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ABSTRACT 

Characterizing Water and Water-Related Energy in Multi-Unit Residential Structures 
 

with High-Resolution Smart Meter Data 
 
 

 by  
 
 

Joseph C. Brewer, Master of Science 
 

Utah State University, 2020 
 

 
 
Major Professor: Dr. Jeffery S. Horsburgh 
Department:  Civil and Environmental Engineering 

Growing global populations and continued urbanization, coupled with an 

increasingly unpredictable climate, have produced novel threats to historically reliable 

urban water supplies.  Water suppliers are now investigating innovative methods such as 

smart meters for quantifying water use while also exploring how water interacts with 

other resources, such as energy, in order to increase understanding of how water and 

energy are used and better manage limited resources. However, the volume of data 

produced by smart meters is a major challenge in their effective use. The research 

described in this thesis advances data collection and management cyberinfrastructure for 

smart meter networks to better enable quantifying water and water-related energy use.  

The architecture for a smart metering data management system is described, with a 

specific implementation in a case study for estimating water and water-related energy use 

within a collection of multi-unit residential structures on Utah State University’s campus.  

The methods for combining the water and energy data streams collected from the case 
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study are profiled, as are the subsequent investigations into the timing, duration, and 

division of water and water-related energy use in these multi-unit residential structures.  

These results, which successfully quantified water and water-related energy and offered 

an assessment of water and water-related energy consumption behavior in five multi-unit 

residential structures, may be of interest to water suppliers seeking to quantify and 

characterize water use in innovative ways.      

 (128 pages) 
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PUBLIC ABSTRACT 

Characterizing Water and Water-Related Energy in Multi-Unit Residential Structures 
 

with High-Resolution Smart Meter Data 
 

Joseph Brewer 
 
 
 

As urban populations continue to grow and expand, localized demands on water 

supplies continue to increase as well.  These water supplies, which have been historically 

stable, are also threatened by an increasingly erratic climate.  Together, these two factors 

have significantly increased the likelihood of long-term drought conditions in the 

American West.  In response, water suppliers are investigating new ways to record water 

use in urban areas to better understand how water is used.  One of these methods is smart 

meters; advanced devices that can record and transmit water use information directly to 

the water supplier.  However, these devices can produce extremely large amounts of data, 

which can often be difficult to manage.  This research investigated methods for data 

collection and management to advance the feasibility of larger smart meter networks.  

The techniques we developed are described, as well as how these techniques were used to 

estimate water and water-related energy use in several student dormitories on Utah State 

University’s campus.  We also detail how water and water-related energy use were 

estimated.  These results offer insight into how water and water-related energy are used 

in buildings like these, which may be of interest to water suppliers looking for ways to 

increase their understanding of water use beyond just the number of gallons used.   
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CHAPTER 1 

INTRODUCTION 

In this modern age of big data, informatics has penetrated nearly every sector of 

life: what we eat, where we go, what we buy, all registered as data and funneled into 

algorithms and datasets to be scoured for improvement opportunities.  Likewise, water 

and energy utilities seek to use informatics in response to environmental pressure to 

adopt more sustainable operational practices.  However, several obstacles complicate the 

issue of gathering water/energy consumption data for subsequent research, analysis, and 

optimization.  Specifically, water/energy data are gathered by utilities, who typically do 

not have extensive budgets to support research.  Second, water/energy data pertain to 

individuals, falling under the legal protection umbrella of privacy and human subjects 

research regulations that can complicate data sharing.  Finally, water/energy data are 

often gathered by separate utilities, which do not regularly share data or coordinate 

operations.  These obstacles have historically limited the availability of linked 

water/energy related data and development of combined informatics across the 

water/energy sector (Stewart et al., 2013).  

One of the responses to these types of complications in data collection has been 

development and deployment of smart meters to gather high-resolution water and energy 

consumption data.  Indeed, a multitude of studies have showcased the capability of smart 

meters and smart meter data informatics in smaller trials within the respective water 

(Nguyen et al., 2018; Horsburgh et al., 2017; Cominola et al., 2015; Loureiro et al., 2014; 

Harou et al., 2014) and energy sectors (Mostafavi et al., 2018; Yildiz et al., 2017; 

Joachain and Klopfert, 2014; Petersen et al., 2007).  Fewer studies have explored the 

method for combining high-resolution water and water-related energy data 
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(Stewart et al., 2013).  Ability to combine these data streams is generally limited by the 

fact that data of sufficient temporal resolution for linking water and energy use are rarely 

collected together, and methods for linking related water and energy use are not well 

established.  What research has been done to link water and energy data streams has 

identified the collection of more combined water and water-related energy data as a 

primary need to facilitate further research (Berger et al., 2016; Jiang et al., 2016; 

Cominola et al., 2015; Stewart et al., 2013).  Thus, opportunities to strengthen the 

business case for smart metering and increase our understanding of residential water use 

and its related energy use may lie in the exploration of smart metering applications for 

combining these two data streams (Cominola et al., 2015). 

In the residential sector, domestic hot water (DHW) accounts for 20% - 30% of 

residential energy consumption (Fuentes et al., 2018; Kenway et al., 2016; Pérez-

Lombard et al., 2008) and 33% of residential water consumption (Mostafavi et al., 2018).  

While DHW’s components of water and water-related energy have been studied 

separately in depth (Marszal-Pomianowska et al., 2019; Kenway et al., 2016; Swan and 

Ugursal, 2009), research investigating a combined approach to characterizing DHW has 

only recently begun to emerge (Matos et al., 2019; Bertrand et al., 2017).  Moreover, 

studies that have explored residential water use with high-resolution smart meter data, be 

it hot or cold water use, have generally evaluated single-family residences, either in 

groups or individually (Nguyen et al., 2018; Kenway et al., 2016; Abdallah and 

Rosenberg, 2014; Harou et al., 2014; Joachain and Klopfert, 2014).  Seldom has water 

use been evaluated for multi-resident structures, which have been described as a prime 

opportunity for combined water and energy savings (Young, 2013) as approximately 30% 

of households in the U.S. reside in these structures (U.S. DOE, 2015).   
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Another challenge limiting the growth of smart meter applications is the sheer 

volume and quality of consumption data collected and the question of what to do with it 

(Ng et al., 2017; Stewart et al., 2013).  For example, when metering at a one-minute 

resolution for a single household over the course of one year, four quarterly or 12 

monthly data records, which represent more traditional data collection, are replaced with 

525,600 data records.  If this metric is applied across a large residential area, the data 

storage requirements increase drastically.  Open research questions also persist as to how 

this high-resolution consumption data should be managed (Cominola et al., 2015) while 

also remaining financially feasible (Curry et al., 2018).  Thus, while innovative and 

efficient methods for managing the flow of data from collection site to storage to end user 

are needed, evaluation of methods for and the effects of reducing data volume and 

velocity also merit investigation.  Reducing these data metrics serves a dual purpose: 1) 

data storage requirements are reduced, and 2) data management for the collected high-

resolution data is simplified. 

 The overall goal of the research described in this thesis was to test the hypothesis 

that water and water-related energy use in multi-resident structures can be quantified with 

high-resolution smart meter data for the purpose of increasing our understanding of how 

people use water and water-related energy in these types of buildings.  In the course of 

quantifying these resources, we also sought to improve upon existing smart meter 

techniques of data collection, data management, and data storage.  From the above 

hypothesis, we defined two objectives that guided our investigative process: 

• Objective 1: Investigate best practices for management of high-resolution smart 

meter data. 

• Objective 2: Quantify water and water-related energy use for multi-resident 
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structures within the Utah State University (USU) Living & Learning Community 

(LLC) with high-resolution smart meter data.   

Addressing the first objective, Chapter 2 describes our development process, and 

subsequent implementation, of an integrated data architecture using the LLC as a case 

study with the overarching goal of advancing cyberinfrastructure available to support 

smart meter networks.  We describe the layers of an architecture for data collection, data 

management, data storage, and data presentation as a holistic approach for developing 

smart meter networks.  We present the results of the implementation of the data 

architecture in the case study, including the tools and technology we developed for each 

layer in the architecture.  

 We then used this data architecture Chapter 3 to pursue the second objective.  We 

modeled the LLC buildings with mass and energy balance principles which produced a 

set of water and water-related energy balance equations based on the observable variables 

available in the LLC system.  We present how these balance equations were used to 

quantify the water and water-related energy use in the LLC and the subsequent methods 

of analysis we undertook to improve our understanding of the consumption of these 

resources.  Specifically, we focused on the timing, duration, and the division of water and 

water-related energy use.  Additionally, we investigated the impacts of sampling and data 

recording frequency on our ability to characterize and quantify water and water-related 

energy. 

 This research demonstrated that high-resolution water and energy data streams 

can be synthesized with relatively simple mass and energy balance principles.  Utilizing a 

data architecture that integrated smart meter network components, we were able to 

reliably capture, manage, store, and analyze data from multiple observed variables (i.e., 
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water flows and temperatures) in a multi-unit residential structure.  Subsequent 

investigation of the data revealed several insights into water and water-related energy use 

in multi-unit residential structures while also offering information on the tradeoff 

between accurately quantifying water and water-related energy use versus reducing data 

velocity and volume in efforts to simplify data management.  We anticipate this research 

will inform future smart meter projects as well as utility managers and city planners 

interested in efficiently managing their limited water and energy resources. 
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CHAPTER 2 

A DATA ARCHITECTURE FOR COLLECTING, STORING, MANAGING, AND 

PRESENTING SMART METER DATA  

Abstract 

As the growth and urbanization of global populations continues in conjunction 

with increasingly unpredictable climate, urban water supplies are growing increasingly 

stressed.  In response, investigations of more advanced urban water-use monitoring 

networks, including those that employ smart meters, as a means of improving methods of 

characterizing and reducing water use have offered promising results.  However, 

challenges related to the cost of commercial smart meters, the substantial size of datasets 

generated by large smart meter networks, and a dearth of proven data management 

methods have inhibited the widespread implementation of smart meter networks for 

urban water-use monitoring.  In this paper, we present an architecture for data 

management developed to address these challenges.  The architecture consists of four 

layers: 1) a data collection layer; 2) a data management layer; 3) a data storage layer; and 

4) a data presentation layer.  We first describe this architecture as a general blueprint for 

developing integrated smart meter networks before presenting the architecture in the 

context of a case study with the purpose of characterizing water and water-related energy 

use in a collection of multi-unit residential buildings on Utah State University’s (USU) 

campus.  We describe the methods we developed for integrating components of smart 

metering networks into a holistic platform and the software and hardware tools we 

developed for collecting, storing, and managing smart meter data as well as the benefits 
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and drawbacks of this architecture.  The software tools are open source and available for 

use. 

2.1.  Introduction  

 Increases in global populations, specifically within urban areas, have produced a 

growing need for sustainable urban water resource management.  In 2018, 55% of the 

world’s population was concentrated in urban areas.  Globally, these numbers are 

projected to increase to 68% by 2050 (United Nations, 2019) with an overall increase of 

26% in global population in that same time frame.  The prevalence of increasing 

uncertainty in water supply due to climate change is another threat to sustainable urban 

water supplies.  In response, recent investigations into the efficacy of urban water-use 

monitoring systems, such as smart meter networks to better characterize and evaluate 

water-use, have yielded promising results in a variety of applications.  Indeed, several 

studies have concluded that smart metering is a promising method for more accurately 

evaluating and characterizing urban water use while also providing options for engaging 

consumers directly in an effort to effect water conservation (Alvisi et al., 2019; 

Kaufmann et al., 2013; Boyle et al., 2013; Romer et al., 2012; Koech et al., 2018). 

Water meters have been in widespread use to collect water use data in the 

developed world, primarily in the urban sector, for decades.  These data are typically 

collected monthly or quarterly for billing purposes and to inform strategic regional water 

planning at the water utility district level (Boyle et al., 2013; Cominola et al., 2018; 

House-Peters and Chang, 2011).  Functionally, water meters rely on relatively simple 

measurement principles.  Flow volume is measured by either accounting for the physical 

displacement of fluid over time or by recording the velocity of flow over time through a 

known pipe/meter geometry.  While the measurement principles have remained 
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unchanged, recent advances in water measurement technology have produced a 

generation of meters that permit an extremely high-level of accuracy and precision in 

water-use measurement to be achieved (Barfuss et al., 2011).  These advances, coupled 

with continued advances in the miniaturization of electronic computing systems have, in 

turn, led to the emergence of “smart” or “intelligent” meters (Boyle et al., 2013).  Some 

meters pair an electronic register capable of recording high resolution data with a 

traditional meter body, whereas others use entirely new designs. Generally speaking, 

smart meter networks can be classified as observational networks of advanced meters 

applied to the consumption of water and energy. 

“Smart” is a rather ambiguous term and is sometimes used indiscriminately to 

describe any number of technological advances to water metering methods. However, in 

general, a smart meter should include a number of capabilities: 1) enable remote data 

access, 2) measure water use at a resolution that improves either consumer or utility 

decision making capabilities, and 3) produce water-use reports or other data products that 

offer some insight into consumption behavior (Stewart et al., 2013, Boyle et al., 2013).  

Although smart meters have been identified as a promising application for resource 

management, commercially available meters that satisfy all three of these requirements 

can cost thousands of dollars.  With such a large initial capital investment for a 

technology with outstanding challenges, public utilities are often reluctant to commit to a 

widespread implementation of smart meters.  Furthermore, while existing commercial 

smart meter options have generally proven capable and reliable for data collection, 

commercial smart meter manufacturers are often reluctant to allow open access to their 

products for research purposes because their unique combination of proprietary hardware 

and software provide a competitive advantage when selling their products.  This can 
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introduce challenges when attempting to incorporate additional hardware peripherals 

such as dataloggers or communication devices (Horsburgh et al., 2019), may limit the 

way resulting data can be accessed and analyzed because the software cannot be changed, 

and can also lead to issues when trying to integrate them into a larger, technologically 

heterogenous smart meter network. 

Although many water metering networks have progressed to more advanced 

metering infrastructure designed for automated data collection, data are still generally 

collected at low resolution, and the number of large scale, smart water meter installations 

remains small.  Most evaluations of the available smart metering technology have been 

conducted in small scale testing environments.  Widespread implementation of smart 

metering networks has been limited by several factors, including:  1) the size of datasets 

generated by large smart metering networks, which can be a potential stumbling block 

without effective data management and analysis workflows; 2) the disruption caused by 

replacing meters along with prohibitive entry costs for technologies that may be untested 

on a large scale; and 3) the fact that the largest potential customer for smart meters, 

public utilities, are generally not in the business of research and may not see value in 

higher resolution data (Stewart et al., 2013; Cominola et al., 2018).  Addressing these 

ongoing challenges has been identified as a key contribution towards providing support 

for a promising technology that has high potential for improving public utilities’ capacity 

to assess water use in a number of ways (Cominola et al., 2015; Cominola et al., 2018).  

These improvements include enhancing security and reliability of water supply through 

demand-side management in spite of increasing variations in seasonal water supply, the 

ability to more accurately assess the effectiveness of demand reduction programs, and a 

capacity to more quickly identify water losses in the system from defective infrastructure 
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(Horsburgh et al., 2017; Boyle et al., 2013; Doolan et al., 2011; Idris et al., 2006; Britton 

et al., 2009).  

 The proprietary nature and/or lack of data management software provided by 

meter manufacturers, or the lack thereof, is a significant roadblock to large-scale adoption 

of smart metering for both utilities and researchers. Proprietary data management 

software may not be well suited for utilities’ or researchers’ needs, thus there is a gap 

between our ability to collect data with smart meters and our ability to manage and use 

those data that could be filled by more general cyberinfrastructure (CI) designed 

specifically for this purpose. Whereas much research has been conducted in advancing 

the generalized hardware and software cyberinfrastructure (CI) supporting sensor 

networks in fields of research such as water quality, air quality, or ecology (Horsburgh et 

al., 2019; Karami et al., 2018; Adu-Manet et al., 2017), less academic research has been 

done related to the CI needed for effective application of smart meters to urban water 

supply and water use systems.  Those academic studies that have used smart metering 

data from urban water-use systems, while extremely beneficial, have generally focused 

on developing applications for smart meter data (e.g., end use disaggregation and studies 

of water use behavior) rather than advancing methods for smart meter data collection, 

storage, and management (Nguyen et al., 2018; Harou et al., 2014; Cominola et al., 2015; 

Horsburgh et al., 2017; Loureiro et al., 2014).  However, lessons learned in applying CI 

for advanced environmental sensor networks and managing resulting data within other 

scientific fields can be applied to urban smart metering networks as well.   

For the collection, management, storage, and publication of data using advanced 

environmental sensor networks, several authors have previously described general 

cyberinfrastructure (CI) components that provide a blueprint for developing these types 
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of observational networks, managing the resulting data, and extracting meaningful 

information.  These components include: 1) observation and subsequent communication 

of data from the data collection site; 2) either centralized or distributed data storage and 

management; 3) data quality assurance; 4) data sharing, publication and interoperability; 

and 5) data discovery and presentation (Jones et al., 2015; Horsburgh et al., 2011).  

Previously, large smart meter networks have been developed with only one or two of 

these foundational components and in a manner that has not taken advantage of the 

growing capability of emerging technologies.      

Despite recent advances in CI for environmental sensor networks and the 

availability of open-source software and data management systems, there remain issues 

with the diversity of proprietary data logging and environmental sensing systems and 

software used in environmental research that are similar to those in the water metering 

field.  However, much success has recently been seen in the development and 

deployment of low-cost, low-power, do-it-yourself (DIY) environmental sensing 

dataloggers.  The DIY movement has advanced with the advent of readily available, 

advanced, and inexpensive off-the-shelf microcontroller units such as the Arduino and 

the Raspberry Pi collection of computers (Horsburgh et al., 2019; Baker, 2014; Ferdoush 

and Li, 2014; Sadler et al., 2016; Beddows and Mallon, 2018).  These devices can be 

outfitted with an assortment of tools such as on-board data storage, a suite of 

communication peripherals that can transmit data over Wi-Fi, radio, or cellular networks, 

and a diverse set of measurement instruments.  While these devices may take time and 

expertise to adapt to new data collection applications, their open-source, inexpensive, and 

adaptable nature makes them attractive when compared with the proprietary and 

expensive nature of commercially available smart meters.  Thus, an environment emerges 
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where a datalogger with a high level of functionality can be feasibly developed for a 

fraction of the financial cost of a commercial smart meter with similar capabilities and in 

a way that advanced supporting CI can be developed that is neither proprietary nor 

meter/manufacturer specific (Horsburgh et al., 2019; Ensign et al., 2019).    

In this paper we present the architecture for a CI for Intelligent Water Supply 

(CIWS) designed around the requirements for collecting, transmitting, storing, managing 

and analyzing high resolution data from smart water meters.  Our goal in developing this 

architecture was to address the outstanding challenges faced by researchers and utilities 

in building, managing the data produced by, and extracting actionable information from, 

advanced urban smart meter networks. Where possible in our design, we adapted 

techniques developed for advanced environmental sensing networks, which enabled us to 

develop automated and robust processes for the remote collection and transmission of 

large smart meter datasets from data collection sites to a central repository (Cominola et 

al., 2018; Stewart et al., 2010; Little and Flynn, 2012) that supports advanced data 

management and analysis.  We describe in detail a case study implementation of the 

CIWS we designed for smart meter data collected within multi-unit residential buildings 

on a college campus.  We conclude with a discussion of the benefits and drawbacks of 

this system, while also exploring the implications this work has on future research and 

water utilities.    

2.2. Methods 

2.2.1.  Architecture Overview 

 By evaluating the general components of CI supporting advanced environmental 

sensing networks detailed by previous authors and comparing them with the requirements 

of a smart meter network, we distilled the general architecture for CIWS into four layers 



 

 

16 

 
 

 

(Figure 2-1):  1) a data collection layer that encapsulates methods of data observation and 

temporary data storage on-site while enabling remote data access; 2) a data management 

layer that includes automated processes for data retrieval from data collection sites, data 

organization, and upload to the data storage layer ; 3) a data storage layer that ingests 

data for permanent storage and enables performant querying and data retrieval; and 4) a 

data presentation layer that provides access to the data and capabilities for deriving 

insight from the collected data.  In the following sections, we describe the high-level 

requirements for each CIWS architectural layer, their functionality, and how they 

integrate.  We then describe the implementation of these layers with a case study and how 

the layers adapt to satisfy the unique requirements presented by the case study. 

2.2.2. Data Collection Layer 

 The data collection layer consists of the water meters and data recording devices 

installed at individual homes or other buildings. While water metering data has been 

collected for decades in the developed world, water meter technology currently in 

operation across the urban sector is extremely heterogenous with relatively few existing 

meters being capable of high resolution data collection. This heterogeneity and the 

proliferation of analog meters present utilities with two choices in implementing smart 

meter networks:  1) replace existing analog water meters with a smart meter product, 

which is a potentially costly process both financially and politically; or 2) adopt a method 

of observation capable of piggybacking on their existing water meters. In practice, 

utilities may choose to adopt a combination of these approaches to meet their needs. For 

this research, we chose to focus on the latter approach because it is more generalizable 

and, in some cases, even encompasses the first approach (e.g., when meters have outputs 

that can be recorded by an external datalogger). Based on the general fundamentals 
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Figure 2-1. General architecture for the CIWS. Arrows indicate direction of data flow 
between layers.  
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outlined by previous authors for data collection in smart metering networks (Stewart et 

al., 2013; Boyle et al., 2013), the following requirements were identified for data 

collection devices in the data collection layer: 

1. Accept input from multiple measurement devices (sensors) to address 

heterogeneity in urban water meter technology  

2. Offer a configurable sampling rate with capability to record observations as 

frequent as every second to support a variety of smart metering applications  

3. Provide local storage for data to act as a temporary repository between data 

uploads and to protect against data loss 

4. Operate autonomously with little or no operator input to minimize operational 

burden  

5. Accessible remotely to incorporate elements of CI, including:  regular data 

retrieval, manage software updates, and manage datalogger memory  

6. Low cost to advance financial feasibility of large-scale implementation 

2.2.3. Data Management Layer 

In the same way that the understanding of water quantity and quality in the 

environmental sector is limited by the frequency of observation of the controlling factors 

for water quantity and water quality (Horsburgh, 2008; Montgomery et al., 2007), 

characterizing urban water use is limited by the frequency of urban water-use data 

collection.  However, increasing the rate of observation for urban water meters in a large 

residential network creates several obstacles.  Physically accessing meters, downloading 

data, reformatting data, uploading data, and other repetitive tasks consume valuable time 

and resources available to researchers, field technicians, and utility personnel.  These 

repetitive tasks can also introduce unnecessary user error to data, and increasing the rate 
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of data collection would only compound these obstacles.  Thus, automating processes is 

the key objective in the design of the data management layer.  Identifying repetitive tasks 

that could ideally be automated motivated the following requirements: 

1. Wirelessly access dataloggers from a central location and download new data 

2. Reformat new data where needed and upload it to the storage component 

3. Notify operators/data managers of datalogger failure/error 

4. Perform quality control on raw data 

5. Manage datalogger memory to avoid data loss 

6. Operate autonomously with as little operator input as possible 

7. Open source so that modifications can easily be made for differing types of data 

collection methods  

2.2.4. Data Storage Layer 

 Smart meter systems, like other observational sensor networks, produce time-

series data, where the key attribute for each measurement is the associated timestamp.  

Once produced, the data must be parsed into a structure for permanent storage and 

subsequent quality control and analysis.  Many robust data storage systems have been 

developed, and several are open-source and freely available for download.  Some 

examples include relational databases, document-oriented databases, and even purpose-

built time-series databases.  Assessing these available options was a key element of this 

research, which evaluated options under the fundamental question – which databasing 

technology would best enable ingestion, organization, storage, and querying large 

volumes of time-series data generated by smart water meters?  Thus, we identified the 

following requirements for the data storage layer: 
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1. Quickly ingest large volumes of time-series data into a flexible storage format not 

restricted to one brand or type of water meter technology   

2. Scalable to accommodate a large data volume 

3. Responsive to queries for retrieving subsets of time series data of varying sizes  

4. Low total cost for installation, operation, and maintenance 

5. Capable of integrating with the data management layer and data presentation layer 

2.2.5. Data Presentation Layer 

 Large sets of collected and stored time series data provide little value if they 

cannot be explored or analyzed.  For smart meter data, data exploration and analysis can 

provide insight into a diverse range of water consumption attributes and behaviors.  

These include applications such as disaggregating water use data to identify individual 

fixture usage and behavior in a residential household (Pastor-Jabaloyes et al., 2018), 

characterizing water demand patterns at the utility level to assess urban thermal energy 

consumption (Bertrand et al., 2017), or providing water usage feedback to consumers 

(Liu and Mukheibir, 2018).  The end result of these analyses are visualizations and 

summaries of data that provide actionable information. However, analysis results must be 

presented in a manner this is digestible for the target audience, be they researchers, 

legislators, utility mangers, or residential water consumers.  Thus, software applications 

designed for producing and presenting results of smart meter data analysis may be 

diverse in their design to meet the needs of different consumers.  It is beyond the scope of 

this paper to describe all of the software applications that might be built as part of a 

generalized presentation layer. Instead, we chose to focus initially on a general-purpose 

interface that could be used by researchers and others having basic data querying, 

visualization, and analysis skills using the Python programming language. Thus, the 
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requirements listed below are focused on the researcher/data analysts use case. Software 

aimed at different audiences may have different requirements.  

1. Provide insight into water use consumption for researchers     

2. Ability to pass queries and to efficiently retrieve data subsets 

3. Generate automated visualizations for repeatable analysis 

4. Accessible with Python  

2.2.6. Case Study Design: The Living & Learning Community (LLC) at Utah State 
University 

We designed a case study for testing each of the components of the data 

architecture using water metering data from a group of multi-unit residential buildings on 

Utah State University’s campus. The Living Learning Community (LLC), completed in 

2015, is one of USU’s newer student housing options.  Housing approximately 500 

students in six dormitory buildings, the LLC offers residents (primarily freshmen and 

sophomores) modern appliances, laundry, and utilities all rolled into a flat rent rate.  The 

water supply system for each building within the LLC is divided into three observable 

flows:  hot-water supply, cold-water supply, and hot-water return.  The hot-water return 

is a feature of the LLC’s innovative hot-water recirculation system.  Hot-water is 

continually circulated from three boilers to the LLC buildings at a constant, base flowrate 

of approximately 3 gallons per minute (gpm).  Increases from this base flowrate 

constitute hot-water use.  Unused hot-water returns to the boilers for reheating and 

eventual recirculation.  Cold-water is supplied in a typical on-demand basis. 

Our data collection objective in the LLC case study was to characterize water and 

water-related energy use by observing six variables in each of five buildings (Buildings B 

– F) with high temporal resolution and importing the data into water and energy balance 
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equations used to assess water use in cubic meters (m3) and water-related energy use in 

joules (J).  A sixth building (Building A) was used as a test bed for modifications to data 

collection hardware/software.  We designed our data collection and modeling approach to 

enable direct comparisons of water and water-related energy use between buildings. 

Buildings B – F contained approximately the same number of students while Building A 

contained less than half as many.  Building A also includes administration staff, which 

we were unable to separate from residential use, which was the reason for its exclusion 

from our analysis.  The six observed variables are listed below with associated 

observational units.  

1. Hot-water supply flowrate [gpm] 

2. Cold-water supply flowrate [gpm] 

3. Hot-water return flowrate [gpm] 

4. Hot-water supply temperature [oC] 

5. Cold-water supply temperature [oC] 

6. Hot-water return temperature [oC] 

The hot-water and cold-water supplies were outfitted with Master Meter Octave 

Ultrasonic 2” and 3” water meters, respectively 

(https://www.mastermeter.com/products/octave-ultrasonic-meter/).  These high-

resolution meters are capable of measuring instantaneous flow rate in gpm at one second 

resolution.  At normal flow rates (0.5 gpm – 250 gpm), the 2” and 3” Octave meters are 

98.5% - 101.5% accurate at normal flow rate of 0.5 gpm – 250 gpm and 1 – 500 gpm, 

respectively.  During extended periods of low flow, the 2” meters are accurate to 0.25 

gpm with 95% - 105% accuracy and the 3” meters are accurate to 0.5 gpm with 95% - 

105% accuracy (Master Meter, 2020).  Ultrasonic water meters measure flow by 
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observing the velocity of flow through a known geometry with ultrasonic transducers and 

then multiplying the velocity by the area of the known geometry to calculate flow rate. 

The Octave Ultrasonic meters interface with an attached 4-20 mA current loop output 

module, provided by Master Meter, that converts flow measurements from the meter to 

an electrical current and outputs them to an attached two-wire electrical cable in 

milliamps (mA).  In the five buildings we instrumented, power was supplied to the 

current loop module by USU’s Building Automation System (BAS) which was also 

monitoring water use.  

The hot water return meter was outfitted with a Master Meter Bottom Load Multi-

Jet meter (BLMJ) (https://www.mastermeter.com/products/bottom-load-multi-jet-blmj-

meter/) that measures water use mechanically with a two-stage impeller. Flowing water 

turns the inner impeller and flowrate is derived from the impeller’s rotational speed and 

the known geometry of the meter.  Electrical Output Registers (EOR), also provided by 

Master Meter and mounted on the face of the hot water return BLMJ meters, then convert 

measurements from the impeller system into an electrical pulse output using a reed 

switch assembly.  Measured in volts (V), with one relatively instantaneous ‘pulse’ 

occurring when 1 gallon of water cumulatively passes through the meter, the pulsed 

output is routed from the reed switch assembly to a two-wire electrical cable.  The 

general layout of pipes and how existing infrastructure would route into a data collection 

device is visualized in Figure 2-2.  

2.3. Results 

2.3.1. Data Collection Layer 

We initially evaluated multiple commercial datalogger technologies to serve as data 

collection devices in the data collection layer. However, given the required data  
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Figure 2-2.  Basic configuration for data collection in buildings participating in the LLC 
case study.  Piping layout is generalized, but consistent in all LLC building mechanical 
rooms. 
 
 

collection frequency (maximum frequency = 1 s), onsite storage requirements (up 

to several hundred megabytes of data), and requirements for data transmission over 

wireless networks, we were unable to find a suitable datalogger package that met these 

requirements for under $1000 USD.  We chose to record data at 1s because that was the 

fastest we could sample data from the meters we were observing.  We also wanted to 

ensure we had a very high-resolution dataset to test the robustness of CIWS infrastructure 

we prototyped.  Thus, to accomplish the task of collecting the data, we instead developed 

a low-cost datalogger based on a Raspberry Pi 3 Model B micro-computer 

(https://www.raspberrypi.org/products/raspberry-pi-3-model-b/) outfitted as a datalogger 

and installed in each LLC building’s mechanical room.   

The Raspberry Pi 3 Model B is a user-programmable, Linux-based computer that 

is commercially available for the price of approximately $35 USD 

(https://www.adafruit.com/product/3055?src=raspberrypi), which met our requirement 
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for low cost.  It uses a Broadcom Quad Core 1.2 GHz 64bit processor complete with 1GB 

of RAM and can support a variety of Linux distributions and program libraries in 

addition to the Raspberry Pi Foundation’s default Raspbian operating system.  In addition 

to the powerful processor, it comes equipped with an on-board microSD port for 

expanding data storage, which met our requirement for on-site data storage, wireless local 

area network (LAN) and Bluetooth communications, which met our requirement for 

enabling remote access, and 40 general purpose input/output pins (GPIO) for 

incorporating sensors, which met our requirement for enabling inputs from multiple 

measurement devices.  The Raspberry Pi 3 Model B’s balance of low cost and capability 

made it an ideal platform on which to develop our data collection devices.  Sensor inputs 

were integrated with an Adafruit Perma-Proto HAT (Hardware Attached on Top) 

(https://www.adafruit.com/product/2310) circuit board attached to the 40 GPIO pins on 

the Raspberry Pi. 

In order to observe the hot-water supply and cold-water supply flowrates, which 

the current modules output as a 4-20 mA current output, the output from the current 

modules first had to be converted from a current to an analog voltage for the Raspberry Pi 

to record.  Ohm’s Law (Equation 2-1) states that current passing through a conductor 

between two points is directly proportional to the voltage across the two points: 

I = V / R                  (2-1) 

where I is the current through the conductor in amperes (A), V is the voltage measured 

across the conductor in volts (V), and R is the resistance of the conductor in ohms (W).   

To convert the current module output to a voltage, the input wire from the current 

module was connected to terminal blocks soldered to the Perma-Proto HAT and then 

routed to a 200 W resistor on the HAT to create a current loop.  The current loop forces 
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the current output through the resistor, which creates a voltage drop across the resistor.  

Observing this analog voltage drop and converting it to a digital signal was accomplished 

with an ADS1015 12-bit Analog to Digital Converter (ADC), commercially available for 

$10 USD (https://www.adafruit.com/products/1083), attached directly to the HAT with a 

13-pin header plug.  ADS1015 ADCs can observe and convert a large range of analog 

signals to digital signals, run on a flexible power supply (2V – 5V), and can easily 

integrate with a Raspberry Pi computer.  They can be configured for 4 single-ended 

inputs or 2 differential inputs.   

We initially employed a single-ended input measurement of the voltage at a single 

location in the circuit just before the resistor and calculated the theoretical voltage drop 

based on the resistor's rating.  While this method is usually sufficient, we experienced 

significant noise in the output from the current modules during development, which the 

ADS1015 ADC was not designed to filter.  To adjust for this, we switched to a 

differential input measurement of the voltage at two locations in the circuit, just before 

and after the resistor. We then programmed the Raspberry Pi to calculate the voltage drop 

directly.  This latter method significantly reduced the noise in the output from the current 

module by directly observing the voltage drop across the resistor rather than assuming 

what the voltage drop should be based on the resistor value.  An illustration of the ADC 

and current module circuit, as well as the difference between single-ended input and 

differential input is included in Figure 2-3.   

Observing the hot water return electrical pulse output was much simpler as the 

incoming voltage could be read directly by the Raspberry Pi as a digital signal.  

Therefore, the reed switch assembly input wire was connected to terminal blocks 

soldered to the HAT, and the input was routed directly to the Raspberry Pi through GPIO 



 

 

27 

 
 

 

 
Figure 2-3. Illustration of the difference between ADC single-ended input (A) and 
differential input (B) for converting analog current signal to digital voltage signal. 
  

pins.  One obstacle we faced with the reed switch assembly was switch bouncing.  This 

phenomenon is common in simple electrical switches and can occur whenever the switch 

changes position from open to closed (i.e., low voltage to high voltage) or vice versa.  

After a position change, in this case when 1 gallon passed through the hot water return 

BLMJ meter, the reed switch would bounce several times as it opened and closed, 

producing a noisy signal at the beginning and end of a pulse that resulted in recording 

spurious pulses.  This issue was eliminated with a simple switch de-bouncing circuit 

which smoothed the noise into a smooth, single transition from low voltage to high 

voltage and vice versa.  An analog low-pass filter was used for the de-bouncing circuit to 
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filter out the high-frequency switch bounce signals from the low-frequency signals 

intended to communicate the switch position change.     

Water temperature was measured with DS18B20 digital thermometers available 

from Adafruit (https://www.adafruit.com/product/374).  DS18B20 digital thermometers 

provide digital 9-bit to 12-bit Celsius temperature measurements to an accuracy of +/- 0.5 

oC, can be wired directly into a central microprocessor with a single wire, and do not 

require an external power supply.  They can be purchased from a variety of online 

retailers for as low as approximately $4 USD.  The DS18B20 digital thermometer was 

chosen for its accuracy/cost balance, with more accurate digital thermometers quickly 

increasing in cost, and for the ease of integrating it into the Raspberry Pi.  We were 

unable to break the pipes to install temperature sensors inside the pipes. Instead, we 

installed temperature sensors in direct contact with the outside of the pipes. In placing the 

digital thermometers, all three pipes were previously encased in approximately 2” thick 

insulation material with the water meter providing the only break in the insulative 

material.  This break in the insulation offered two advantages:  1) an easily accessible 

break in the insulative material close to the meters and the dataloggers; and 2) insulation 

for the digital thermometers so as to reduce bias in the temperature measurements from 

the ambient air temperature in the mechanical rooms.  Thus, we inserted the digital 

thermometers approximately 6 inches into the break, in between the insulation material 

and the copper pipe, and secured them in direct contact with the pipe with electrical tape.  

The digital thermometer output wires were then soldered directly to the HAT.  The final 

datalogger product was placed in a waterproof enclosure, along with a backup power 

supply, and installed in the LLC mechanical rooms by routing in the meter and digital 
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thermometer outputs in the fashion described above. All of the observed variables, 

measurement peripherals, input methods, and output types are tabulated in Table 2-1. 

 
Table 2-1. Methods of Variable Observation 

Variable Measurement 
Peripheral Input Method Output Type 

Water Supply 4-20 mA current 
module 

Analog-to-Digital 
Converter 

Voltage  
(Differential) 

Water Return EOR & Reed Switch General Pin 
Input/Output 

Voltage  
(Direct) 

Water Temperature DS18B20 Digital 
Thermometer 

General Pin 
Input/Output 

Binary 
(Digital) 

 
 

To automate the process of collecting observations from the measurement 

peripherals, we developed a Python script (Horsburgh et al., 2017) and deployed it on the 

Raspberry Pi.  The script was developed in a Python 2.7 environment as an executable 

script that automatically reads the measurement peripherals, calculates water flowrate 

based on measurements, and records the results to a comma separated values (CSV) file 

in the Raspberry Pi’s file system.  While Raspberry Pi’s Raspbian operating system 

natively supports Python, several external Python libraries had to be installed on the 

datalogger to support the peripheral hardware, namely the ADC and digital 

thermometers.  An illustration of datalogger pseudocode is included on the following 

page as Figure 2-4.  Before starting the script, the user may specify several options, 

including: 1) the scan interval, or rate at which observations from the measurement 

peripherals are scanned by the datalogger; 2) recording interval, or rate at which scanned 

observations from the measurement peripherals are recorded to the datalog file; 3) the 

data chunking protocol for establishing homogeneity in the data log file(s) recording 

interval and approximate file size; and 4) calibration factors for scaling the meter output 
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voltages and the maximum observable flowrates.  In this case study, the maximum 

observable flowrates were bounded by the 4-20 mA current module with 20 mA being 

the maximum possible output from the meter.  This corresponded to 50 gpm for the hot 

water supply and 200 gpm for the cold water supply.  These maximum values are set by 

the user and were rescaled to improve the signal resolution passed to the datalogger from 

the current modules.  Conversely, 4 mA indicated a flow rate of 0.0 gpm for both the 

Octave meters.  Upon execution of the script, the datalogger first reads the user-specified 

data collection options.  Next, a configuration file that tells the datalogger which 

temperature sensor is attached to which water supply is read and the measurement 

peripherals are initialized.   

Then, a datalog file is initialized with a naming convention and header that can 

also be modified in the script, timing variables are instantiated, and sensor related 

variables are defined.  For this case study, the sensor related variables are detailed below 

with the value used in brackets: 

- Value of resistor converting current from the current module to voltage [200 W] 

- Minimum expected voltage measurement for observing 0.0 flow [0.8V] 

- Maximum observable voltage measurement [4V]  

Once these initial tasks are completed, the main program loop starts.  First, the 

datalogger evaluates starting a new datalog file based on the current time.  For our 

purposes, this was set to every day at midnight.  Next the datalogger starts three 

concurrent threads to scan the digital thermometers.  Concurrent threads were used 

because the Linux drivers that execute the scanning protocol for the digital thermometer 

collectively take longer than our minimum specified scanning interval of 1 second when 

executed sequentially.  Next, the datalogger checks for a new pulse from the hot water 
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Figure 2-4. General functionality of datalogger program 
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return reed switch, and the digital voltage observations from the ADC are scanned.  To 

calculate the supply flowrates, the datalogger applies Ohm’s Law to convert the observed 

voltage back into current.  Comparing these reverse-calculated current measurements 

from the current module with the available range of 4-20 mA, the datalogger determines 

the proportional flowrates for the hot water and cold water supplies.  Once all of these 

tasks have been accomplished, the datalogger writes the results to the datalog file and 

begins a new scanning interval/record interval.   

The datalogger generally satisfied the overall requirements described for the data 

collection layer while successfully meeting the needs presented by the case study.  The 

datalogger we developed autonomously recorded observations at an adjustable sampling 

rate from several measurement peripherals with inexpensive, off-the-shelf components.  

The datalogger was capable of storing nearly a year’s worth of data on a replaceable and 

expandable microSD backup storage card and making that data accessible via remote 

access via USU’s WiFi network using the Raspberry Pi’s stock wireless LAN connection 

protocols.   

In evaluating performance of the datalogger, we experienced several issues that 

had to be addressed. First, the ADS1015 ADC was the most common source of hardware 

failure.  A faulty ADC would incorrectly observe the voltage drop across the resistor, 

which would translate to inaccurate hot water and cold water supply flowrates.  

Fortunately, these errors were so drastically different from correct data, a researcher 

regularly checking data could notice them immediately.  Another persistent error was 

caused by a faulty reed switch assembly, which would fail to output hot water return 

pulses for hours at a time.  This was identified as manufacturer error in the reed switch 

assembly in the electrical output register supplied by Master Meter.  Another 
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manufacturer-related error we experienced was caused when the electrical interface 

between the 4-20mA current module and the Octave meter would damage the current 

module’s electrical components.  Once these problems were identified as manufacturer 

errors, Master Meter replaced the faulty current modules and electrical output registers 

free of charge with equipment that did not have these errors.  A visualization of data 

illustrating these errors compared to correct data is included as Figure 2-5.  

 

Figure 2-5. Comparison of faulty and correct data.  Top row illustrates one day of a 
faulty ADC versus one day of correct data.  Bottom row illustrates 15 minutes of a faulty 
reed switch assembly versus 15 minutes of correct data. 
 
 
Another issue was a recurring inability to observe periods of zero flow in the cold water 

supply.  Because of the larger maximum flow setting on the meter, even very small 

voltage observations above the minimum expected voltage (corresponding to 4 mA) 

would translate to relatively significant amounts of flow.  While these flow amounts were 

often less than 0.1 gpm, the cumulative effect resulted in volume discrepancies of 

approximately 10% between datalogger records and manual readings of the meter’s 
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register.  While this was an issue we were able to address in data post-processing by 

filtering the raw flowrate data signal with a custom median filter, it might have been 

avoided in the development phase of the datalogger with further calibration experiments 

to enable better data pre-processing by the datalogger.  Our complete methods of data 

quality control are described in Appendix A.   

In evaluating the performance of the datalogger script, we discovered that the 

main program loop would accumulate timing delay associated with the time required to 

scan the sensors over extended periods of time.  Approximately every 50 seconds, this 

delay would accumulate to one second and the datalogger would ‘skip’ a second and fail 

to record a measurement.  Over the course of an hour (3600 seconds), this equated to 

approximately 72 skipped observations, or 2% of all observations.  We were unable to 

eliminate this occurrence, but further evaluation of the timing of Linux drivers, Python 

functions, and measurement peripherals would likely reveal the source of accumulated 

delay.  Despite this software issue, we were still able to achieve a 98% data capture rate 

with the datalogger at a data collection frequency of one second.   

2.3.2. Data Management Layer 

 Given our choice to develop a low-cost datalogger and the general lack of 

available software tools, we were unable to find a commercial or open-source software 

package that we could use to automate data management tasks in the data management 

layer. Thus, to fulfill the operational requirements of the data management layer, we 

developed a custom Python program called the Data Transfer Manager (DTM) to handle 

the automated transfer of data from the dataloggers to the data storage layer.  The DTM 

was developed in a Python 3.7 environment and deployed on a virtual server on USU’s 

campus.  We chose Python over other programming languages for its extensive open-
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source support libraries which can incorporate significant functionality, such as data 

analysis and visualization tools, while simplifying the required code to be written.  

Additionally, Python is freely available with many community support resources and is 

natively supported for deployment by many server operating systems (e.g., Windows, 

Linux, etc.).  Figure 2-6 illustrates the functionality and flow of the DTM in a 

pseudocode format. 

For the deployment environment, we chose the Ubuntu Linux Server Version 

16.04.3 environment.  Ubuntu is a free and open-source Linux distribution developed by 

Canonical Ltd.  We chose Ubuntu because it is well supported by the developer, free to 

download, stable, offers reliable file security, and is commonly used in software 

development.  Version 16.04.3 was the latest version available at the time of 

development.  The server utilizes a 64-bit architecture, four 2.3 GHz processor cores, 8 

GB of RAM, and 100 GB of disk memory.  The server was hosted on USU’s campus and 

maintained by USU network personnel.  Executed with Linux’s native CRON software 

utility, which is a job scheduler that allows the user to specify how often a software 

program like the DTM is autonomously executed, the DTM first reads a user-modifiable 

JavaScript Object Notation (JSON) configuration file that details functional information 

including access information for the remote dataloggers (i.e., the number and IDs of 

dataloggers to access), operating system of the dataloggers, and data storage layer 

connection information.  The DTM then proceeds through a list of defined tasks to 

transfer data from the dataloggers to the data storage layer.  These include:  1) connect to 

each datalogger using Paramiko, a Python library that enables Secure Shell (SSH) 

connections for safely accessing network services over unsecured networks;  2) parse the 

datalogger’s Linux file system for new datalog files and download them with Secure File  
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Figure 2-6. General functionality of DTM. 
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 Transfer Protocol (SFTP), an extension of SSH that offers secure file transfer capabilities 

over any reliable data stream; and 3) upload new data into the data storage layer. 

 While it was necessary for the DTM to meet the specific requirements of the LLC 

case study, we designed the DTM in a generalized way to meet common requirements so 

that it could be extended to other case studies.  The following Python functions form the 

core of the DTM’s functionality: 

- connect():  Connect to a datalogger through SSH with credentials included in 

the JSON configuration file, parse the datalogger file system for new files, and 

download new files.   

- write_to_db():  Connect to the data storage layer with connection information 

detailed in the JSON configuration file and write data to the data storage layer. 

- send_error():  Inform user of error in the data transfer process through a 

webhook to a cloud-based instant messaging service.  Information detailing 

which datalogger and file caused the error is included in the error report. 

Although translating the DTM to a different smart meter network would require some 

modification to the core code of these functions, specifically the format for the data 

storage layer write structure in the case that a different data storage layer is used, the 

central framework for adapting the DTM to a different set of smart meter network 

requirements is in place with the key arguments passed to the program functions from the 

JSON configuration file.  

 Overall, the DTM consistently and autonomously accessed the dataloggers 

wirelessly, downloaded new data, and uploaded them to the data storage layer in the 

correct format.  While the DTM would occasionally fail to execute, redundant failsafes in 

the design such as backup storage on the datalogger preserve new files until the next 
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successful DTM execution.  We identified the cause of failed DTM executions as an error 

in the Crontab syntax passed to Linux’s CRON functionality, which prevented the CRON 

job from executing on schedule.  This was corrected with a simple change to the syntax.  

Other issues such as duplicate data, faulty data, or mishandled data were notably absent 

from the deployment of DTM for our data management layer.  Some of this success can 

be attributed to the functionality of the datalogger and the data storage layer (described in 

the next section) but overall, the DTM satisfied our requirements for the data 

management layer.    

2.3.3. Data Storage Layer 

With an abundance of potential methods and technologies available for data 

storage, our first task was identifying databasing technologies that generally met the 

requirements and could potentially serve as the basis for the data storage layer. We then 

tested multiple technologies to enable comparison of their strengths and weaknesses with 

the understanding that different organizations may choose different technologies for their 

storage layer.  Through this process, we also sought to evaluate database types as well.  

The type of database dictates how data are stored, organized, and queried.  For example, 

in a relational database, data is typically organized into tables that are related with a 

primary key/foreign key system.  A primary key in one table serves as the foreign key in 

another thereby relating the two tables.  From the diverse range of database types, we 

selected the four described below:    

- Non-relational:  a database type that uses a schema-less storage model typically 

defined by the data being stored.  
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- Relational:  The most common database type.  Data, or records, are structured into 

rows and tables and organized under a relational model, often with a primary 

key/foreign key system. 

- Object-relational:  A mix of relational and non-relational database methods that 

extends some object-oriented databasing methods to the relational data model. 

- Time-series:  A database type optimized specifically for storing time series data.  

Data are typically organized by a timestamp, which is often an immutable key 

index, and sometimes structured in a fashion similar to the relational model.  

We selected these four database types because they are commonly used, employed in a 

variety of commercial and open-source data storage applications, including advanced 

environmental sensor networks (Horsburgh et al., 2011), and have, at minimum, proven 

to be effective in storing large volumes of data.  

To evaluate the performance of each database type, we selected a databasing 

technology to represent each.  Then, we devised a testing regimen that allowed us to 

compare each databasing technology on the basis of: 1) data query speed, 2) data 

ingestion rate, 3) disk storage footprint, and 4) efficiency in storing time series data.  

These criteria were developed from the data storage layer requirements we designated for 

the architecture.  Table 2-2 tabulates the database technologies chosen for testing.  These 

databasing technologies were chosen for evaluation because they are generally open 

source, supported on Linux operating systems, are free to download, and comprise over 

half of the market share of open-source databases (https://scalegrid.io/blog/2019-open-

source-database-report-top-databases).  Cassandra, another non-relational databasing 

technology, albeit less common, was excluded from evaluation due to its structural 

similarities to MongoDB. Commercially supported options are available for these 
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Table 2-2. Data Storage Layer Database Evaluation 

Technology Type General Structure Common Applications 

MongoDB Non-relational 
(NoSQL) 

JSON style documents stored 
in a schema-less structure 

Web-based document storage 
(images, products, profiles) 

MySQL Relational Tabulated records organized 
into relational models 

Backend storage for web 
applications 

PostgreSQL Object-Relational 
Similar to MySQL, but 
supports some NoSQL 
features 

Large scale custom 
transactional data analytics 

InfluxDB Time-Series Key-value pairs of timestamp 
and related information 

Time-sensitive data storage 
(e.g., server operations and 
monitoring) 

 

database systems, which generally include additional functionality and developer support.  

In this work, we evaluated the free and open-source versions. 

 Each database technology employs a unique storage structure.  However, these 

structures are comprised of relatively analogous data granules that allow for general 

comparisons to be made between databases.  At the highest level is ‘database’.  This term 

is universal across all four database technologies for the largest storage structure. MySQL 

and PostgreSQL ‘databases’ are comprised of ‘tables,’ which are analogous to 

‘collections’ in MongoDB and ‘measurements’ in InfluxDB.  PostgreSQL includes an 

additional ‘schema’ layer between the ‘database’ and ‘table’ storage layers.  Diving to the 

data level, ‘tables’ in MySQL and PostgreSQL contain ‘records’ or ‘rows,’ which 

correspond to ‘documents’ in MongoDB and ‘points’ in InfluxDB.  The nomenclature for 

each data granule varies significantly across technologies, but generally each data value 

is comprised of a unique identifier (ID), attributes of various data types describing 

metadata, and a method of indexing that locates the data within the storage structure 

hierarchy.  Figure 2-7 on the following page includes a sample of data from our case 

study as it appears in each databasing technology and describes the components for how 
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the data are represented in each databasing technology.  The data is a one second 

observation from Building C of cold water supply flowrate, hot water supply flowrate, 

and hot water supply temperature.  

 

 
Figure 2-7. General data structure for each databasing technology.  Each panel shows 
a single data record in the syntax of the different databases.  One data record consists of 
the individual observations for a single timestamp for an individual building.  Flowrates 
are in GPM and temperatures are in oC.  Primary keys/indexes are indicated in each panel 
or legend. 
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2.3.3.1. Data Storage Testing Framework 

 To establish the testing environments for the testing framework, a benchmark 

server instance of Ubuntu Server 16.04 64-bit was deployed as a VMware Fusion virtual 

machine with 1 allocated processor core, 2 GB of RAM, and 50 GB of hard disk storage.  

The host machine on which the virtual machine was implemented was a 2015 Apple 

MacBook Pro equipped with a 2.5 GHz, four-core processor, 16 GB of RAM, and 500 

GB of storage.  Ubuntu was chosen as the operating system for consistency, to simplify 

communication between the data management layer and the storage layer, and to enable 

both layers to be installed within the same server environment where needed.  The 

benchmark server was then cloned four times in VMware Fusion, and one of the selected 

databasing technologies (Table 2-2) was installed on each cloned server using the 

documentation provided by the database developer.  

The testing framework first consisted of evaluating each databasing technology with an 

assortment of data-related tasks the database might be expected to perform in a smart 

meter network (e.g., queries and data uploads).  These tasks are detailed in Table 2-3. The 

tasks were translated into Python scripts developed in a Python 3.7 environment.  The 

scripts were developed to be as similar as possible, with differences in code primarily as a 

consequence of different database connection protocols and database syntax.  

Nonetheless, the general structure of the scripts were:  1) connect to the database with 

available Python libraries; 2) receive researcher input to specify test metadata such as 

database type, data query/data ingestion, and the number of iterations for the test; 3) 

repetitively loop through each task the number of times specified by the researcher while 

recording the time to task completion for each iteration; and 4) write the results to a CSV 
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file, including metadata specified by the researcher in the file name. Tasks were run 

multiple times to ensure that the variability in timing of each task was captured.  

 
Table 2-3. Data Storage Layer Testing Framework 

Task Type Task Description Number of 
iterations tested 

Query 1 Retrieve ONE-DAY of hot water supply flowrate and hot water 
supply temperature from ONE building 100 

Query 2 Retrieve ONE WEEK of all flowrates from THREE buildings 100 

Query 3 Retrieve FOUR WEEKS of all variables from ONE building  100 

Query 4 
Retrieve ONE WEEK of cold-water supply flowrate and 
temperature converted to oF and aggregated to the hour for 
TWO buildings 

100 

Ingest Ingest ONE DAY of all variables from ALL buildings 100 

Ingest Ingest ONE WEEK of all variables from ONE building 25 

Ingest Ingest FOUR WEEKS of all variables from ONE building 10 

 
 

To further evaluate the data query and data ingestion performance of the database 

technologies, we added an additional component to the testing framework to determine 

how performance was affected by available memory. The data-related tasks were 

executed under three tiers of allocated RAM to test the impact of allocating additional 

RAM to the Ubuntu Server instances on data query/upload speed.  The three tiers chosen 

were: 1) 2048 MB (2 GB), 2) 4096 MB (4 GB), and 3) 8192 MB (8 GB), with plans for a 

fourth tier of 16384 MB (16 GB) in place should the increase from 4 GB to 8 GB produce 

major changes to data query/ingestion speed.   

We chose to evaluate the utilization of disk storage by each database technology 

with two differently sized datasets.  The first consisted of the complete dataset for one 
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building (i.e., six measured variables, the buildingID, and the timestamp) collected at a 

data resolution of one second, for a period of four weeks – in total, 2,369,741 records.  

The second dataset consisted of the complete dataset for five buildings collected at a data 

resolution of one second, for a period of four weeks – in total, 11,841,326 records.  The 

datasets were uploaded individually to an empty database storage structure in each 

database technology, and the data footprint on disk storage was identified using the 

command line in the Ubuntu server instance hosting the database or within the database 

shell. 

2.3.3.2. Data Storage Testing Results  

 The data query results (Table 2-4) are organized in rows by query and in columns 

by the first and second most performant databases.  The average time to return results for 

each query from all three memory tiers is included in parentheses, as is the largest change 

in query response time achieved by increasing allocated RAM from 2 GB to 8 GB.  

Negative values indicate a decrease in time.     

 
Table 2-4. Data Storage Layer Database Query Evaluation 

Query Fastest Database Second Fastest 
Database Largest Time Change 

Query 1 Influx DB 
(0.59 s) 

PostgreSQL 
(1.41 s) 

MongoDB 
(-0.15 s) 

Query 2 MongoDB 
(15.44 s) 

InfluxDB 
(17.04 s) 

InfluxDB 
(-0.59 s) 

Query 3 PostgreSQL 
(18.69 s) 

MongoDB 
(24.12 s) 

InfluxDB 
(-15.44 s) 

Query 4 InfluxDB 
(0.61 s) 

PostgreSQL 
(1.45 s) 

MongoDB 
(-0.39 s) 
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InfluxDB had the fastest query times for Query 1 and Query 4 and the second fastest 

query time for Query 2, while MongoDB and PostgreSQL achieved the fastest query 

times for Queries 2 and 3.  Figure 2-8 further illustrates these results by visualizing the 

results from the 2 GB RAM tier.  Only the 2 GB was tier was visualized as the results 

from all three RAM tiers were generally similar, with the singular exception described 

below regarding the improvement in Influx DB’s Query 3.   

 

 
Figure 2-8. Distribution of results for data queries executed using 2 GB of RAM. 
 

These findings show that InfluxDB performed better than the others for handling sub-

month sized datasets of time series data (Queries 1, 2, and 4 addressed dataset sizes on 

the order of days and weeks).  For retrieving very large datasets (Query 3), PostgreSQL 

performed best.  InfluxDB also performed better for performing query-language level 

calculations (Query 4) where flowrate was aggregated to the hour and temperature 

converted from Celsius to Fahrenheit.  InfluxDB also generally demonstrated the most 

significant response to increasing allocated RAM with more than a 15 second decrease in 
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query times and a significant decrease in variability of the results for Query 3.  However, 

this significant improvement for InfluxDB was only observed when increasing allocated 

RAM from 2 GB to 4 GB.  Changes in query speed when increasing from 4 GB to 8 GB 

were minimal, indicating diminishing returns above 4 GB.  Thus, we chose not to 

proceed with the planned fourth tier of RAM testing due to these findings.   

Results for data ingestion (Figure 2-9) showed that InfluxDB consistently had the 

fastest data ingestion speed of the four databases tested, with MongoDB ingesting data at 

a slightly slower rate in all three data ingestion tests.  For all three data ingestions tests, 

MySQL generally took twice as long as InfluxDB while PostgreSQL ingested data 

approximately thirty times slower than InfluxDB.  Assessing the impact of increased 

allocated RAM on data ingestion speed, MongoDB experienced the most improvement in 

ingesting one day of data and one week of data.  

 

 
Figure 2-9. Log plot of data ingestion testing results using 2 GB of RAM.  Error bars 
indicate the standard deviation.  n = 100 for Day, n = 25 for Week, and n = 10 for Month, 
with n = the number of trials executed and timed.  
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However, MongoDB also experienced the most variability in data ingestion speed for 

these two tests with an average standard deviation over the three allocated RAM tiers of 

0.80 s and 2.16 s, respectively.  This equates to corresponding coefficients of variation 

(CV) of 50.6 % and 19.1 % when ingesting one day and one week of data.  For 

comparison, the average standard deviations over the three allocated RAM tiers of the 

same tests for InfluxDB were found to be 0.24 s and 0.18 s, respectively.  These results 

correspond to CVs of 15.8 % and 1.6 %, significantly less than MongoDB.   

When ingesting one month of data, MySQL saw the largest improvement from 

increasing allocated RAM with a 3.83 s improvement in data ingestion speed.  However, 

as with MongoDB, MySQL experienced significant variability with an average standard 

deviation across the three data periods of 3.13 s.  While the corresponding CV is 

relatively small, only 3.4 % due to a much longer average data ingestion time, the 

average standard deviation is nearly equivalent to the improvement seen in data ingestion 

speed with a difference between data ingestion speed improvement and the average 

standard deviation approximately equal to 0.7 s.  Increasing available RAM produced 

little relative change in data ingestion speed.  Consequently, only results from the 2 GB 

RAM tier are illustrated in Figure 2-9.  This may suggest that data ingestion speed is 

dependent on other parameters like CPU power or database technology.  

Findings from the data storage test are shown in Figure 2-10.  The dataset 

containing one building’s data and the dataset containing five buildings’ data will be 

referred to hereafter as 1 BLDG and 5 BLDG, respectively.  InfluxDB occupied the least 

amount of disk storage for both datasets (16 MB for the 1 BLDG dataset and 94 MB for 

the 5 BLDG dataset).  MongoDB occupied the second least amount of disk storage with 
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102 MB for the 1 BLDG and 510 MB for the 5 BLDG.  Interestingly, while the 1 BLDG 

dataset occupies a relatively small disk storage footprint 

 

 
Figure 2-10. Comparison of database size for a complete, four-week dataset from 1 
building (1 BLDG) versus 5 buildings (5 BLDG).  Results account for default data 
compression utilized by the investigated databasing technologies. 
 
 
of 122 MB in MySQL, the required disc storage for the 5 BLDG dataset balloons to over 

982 MB, an approximate increase in disk storage requirements of 700 %.  This may be 

attributed to using a multi-index of time and BuildingID as the primary key for the five-

building dataset.  PostgreSQL, meanwhile, occupies the largest amount of disk storage 

with over 1 GB of disk utilized to store the 5 BLDG dataset.      

 While usability was not a metric we scientifically tested, we were still able 

to evaluate high-level differences between database technologies such as functional 

advantages and limitations.  We divided these differences into three general categories: 1) 

query syntax; 2) adaptability; and 3) indexing.  For managing databases, uploading data, 

and querying data, MySQL and PostgreSQL utilize Structured Query Language (SQL).  
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SQL is a programming language used in a wide variety of relational database 

management systems.  A SQL statement is generally comprised of clauses and 

expressions which can return data with shared attributes.  InfluxDB employs a SQL-like 

query language that shares many features with SQL while providing additional features 

for managing time-series data.  Similar to SQL, an InfluxDB statement is comprised of 

clauses and expressions for returning data with shared attributes.  MongoDB is managed 

with Create, Read, Update, and Delete (CRUD) operations via a custom JSON-style 

language developed for MongoDB.  CRUD operations are comprised of filters, criteria, 

and projections that identify which documents to query, update, etc.  Figure 2-11 

illustrates these differences via a query for the timestamp and all three flowrates from 

three buildings for a one-week period written in each database technologies’ respective 

syntax.   

Each database type also ingests data differently.  In MySQL and PostgreSQL, a 

table has to be created before data can be added.  When a table is created in MySQL or 

PostgreSQL, the schema (i.e., field data types, primary keys, and other parameters) has to 

be specified during table creation.  Before adding data outside the established schema, the 

table must first be modified to include the new data.  Conversely, InfluxDB is a schema-

less database and can accept new fields or indexed tags on the fly, with the datatype 

either specified or inferred upon initial upload.  This could be particularly advantageous 

in an environmental sensor network as new measurement methods could be deployed and 

data incorporated to the data storage layer after database creation.  During our case study, 

for example, we were able to add water temperature data to the InfluxDB database on the 

fly.  MongoDB is also structurally schema-less, even more so than InfluxDB, with the 

possibility of each record in a collection containing a different mix of fields and 
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datatypes.  However, to aggregate data and execute queries on large sets of data, it is 

necessary to establish homogenous fields across documents. 

 

 
Figure 2-11. Example query syntax used to interact with database technologies.  
 
 

With regard to how stored data is indexed, indexing methods can significantly 

impact data query/data ingestion performances.  Generally, using multiple indices in any 

database will positively impact data query performance, but negatively impact data 

ingestion performance.  MySQL and PostgreSQL require the primary index key to be 

established in the syntax when creating a table.  The primary key can be comprised of 

one or more fields based on the data requirements (e.g., preventing duplicate data from 
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being stored in the database).  For the purpose of database testing, we designated ‘time’ 

and ‘buildingID’ as the primary keys in the MySQL and PostgreSQL database instances. 

MongoDB automatically generates a unique, alphanumeric index ID for each created 

document.  Indexes can be created by the user, but as with MySQL and PostgreSQL, the 

potential for identical timestamps from different data collection sites precludes time from 

being the sole index.  For the purpose of database testing, we used the default 

alphanumeric index generated by MongoDB.  InfluxDB circumvents some of these 

indexing challenges by indexing time by default.  As previously described, additional 

fields can be indexed by specifying them as ‘tags.’  InfluxDB also, by default, cannot 

store points with identical timestamps in the same measurement.  However, this 

limitation does not extend to other measurements, which could be advantageous in a 

smart meter network where each residence in a neighborhood could be stored as a 

different measurement within the same database.  Nonetheless, for the purpose of 

database testing, we designated ‘buildingID’ as an indexed tag to accompany the indexed 

timestamp in InfluxDB to aggregate all the case study point within the same 

measurement. 

 Synthesizing the results, InfluxDB appears to be the best choice among the 

database technologies tested for the data storage layer in the LLC case study.  InfluxDB’s 

higher data query and data ingestion performance coupled with a smaller disk storage 

utilization rate, default time-oriented data storage structure, and SQL-like query language 

were reasons it was chosen over MySQL, PostgreSQL, and MongoDB. 

2.3.4. Data Presentation Layer 

 For the data presentation layer, we focused on demonstrating a general-purpose 

interface that could be used by researchers and others having basic data querying, 
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visualization, and analysis skills using Python. We chose to demonstrate how information 

can be retrieved from the data storage layer’s Influx database and used to develop 

informative visualizations that characterize water use.  To accomplish this, we developed 

two Python scripts in a Python 3.7 environment that compare cold water use and hot 

water use between three buildings in the LLC.  Only three buildings were compared to 

simplify the resultant visualizations.  The first script plots the average hourly cold-water 

use (Figure 2-12) and the second script plots daily hot-water use for three buildings 

(Figure 2-13).  While Python was chosen to demonstrate the process of retrieving data 

from the database and visualizing it, other programming languages and technologies 

could have been used such as R or Jupyter Notebooks.  

 From these simple visualizations of water use, several observations become 

apparent:  1) weekday water use generally exceeds weekend water use; 2) while Building 

E’s cold water use is generally less than Building B and D, this behavior is not reflected 

in their daily hot water consumption; and 3) the hourly usage pattern in all three buildings 

shows a plateau during the afternoon and evening, rather than the dual peak/diurnal curve 

commonly seen in residential water use behavior.  Explanations for these observations 

could include the fact that many students return home from USU on the weekends, thus 

transferring their water use away from the dormitory.  Water saving fixtures in Building 

E, including low-flow toilets and faucets not found in the other buildings, may explain 

the reduced cold water use. Additionally, daily schedules of university students can be 

less structured than typical residential users.   
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Figure 2-12. Average hourly cold water use for three buildings averaged from two 
weeks of data.  
   
 

 
Figure 2-13. Daily hot water use for three buildings from one week of data. 
 
 
They may spend more time in the dormitory during the daytime than at work or school, 

leading to more plateaued water use during the day.  These explanations would require 

more study and evidence to validate, but the simple Python scripts used to generate them 

demonstrate how a data presentation layer built on top of the data storage layer enables 

the investigative process. 
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2.4. Discussion and Conclusions 

A layered data architecture was developed in response to outstanding challenges 

in managing high-resolution data from smart meter networks.  The CIWS was developed 

by adapting techniques used in advanced observational sensor networks in the 

environmental field, including low-cost dataloggers, development of software utilities to 

automate the transfer of data from data collection sites to a persistent data storage 

repository, and the demonstration of how simple visualization tools can be used to 

explore the collected data.  The LLC case study demonstrates the capabilities of the 

CIWS.   

 The low-cost datalogger we designed as the basis of the data collection layer 

autonomously captured data from multiple sensors at the specified interval of one second 

with a capture rate of 98% while providing reliable backup data storage capabilities.  

Designing a low-cost datalogger on an adaptable micro-computer platform offered 

several advantages for collecting smart meter data, including reliable remote access to the 

datalogger through the Raspberry Pi’s built in wireless connection protocols, ability to 

integrate sensors through the Raspberry Pi’s GPIO header, and an on-board Linux 

operating system for executing data collection programs written in Python that can be 

customized and pushed to the datalogger remotely.    

The DTM software developed as the basis of the data management layer enabled 

seamless automation of data transfer from the dataloggers to the storage layer, thereby 

eliminating the potential errors associated with data transfer.  The DTM software also 

reformatted the collected data, uploaded it to the InfluxDB database, and alerted 

operators to data upload errors.  The DTM can be adapted to scale to a larger number of 

data collection sites and any combination of measurements made at the data collection 
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sites by modifying its configuration file and making minor alterations to the three general 

functions that comprise the DTM.     

InfluxDB was chosen for the data storage layer to provide performant and 

persistent data storage while occupying a minimal disk storage footprint.  InfluxDB 

outperformed the other database technologies we tested in query performance and data 

ingestion.  InfluxDB’s time-oriented structure that combines schema-less attributes with a 

table-like structure proved ideal for storing large volumes of time-series smart meter data 

compared to the other technologies we tested.  InfluxDB also occupied the smallest disk 

storage footprint for both datasets by a significant margin. 

Finally, the simple data presentation tools (scripts) we developed demonstrate 

how the high-resolution smart meter data can be retrieved from the data storage layer for 

analysis, visualization, and presentation to a variety of potential users. While our 

visualization of daily total cold water use and average hourly hot water use were simple, 

they revealed interesting trends within three buildings in the LLC.  The complexity of the 

data presentation layer depends on the requirements of the data consumer.  For example, 

a researcher may develop custom scripts to explore a specific aspect of time series data, 

while a water utility manager may require custom weekly reports that inform 

management decisions.  Regardless, methods for presenting data are not limited to 

Python.  Custom code developed in other programming languages such as R or Java, 

RShiny apps, or even fully-fledged software applications all share potential for 

implementation within the data presentation layer.   

 The system we developed was effective for data collection and management in the 

multi-unit residential buildings on USU’s campus.  We anticipate that the system’s ability 

to integrate data from multiple inputs would make it adaptable to other multi-unit 
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residential structures equipped with a variety of water metering technologies.  Possible 

evolutions of the CIWS include advances in the architecture layers such data pre-

processing in the data collection or data management layers, real-time feedback provided 

to consumers from the data presentation layer with a web service feature, or the shift to a 

distributed system where the device at the data collection site assumes the functionality 

of all four layers of the CIWS.  Regardless, our ability to characterize water use at the 

residential or industrial level is limited by the temporal scale at which water use data is 

collected and the frequency at which data is transmitted from data collection sites.  

Increasing these frequencies using infrastructure like what has been demonstrated here 

can increase our capacity to understand and model water use in the search for avenues 

efficiently manage available water resources.   

2.5. Software and Data Availability 

 The source code for the datalogger we developed is available in GitHub 

(https://github.com/UCHIC/CIWS-EWM-Logger/tree/master/Software). Source code for 

the DTM is also available in GitHub (https://github.com/UCHIC/CIWS-

Server/blob/master/src/main.py).  We also created a HydroShare resource consisting of a 

datafile containing one month of data for the five buildings that made up the LLC case 

study, a Python script for uploading the data to an InfluxDB database, a Python script for 

querying and visualizing the data to produce the plots presented in this paper, and a 

readme file that includes instructions for downloading and installing InfluxDB and 

executing the code.  The resource is available on HydroShare for download (Brewer, 

2020).   
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CHAPTER 3  

CHARACTERIZING WATER AND WATER-RELATED ENERGY USE 

WITH SMART METER DATA 

Abstract 

 As global populations continue to increase and become more urbanized, 

relationships between water and energy are becoming more important.  Both are limited 

in supply, but both are required to satisfy the needs of residential water users.  In the 

context of urbanization and residential water use, domestic hot water (DHW), which is a 

resource consumed in nearly every residential structure in the developed world, 

represents one of the most significant water-related uses of energy.  However, 

quantifying hot water use and the energy associated with heating it can be difficult. Water 

and energy use are typically evaluated separately, and paired datasets that enable direct 

evaluation of hot water use and its associated energy consumption are rare. Yet, 

quantifying water and water-related energy use are important in better understanding how 

they are linked and in identifying opportunities for conservation. We collected high-

resolution water use and water temperature data within five multi-unit residential 

structures on a college campus and then developed a water and energy budget model for 

quantifying water and water-related energy consumption within each building. Results 

showed varying behavioral consumption patterns across the buildings.  Results also 

showed tradeoffs between data volume and ability to quantify use associated with 

sampling and data recording frequency.   
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3.1 Introduction 

The water-energy nexus is the interaction between energy and water systems in a 

modern, industrialized society (Urban, 2017).  Energy is required to extract, treat, and 

deliver water, and water is used in many ways for energy production and electricity 

generation (U.S. DOE, 2014).  This interaction is comprised of trans-industry links, 

thereby forging an interconnected web ranging from the very large, such as an electrically 

powered water treatment plant supplying a large city, to the very small, an electrically 

powered water heater in a single family residence for example.  With growing threats to 

resource security by way of increasing populations, urbanization, and climate change, 

water/energy providers and consumers can no longer ignore the importance of the water-

energy nexus for its synergetic optimization and conservation potential (Fang & Chen, 

2017).  The future of the water-energy nexus is critical. In a multidimensional system like 

the water-energy nexus, there are many threads that can be explored to establish more 

sustainable resource management (Hamiche et al., 2016). 

One of these threads is residential domestic hot water (DHW). Accounting for 

approximately 20% - 30% of residential energy consumption (Pérez-Lombard et al., 

2008; Kenway et al., 2016; Fuentes et al., 2018) and 33% of residential water 

consumption (Mostafavi et al., 2018), DHW’s water and energy consumption patterns 

have been separately studied in depth.  These studies include predicting DHW 

consumption in an apartment block (Popescu and Serban, 2008), characterizing DHW’s 

end-use for energy assessment (Swan and Ugursal, 2009), and identifying water-related 

energy efficiency opportunities within shower events (Kenway et al., 2016).  However, 

fewer studies have demonstrated approaches for characterizing residential DHW water 

and its associated energy consumption in a combined fashion.  Ability to do so is 
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generally limited by the fact that data of sufficient temporal resolution for linking water 

and energy use are rarely collected together, and methods for linking related water and 

energy use are not well established.  Thus, opportunities to increase our understanding of 

residential water use and its related energy use lie in the exploration of smart metering 

applications in this water-energy nexus (Cominola et al., 2015).  Furthermore, the bulk of 

these studies have focused on investigating single-family residences, with less research 

related to multi-unit residential structures.  With approximately 30% of households 

residing in these types of structures (U.S. DOE, 2015), multi-unit residential structures 

have been described as a rich, albeit relatively untapped, opportunity for combined water 

and energy savings.  Moreover, their general concentration in metropolitan and urban 

areas, which often have stressed water supplies, may increase their priority for exploring 

water and water-related energy savings.   

Finally, when supplying feedback to consumers or utility providers, it matters 

more how information is presented to a specific audience rather than how often 

information is supplied (Joachain and Klopfert, 2014; Liu and Mukheibir, 2018).  To that 

end, combined high-resolution water and water-related energy informatics have been 

identified in preliminary research as a promising method for increasing understanding of 

resource consumption in both consumers and utility providers (Jeong et al., 2014; 

Kontokosta and Jain, 2015).  For example, in a feedback program where water and 

energy consumption information are supplied to the user in a combined manner, the 

appeal to conserve can reach parties interested in water conservation AND energy 

conservation (Jeong et al., 2014).  But first, water and energy data streams must be 

combined, characterized, and quantified in order to develop datasets that could then be 

used for feedback.   
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 In this paper, we present methods for combining high resolution smart meter 

water and energy data streams to estimate water-related energy use within multi-unit 

residential structures.  Our goal in developing these methods was to quantify water and 

water related energy use and investigate behavioral patterns of the consumption of these 

resources to increase our understanding of the linkages between water and water-related 

energy use in these types of multi-unit residential buildings.  We describe the models we 

developed to calculate water and water-related energy use, our process for collecting and 

preparing the data for analysis, and our findings regarding the timing, duration, and 

division of water and water-related energy consumption in multi-unit residential 

structures.  We also describe the impact of data sampling and recording frequency on our 

ability to characterize water and water-related energy.  We also discuss implications this 

may have on data collection in utility providers’ plans for smart meter projects, which we 

investigated by artificially decimating the high-resolution data we collected to simulate 

different data frequencies.  We conclude with a discussion of the benefits and drawbacks 

of characterizing water and water-related energy in this manner, while also exploring the 

implications this work has on future research and utility providers.     

3.2. Methods 

3.2.1. Study Area Description:  The Living Learning Community (LLC) 

We chose to instrument six dormitory buildings on Utah State University’s 

(USU’s) campus to collect the data necessary to quantify water and water-related energy 

use within multi-unit residential structures.  The LLC is one of USU’s newer student 

housing options.  Housing approximately 500 students in six dormitory buildings, the 

LLC offers residents (primarily freshmen and sophomore undergraduate students) 

modern appliances, laundry, and utilities all included within a flat rent rate.  The water 
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supply system for each building within the LLC is divided into three observable flows:  

hot water supply, cold water supply, and hot water return.  The separate hot and cold 

water supplies and the hot water return are features of the LLC’s innovative hot water 

recirculation system.  Hot water is continually circulated from three centralized boilers to 

the LLC buildings at a constant, base flowrate of approximately 3 gallons per minute 

(gpm).  Increases from this base flowrate constitute hot-water use.  Unused hot water 

returns to the boilers for reheating and eventual recirculation.  Cold water is supplied in a 

typical on-demand basis.  This separation between hot and cold water supplies made it 

possible for us to monitor both individually. Figure 3-1 illustrates the general pipe layout 

for each LLC building. 

 

 
Figure 3-1. General LLC pipe layout.  

3.2.2. Dataset Description 

 The method used to quantify water related energy use within the LLC buildings 

relies on water temperature as a surrogate for the energy content of the consumed water. 

Thus, observations of both flow and water temperature were required. The dataset used to 

calculate water and water-related energy in the LLC consists of six variables that were 
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measured within each building at a temporal resolution of one second for a period of four 

weeks.  We collected data at a 1 s interval.  We recorded data at 1 s to ensure we could 

analyze the data at any temporal resolution we desired.  The variables are shown in 

Figure 3-2 in the context of the LLC system.  Each observed variable is italicized, with Q 

representing flow and T representing temperature. We were unable to measure the flow 

and temperature of wastewater as each individual apartment within the buildings has 

separate sinks, toilets, and showers. 

 

 
Figure 3-2. Overview of LLC dataset variables. 
 
 
The final dataset used for analysis includes data for five buildings.  While all six 

buildings were instrumented, Building A was not included.  Buildings B, C, D, E, and F 

house approximately 95 residents each, while Building A houses only 29 residents as 

some of the space within the building is used for administration and other non-residential 

offices and personnel.  This factor limits the direct comparisons of water and water-

related energy use behavior that can be made between Building A and the other five 

buildings.  Thus, Building A was used as a test bed for datalogger hardware and software 

upgrades.  
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The data was collected with custom built dataloggers comprised of inexpensive, 

off the shelf components (see full details in Chapter 2).  Raspberry Pi Model 3 B 

computers served as the datalogger platform into which the measurement peripherals 

were routed and recorded.  Each building was equipped with Master Meter Octave 

ultrasonic water meters for the hot and cold water supplies, and a Master Meter Bottom 

Load Multi-Jet (BLMJ) meter for the hot water return. The hot and cold water supply 

flowrates were observed by recording the output of a 4-20 mA current loop circuit 

supplied by the water meters. The current signal output from the supply meters, which is 

proportional to the flow rate of water through the meter, was converted to a voltage signal 

and read by the Raspberry Pi using an analog-to-digital converter (ADC).  The data 

collection code installed on the datalogger then converted the voltage measurements into 

flow rate observations in gallons per minute (gpm), which were recorded.  The hot water 

return was observed by routing the hot water return meter’s pulsed output directly into a 

digital input on the Raspberry Pi, with each electrical pulse emitted from the return meter 

signaling the cumulative passing of one gallon of water through the meter.  Water 

temperatures were observed with DS18B20 digital thermometers routed directly into 

digital inputs on the Raspberry Pi and recorded in degrees Celsius (oC).  As we did not 

have access to the inside of the pipes, the digital thermometers were attached directly to 

the outside of the supply and return pipes inside the industrial grade insulation 

surrounding the pipes and using electrical tape to ensure good contact between the sensor 

and the surface of the pipe.  All data were recorded within a comma separated values 

(CSV) file written to the file system of the Raspberry Pi’s SD card. CSV files were 

regularly retrieved from each datalogger via USU’s WiFi network and were parsed into 
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an operational data storage system consisting of a database within an instance of the 

InfluxDB time series database. 

 Due to an assortment of data quality issues encountered during the data collection 

process, several steps of data quality control were required to adequately prepare the data 

for importation into the water and water-related energy balance equations.  The raw 

building datasets were fetched from the InfuxDB database, the quality control processes 

were applied, and the resultant data was re-uploaded to InfluxDB as a final dataset. These 

quality control steps are comprehensively described in Appendix A. Given the temporal 

inconsistency in data collected from the supply meters versus the hot water return meter 

(i.e., flow rates recorded every 1 s versus 1 gallon pulses recorded whenever they 

occurred), the final, quality controlled data were all temporally aggregated to the pulse 

resolution of the hot water return meter. Hereafter, we refer to the final data products as 

“pulse aggregated” (see Appendix A). 

3.2.3. Water Balance Equation 

 To quantify water and water-related energy use from this data, water and energy 

balance equations had to be derived for modeling the system inputs and outputs.  

Additionally, the boundaries of the system had to be defined.  For modeling purposes, 

each LLC building was treated as an isolated volume, receiving inputs and passing 

outputs of water and energy independently of the other buildings.  Given that we drew 

our system boundaries around each building so we could compare them, we did not 

attempt to estimate distribution losses between the boilers and the buildings, standby 

losses associated with the boilers, or energy lost to the incomplete efficiency of the 

heating system. While these losses contribute to the energy requirement of the overall 
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system, we focused specifically on the behavioral aspect of energy consumed through hot 

water use within each individual building. 

We assumed that the only water storage within each building was associated with 

the volume of the pipes in the building and that the storage did not change. Toilets within 

the buildings use flushometer valves and do not have storage tanks.  Furthermore, even 

though there are many sinks, toilets, washing machines, and showers within each LLC 

building, we assumed that all of these consumption fixtures can be treated as dispersing 

from the same input source entering the building at a single point (i.e., the hot water and 

cold water supplies).  Likewise, despite a similar number of drains from the sinks, toilets, 

washing machines and showers within each LLC building, all of these wastewater 

collection points were treated as routing to the same system output (i.e., wastewater).            

Using mass balance principles, the water balance equation (Equation 3-1) 

computes water use using the inputs and outputs of the established system boundary:    

 !"
!#

 = QHS + QCS – QHR – QT,WW          (3-1) 
 
where !"

!#
 is the change in storage (S) over a timestep within the LLC building, which was 

assumed to be 0 given the defined system boundary and water’s incompressible nature, 

regardless of temperature.  QHS is the hot water supply flowrate (m3/s) an inflow; QCS is 

the cold water supply flowrate (m3/s), an inflow; QHR is the hot water return flowrate 

(m3/s), an outflow; and QT,WW is the total flowrate being discharged as wastewater (m3/s), 

an outflow.  From our process of data collection, we were able to directly observe QHS, 

QCS, and QHR, leaving QT,WW to be estimated by algebraic difference.   

The wastewater flow can be further divided into a hot water component and a cold 

water component.  This is possible as the hot and cold water plumbing systems do not 

mix within the buildings.  Given the estimate of the wastewater flow and observations 
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from the cold water supply, hot water supply, and hot water return, the hot water portion 

of QT,WW can be solved algebraically (Equation 3-2): 

QH,WW  = QHS - QHR            (3-2) 

Where QH,WW (m3/s) is the hot water component of wastewater outflow.  With these 

components, cold and hot water use can be calculated for each LLC building by summing 

the volumes of the observed variables over a timestep and solving for the wastewater 

components.  

3.2.4. Water – Related Energy Balance Equation 

 For this study, calculating water-related energy use relies on the principle that the 

temperature of the water can be used a proxy for the energy it contains. While the water 

heating system in the LLC employs an innovative hot water recirculation and reheating 

system, we focused specifically on the difference in the temperatures of the hot and cold 

water supplies and assumed that the water-related energy consumed within each building 

was equal to the energy required to heat the consumed hot water from the cold water 

supply temperature to the hot water supply temperature. We also accounted for energy 

lost to pipes within the buildings in our model because we did observe differences 

between the temperatures of the hot water supply and return.   

Equation 3-3 describes the water-related energy inputs and outputs to each 

building in the LLC system: 

!$
!#

 = EHS – EHR – EH,WW – Epipe            (3-3) 

where !$
!#

 is the change in energy within an LLC building over a timestep. The change in 

energy is assumed to be 0 because energy is directly linked to the water inputs and 

outputs, there is no water storage in the buildings outside the volume of the building’s 
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piping which does not change, and no water heating occurs within the LLC buildings.  

EHS is the amount of energy that flows into the building with the hot water supply (J/s).  

EHS is related to the energy required to heat the water from the cold water supply 

temperature to the hot water supply temperature.  EHR is the amount of energy that leaves 

the building with the hot water return (J/s).  EH,WW is the amount of energy that leaves the 

building with the hot water component of wastewater (J/s); and Epipe is the amount of 

energy lost through conduction with the building pipe network (J/s).  EH,WW and Epipe 

comprise the two sources of true energy consumption in each building as EHR is 

associated with hot water return routed back to the boilers for reheating.   

We derived equations for estimating each of the components in Equation 3-3 by 

combining the available flowrate and temperature data with known characteristics of 

water, specifically density and specific heat.  Equation 3-4 describes the general form of 

each derived equation for the energy balance equation components:  

E = rCpQ(T2 - T1)           (3-4) 

where E is the estimated energy (J), r is the density of water (kg/m3), Cp is the specific 

heat of water (J/Kg oC), Q is the directly observed or algebraically solved flowrate (m3/s), 

T1 is the initial water temperature (oC) and T2 is the resultant water temperature after 

energy has been added to or lost from the water (oC).  Using this base equation, the 

various flowrates and associated water temperature observations can be substituted, and 

the energy components of the system estimated.  Table 3-1 summarizes the components 

of the energy balance equation, their respective equations, and the data they utilize. 

To estimate EHS, EHR, and EH,WW, several assumptions had to be made.  We did not 

have direct access to the boilers, so we were unable to directly measure the temperature 

of the cold water entering the boilers.   
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Table 3-1. Summary of Energy Components, Equations, and Variables. 

Component Description Equation Variables  

EHS 
Energy input into 
system through hot 
water supply flow 

rCpQHS(THS – TCS) 
QHS – Hot water supply flowrate 
THS –Hot water supply temperature 
TCS – Cold water supply temperature 

EHR Energy lost to hot 
water return flow rCpQHR(THR – TCS) 

QHR – Hot water return flowrate 
THS –Hot water return temperature 
TCS – Cold water supply temperature 

EH,WW 
Energy lost to hot 
water component of 
wastewater 

rCpQH,WW(THR – TCS) 
QH,WW – Hot wastewater flowrate 
THR –Hot water return temperature 
TCS – Cold water supply temperature 

Epipe Energy lost via 
conduction in pipes  EHS – EHR – EH,WW  

EHR – Energy, hot supply 
EHS –Energy, hot return 
EH,WW – Hot, hot wastewater 

 
  

Thus, we assumed that the cold water supply temperature, TCS, could be used as 

an estimate of the temperature the hot water supply was being heated from.  This 

assumption can be justified on the basis that the cold water delivered to the LLC 

buildings for consumption is supplied from the same source as the cold water delivered to 

the boilers for heating.  Similarly, since we could not measure TH,WW,  as wastewater is a 

distributed flow that is a combination of cold and hot water exiting the system, We 

assumed that TH,WW = THR. This assumption can be justified because the hot water routing 

to wastewater has passed through the building pipe network and so should reflect some 

(but likely not all) of the water-related energy lost through conduction with the pipes in a 

fashion similar to the hot water return flows.  Some uncertainty remains in this 

assumption, but it simplifies the energy balance to a solvable state with the available data. 

3.2.5. Investigating Water and Water-Related Energy Use 

 To investigate the timing, duration, and related behavioral aspects of water and 

water-related energy use, we developed a series of five Python scripts in a Python 3.7 

environment.  The first script consisted of the water and water-related energy balance 
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equations.  In this script, the quality controlled data was fetched from the InfluxDB 

database, the English gallon measurements were converted to SI m3, the water and water-

related energy use were calculated for each time step, and the results were then exported 

as a final dataset back to the InfluxDB database as a timeseries for use by the latter four 

Python scripts for analysis.  The four analysis scripts were created to provide insight into 

the timing and behavioral aspects of water and water-related energy use by visualizing 

the timing and duration of use, examining differences in hot and cold water use between 

buildings, and exploring the energy intensity of the water use.  Specifically, these scripts 

visualize: 1) a comparison of average hourly water use and average hourly water-related 

energy use for each building; 2) a breakdown of water-related energy entering and exiting 

the system at the average hourly scale for each building; 3) a comparison between 

buildings of average daily water use; and 4) a comparison between buildings of average 

daily water-related energy use.  The decision to aggregate to hourly and daily timesteps 

was made because we cannot consistently distinguish individual water use events in a 

building where many events can occur simultaneously.  Thus, aggregating to the hourly 

and daily timestep simplify the analysis and help reveal the aggregate behavior within 

each of the buildings and differences among them. 

 Each script follows the general structure of fetching the entire five LLC building 

dataset, performing calculations and required data manipulation, and then visualizing the 

results.  All five scripts, along with the data quality control script, the four-week dataset 

of raw data from all five buildings, instructions for installing an instance of InfluxdDB, 

and directions for reproducing the analysis have been included in a HydroShare resource 

for reproducibility (Brewer, 2020).  
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3.2.6. Estimating Effects of Sampling and Recording Frequency 

 Investigating the effect of reducing the data velocity and volume was 

accomplished by artificially decimating (sub-sampling) a sub-section of quality 

controlled flowrate and temperature data and then calculating the water-related energy 

use from these resampled datasets.  There are two variables that control the amount of 

information contained in recorded sensor observations: 1) the sampling frequency; and 2) 

the recording frequency.  Sampling frequency is the interval at which the desired signal is 

being measured, while the recording frequency is the interval at which measurements, 

which may include some level of aggregation of individual samples, are recorded.  For 

example, if the sampling frequency is 1 second and the recording frequency is 5 seconds, 

a measurement is made of the data signal (flow rate or water temperature) every one 

second, but a data value is recorded to a data file every 5 seconds.  When the recording 

frequency is lower than the sampling frequency, a statistic of the individual samples 

collected within the recording interval (e.g., sum, mean, minimum, maximum, etc.) is 

selected for recording. Establishing this data collection terminology is critical because 

decreasing the sampling frequency produces different effects than decreasing the 

recording frequency.  Thus, our approach for investigating the effects of reduced data 

volume on the ability to characterize water and water-related energy use included 

considerations for altering both of these variables.  

Both sampling and recording frequencies were altered, and the results were 

visualized with two Python scripts developed in a Python 3.7 environment.  For the 

sampling frequency investigation, the first script queried one week of quality-controlled 

data for Building D that was not aggregated to the hot water return meter’s pulse interval.  

Only the data necessary to calculate water-related energy use was retrieved (QHS, QHR, 
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THR, and TCS).  To simulate a reduced sampling frequency, the script resampled the 

flowrate and temperature data to intervals of 30 seconds, 1 minute, 5 minutes, 30 

minutes, and 1 hour, and the first value within the resultant time interval was selected as 

the sample for that interval.  This sampling convention was used for all data variables 

except QHR, which was output as the summed number of pulses within each new time 

interval.  Since the recording interval was assumed to be the same as the sampling 

interval for this case, the samples were presumed to represent the entire recording interval 

by multiplying the QHS by the length of the interval.  For example, for the data resampled 

to 5 minutes, the first one second QHS sample in each five minute interval was multiplied 

by 300 seconds to temporally represent the entire 5 minute interval.  These resultant 

values were then used to calculate water-related energy use. The effect of this process 

was visualized by plotting the cumulative sums of the decimated water-related energy use 

over time against the cumulative sum of the water-related energy use calculated with the 

quality-controlled, pulse-aggregated data from the same week in Building D.  Departures 

from the full resolution, pulse-aggregated dataset indicate a decrease in accuracy as a 

consequence of decreasing the sampling frequency.      

 For the recording interval test, the second script retrieved the same week of 

flowrate and temperature data for Building D as used in the sampling frequency 

investigation.  Like the sampling frequency script, the data queried was quality 

controlled, but not aggregated to the hot water return meter’s pulse interval.  The 

sampling frequency was left at one second while the recording interval was progressively 

increased to 30 seconds, 1 minute, 5 minutes, 30 minutes, and 1 hour.  However, rather 

than selecting the first one second flowrate and temperature value and presuming that one 

second value represents the entire subsequent timestep, the flowrate values within each 
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recording interval were treated as one second volumes passing through the meter and 

summed while the temperature values were averaged to represent the typical temperature 

value for that timestep.  Water-related energy was then calculated from this data.  Like 

the sampling frequency visualization, the cumulative water-related energy use results 

from different recording intervals were visualized as to illustrate the effects of reducing 

data volume on our capacity to to accurately quantify water-related energy use.  A 30 min 

instance of water-related energy use was also visualized to demonstrate how increasing 

the recording interval also diminishes capacity to characterize specific instances of water-

related energy use. 

3.3. Results and Discussion 

3.3.1. Average Hourly Water and Water-Related Energy Use 

 Visualizing average hourly water and water-related energy use in the LLC 

buildings provides a picture of an average day within each LLC building and offers 

several insights into the timing of water and water-related energy use behavior.  Figure 3-

5 shows average hourly water use over the four week data collection period for Building 

D.   

First, we observed distinct consumption patterns for hot water versus cold water.  

Hot water use exhibits the strong diurnal curve commonly seen in residential water use 

(Carragher et al., 2012; Lucas et al., 2010; Blokker et al., 2010), with an initial peak of 

approximately 0.3 m3 consumed per hour from 8:00 am to 10:00 am and 0.26 m3 

consumed per hour at 11:00pm.   
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Figure 3-3. Average hourly water-related energy use for Building D. 
 
 
Meanwhile, cold water use displays a pattern highlighted by a persistent plateau of 

approximately 0.25 m3 consumed per hour from approximately 8am to midnight before 

drastically receding in the early morning hours.  The patterns of average hourly water use 

observed in building D are very similar to patterns of use observed in the other four 

buildings, as illustrated in Figure 3-6.  

Diurnal peaks in hot water use are present in all four buildings.  However, the 

magnitude of the morning hot water consumption peak relative to the evening hot water 

consumption peak varies between buildings.  Morning (06:00 – 11:00) hot water 

consumption in Building C and Building F approximately equals or exceeds evening hot 

water consumption while Building B and Building E exhibit the opposite behavior with 

evening (19:00 – 23:00) peaks equaling or exceeding morning use.  While multiple peaks 

in cold water use are present in some of the buildings (Building C and Building F) they 

are not as pronounced as the hot water use peaks.   
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Figure 3-4. Average hourly hot and cold water use for Building B, C, E, and F. 
 

Building C exhibits the largest peak in morning cold water use relative to the following 

plateau of cold water consumption while Building B and Building E display more muted 

cold water use peaks relative to the following plateau of use.  Despite these differences in 

average hourly water use consumption patterns and magnitude, the timing and duration of 

the consumption patterns across buildings are generally consistent with peaks in hot 

water use in the morning and evening and a plateau of cold water use throughout the day.  

The difference in hot and cold water use patterns across the buildings may be attributed 

to the timing and types of use events that can occur throughout the day.  Shower events, 

which use hot and cold water, may be more common in the morning or evening while 

toilet flush events, which only use cold water, may be less temporally concentrated.  The 

distinct consumption patterns could also be linked to the behavior of college dormitory 

residents as college students’ flexible schedule and proximity to campus may offer more 

opportunities to return to their dormitory throughout the day.   
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Differences in consumption patterns between buildings could be attributed to 

differences in residents’ behavior between buildings.  For instance, more residents may 

shower in the evening rather than the morning in Building B while the inverse may be 

true in Building C.  Even then, the temporal division of shower events may be 

approximately equal in Building F.  Interestingly, Building C, which is the LLC’s 

Academic Honors dorm, displays more pronounced cold water use peaks in the morning 

and evening rather than the sustained plateau seen in the other buildings. Thus, Building 

C may be comprised of students who spend less time in their dormitory throughout the 

day and more time in class or studying.  Similarly, Building E, which is the LLC’s 

themed eco-dorm, may be comprised of residents more apt to conserve water by nature of 

the dorm’s theme.  This may explain the lack of more pronounced cold water use peaks, 

as well as the relatively smaller hot water use peak in the morning.  However, the 

significant peak in hot water use in the evening may suggest Building’s E’s moderately 

reduced use is more a consequence of the water-saving fixtures installed in the buildings 

rather than intentional resident behavior.   

Water-related energy use is shown in Figure 3-7 and offers several observations. 

The pattern of water-related energy use generally tracks very closely with hot water use 

in terms of magnitude and timing with significant peaks in the morning (07:00 – 11:00) 

and in the evening (19:00-23:00). This was expected as the derivation of the water and 

energy balance equations link water-related energy use directly to hot water use. This 

dependency accurately describes our representation of water-related energy use in the 

LLC buildings as we have assumed that the only source of water-related energy entering 

the building is directly related to the temperature of the hot water supply entering the 

building and no additional heating occurs within the building.  
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Figure 3-5. Average hourly water-related energy use for all five buildings.   
 

3.3.2. Breakdown of Average Hourly Water-Related Energy Use 

 Breaking down the components of the average hourly water-related energy 

entering and exiting the system (Figure 3-6) reveals several insights.  First, the amount of 

energy lost to either wastewater or through conduction with the pipes is small relative to 

the amount of energy returned to the water heating system.  Within Building D, 

approximately 125 MJ of energy is returned to the hot water heating system per hour 

through the hot water return flow while, at most, approximately 65 MJ are lost to 

wastewater and through conduction with the pipes.  Second, the amount lost through 

conduction with the pipes remains relatively constant throughout the day.  This can be 

attributed to the design of the LLC water supply system.  The steady base hot water 

return flow of approximately 3 gpm, which is large relative to the actual hot water use 

within the building, will perpetually lose energy through conduction with the pipes as it 
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circulates through the LLC buildings.  Benefits of such a system, on the other hand, 

include less water wasted at the point of use while waiting for hot water. 

  
Figure 3-6. Breakdown of average hourly water-related energy use components 
entering and exiting the system in Building D. 
 
 
 Similar to average hourly water use, these patterns are reflected in the other 

buildings as well, albeit with significant differences in water-related energy lost through 

conduction with the pipes.  The other four buildings are illustrated in Figure 3-7.  The 

difference in energy lost through conduction with the pipes we saw across buildings may 

be attributed to several possible sources.  First, despite our efforts to correct temperature 

data using level shifts, errors and inconsistences in temperature observations could 

minimize the portion of energy attributed to conduction with the pipes in the energy 

balance equation – especially given that the difference between the hot water supply and 

return temperatures are relatively small.  Inaccurate representation of the difference 

between the hot water supply and hot water return temperatures would produce this 

result.  Alternatively, different temperature gradients in the LLC between the ambient air 

and the hot water supply and hot water return pipes could contribute to this result. The 
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water supply temperature is not exactly the same across buildings, nor is the ambient air 

temperature within each building.  Thus, in a hypothetical scenario where the actual hot 

water temperature entering Building D is hotter than the hot water temperature entering 

Building B, assuming a relatively constant air temperature, more energy may be lost from 

Building D than Building B through conduction with the pipes.   

 

 

 
Figure 3-7. Average hourly breakdown of water-related energy for:  Building D, 
Building B, Building C, Building E, and Building F.  
 

3.3.3. Average Daily Water and Water Related Energy Use 

 A comparison of average daily water use between buildings reveals several 

observations (Figure 3-8).  Total hot and cold water use generally remains consistent 

from Monday to Thursday, decreases significantly on Friday, albeit with a relatively large 

standard deviation, then progressively returns to weekday levels over the course of the 

weekend.  This behavior is reflected in all five buildings.   



 

 

83 

 
 

 

 
Figure 3-8. Average daily hot and cold water use for all buildings. 
 

Like the distribution of average hourly water use, this can likely be attributed to the 

behavior of college dormitory residents.  On Friday, many students may leave campus for 

the weekend, transferring their water use away from the LLC.  However, the relatively 
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large standard deviation indicates variability in this behavior.  It is also possible the small 

sample size of only four Fridays of data limits our ability to more accurately characterize 

a day with more unpredictable consumption behavior.  Interestingly, average total water 

use on Sunday, a weekend day, is approximately equivalent to average total water use on 

Monday.  One potential explanation of this equivalent use on Sunday may be the 

predominant religious environment in Logan, Utah, with a large percentage of students 

preparing for religious services on Sunday in a similar fashion to university classes on 

Monday.    

The distribution of hot versus cold water use varies significantly from building to 

building.  Residents in Building C, Building D, and Building F consistently use more 

cold water than hot water throughout the week, Building E consistently uses more hot 

water, and Building B alternates from day to day.  The difference between cold water and 

hot water use also varies between buildings but is generally consistent within a building’s 

day to day average use.  Building B showed the smallest difference, while Building F’s 

cold water use and hot water use differ by more than 1 m3 during each day of the week.  

Some factors contributing to these patterns may include the water fixtures within the 

Buildings.  Building E is the LLC’s themed “eco-dorm” and is equipped with low-flow 

faucets and toilets, which could physically contribute to Building E’s reduced daily cold 

water use.  Additionally, advertising Building E as environmentally-friendly may attract 

residents more pre-disposed to reducing their water use.  However, Building E’s hot 

water use is approximately equivalent, if not greater, than the other Buildings. This may 

suggest that Building E’s reduced cold water use is a consequence of the water-saving 

fixtures in the LLC rather than resident behavior.  Table 3-2 tabulates by day the 

buildings that consumed the most and least hot and cold water respectively.  Over the 
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course of a week, Building B and Building E consumed the most hot water on three days 

each, and Building F consumed the least for six of the seven days.  Average daily cold 

water use was led by F on six of the seven average days and Building E used the least on 

all seven averaged days.   

 
Table 3-2. Daily Average Water Use. 

Day 
Hot Water Use Cold Water Use 

Most Least Most Least 

Monday B 
4.57 m3 

C 
3.93 m3 

F 
5.38 m3 

E 
4.22 m3 

Tuesday E 
4.66 m3 

F 
3.57 m3 

F 
5.52 m3 

E 
3.84 m3 

Wednesday E 
4.57 m3 

F 
3.41 m3 

F 
5.28 m3 

E 
3.96 m3 

Thursday B 
4.53 m3 

F 
3.92 m3 

F 
5.43 m3 

E 
4.01 m3 

Friday D 
2.99 m3 

F 
2.32 m3 

F 
3.72 m3 

E 
2.65 m3 

Saturday B 
4.42 m3 

F 
2.82 m3 

C 
4.58 m3 

E 
3.22 m3 

Sunday E 
4.67 m3 

F 
3.30 m3 

F 
5.00 m3 

E 
3.83 m3 

 

Results for average daily water-related energy use are shown in Figure 3-9.  On 

average, water-related energy consumption patterns reflect their average daily hot water 

consumption patterns.  The drop seen in water consumption on Friday is similarly 

reflected in water-related energy use, as is the relatively larger values for standard 

deviation.  This result is unsurprising given the linkage between hot water use and water-

related energy use; however, this result is still important as it shows that behavioral 

drivers that affect hot water use will also affect water-related energy use.     
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Figure 3-9. Average daily water-related energy use for all five buildings. 
 
 
Interestingly, on Tuesday and Sunday, when Building E consumes the most hot water of 

the five buildings, Building B consumes more water-related energy.  A potential source 

for this difference may be different hot water supply water temperatures or different cold 

water supply temperatures in Building B and Building E.  Indeed, the average cold water 

supply temperature in Building B was found to be almost a full degree lower than in 

Building E.  This is likely an artificial difference because, in an ideal world, the cold 

water supply temperature in each building would be approximately the same because the 

supply is the same for each building. Any differences we observed between buildings are 

likely due to measurement error or transmission gains/losses which only present because 

of how the boundary was drawn around each building instead of around the whole LLC 

system. 

3.3.4. Sampling and Recording Frequency Effects 

 Results from altering the sampling and recording intervals of water-related energy 

use data illustrate the effects of data resolution on the ability to characterize water and 

water-related energy use. In Figure 3-10, cumulative water-related energy use calculated 



 

 

87 

 
 

 

from data of progressively longer sampling intervals is compared to the cumulative 

water-related energy use calculated from the quality controlled, pulse aggregated data.   

 

 
Figure 3-10. One week of cumulative water-related energy use from Building D 
calculated from data with different sampling intervals.  Departures from the Pulse 
Aggregated Data (red line) indicate a decrease in accuracy of the accumulated water-
related energy use.  
 

Decreasing the sampling interval to 30 s produces a very different result from the pulse 

aggregated data, with the difference between the two becoming more drastic over time.  

This effect is similarly seen in the 1 min and 5 min datasets, although the 1 min and 5 

min datasets are both closer to the pulse aggregated data than the 30 s data.  This result is 

unusual, as one might expect the finer temporal resolution to offer an estimate of water-

related energy use more similar to the pulse-aggregated data.  Our observation that this 

was not the case is likely due to the timing challenges inherent in monitoring the LLC’s 

water supply system, with pulses from the hot water return meter occurring 
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approximately every 16 seconds.  The accurate capture of hot water return pulse data is 

critical to accurately solving the water balance equation, especially during periods of low 

to no water use.  At the finer sampling intervals of 30 s, 1 min, and 5 min, pulse timing 

issues are far more common.  For example, over the course of four 1 min timesteps in the 

1 min data, three timesteps would accurately capture the hot return pulses, while the 

fourth would be lacking one pulse.  This produces a dataset that suggests more water is 

being used that actually is, as indicated by the pulse-aggregated data.   

Larger sampling frequencies like 30 min, which ironically offers the closest 

approximation to the pulse-aggregated data, do not automatically solve this timing issue, 

although there are fewer opportunities to “miss pulses” at the end of each sampling 

interval. Additionally, the 30 s and 1 hr sampling interval data are more likely to 

misrepresent water-related energy use. Both extremes are possible where large instances 

of water-related energy use are missed entirely, or, a short, but intense, instance of use is 

presumed to represent a 30 min or 1 hr period which saw little additional water-related 

energy use.   

 Altering the recording interval while leaving the sampling interval unchanged 

produces a very different overall effect.  Figure 3-11 shows the results of simulating a 

progressively decreased recording interval and plotting it in the same fashion as Figure 3-

10.  Here, the timing issues associated with the different forms of measurement, 

specifically the hot water return, are again highlighted in the higher resolution resamples 

as the 30 sec and 1 min datasets suggest more water is being used than actually is.  

However, the lower resolution recording interval data (5 min, 30 min, and 1 hr) produce 

estimates of water-related energy use that are much closer to those derived from the 

pulse-aggregated data. As before, this is likely a consequence of mismatches in the 
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temporal resolution of the of the supply flowrate data versus the hot water return pulse 

data.  With a pulse from the hot water return meter occurring approximately every  

 
Figure 3-11. One week of cumulative water-related energy use from Building D 
calculated from a one second sampling interval, but different recording intervals. 
 
 
16 seconds, a missed pulse (a pulse that is not recorded until the next time interval) in the 

30 s dataset at periods of low to no flow equates to approximately 100 % more estimated 

water use.  Conversely, a missed pulse in the 5 min dataset only equates to approximately 

5 % more water estimated water use.  Missed pulses are also much more impactful at 

finer resolution resamples as the datasets with shorter recording intervals include more 

opportunities for missed pulses.   

Despite the timing issues, increasing the recording interval to record data less 

frequently also reduces the ability to evaluate fine scale behavior – i.e., the ability to view 

specific events or consumption behavior is lost while the ability to quantify consumption 
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is preserved.  Figure 3-12 further illustrates this effect by showing a 30 min window that 

includes an isolated instance of sustained water-related energy use.  The periodic peaks 

seen in the 30 s and 1 min datasets are a visualization of the pulse timing issues 

previously described. 

 

 
Figure 3-12. 30 minutes of water-related energy use for Building D visualized at 
different recording intervals.  Each dot represents a data record.  
 
 
Here, a specific instance of water-related energy use, likely a shower event given the 

intensity and duration of the event, is distinctly visible in the pulse aggregated dataset, the 

30 sec recording interval dataset, and the 1 min recording interval dataset.  Distinct 

behavior is still somewhat discernible in the 5 min recording interval dataset, but the 

sustained rate of consumption from approximately 05:00 to 05:18 has been aggregated 

into an event that persists until approximately 05:25.  At this time scale, the event no 

longer resembles the sustained plateau of water-related energy use commonly seen in 
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shower events.  However, because the sampling interval is the same in each of these 

cases, and ignoring the pulse timing issues, the pulse aggregated data, 30 s, 1 min, and 5 

min datasets all accurately quantify the total amount of water-related energy used during 

this event.  The 30 min and 1 hr datasets likewise accurately quantify the total amount of 

water-related energy use in this 30 min sample, but the data resolution is such that no 

specific instances of events are discernible. 

The tradeoff lies in the acceptable volume of data produced versus the need for 

capturing specific water use behavior. Where the objective is to accurately quantify water 

or water-related energy use, then the data stream should be sampled at a rate that 

accurately captures the shape of the event.  However, the choice of how frequently to 

record observations derived from these samples is dependent upon the way the data will 

be used.  If only daily water use is needed, 1 aggregated data point can replace 86,400 

one second data points.  However, if that one data point were to be lost, or a sensor or 

datalogger were to malfunction during data collection, the entire day could be lost.  

Therefore, the ideal recording interval and related data volume is one that has been 

reduced to a level that does not overwhelm the capacity to store, manage, or analyze the 

data, while still preserving enough information to answer the investigative questions 

being asked. For examining specific events or behavior, a sub-minute recording interval 

would be required.  

3.4. Conclusions 

 In this paper we describe a method for characterizing water and water-related 

energy use in multi-unit residential structures with high resolution smart meter data.  Hot 

and cold water use were separately metered, and water and water-related energy balance 

equations were derived and applied to five residential buildings on a college campus for 
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calculating the water and water-related energy use with a 28-day dataset consisting of 

one-second flow and water temperature data.   

 The derived water and water-related energy balance equations successfully 

produced a combined water and water-related energy data stream according to basic mass 

and energy balance principles, demonstrating that water-related energy use can be 

estimated using relatively straightforward data collection and mass/energy balance 

modeling.  While several data quality control steps were necessary to reach final 

estimates, the end result was a high-resolution water-related energy dataset for each LLC 

building. Our data collection results could have been improved by reducing noise in flow 

measurements and using more reliably placed water temperature sensors that more 

accurately reflect water temperatures inside the supply and return pipes. 

 Analysis of water and water-related energy use in the LLC buildings revealed 

several insights. First, hot water use and cold water use did not track throughout the day.  

Hot water use generally exhibited two distinct hourly peaks (one in the morning and the 

other in the evening), while cold water use showed a more sustained plateau throughout 

the day.  Second, Friday is generally the day of least use across all five buildings we 

studied, and average weekend water use did not typically match average weekday water 

use. Third, the distribution of hot versus cold water use varied significantly between 

buildings.  Since water-related energy use is dependent on hot water use, daily water-

related energy use was higher for buildings with higher hot water use. The practical 

implications of these observations are that efforts to accurately quantify and/or predict 

water and energy use must account for the types of behavioral differences we observed.  

 Investigating the effects of sampling and recording frequency on our ability to 

characterize water and water-related energy use revealed the general importance of a high 
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sampling frequency and the importance of choosing a recording frequency that meets the 

needs of related analysis.  When sampling frequency was reduced, our ability to 

accurately quantify consumption was reduced – especially for longer sampling 

frequencies applied over shorter data collection periods.  With a high enough sampling 

frequency, any recording frequency larger than the sampling frequency can accurately 

quantify resource consumption. However, longer recording frequencies degrade capacity 

to evaluate specific events or instances of consumption behavior.  Thus, we determined 

that the ideal data volume is situationally dependent on the analysis the data is being used 

for while considering the tradeoff with the volume of data that must be stored and 

managed.  Moreover, incompatibilities in measurement technology (e.g., combining 

meters that produce flow rate data with meters that have volume-based pulsed outputs as 

we did in this study) can drastically affect capacity to accurately characterize and 

quantify resource consumption.  Resolving these technological issues may be just as 

important as choosing appropriate data velocity and volume.  Indeed, our investigation 

would have greatly benefited from the hot water return being equipped with a high-

resolution ultrasonic meter like the cold and hot water supply meters, rather than a lower 

resolution mechanical one. This is not always practical, however, as in our case there was 

no ultrasonic meter compatible with the pipe size of the hot water returns in the buildings 

we studied. 

 Combining water and energy data streams in the fashion described in this research 

to quantify water and water-related energy use in multi-unit residential structures shows 

the value of smart meters that are capable of high temporal resolution data collection 

along with an ability to observe multiple variables. The methods we demonstrated in this 
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work to quantify the use of DHW and its associated energy provide another avenue for 

the efficient management of increasingly limited resources.  
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CHAPTER 4 

CONCLUSIONS 

 The research described in this thesis demonstrates the value of high-resolution 

smart meter data in quantifying water and water-related energy use along with an 

architecture for data management that integrates cyberinfrastructure elements in support 

of smart meter networks.  Two objectives guided our research: (1) Investigate best 

practices for the management of high-resolution smart meter data; and (2) Quantify water 

and water-related energy use in the Utah State University (USU) Living & Learning 

Community (LLC).  Chapter 2 and Chapter 3 describe the results from this research.  

First, Chapter 2 describes our process of developing the CIWS for collecting, managing, 

storing, and presenting high-resolution smart meter data.  Where possible, this CIWS 

incorporated cyberinfrastructure techniques previously used in advanced observational 

sensor networks previously deployed in the environmental field.  Results from Chapter 2 

also detail the implementation of the CIWS in a case study collecting flowrate and water 

temperature data from the LLC.  Chapter 3 describes our methods for synthesizing high-

resolution flowrate and water temperature data into water-related energy use and our 

subsequent investigation in the various behavioral aspects of the consumption of these 

resources.  These behavioral aspects included the timing, duration, and division of hot 

and cold water use and energy components of water-related energy use. 

 The CIWS architecture described in Chapter 2 consists of four layers derived 

from a set of general fundamentals established by previous authors (Jones et al. 2015; 

Horsburgh et al. 2011). We laid out the general requirements specific to each layer, and 

described the LLC case study where a specific application of the data architecture was 

tested.  From the case study, we arrived at several conclusions.  These include: 1) 
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custom-built dataloggers can persistently capture high-resolution data streams from 

several observational instruments with a 98% capture rate; 2) a number of repetitive data 

management tasks, such as transferring data daily, can be tasked to a custom data 

management application like the DTM; 3) InfluxDB can reliably provide efficient and 

persistent data storage while occupying a relatively small disk storage footprint; and 4) 

while the complexity of data presentation tools depends on the user and use case, even 

simple data analysis and visualization tools can reveal interesting trends in water use.  

 The water and energy balance equations for the LLC derived in Chapter 3 

successfully combined flowrate and water temperature data to produce a high-resolution 

water-related energy data stream, illustrating that residential water-related energy use can 

be estimated with relatively straightforward data collection processes and mass/energy 

balance modeling.  Evaluating behavioral aspects of water use and water-related energy 

use in the buildings we studied, we determined the following: 1) hot and cold water use 

generally do not track over the course of an average day; 2) Friday is generally the day of 

least use for all five buildings, and weekday, on average, is greater than weekend water 

use; and 3) the division of hot and cold water use varies significantly across buildings. 

 Separate from synthesizing water and water-related energy use, Chapter 3 also 

describes our investigation of varying sampling and recording intervals performed by 

artificially decimating the flowrate and temperature data streams and exploring the 

subsequent impacts on ability to quantity water and water-related energy use.  From this 

investigation, we discerned two conclusions: 1) decreasing the sampling frequency 

decreases ability to accurately estimate water-related energy use while simultaneously 

degrading ability to identify specific instances of use; and 2) decreasing the recording 

frequency while leaving the sampling frequency unaltered degrades ability to identify 
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specific instances of water/energy use but preserves the ability to accurately estimate 

water and water-related energy use at the resolution of the recording interval.  Thus, we 

concluded that the ideal data volume is situationally dependent on the tradeoffs between 

the analysis the data is being used for and any data storage and management limitations.  
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CHAPTER 5 

ENGINEERING SIGNIFICANCE 
 

 Seldom have water and energy data streams been collected simultaneously in the 

residential sector.  Ability to do so has traditionally been limited because utilities, which 

generally collect the majority of water and energy data, typically do not engage in 

academic research to pioneer the methods to do so, water and energy data privacy 

regulations can restrict the sharing of data, and water and energy data are often collected 

by separate utilities which seldom collaborate.  Smart meters have demonstrated their 

potential for overcoming these obstacles in small scale case studies.  But, complications 

persist with larger smart meter networks such as the financial and legal prospect of 

retrofitting every residential household with a smart meter.  Furthermore, larger smart 

meter networks are faced with persistent data management challenges regarding data 

storage and management.  This thesis describes a data architecture, developed in response 

to these obstacles, that integrates various components of smart meter networks into a 

holistic approach for smart meter network development.  An assessment of this 

architecture was observed by implementing it in a case study.  The techniques described 

in the case study demonstrate the elements of cyberinfrastructure required for collection, 

storage, management, and presentation of data.  Also described are methods for 

combining water and energy data streams with relatively simple water and energy 

balance principles, such that water-related energy can be estimated. 

 Evaluating the performance of the CIWS case study implementation has the 

potential to inform smart meter network development practices.  Our success in 

piggybacking on existing metering technology rather than replacing the existing meter 

technology wholesale with an advanced datalogger platform may encourage smart meter 
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developers to explore similar products.  With this datalogger approach, we were able to 

sidestep some of the financial and legal obstacles to interrupting water use in a multi-unit 

residential structure with expensive construction.  Furthermore, as the datalogger did not 

have to conform to federal or state hydraulic regulations for residential water supply, it 

was developed with less costly materials and manufacturing methods.  Indeed, shifting 

the data collection processes to an external datalogger offered advantages such as the 

ability to receive input from a variety of measurement devices, easier access for 

maintenance or replacement, and access to an expansive suite of additional components 

like expandable on-board memory and wireless connectivity.    

 For data storage and management, utility data managers may look to tools like 

InfluxDB as potential options for performant and persistent large-scale data storage.  In 

our investigation, InfluxDB offered several key advantages over more common database 

technologies such as MySQL, PostgreSQL, and MongoDB.  Data mangers may also look 

to automated data management applications.  Shifting repetitive tasks like downloading 

data from data collection sites and uploading it to the data storage repository has the 

potential to limit user errors and free up working hours for data analysis or other, more 

important tasks.   

 In attempting to reduce data velocity and volume produced from a high-resolution 

smart meter network because of data storage or management limitations, utility data 

managers may tailor their recording interval to the resolution necessary for subsequent 

analysis.  This may limit ability to identify specific instances of water/energy use, but the 

quantity of use will be preserved.  For example, if a water utility is more interested in 

supplying users with a weekly water report describing average hourly water use rather 

than a breakdown of toilet flushes, showers, etc., the utility can reduce the data velocity 
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from 3600 records/hour to one record/hour.  However, because the sampling interval was 

left at one sample/second, the total hourly water use will be as accurate as if the utility 

was recording at the higher resolution.   

 Finally, the combining of water and energy data streams may lend support to 

larger smart metering programs by revealing additional extractable value from high-

resolution water and energy data, like water-related energy.  A utility provider could 

provide more information to consumers beyond just water or energy information.  Indeed, 

explaining the interaction of these two resources in a residential building may further 

inform consumers of their behavior so that consumers may be more motivated to 

consume water or energy more conscientiously.   
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CHAPTER 6 

RECOMMENDATIONS FOR  

FUTURE RESEARCH 

 
 The following is a list of suggestions for future research ideas that advance the 

work described in this thesis.     

1. Transfer data quality control protocols to the datalogger.  While the datalogger 

reliably captured one-second flow and temperature data at a 98% capture rate, 

unexpected issues in data collection negatively impacted data quality.  Several 

of these data quality issues could have been addressed on the datalogger during 

data collection, including:  water temperature level shift, signal noise reduction, 

and pulse aggregation.  This would incorporate more elements of 

cyberinfrastructure and potentially recover valuable time spent by the researcher 

or data manager manually quality controlling data.  

2. Automatically generate water and water-related energy use reports and observe 

subsequent changes in water and water-related energy use behavior.  Thanks to 

the structure of the CIWS architecture, the collected data was automatically 

downloaded from the dataloggers daily and parsed into the InfluxDB database.  

Available for access twenty-four hours a day with the database access 

credentials, an application could have been written that periodically, i.e. daily, 

weekly, bi-weekly, etc., imported the water and water-related energy use data 

into consumption reports that could then be made available to residents of the 

buildings.  Establishing a consumption baseline through observation with no 

feedback and then supplying water and water-related energy use information to 

LLC residents and observing the subsequent change in consumption behavior, if 
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there is any, may offer insight into the potential of unincentivized consumption 

behavior.  This information could be valuable to water managers, who may be 

interested in incentivized versus unincentivized water/energy conservation 

initiatives.   

3. Expand water and energy balance equations to include the entire LLC.  As USU 

Housing maintains a data collection and storage system for the entire LLC water 

supply system, gaining access to this system could expand our assessment of 

water and water-related energy.  Monitoring the hot water supply temperature at 

the boiler exits and comparing it with the hot water supply temperatures in the 

buildings could quantify the energy amount lost in transmission from the water 

heating system to the buildings and potential losses from the boilers themselves.  

This information may be valuable to USU Housing, who could be interested in 

identifying areas of inefficiency in their water supply system. 

4. Explore scalability of InfluxDB.  While InfluxDB provided performant and 

reliable data storage, our investigation into scalability was limited to increasing 

the volume of data stored on the database from one building dataset to five 

building datasets.  InfluxDB occupied the least amount of disk storage in both 

cases, but more information regarding large-scale scalability would lend further 

support for its use as a repository for smart meter data.  Expanding the dataset to 

include more buildings would provide this information.  Results could be 

valuable to utility providers, who could be handling extremely large residential 

datasets of hundreds, or even thousands of homes. 
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 Over a period of four months of active data collection, the dataloggers 

synergistically functioned for four consecutive weeks without hardware or software 

malfunctions to produce the data that comprise the five building dataset used to calculate 

water and water-related energy use.  However, several steps of data quality control were 

required to prepare the data for import into the water and energy balance equation scripts.  

This section describes the steps taken to quality control the data prior to modeling and 

analysis. 

A.1. Filtered Data 

 Of the three measurement peripherals the datalogger collected data from:  1) the 

hot and cold water supply; 2) the hot water return; and 3) the temperature sensors, the hot 

water return and temperature sensors produced relatively noiseless data.  The 4-20 mA 

current loop output from hot and cold water supply meters, however, produced noisy 

data.  Figure A-1 illustrates the noise seen in an hour of hot and cold water supply flow 

data from 03:00 and 04:00 in Building D, a time when little to no water use is likely.  

This sensor noise could be attributed to several sources.  The Master Meter 4-20mA 

current output modules the dataloggers were interpreting observations from, 

electromagnetic interference from the power supplied to the current loop from USU’s 

building automation system, or the analog-to-digital converter the datalogger used to 

convert the current signal to a voltage signal all could introduce significant noise into the 

hot and cold water supply flow signals.  We were able to reduce but not entirely eliminate 

the noise within the flow rate observations. However, the magnitude and pattern of the 

remaining noise was relatively consistent across all five LLC building datasets, indicating 

a common source and allowing for a uniform approach to removing the noise from the 

hot and cold water supply flow data.   
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Figure A-1. Hot water supply (top) and cold water supply (bottom) flowrate data from 
Building D before noise reduction. 
 

 We developed a customized, adaptive median filter script written in a Python 3.7 

environment to remove noise.  Median filters function like moving average filters but 

save the median of the moving filter window rather than the mean.  The filter is also 

dynamically adaptive.  The filter receives four inputs from the user: the data to be 

filtered, a minimum window size, a maximum window size, and a threshold size.  When 

filtering the data, if there is a change in the data signal greater than the user-specified 

threshold, the window size returns to the minimum specified value.  Otherwise, the 

window size increases by +1 until a user-specified maximum value is met, after which 

the window returns to the minimum value.  The magnitude of actual water use events in 

the data is generally much greater than the magnitude of the noise, so this filter was 

applied to preserve the lower frequency water use events in the data while canceling the 
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high frequency noise.  Figure A-2 illustrates the effect of this filter by visualizing the 

same data from Figure A-1 after the adaptive median filter has been applied. 

 
Figure A-2. Hot water supply (top) and cold water supply (bottom) flowrate data from 
Building D after noise reduction using the median filter.  
 
Visually inspecting the results, the median filter reduces the signal noise in the hot and 

cold water supply data to a level where the number of possible false events has been 

significantly reduced while likely actual water use events are adequately preserved.  For 

example, the timing of the hot water and cold water use event straddling the half-hour 

mark has characteristics commonly seen in shower events while the cold water use events 

near the top of the hour are likely toilet flushes as characterized by their distinct peak, 

short duration, and shoulder pattern.    
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A.2. Level Shifted, Filtered Data 

 While the DS18B20 digital temperature sensors proved reliable in collecting 

water temperature measurements through direct contact with the water pipes, some bias 

in the water temperature measurements was inevitable as the sensors were installed 

outside of the pipe and some heat is inevitably insulated by the copper pipe despite 

copper’s favorable thermal conduction properties.  Fortunately, USU’s Housing and 

Facilities Department actively monitors all three water temperatures in three of the 

buildings at approximately the same location where the DS18B20 digital temperature 

sensors were installed on the pipes with in-pipe thermometers.  These in-pipe temperature 

measurements are recorded by USU’s Building Automation System (BAS) at five minute 

intervals and provide the most accurate assessment of water temperature in the LLC 

buildings.  Unfortunately, USU Housing only records water temperature in three of the 

five case study buildings (B, C, and D).  Nonetheless, with this secondary measurement, 

the datalogger temperature measurements from Buildings B, C, and D could be adjusted 

to more accurately reflect the correct water temperature in the pipe. This adjustment 

consisted of comparing matching periods of datalogger data and BAS data and level 

shifting the datalogger temperature measurements to match their BAS counterparts as 

closely as possible.  Due to different timesteps in the datasets, a perfect match was not 

possible, but by resampling the datalogger data to the same timestep as the BAS data and 

visually inspecting the resultant level shift data, as well as comparing the means of the 

dataset, a level shift factor was obtained for each sensor.  Figure A-3 shows the effect of 

the level shift for one week of hot water supply and hot water return data from Building 

C.   
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Figure A-3. Building C hot water supply and hot water return temperatures before 
(bottom) and after (top) level shift  
 

While the BAS also records cold water supply temperature data, we were unable 

to retrieve temperature data until after the period of data collection was complete.  This 

delay proved critical as cold water temperature measurements in June, the period of BAS 

data supplied by USU Housing, cannot be directly compared with cold water temperature 

measurements in March and April, the timeframe of the LLC case study dataset.  

Climatic conditions in Logan shift dramatically between March and June with outdoor air 

temperatures often below freezing in March and well above 20 oC in June.  This shift in 

ambient air temperature is reflected in cold water supply temperatures, with mean cold 

water supply temperatures ranging from below 10 oC in March to around 20 oC in June.  

While the air temperature in the mechanical rooms where the datalogger measurements 

were made is relatively constant year round, the drastically different cold water 
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temperature in the pipes results in different temperature gradients for March and June.  

Thus, the adjustment value calculated from the cold water temperature data collected by 

USU Housing in June is in the context of a different cold water temperature gradient, and 

therefore could not be applied to the four week datalogger dataset collected in March and 

April.  This seasonal shift in climate does not affect the adjustment value determined for 

the hot water supply and hot water return temperatures from the BAS data as the hot 

water supply temperature is held approximately constant at 52 oC for public health 

purposes and the hot water return temperature generally fluctuates 1-2 oC below the hot 

water supply temperature.  Thus, the hot water supply and hot water return temperature 

gradient is approximately the same between March and June. 

For Buildings E and F, where there were no data from USU’s BAS, the hot water 

supply and hot water return temperatures were level shifted until their resultant mean 

matched the mean of Building D’s adjusted hot water supply and hot water return 

temperatures for the same period.  We had the most confidence in building D’s adjusted 

temperature data as it required the smallest level shift factor to match the secondary 

observations from the BAS temperature data.  This was accomplished with a Python 

script written in a Python 3.7 environment that iteratively increased a level shift factor by 

0.001 oC, computed the new mean temperature value, and compared it to the building D 

temperature mean until the difference between the two was less than 0.001 oC.  The 

process was applied to the hot water supply temperature and the hot water return 

temperature.   

A.3. Pulse Aggregated, Level Shifted, Filtered Data 

 While the dataloggers recorded flow and temperature observations at a resolution 

of one second, the hot water return pipes were outfitted with a different water meter 
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technology than the hot water and cold water supply mains.  The Master Meter BLMJ 

meter, equipped with an Electrical Output Register, emits an observable electric pulse 

when one gallon of water has cumulatively passed through the meter.  Thus, with a one 

second recording interval, most recorded values from the hot water return meter reflected 

zero pulses as the typical hot water return flows were approximately 4 gpm (~4 pulses 

per minute). Because of this difference in timing and the limitation of the pulse resolution 

of the hot water return meter, we had to aggregate the flow rate data from the hot and 

cold water supply meters to the time intervals of the recorded pulses from the hot water 

return meter to ensure that the water balance model did not produce negative flow values 

in-between pulses of the hot water return meter.   

 For each pulse interval from the hot water return, the one second observations of 

QHS and QCS, originally recorded in gpm, were converted to gallons per second (gps) by 

dividing each one second flowrate observation by 60 s.  With this conversion to gps, each 

one second observation of QHS and QCS could be treated as the volume of water passing 

through the meter over the course of that second.  Then, by summing the one second QHS 

and QCS observations within each pulse interval, the total volume of water passing 

through the hot and cold water supply meters over the course of a hot return pulse 

interval timestep was determined.  Furthermore, the resulting time series of hot water 

supply, cold water supply, and hot water return then all shared the same time steps, 

dictated by when the pulses were recorded by the hot water return meter.  The timeseries 

were recorded in gallons per pulse timestep.  For the hot supply, cold supply, and hot 

return temperatures, the averages of the one second measurements during a pulse interval 

were recorded.  The pulse-aggregated dataset is the highest possible data resolution for 

calculating water and water-related energy use in the LLC, given the constraints of the 
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metering technology that was available and the derived water and energy balance 

equations.   

A.4. Zeroed, Pulse Aggregated, Level Shifted, Filtered Data  

Despite our efforts to filter signal noise and aggregating to the pulse interval of 

the hot water return, very small volumes of positive and negative hot water use were still 

occasionally calculated with the water balance equation and quality controlled data when 

flow should have been zero.  These small volumes were likely due to measurement error 

and noise on the supply meters, accuracy limitations in the Master Meter Octave water 

meters themselves, accuracy limitations in the 4-20mA current modules supplied by 

Master Meter used to observe water use in the Octave meters, or a combination of all 

three.  Regardless of the source, as flow cannot be negative, the small negative flows 

(generally -0.00001 m3 – 0.00027 m3) were assumed to be zero.  Unfortunately, we were 

unable to distinguish between small, but erroneous, positive flows during periods of 

expected low to no flow versus actual flows. However, these erroneous flows relative to 

most actual instances of water use are so small their total contribution to water use over 

the course of a day was generally negligible.  

A.5. Additional Data Corrections 

 Several additional measures were required to correct specific periods of erroneous 

data.  These included: generating hot water supply water temperature for a five day 

period in Building B that resulted from interference in data collection by USU 

maintenance personnel, replacing a single one-second hot water supply temperature 

observation in Building F, generating approximately 2.5 hours of hot water return flow 

for Building E, and slightly level shifting hot water supply data for approximately three 
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days from Building B and two weeks from Building E. These modifications are described 

in the following paragraphs. 

 On 03-07-2019, the hot water supply temperature in Building B began reading 

unusually low relative to previously collected data.  It was eventually discovered the 

DS18B20 digital thermometer on the hot water supply pipe had been moved by USU 

maintenance personnel.  The thermometer was quickly relocated to its initial position on 

the pipe.  However, the faulty temperature data was included in the four-week dataset 

where the other four dataloggers were functioning correctly, and thus had to be corrected.  

Since the majority of the Building B temperature data was consistent, this adjustment was 

accomplished by plotting accurate Building B temperature data against Building D 

temperature data and deriving a correlation equation (Equation 3-6).  

TBnew = 8.25122766 + 0.8218035674(TD)     (3-6) 

Using this equation, temperature data was generated for the faulty period in Building B 

using hot water supply temperature data from Building D as input.   

 In Building F, a single hot water supply temperature value required replacement.  

At 15:33:33 on 04-15-2019, the datalogger recorded a one-second temperature value of 

approximately -1333 oC.  This value was determined to be a datalogger malfunction, 

either in the code, or the digital transmission of data from the thermometer to the 

datalogger.  To replace the value, the average temperature value from the one second 

observations on either side of the erroneous value was taken and substituted.   

 Manufacturer faults in the electrical output registers on the hot water return 

meters led to an eventual replacement of all of the LLC electrical output registers.  The 

fault would manifest as erratic pulse intervals ranging from 20 s to over 250 s in time.  

Correcting this faulty return flow data was critical for accurately aggregating water use to 
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the pulse interval timestep.  Building E exhibited this behavior for the first two and a half 

hours of the four week dataset, while the other buildings were unaffected.  Fortunately, 

the return flow rate is generally constant and seldom varies by more than one second at 

infrequent intervals.  So, to replace 2.5 hours of faulty data for this brief period, the 

average pulse interval from the rest of the Building E dataset was calculated and found to 

be 17.26 seconds/pulse.  Using this average, a return pulse value was inserted into the 

dataset every 17 seconds for the first 2.5 hours.  To account for the 0.26 s, an 18 second 

interval was used instead of a 17 second interval every third data insertion. 
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