Im { W(r,r' , ro) exp[-i ~ (z-z') } 

(1) 

(Rivacoba et al., 1992) where W(r,r',w) is the screened 
interaction; i.e. , the solution of the equation 
E(w)V2W(r,r' ,w) = o(r-r') which verifies the boundary 
condition at the interfaces. This function brings all the 
information about the response of the target to the ex­
ternal field; i.e., one can easily obtain the potential 
induced by any external probe in terms of this function. 
The finding of W(r,r' ,w) reduces to an electrostatic like 
problem which can be solved in a standard way. In eq. 
(1), the screened interaction is evaluated at the points z 
and z' of the trajectory; i.e. , at the point (b,z) and 
(b,z') . In this calculation, the recoil of the electron has 
been neglected. The validity of this approximation for 
STEM electrons has been stated by Ritchie (1981). 

Equation (1) leads to the known formulae for simple 
target geometries such as planes, films, cylinders or 
spheres. Although eq. (1) was first obtained by using a 
quanta] description of the probe, it also can be obtained 
considering the probe as a classical particle (Zabala and 
Rivacoba, 1993). Eq. (1) provides a general way to 
deal with coupled or complicated geometries of practical 
interest in electron microscopy. 

This expression is also useful for an extended beam. 
In a more realistic situation, where the microprobe is 
more broad, in the direction perpendicular to z-axis, it 
can be represented by a wave-packet centered at the 
impact parameter b 

<I>o (r) = g(r.1-b) exp [ikQz] (2) 

where r .J. is the projection of r on the XY plane. Here 
the function I g(r .J. -b) 12 describes the transversal profile 
of the beam. Ritchie and Howie (1988) have proved 
that when all the inelastically scattered electrons are 
collected, the probability of losing energy w is given by: 

P(ro) = f dr.1 I g(r.1-b) 1
2 Pc1as(ro,b) (3) 

where Pclas(w,b) is the energy loss experienced by a 
classical electron at impact parameter b. In most of the 
experimental conditions, the semi-angle of acceptance is 
large enough (tJ ::::: 8. 10-3 radians) that the condition of 
collecting all the scattered electrons is fulfilled . This 
result is interesting because it states that the interaction 
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of a broad beam can be considered as the incoherent 
sum of inelastic processes corresponding to classical 
particles. 

Equation (1) can be better understood ifwe rewrite 
it in the following way 

P(co) = ¾ f dr f dr' Im {p(r'co) W(r,r',co) p*(r,co) } 

(4) 

where r(r,w) is the w-component of the charge density 
corresponding to the incoming charge., and p • stands for 
its conjugate complex. Equation (4) shows that the ener­
gy loss probability P(w) is the value of the imaginary 
part of the screened interaction averaged over the trajec­
tory. This last equation is more general than eq. (1), 
and can be applied to study problems when the electron 
trajectories are no longer a straight line, as in the case 
of reflections from surfaces (Rivacoba, 1994). 

Spherical targets 

Now we apply the above equations to the case of the 
interaction of the STEM beam with a spherical target of 
radius a characterized by the dielectric function €1(w) . 
In order to consider the most general case, we suppose 
that the particle is embedded in an infinite medium of 
dielectric function €z(w). 

To calculate the screened interaction; we expand this 
function in the appropriate multipolar series in each 
region of the space. The coefficients of those expan­
sions are obtained by imposing to the function and its 
normal derivative the standard boundary conditions of 
continuity at the surfaces; when these conditions are 
satisfied, and when r < a; r' < a, we have: 

I I 
W( ' \ __ l_"""" 41t ~Y* (A' 

r,r ,co,-€ (co)""'""' 21+1 I+l Im .i.~)YJm(Q) 
l I m=-1 r> 

I 41t 1 M 
+LL 21+1 [~J(co) - q(co} a21+1 Y*1m(ff) Y1m(Q) 

l m=-1 (5-a) 

Here r < and r > stand for the smallest and largest of 
both r and r', and Y1m(O) are the corresponding 
spherical harmonics. 

When both points, r and r', are outside the sphere 
(r > a; r' > a) the screened interaction is given by: 

I 41t l a21+1 
+IL 21+1 [~J(CO)- c2(co)](rr')I+l Y*1m(ff)Y1m(Q) 

l m=-l 
(5-b) 
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In both expressions the first series {in 11€1 (w) or 
11€2(w)} corresponds to the direct Coulomb term in a 
non-bounded medium, while the second ones are the sur­
face induced terms. 

Finally, when r < < a and r > > a, the screened 
interaction is expressed as: 

I l 
41t r< , 

W(r,r',co) =I I, ll+l ~J(CO)-----i+1 Y*1m(Q) Y1m(Q) 
I m=-1 r> (5-c) 

The surface response function {31(w) is given by 

21+1 
~J(CO) = lq+(l+1)€2 (6) 

Now we evaluate, by means of eq. (1), the energy 
loss probability for a STEM electron moving with veloc­
ity v parallel to the Z-axis in a trajectory which pene­
trates the sphere, with impact parameter b < a. 

Special attention should be paid to the direct Cou­
lombian terms in eqs. (5-a) and (5-b). The contributions 
of those terms can be written as the quantity correspond­
ing to the energy Joss in an infinite medium plus a bulk 
correction due to the presence of the surface. To illus­
trate this point, we now consider the contribution T 1 to 
the total energy Joss probability coming from the Cou­
lombian term in eq. (5-a). 

½ ½ I 
_l_ r f , _l_ (1-m)! ~ 

T1 = 2 1ctz dz Im{ c (co) I (2-8mo) (l+m)! I+l 
1tv -za -za 1 l,m r> 

P1m(cos 1'}) P1m(cos 1'}') exp [i.Q?(z-z')] } (7) 
V 

where r2 = b2 + z2 , P1m are the Legendre functions, 
the polar angle t'J is evaluated at the point z of the 
trajectory i.e.: cost'J = z/r, and z3 = (a2 - b2) 112 is half 
the length of the trajectory inside the sphere. Then we 
rewrite this term as follows: 

1 za oo 1 (1-m)! ~ 
T1 = 2 f dz fdz' Im {-(-s L (2-8mo) (I+m) ! r>l+ 1 

ttv -za -oo q co'I m~O 

P1m(cos 1'}) P1m(cos 1'}') exp [i~z-z')]} -
V 

za -za oo 
1 

2 fctz[ fctz'+ f ctz']Im { _l_() I I (2-8mo) ((ll-m))\ 
1tV z z q co 1 --.fl +m . - a -00 a m,:::v 

1 
r' ~+l P1m(cos 1'}) P1m(cos 1'}') exp [i,z-z')]} 

(8) 
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The first term corresponds to the energy loss experi­
enced by an electron travelling a distance 2z8 through a 
non-bounded medium of dielectric function E 1. Note that 
the screened interaction in this term is merely the Cou­
lomb potential, i.e. , [(1/t1) { 1/(b2 + (z-z')2) 112} ]; in this 
way, it is easy to prove that the contribution of this term 
is proportional to the distance 2z

8
• The use of a local 

dielectric response function leads to divergent values for 
this bulk term. This divergence can be removed by con­
sidering the momentum dependence of the dielectric 
function , which cancels the large momentum transfer 
contribution to the induced potential. 

The second term in eq. (8) is finite and provides a 
correction to the bulk excitation probability due to the 
fact that the polarizable medium is no longer infinite. 
Using the Cartesian expression of the screened interac­
tion, it is simple to prove that T 1 can be written as 
follows: 

4za -1 vi.cc 
T1 =-2 Im-(-)ln { -} + 

1tV £I 0) 0) 

2za 
2 -1 f . Z(l) +-Im-- dzCi[-1 

1ev2 q(ro) 0 v (9) 

where the first term is the bulk probability in an infinite 
medium comes from the first term of eq. (8). Here a 
cut-off momentum kc has been used to avoid the large 
momentum transfer contribution. The second term is 
the bulk correction appearing in eq. (8). Here, Ci(x) is 
the cosine integral function . This last term remains al­
ways finite, even though Ci(x) diverges logarithmically 
for small arguments (Abramowitz and Stegun, 1965). 

In the same way, one could handle the other Cou­
lombian term in eq. (5-b). After some algebra, one ob­
tains the total energy loss probability. The surface con­
tribution (without the direct bulk terms) is then given by: 

. _ -4a (1-m)! 
P(ro,a,b) - 2 L L (2-0rno) (I )I 

1tv I m~0 +m · 

{Im{ 21+1 } [Ao Ai 12 
Iq+(I+l)Q Im+ Im 

-Im-1-[(A o )2+A i Ao 12 
q(ro) Im Im Im 

-Im-1-[(A i )2+A i Ao 12} 
E2(ro) Im Im Im 

(10) 

thew dependent functions Aim and A1 mare given by the 
following equations: 

930 

za I 
i f r Z Z(Q A = dz-P1m(-)g1m(-:-J 
Im 

O 
al+l r v 

0 f~ J Z Z(Q 
A = dz-P1m(- ) g1m (-J 

Im rl+l r v 
Za (11) 

here the function g1m (x) is sin(x) when (I +m) is odd or 
cos(x) otherwise. This equation was first found in the 
frame of the classical theory (Rivacoba and Echenique, 
1990). 

The surface contribution to the total excitation prob­
ability given by eq. (10) is twofold: the first term con­
taining the surface response function {31(w) provides the 
(positive) probabiiity of exciting the surface plasmons, 
while the second and third terms represent a negative 
correction to the bulk probability of both dielectric 
media. This correction is to be added to the direct 
terms (proportional to the path length) which have been 
omitted in eq. (10) . This is the so-called Bregenzung 
effect, first predicted by Ritchie (1957) in films. It has 
been found in other surfaces (Boersch et al. , 1968; 
Rivacoba et al., 1994; Schmeits 1981). 

In the case of a metallic sphere in vacuum, the 
energy of the surface modes are given by the equation 
It + (I + 1) = 0; which leads to the well-known 
plasmon frequencies: 

1=1,2 .. . (12) 

An interesting analytical property of the Bregenzung 
effect is that it verifies that the sum of the probabilities 
of exciting surface modes has the same functional form, 
but opposite sign, as the sum of the bulk correction in 
both media. It explains the fact that when the probe 
travels through an interface, the surface excitations 
occur at expense of the number of bulk plasmons excited 
in both media. Formally this fact can be expressed 

L P(ro1) = - [11 Pbulk 1 (°1Jl ➔ roJ) + 
I 

(13) 

where dPbulk 1,2 is the bulk correction of the medium 1 
or 2. 

In the case of non-penetrating trajectories (b > a) 
Aim) = 0, while the A1m has been analytically evaluated 
by using the following relation (Ferrell et al., 1987): 
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P (co,) I= I 

I = 2 
I = 5 

2 3 4 5 6 7 
t =aco ,t v 

Figure 1. Contribution of the first 1-th multipolar terms 
to the total loss probability as a function of the radius, 
in a metallic sphere. A Drude dielectric function has 
been considered. 

------------------------------------

ik 1-m I kl1 
= 2 Ki] (l-m)! Km(I klb) (14) 

where ¾ are the modified Bessel functions. The sur­
face contribution to the energy loss probability is then 
given by the following equation: 

4a (2-0mo) 
P(ro; a,b)= 2 L L (I- )' (I )' 

1tv I m~O m . +m . 

Im { 21+1 _1_} [roa]21 K 2 ~ 
lq+(l+l)E2 - Q(ffi) v m (v (l5) 

first obtained by Ferrell and Echenique (1985). These 
authors pointed out the fact that many multipolar terms 
are needed in order to compute eq. (15) accurately. To 
illustrate this point, in Figure 1, we plot the contribution 
of different multipolar terms to P(w; a,b) as a function 
of the radius of the particle for a metallic target. The 
dipolar and quadrupolar terms are only relevant for 
spheres of radius about vw-1; for larger particles higher 
multipolar excitations are the most relevant contribution 
to the spectrum. The energy of these modes is given by 
eq. (12) and tends very fast to the planar plasmon ener­
gy ws = WP (2r112• Therefore, for large spheres (a 
> > vw-1), the spectrum presents, in this case, a single 
peak around w

8
; similar to that corresponding to a planar 

surface. Echenique et al. (1987a) have analytically 
proven that the planar approach to this problem, i.e., to 
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P(ro) 
0.8 

0 .6 

0.4 

0. 2 

0 

-0 . 2 
6 7 8 9 

ro (eV) 

11 12 

Figure 2. Spectra corresponding to an Al sphere half 
embedded in Al (continuous line). The sphere radius is 
10 nm and the impact parameter b = 11 nm. The beam 
position is marked as A in the scheme. The dotted line 
corresponds to an isolated sphere under the same condi­
tions, and the dashed line corresponds to a planar Al 
surface of length 2a. Beam energy is 100 keV. 

consider the sphere as a planar surface at any point of 
the trajectory with an instantaneous impact parameter, 
leads to the same equation as eq. (15) in the limit of 
large values of a. 

Particle Coupled to a Planar Surface 

In most of the experimental conditions, the target is 
lying on a large supporting substrate, therefore the form­
er development is just a first approach to the real prob­
lem. The former approach seems reasonable in the case 
of metallic particles on an insulating supporting surface 
but it is not suitable to some problems where the particle 
and the support are of the same medium. Several au­
thors (Batson, 1982a,b; Wang and Cowley, 1987a,b,c,d; 
Ugarte et al., 1992) have reported some anomalous ef­
fects on supported spherical particles, which are proba­
bly due to the coupling between both surfaces. 

One simple geometrical model to deal with this 
problem is that of a sphere of radius a and dielectric 
functions e1(w), half-embedded in a semi-infinite medi­
um of dielectric functions ei(w) limited by a planar 
surface as shown in the upper scheme of Figure 2. 

In the case of electron trajectories parallel to the 
planar surface, the energy loss probability can be ob­
tained in the same way as shown in the previous section. 
Following Zaremba (1985), the particle contribution to 
screened interaction is written as a multipolar expansion, 
while the contribution corresponding to the direct Cou­
lomb and planar image potential are directly added. The 
coefficients of this expansion are calculated by imposing 
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the matching conditions on the interfaces. This proce­
dure leads to a set of linear algebraic equations where all 
the coefficients of the multipolar series are coupled. 
Then the problem of finding the screened interaction can 
no longer be analytically calculated and numerical proce­
dures are required. To do so, the expansion has to be 
truncated. In general, even for small spheres, many 
multipolar terms are needed to get good stability of the 
solution. Working with the computed multipolar series, 
one calculates the contribution of the particle to the 
energy loss spectrum through eq. (1). The total spec­
trum would consist of the particle contribution plus the 
contribution of the planar interface. This last contribu­
tion is proportional to the path length (Echenique and 
Pendry, 1975), and therefore in our geometric model , 
where the planar interface is infinite, is infinite too. 
Nevertheless, this geometric model is reasonably suitable 
for situations where the real length of the supporting 
surface is much larger than vw-1• 

First we study the dependence of energy loss spec­
trum on the beam position. We have calculated the en­
ergy loss probability P(w) in the case of an Al sphere 
lying on an Al surface. In this case, a Drude dielectric 
function with small damping has been used (wp = 15.1 
eV, -y = 0.27 eV). The beam energy is 100 keV . Out 
of simplicity, only non-penetrating trajectories have been 
considered. In Figure 2, we show the particle contribu­
tion to the loss spectrum calculated when the electron 
beam travels near the top of the particle. By comparing 
this spectrum to that of an isolated sphere, we realize 
that the main effect of the supporting surface is the pres­
ence of a new, very narrow and tall resonance at 6.8 eV 
which compensates the lowering of the 8. 7 eV dipolar 
peak in the spectrum corresponding to the isolated 
sphere. The position of the 6.8 peak does not depend 
either on the size of the sphere or on the relative beam/ 
target position, thus , this resonance is a new interface 
mode associated with the coupling particle/support. This 
peak presents a monopolar charge distribution, and can 
be explained as due to the grounding of the particle by 
the metallic support. Above 9. 5 e V, the spectrum is 
rather similar to that corresponding to an isolated 
sphere. It has been proven that this latter peak presents 
a radius dependence similar to that shown in Figure 1. 
The absolute intensity of this excitation falls down very 
fast for values larger than vw-1. For larger particles, the 
support effect is negligible (at this particular beam 
position) . 

The spectrum of Figure 2 presents a negative peak 
in the neighborhood of 10. 7 e V. This peak is due to the 
fact that we plot the particle contribution to the total 
energy loss, then the planar surface contribution should 
be added. This last spectrum (dashed line) consists of 
a peak centered at the planar surface plasmon, just 
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where the negative values occur. This is a sort of 
compensation effect: negative values of P(w) in this 
region means that there is a lowering of the total 
probability of exciting planar surface plasmon, which is 
compensated by the excitations of surface modes 
corresponding to the particle. This negative surface 
peak can be explained by noting that one of the effects 
of the sphere is to reduce the effective length of the 
planar surface, responsible of the energy losses at this 
region. 

The former 6.8 eV peak practically disappears when 
the beam travels near the edge (at the position marked B 
in Figure 2). The most relevant part of this spectrum 
consists of some broad resonance above the planar sur­
face plasmon energy w

8
• 

To study the influence of the dielectric nature of the 
support, we now consider an Al particle at a AlF3 sur­
face which at this energy range is an insulator. Experi­
mental data have been used for both media {Hagemman 
HJ, Gudat W, Kunz C (1974) unpublished Desy report 
SR74/7; Walsh, 1989}. The spectrum shown in Figure 
3 corresponds to the beam position marked as A. Note 
that, as in the former case, the dipolar peak of the 
isolated sphere has almost disappeared, and a new small 
peak at 7. 3 e V has taken its place. The remaining part 
of the spectrum is broader but it does not differ signifi­
cantly from that corresponding to the isolated particle. 

Experimental observation on metallic particles are 
in qualitative agreement with these results. Batson 
(1982a,b) has compared the experimental spectra in the 
case of a small (10 nm) Al particle when the support is 
a larger Al sphere to that corresponding to an insulator 
support. The only difference between the spectra was 
the presence of a peak at 4 e V in the case of the metallic 
support which did not appear in the case of the insulator 
support. The remaining part of the surface excitation 
spectra was almost identical and basically consisted of 
one surface peak centered at 7 e V. The 4 e V resonance 
did not appear in the case of Al support when the beam 
position was at the edge formed by the plane and the 
sphere. The differences between the experimental and 
theoretical values of the low energy peak are probably 
due to two facts: (a) the target geometry is not the same; 
and (b) in the experimental situation, the particles have 
an oxide layer, which is clearly visualized in the 23 eV 
filtered images. The effect of the oxide coating is to 
shift down the loss peak. 

Hemispherical Particles 

Ouyang et al. (1992) have reported very accurate 
experimental data about the size dependence of the 
surface loss peak energy of STEM electrons interacting 
with Ag hemispheres lying on C surface. The high 
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Figure 3. Spectra corresponding to an Al sphere half 
embedded in Al F3 (continuous line) for the same posi­
tion as in Figure 2. The dashed line corresponds to an 
isolated sphere in vacuum. Beam energy is 100 keV. 

-------------------------------------
resolution of these data (about 0.1 eV), and the fact that 
the silver surface is free of oxide layers, allow a test of 
the suitability of the classical dielectric theory to 
describe the surface excitations in this energy region. 
Those authors found that the energy of the peak shifts 
down with the size in the region of ( 2-8 nm) getting a 
minimum value w = 3 .1 e V for particles of about 10 nm; 
and then the peak energy grows to reach the 3. 5 e V. 
The authors compare these results to that of a develop­
ment of the classical dielectric theory and conclude that 
these results cannot be explained by this theory. The 
shift of the plasma frequency in small particles has been 
theoretically studied (Apell and Ljungbert, 1982), and a 
recent work on Ag particles (Tiggesbiiumker et al., 
1993) agrees with the data reported by Ouyang et al. 
(1992). We focus our interest on particles larger than 
10 nm (in diameter) where one should expect the classi­
cal dielectric theory to provide a good description of the 
target excitations. 

Using the same approach as in the previous sections, 
we have studied this problem by considering a hemi­
spherical target. We proceed in the same way as in the 
previous section: computing the screened interaction and 
then calculating the energy loss probability. Technical­
ly, the problem is quite similar, and its details are to be 
reported elsewhere. Because of the finite size of the tar­
get, eq. (1) allows study of any electron trajectory; nev­
ertheless, we are going to consider only non-penetrating 
trajectories parallel to the planar surface of the particle. 

To illustrate the surface excitations of this geometry, 
we show, in Figure 4, the spectra corresponding to an 
Al hemispherical particle, for two positions of the beam. 
When the beam travels near the top of the particle (posi­
tion A), the spectrum does not differ very much from 
that corresponding to an isolated sphere under similar 
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Figure 4. Spectra corresponding to an Al hemisphere 
of radius 10 nm. Solid and dotted lines correspond to 
beam positions marked as A and B, respectively. The 
spectrum corresponding to an isolated sphere (dashed 
line) is shown. The particle travels 1 nm from the sur­
face in all the cases. 

conditions; the new spectrum presents a lowering in the 
peaks which correspond to dipolar and quadrupolar exci­
tations of the isolated sphere, and a small new peak ap­
pears at 7 .1 e V. The remaining part of the spectrum, 
corresponding to high multipolar excitations in case of 
the isolated sphere, remains almost unchanged. On the 
other hand, when the beam travels near the edge of the 
particle (position B), the spectrum consists of a main 
peak around 7 .1 e V. Therefore, this resonance is char­
acteristic of the edge of our target. The 7 .1 e V peak 
corresponds to several normal modes of this geometry 
with very close values of the energy around 0.5 wp. 
The charge density of these modes are distributed near 
the comer formed by the hemisphere and the planar ba­
sis of the particle. This fact explains why the probabili­
ty of this excitation becomes maximum for beam posi­
tion close to the edge, while in the case of the beam at 
the top position, the electron notices a quasi-spherical 
surface, and, in comparison to the sphere, only the low 
multipolar modes are disturbed and the change intro­
duced by the missing hemisphere in the high multipolar 
modes are not so relevant in this case. In this position, 
the influence of the comer, i.e. , of this particular target 
geometry, is small, and in consequence, the 7 .1 e V peak 
is small. When the beam position moves to the comer, 
this last contribution becomes the most relevant. In 
Figure 4, spectra corresponding to the two extreme posi­
tions of the beam are shown; for intermediate positions, 
both peaks are present in the spectrum. 

The former results depend on the size of the parti­
cle. At position A, the smaller the particle is, the larger 
the comer contribution becomes. For large hemi­
spheres, this geometry does not differ from that of a 
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Figure 5. Spectra corresponding to a silver hemisphere of radius 5 nm, for three positions of the beam. The particle 
travels 1 nm from the surface in all the cases. 

plane; then , the spectrum should consist of a peak at the 
surface plasmon energy and the 7 .1 e V peak is negli­
gible. 

Now we apply the former results to the case of Ag 
hemispheres. Experimental values of the Ag dielectric 
function have been used (Palik, 1985). In Figures 5 and 
6, the spectra corresponding to two hemispheres of dif­
ferent sizes are shown for three different beam positions. 
As in the Al case, the contribution of the two resonances 
are clear, but in the case of the small particle, the low 
energy excitation at 3.2 eV is, at almost any beam posi­
tion, more relevant than the higher mode at 3.6 eV. A 
spectrum obtained by averaging over the beam position 
would present a peak, centered at about 3.2 eV. For the 
largest particle, we see that the most relevant contribu­
tion is that at 3.6 eV, and the averaged spectrum should 
have its peak near this value. For particle size in­
between, the relative intensity of both modes will be 
similar, and one could expect the averaged spectrum 
being centered at intermediate values. 

This size dependence of the energy of the loss peak 
agrees pretty well with the experimental data reported by 
Ouyang et al. (1992). The shift ofO.l eV in the energy 
between both theoretical and experimental results is 
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probably due to the coupling of the hemisphere to the 
carbon substrate. A rough evaluation of the carbon sup­
port effect has been published (Rivacoba et al., 1994) 
and proves that this effect shifts the peak energy down 
by a few tenths of an eV. Note that the use of other di­
electric data for the Ag (Hagemman et al., 1974, unpub­
lished report) can move the overall spectrum downwards 
by a few tenths of an e V. 

The fact that Ouyang and Isaacson (1989) cannot ex­
plain these results through a classical theory is probably 
due to some weakness in the theoretical approach they 
use. 

In conclusion, we have studied the energy loss 
spectra of STEM electrons interacting with a small parti­
cle, and their dependence on the shape of the target, and 
on the impact parameter. The dipolar peak is not signif­
icant in many experimental situations due to the effect of 
the support, or to the non-spherical shape of the particle. 
Some anomalous energy peaks found in pre-existing ex -
perimental results are explained, as due to these effects. 
The impact dependence of these anomalous peaks can 
provide information about the target. Finally, we state 
the suitability of the dielectric theory to these problems 
as it was for planar interfaces. 
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Discussion with Reviewers 

M. Schmeits: Is it possible, within the used method, to 
obtain, for the studied geometries, the values of the sur­
face plasmon frequencies (either analytically or numeri­
cally) and the distribution of the corresponding charge 
oscillations? 
Authors: Yes, it can be done. Note that the induced 
potential cp(r,w) can be written in terms of our screened 
interaction, W(r,r' ,w) as follows: 

cp(r,w) = J dr' W(r,r' ,w) p(r,w) 

where p(r,w) is thew-component of the charge density . 
Therefore, the plasmons frequencies correspond to the 
values of w for which a non-trivial solution of Laplace 
equations exits. In the cases studied here, as in other 
problems involving coupled surfaces, as for instance, in 
your Schmeits and Dambly (1991) paper, this procedure 
leads to a coupling between all the multipolar terms, for 
each value of the azimuthal number m, which has to be 
solved numerically. In the same way, it is possible to 
get the charge density on the interface. 

We are writing an extended paper about these 
problems. 

M. Schmeits: In particular, what is the charge (or po­
tential) distribution and symmetry of the surface plasmon 
responsible for the lowest peak of the loss function of 
the hemispherical geometry for electron trajectories 
passing close to the comer? 
Authors: There are several modes contributing to this 
peak. The energies of these modes are very close to 
0.5 wp. One simple description of charge density of the 
lowest mode (m = 1) consists of piling the charge of 
different sign up in the opposite comers of the hemi­
sphere. 

P.E. Batson: You imply with Figure 1, that if a is 
about v/w, then modes having small angular momentum 
dominate the response. But, in the case of aluminium, 
where v/w is about 150 A for the surface loss, the planar 
surface plasmon energy is obtained for b near to a, even 
for particles in the 50-100 A range. It seems to me that 
the more important condition, which by itself can force 
the response to small angular momentum modes , is that 
b must be much bigger than a. Please comment. 
Authors: Figure 1 corresponds to an isolated metallic 
sphere, an idealized situation which is not reachable un­
der experimental conditions. In this case, for grazing 
incidence (b ~ a), it is easy to prove analytically, from 
eq. (15), that the maximum of the probability of exciting 
the 1th multipolar mode occurs when a ~ 1 (v/w1) as il­
lustrated in Figure 1. You are correct in pointing out 
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that at large impact parameters, the dipolar peak domi­
nates the loss spectra; this can be understood from the 
same eq. (15) by taking into account the exponential 
asymptotic behaviour of the Bessel functions . 

In our opinion, the fact that in experiments with 
small {(aw/v) < 1} Al particles, the loss peak appears 
at frequencies close to the surface plasmon energy is due 
to the coupling between the particle and other surfaces. 
In the spectra shown in Figures 2, 3 and 4, the dipolar 
peak has been shifted down or almost removed, in com­
parison to the isolated particle spectra; then, the main 
feature of these spectra is a peak around the surface 
plasmon energy. In the case of supported particles, the 
shifted low energy peak is present too in the experiments 
{see, for instance, your own Batson (1985) paper}. 

P.E. Batson: In your Figures 2 and 3, there appear to 
be two mechanisms whereby peaks are shifted or cre­
ated: (1) In Figure 3, the 1 = 1 surface mode is shifted 
downwards by the presence of the AIF3 dielectric; and 
(2) in Figure 2, the 1 = 1 surface mode of the isolated 
sphere is replaced by a surface mode having lower sym­
metry characterized by the sphere/plane system, and 
caused by anti-symmetric coupling of normal modes 
which are characteristic of the sphere and the plane 
separately. Is this an accurate view? 
Authors: This could be an intuitive and simple descrip­
tion of the effects of the coupling between both inter­
faces. Although, in this problem, all the multipolar 
terms are involved in this new mode, the more relevant 
mode is the dipolar one, and therefore, your explanation 
is basically correct. 

P. Schattschneider: Can you comment on conditions 
under which coherence effects would be important, con­
trary to eq. (3)? If that would be the case for smaller 
collection angles , could there be consequences, e.g. , a 
search for these coherence effects, using nanoprobes in 
the TEM? 
Authors: The limits to the suitability of eq. (3) are 
placed by the existence of electrons scattered with a mo­
mentum transfer large enough as not to be collected by 
the experimental set up in the acceptance angle. The 
probability of such excitations does not depend on the 
target size, unless the target is large enough as to make 
multiple scattering processes possible. 

P. Schattschneider: Ugarte et al. (1992) and Walsh 
(1989) measured plasmon spectra in small Si spheres and 
in microholes, respectively. Both groups found qualita­
tive agreement with electrodynamics calculations. Is 
your theoretical approach able to explain the as yet 
unexplained details in any of these experiments? 
Authors: The results reported by Ugarte et al. (1992) 
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have been studied as an application of the problem of the 
half embedded particle in the paper (Zabala and 
Rivacoba, 1993); in this work, the loss peak is shifted 
downwards 1 or 2 eV. For a better quantitative 
agreement with the experiment, one should consider the 
problem of two small slightly interpenetrating spheres. 
Arguably the modes of such a system take place at lower 
energy. 

The results by Walsh (1989), seem to be a problem 
of an effective medium since there are many coupled Al 
particles in an AlF3 matrix. 
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