
Scanning Microscopy Scanning Microscopy 

Volume 9 Number 1 Article 13 

12-23-1994 

Ultrastructure of Dentin Matrix in Heritable Dentin Defects Ultrastructure of Dentin Matrix in Heritable Dentin Defects 

J. Waltimo 
University of Helsinki 

H. Ranta 
University of Helsinki 

P. -L. Lukinmaa 
Scandinavian Institute of Dental Materials 

Follow this and additional works at: https://digitalcommons.usu.edu/microscopy 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Waltimo, J.; Ranta, H.; and Lukinmaa, P. -L. (1994) "Ultrastructure of Dentin Matrix in Heritable Dentin 
Defects," Scanning Microscopy: Vol. 9 : No. 1 , Article 13. 
Available at: https://digitalcommons.usu.edu/microscopy/vol9/iss1/13 

This Article is brought to you for free and open access by 
the Western Dairy Center at DigitalCommons@USU. It 
has been accepted for inclusion in Scanning Microscopy 
by an authorized administrator of DigitalCommons@USU. 
For more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/microscopy
https://digitalcommons.usu.edu/microscopy/vol9
https://digitalcommons.usu.edu/microscopy/vol9/iss1
https://digitalcommons.usu.edu/microscopy/vol9/iss1/13
https://digitalcommons.usu.edu/microscopy?utm_source=digitalcommons.usu.edu%2Fmicroscopy%2Fvol9%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.usu.edu%2Fmicroscopy%2Fvol9%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/microscopy/vol9/iss1/13?utm_source=digitalcommons.usu.edu%2Fmicroscopy%2Fvol9%2Fiss1%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Scanning Microscopy, Vol. 9, No. 1, 1995 (Pages 185-198) 0891-7035/95$5.00+ .25 
Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA 

ULTRASTRUCTURE OF DENTIN MATRIX IN HERITABLE DENTIN DEFECTS 

J. Waltimo 1• •, H. Ranta2 , and P.-L. Luk.inmaa3 

Departments of I Pedodontics and Orthodontics , and 3Oral Pathology, Institute of Dentistry, and 
2Department of Forensic Medicine/ Section for Dentistry, University of Helsinki, Helsinki, Finland 

3Scandinavian Institute of Dental Materials, Haslum, Norway 

(Received for publication October 20, 1994 and in revised form December 23, 1994) 

Abstract 

Heritable dentin defects form a group of diseases 
which exclusively affect dentin among the various dental 
tissues. While one type is associated with the general
ized connective tissue disorder, osteogenesis imperfecta, 
other types occur as single traits. The clinical manifes
tations of the dentin defects vary from insignificant to 
severe enough to cause aesthetical and functional failure 
of the teeth. Scanning and transmission electron micro
scopic studies, reviewed in this paper, have markedly 
clarified the ultrastructure of the aberrant dentin matrix. 
Both similar and different changes seem to occur in the 
various forms of heritable dentin defects. Abnormalities 
in the appearance and organization pattern of collagen 
fibers in the defective dentin partly resemble those ob
served in skin in generalized connective tissue diseases. 
The similarity of ultrastructural findings in dentin de
fects, which are currently classified as distinct entities, 
and even in diseases affecting other tissues, could be re
lated to the complicated interactions between the extra
cellular matrix macromolecules. Thus, many of the 
changes observed may be secondary in nature. Ultra
structural studies can help us to understand the pathogen
esis of the different types of heritable dentin defects as 
well as aid in diagnostics and classification of these 
diseases . 

Key Words: Human teeth, heritable dentin defects, 
dentin dysplasia, dentinogenesis imperfecta , osteogenesis 
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Introduction 

Heritable human dentin defects are diseases which 
affect the (ecto)mesenchyme-derived dentin among the 
various dental tissues. Notably, the enamel, which is 
ectodermal in origin, appears normal. These disorders 
have been divided into two major categories: dentin dys
plasia (DD) and dentinogenesis imperfecta (DI) . Type 
I DI is the dental manifestation of the generalized con
nective tissue disorder osteogenesis imperfecta (01), 
whereas the two other types of DI, as well as both types 
of DD, appear to affect dentin solely (Shields et al., 
1973). Table 1 presents the characteristic features of 
different types of DD and DI. As these diseases share 
many clinical and radiographic features, and the expres
sion, especially in the permanent teeth, may be mild, it 
is often difficult to make the correct diagnosis. 

Analyses with scanning electron microscopy (SEM) 
and transmission electron microscopy (TEM) have con
firmed the histological findings that the dentinal tubules 
are irregular and sparse in the different types of DI 
(Levin et al., 1980, 1983; Waltimoetal ., 1994)aswell 
as in the abnormal parts of dentin in type II DD 
(Melnick et al., 1977; Waltimo et al., 1991). Type I 
DD, on the other hand , is characterized by the aberrant 
orientation of the tubules (Sauk et al., 1972; Wesley et 
al., 1976). Moreover, electron microscopic studies have 
revealed structural abnormalities beyond the level of de
tection of other methods. As indicated by TEM, a hap
hazard organization pattern and varied size of collagen 
fibers are also common findings (Herold, 1972; Waltimo 
et al., 1991, 1994), whereas vesicular structures, 
unravelled collagen fibers and hyperfibers have been 
observed in type I DI only (Waltimo, 1994; Waltimo 
and Lukinmaa, unpublished results) . 

In some patients with 01 , a variety of ultrastructural 
changes are seen in dentin, whereas other patients ap
pear to have normal teeth, independently of the general 
severity of the disease. Thus, in both DI associated with 
01, in which type I collagen is genetically defective, and 
in dentin defects inherited as single traits, where the 
gene defect has not been specified, ultrastructural studies 
can be expected to clarify the so far poorly understood 
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Table 1. Characteristic features of the different types of dentin dysplasia (DD) and dentinogenesis imperfecta (DI)'". 

Feature 

Associated with osteogenesis imperfecta 

Inherited as a single trait 

Clinical findings 
Primary teeth discolored 
Permanent teeth discolored 
Loose teeth 
Rapid attrition in permanent teeth 

Radiographic findings 
Bulbous crowns 
Short roots 
Obliteration of pulp chambers in primary teeth 
Obliteration of pulp chambers in permanent teeth 
Crescent-shaped pulp chambers in permanent teeth 
Thistle-tube shaped pulp chambers in permanent teeth 
Pulp stones in permanent teeth 
Periapical radiolucencies 

Histological findings 
Abnormal dentin in primary teeth 
Abnormal coronal dentin in permanent teeth 
Abnormal radicular dentin in permanent teeth 

DD-I 

++ 

++ 

++ 
++ 

++ 

+ 
++ 

++ 

++ 

Type of defect 

DD-II 

++ 

++ 

++ 

++ 
++ 

++ 

++ 

DI-I 

++ 

++ 
+ 

+ 

++ 
+ 

++ 
+ 

+ 
+ 
+ 

++ 
+ 
+ 

DI-II 

++ 

++ 
++ 

++ 

++ 
+ 

++ 
++ 

+ 

++ 
++ 
++ 

- = usually not present; + = sometimes present; + + = usually present 

• Freely modified after Shields et al. (1973). 

pathogenesis of the disorders . As dentin , unlike bone, 
is not remodeled, any major disturbance in odontoblast 
function has definite morphological consequences, by 
which the time, and sometimes even the nature, of the 
damage can be determined. In this paper, we review the 
ultrastructural findings in dentin affected by heritable 
dentin defects, and discuss their pathogenetic implica
tions. 

Formation and Structure of Nonna! Dentin Matrix 

Dentin, like bone, is a mineralized connective tis
sue. Odontoblasts deposit the organic matrix of dentin, 
which subsequently becomes mineralized (Fig . 1). 
These cells differentiate from the neural crest-derived 
cells of the dental papilla as a result of inductive epithe
lial-mesenchymal interactions involving a variety of tran
scription factors, growth factors as well as structural 
molecules (Lesot et al., 1981; Ruch, 1987; Tbesleff et 
al., 1991; Begue-Kim et al., 1992; Jowett et al., 1993; 
Vainio et al., 1993; Heikinheimo, 1994). Dentino
genesis starts at the cuspal/incisal region and proceeds in 
an apical direction; at the same time, new odontoblasts 
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100 µm 

Figure 1. Histological appearance of the pulp-dentin 
complex of a (demineralized) normal permanent tooth. 
A confluent layer of odontoblasts (0) encompasses the 
pulp (P) composed of loose-textured connective tissue. 
Also, the subodontoblastic cell layer (SO) is clearly 
outlined. A faint, regular tubular pattern is discemable 
in predentin (PD) and dentin (D), which are demarcated 
by a globular mineralization front. Hematoxylin and 
eosin stain . Bar = 100 µm. 
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Figure 2 . Histological appearance of normal (a) and diseased (b-d) dentin of deciduous (a-c) and permanent (d) teeth 
(CD: circumpulpal dentin; MD: mantle dentin). In contrast to normal dentin (a), where the regular dentinal tubules 
(arrows) extend to the dentin enamel junction, the tubular pattern is aberrant in dentin affected with dentin dysplasia 
type II (b), and dentinogenesis imperfecta associated with osteogenesis imperfecta (c) and occurring as a single trait (d) . 
Note the lamellar structure of dentin in (c) and the fairly regular tubular pattern in mantle dentin in (b) and (c). Enamel 
(matrix) has been lost during demineralization . Schmorl 's picric acid and thionin stain. Bars = 100 t,tm. 

differentiate further apically . 
The outermost layer, or mantle dentin, covers the 

bulk of circumpulpal dentin (Fig. 2a). These are both 
mineralized, in contrast to the thin layer of predentin, 
which lines the pulpal cavity even after the completion 
of tooth development (Fig . 1). The odontoblast proc
esses are situated in dentinal tubules (Fig. 3a), which 
make up the most striking histological and ultrastructural 
feature of dentin (Figs. 2a and 3a-3c) . The width of the 
tubules decreases towards the dentin-enamel junction 
(Maniatopoulos and Smith, 1983; Sogaard-Pedersen et 
al . , 1990) due to gradual thickening of the peritubular 
dentin (Fig. 3). Because of technical problems associ
ated with fixation and demineralization of dentin, it has 
been difficult to determine how far the odontoblast proc
esses extend (for review, see Holland, 1985; Frank and 
Steuer, 1988). The cellular processes send lateral 
branches through which the neighbouring odontoblasts 
may make contact (Maniatopoulos and Smith, 1983; 
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White et al., 1986). 
The mineralized intertubular dentin constitutes the 

main part of dentin, the organic matrix of which is com
posed of a compact web of collagen fibers. Most fibers 
are oriented parallel or at an acute angle to the incre
mental pattern (Sogaard-Pedersen et al., 1990) (Fig. 3). 
The dentinal tubules are lined by highly mineralized 
peritubular dentin which has a sparse organic matrix 
(White et al., 1986; Yoshiyama et al ., 1990). Odonto
blast processes are occasionally seen intratubularly (Fig. 
3a), and nerves are observed rarely. The dentinal 
tubules often appear empty (Fig. 3b), but they can also 
contain collagen fibers (Thomas and Carella, 1983, 
1984), amorphous or granular material (White et al., 
1986), or an electron-dense sheath, referred to as the 
lamina limitans (Thomas and Carella, 1983, 1984) (Fig . 
3c). In undemineralized sections, the tubules may be 
occluded by mineral crystals (Yoshiyama et al., 1990). 

Odontoblasts not only produce the dentin matrix, 
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Figure 3 . Transmission electron micrographs of dentin of normal pri~ry teet~ . (a) Sections ?f dentin close to the 
pulp contain occasional odontoblast processes (OP) within the cross-secti_oned dentmal tubules . This tooth was extract~ 
for orthodontic reasons and still contained pulp tissue. In the nuddle third of dentm, the tubules (T) appear empty (b), 
whereas, more externally, sheath-like structures (arrows) line the tubules (c). Many o_f the intertubular collagen ~bers 
are arranged parallel to the incremental pattern (arrowheads in b, c). With ~creasing distance from t~e pulp, _ the diame
ter of the tubules and their number per unit area decline. At the same time, the mtertubular dentm rnatnx becomes 
more tightly packed with collagen fibers which, in tum, become thicker. Bars = 2 µm. 

which is conducive of mineralization, but they also act 
as a route of transport and site of accumulation of the 
calcium ions, and produce matrix vesicles. The matrix 
vesicles, rich in alkaline phosphatase (Orams and Snib
son, 1982), may be budded off the cells, and they proba
bly serve as crystallization centers during the early 
stages of dentinogenesis or mantle dentin formation (for 
review, see Holland, 1985). Matrix vesicles are present 
in mantle dentin, but they have not been seen in the 
circumpulpal dentin (for review, see Bonucci, 1984). 

Compared to the non-mineralized predentin , the or
ganic matrix of the mineralized circumpulpal dentin con
tains collagen fibers that have a larger diameter (about 
100 nm) and are more tightly packed (Sogaard-Pedersen 
et al. , 1990). They show the typical cross-striation pat
tern and round cross-section. It is atypical for collagen 
fibers to form bundles in normal dentin (Sogaard-Peder
sen et al., 1990) (Fig. 3). The fibers are mainly com
posed of type I collagen (for reviews, see Butler, 1984; 
Linde and Goldberg, 1993) . Immunoreactivities of col
lagen types III (Nagata et al., 1992; Lukinmaa et al., 
1993; Waltimo et al., 1994), V (Bronckers et al., 1986) 
and VI (Becker et al., 1986) have also been observed in 
rodent and human dentin. Dentin also contains non-col
lagenous proteins, such as: phosphoproteins, r-carboxy
glutamate-containing proteins, glycoproteins, proteo
glycans and serum proteins (for review, see Linde and 
Goldberg, 1993). 
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Heritable Dentin Defects 

Classification 

Abnormalitie s of dentin can be divided into those 
which primarily affect the organic matrix, including the 
disorders known as heritabl e dentin defects, and into 
those which lead to defective mineralization . These cat
egories partially overlap, since normal structure of the 
matrix is a prerequisite for proper mineralization. The 
heritable dentin defects have been classified into two 
types of dentin dysplasia (DD) and three types of den
tinogenesis imperfecta (DI) on the basis of clinical, radi
ographic, and histological criteria. Types I and II DD 
as well as types II and III DI affect dentin exclusively, 
whereas type I DI is the dental defect of osteogenesis 
imperfecta (OI) (Shields et al., 1973). Yet, there are 
defects which do not fit this classification (for review, 
see Witkop, 1975). The defects affecting dentin solely, 
as well as 01 in most families, are inherited as autoso
mal dominant traits. Type II DI, which affects about 
1:8000 subjects, is among the most common dominantly 
inherited aberrations in man (Witkop, 1975) . Of the 
patients with OI, 10-50 % have been reported to have the 
dentin defect (Smith et al., 1983; Lukinmaa et al . , 
1987). 

Technical aspects of ultrastructural studies 

Naturally shed primary teeth are readily available, 



Ultrastructure of heritably defective dentin 

whereas permanent teeth can be studied only when ex
tracted for therapeutic reasons. However, the manifesta
tions of the diseases in primary and permanent teeth may 
differ. The organic dentin matrix can either be studied 
in the narrow predentin zone or by examining the dentin 
after demineralization. Because of physiological resorp
tion, even normal, naturally exfoliated primary teeth are 
usually lacking predentin. Furthermore, pulp chambers 
of the affected primary and permanent teeth are usually 
more or less obliterated, and predentin is thus not avail
able for examination. Pulpal obliteration and the sparsi
ty of dentinal tubules also cause difficulties in fixation . 
To overcome the poor penetration of the fixative , high 
concentrations of glutaraldehyde (2-5 % ) and prolonged 
fixation times (overnight to 24 hours) have been used. 
Yet, even in these conditions, the ultrastructure as well 
as antigenicities of at least various collagen types are 
preserved as indicated by immuno-TEM (Waltimo et al., 
1994). 

It is evident that odontoblast processes of normal 
dentin can be studied in greatest detail when the teeth 
are non-demineralized (Frank and Steuer , 1988). Teeth 
affected with heritable dentin defects have also been 
studied by SEM and TEM without demineralization 
(Kerebel, 1975; Skinner et al., 1978; Levin et al., 1980, 
1982, 1983; Melnick et al., 1980; Kerebel et al., 1981; 
Jasmin and Clergeau-Guerithault, 1984), and by SEM 
after a short treatment of the specimen surface with 
ethylenediaminetetra-acetic acid (EDT A) (Sauk et al., 
1972; Wesley et al., 1976). In non-demineralized sam
ples, the tubular pattern and, notably, disturbances in 
mineralization, can be analyzed, but little information is 
obtained on the ultrastructure of the dentin matrix . 
Thorough demineralization, on the other hand , leads to 
extraction of water-soluble macromolecules, for exam
ple, proteoglycans, from the dentin matrix , which there
after consists of a more or less stripped network of 
cross-linked collagen. Partially , this can be avoided by 
using EDT A in an organic instead of an aqueous solvent 
(Scott and Kyffin, 1978) 

For our own studies on teeth affected by heritable 
dentin defects, described in this paper, primary and/or 
permanent teeth were obtained from patients with type 
II DD, type TI DI (inherited as a single trait) and from 
patients classified as having types IB and IVB OI 
(Sillence, 1988). Control teeth were from subjects with
out any known developmental defects of teeth . The pri
mary teeth were naturally shed, and the permanent teeth 
were extracted for valid therapeutical reasons. The teeth 
were fixed with 10 % neutral buffered formalin or with 
ethanol, and demineralized with aqueous EDTA at 4 °C 
for about two months. For light microscopy, the teeth 
were conventionally embedded in paraffin and cut into 
5 µm-sections, which were either stained with hematoxy-
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Jin and eosin or by Schmorl's picric acid and thionin 
method. For TEM, small blocks were cut from the de
mineralized dentin . The blocks were fixed with glutar
aldehyde (4%; overnight) and tannic acid (4%; 2 hours), 
and routinely prepared into ultrathin sections which were 
treated with uranyl acetate and lead citrate. The sections 
were examined in a JEOL JEM-1200 EX TEM at the 
Department of Electron Microscopy, University of 
Helsinki. 

Structure of the Abnormal Dentin Matrix 

Type I dentin dysplasia (DD) 

The affected teeth are clinically normal or slightly 
discolored, but have short roots. The pulp chambers of 
the primary teeth are completely obliterated , but in the 
permanent teeth, a crescent-shaped remnant of the pulp 
chamber persists . Periapical radiolucencies and pulp 
stones are seen in radiographs (Sauk et al., 1972; 
Shields et al., 1973; Steidler et al., 1984) . Histological
ly, the outermost layer of dentin is normal in both denti
tions. More apically, the dentin shows atubular areas in 
primary teeth, and a cascade-like pattern of organization 
in the permanent teeth (Shields et al., 1973; Wesley et 
al., 1976). 

SEM studies have shown that the cascade-like for
mations in dentin of perman ent teeth contain tubules 
which appear normal, but are aberrantly oriented (Sauk 
et al., 1972; Wesley et al., 1976). The dentinal tubules 
of affected primary teeth are thinner and fewer in num
ber than those of normal deciduous teeth (Melnick et al., 
1980). It has been hypothesized that cells, prematurely 
disintegrating from the abnormal epithelial root sheath of 
Hertwig, could repeatedly induce differentiation of the 
mesenchymal cells of the developing root into dentin
forrning cells. Thus, according to this theory , the pri
mary defect would reside in the epithelial cells (Sauk et 
al., 1972; Witkop, 1989). 

Type II DD 

The primary teeth are often discolored whereas the 
permanent teeth usually appear normal. The pulp cham
bers of the primary teeth are completely obliterated, but 
those of the permanent teeth exhibit a characteristic, 
thistle-tube form, and may be filled with denticles 
(Shields et al., 1973; Steidler et al., 1984; Ranta et al., 
1990, 1993). Histologically, the dentinal tubules of pri
mary teeth are sparse and irregular (Ranta et al., 1990) 
(Fig. 2b). In the permanent teeth, there is an abrupt 
change from normal coronal dentin to abnormal radicu
lar dentin, where an irregular tubular pattern and patho
logical, canal-like structures are observed (Steidler et 
al., 1984; Ranta et al., 1990, 1993). SEM and TEM 
studies on primary teeth show that the dentin is structur
ally highly disorganized, and it contains only few, thin 
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Figure 4. Transmission electron microscopic appearance of dentin of primary teeth from two patients representing dif
ferent families with type II dentin dysplasia. (a) The tubules (T) in the affected dentin are irregular in size and shape. 
In the atubular areas, predominating in dentin matrix , the collagen fibers either form a haphazard meshwork (b) or large 
bundles (arrows) (c). Bars = 2 µm. 

tubules (Melnick et al ., 1977; Jasmin and Clergeau
Guerithault, 1984; Waltimo et al., 1991) (Fig. 4). The 
coronal dentin of permanent teeth was normal in TEM 
as well, whereas the nearly atubular radicular dentin 
contains both haphazardly oriented collagen fibers and 
also thick, sometimes curvy, fiber bundles. The diame
ter of the fibers varied from abnormally thin to thicker 
than normal (Waltimo et al. , 1991). 

Dentinogenesis imperfecta (DI) inherited as a single 
trait (types II and Ill) 

Whereas type I DI is the dental manifestation of 01, 
types II and III appear to affect dentin solely (Shields et 
al., 1973). Whether type III DI, described in a triracial 
isolate in Brandywine, Maryland (Hursey et al., 1956; 
Witkop et al., 1966), is a genetically distinct entity 
(Shields et al. , 1973; Levin et al., 1983) or a variant of 
type II DI (Heimler et al., 1985; Witkop , 1989) is not 
quite clear. 

Both primary and permanent teeth affected by type 
II DI appear discolored and translucent. Although nor
mal in structure, the enamel tends to crack off, which 
leads to rapid attrition of the underlying, abnormally soft 
dentin . Radiographic findings include bulbous crowns, 
cervical constrictions and short roots. While the pulp 
chambers gradually obliterate in type II DI, they may 
remain abnormally large in type III (Witkop and Rao, 
1971; Shields et al., 1973). Histologically, the first
formed layer of dentin is often normal, but the bulk of 
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(inner) dentin contains coarse and extensively branched 
tubules , which are few in number (Roberts and Schour, 
1939; Waltimo et al., 1994) (Fig. 2d), as well as ab
normal , canal-like structures (Wright and Gantt , 1985). 

Studies with SEM show that the dentinal tubules are 
scarce and of varied size in type II DI (Kerebel, 1975; 
Levin et al. , 1983; Wright and Gantt, 1985), and even 
more sparse in type III DI (Levin et al., 1983) . TEM 
studies, in addition, show that the orientation of the 
collagen fibers is aberrant (Kerebel, 1975; Kerebel et 
al., 1981), and their diameter may either be increased 
(Herold, 1972) or decreased (Waltimo et al., 1994). 
Atypical fibrillar structures in dentin matrix have also 
been documented (Waltimo et al., 1994). In general , 
the matrix consists of a monotonic meshwork of collagen 
fibers of normal or slightly reduced diameter. Dentinal 
tubules are uniformly present in occasional areas only 
and are seldom seen in sections from the inner dentin 
(Fig. 5). Increased immunoreactivity of type III colla
gen has been observed in the dentin matrix in type II DI 
(Sauk et al., 1980; Waltimo et al., 1994). As opposed 
to normal dentin (Lukinmaa and Waltimo, 1992), type 
VI collagen was found in finely fibrillar material in 
immuno-TEM (Waltimo et al., 1994). 

The gene defect of DI occurring as a single trait has 
been mapped to the long arm of human chromosome 4 
(Ball et al., 1982; Boughman et al ., 1986; Gusella et 
al ., 1986; Crall et al., 1988), but it has not been 
specified so far. At least one type of phosphophoryn, 



Ultrastructure of heritably defective dentin 

Figure 5. Transmission electron microscopic appearance of dentin of primary teeth from a patient with type II dentino
genesis imperfecta (inherited as a single trait). (a) The dentinal tubules (T) are poorly contoured and of varied size 
and shape. The abnormal, intratubular collagen fiber bundles (arrows) also display thin fibrillar structures (arrowheads). 
The abundant small openings (L) in the tubular areas probably correspond to the numerous lateral branches observed 
by light microscopy . (b) In the predominating atubular areas, the collagen fibers are mostly arranged haphazardly. 
Bars = 2 µ.m (a); 1 µ.m (b). 

belonging to the dentin-specific phosphoproteins, and 
reported to be lacking from the affected dentin (Takagi 
et al., 1983; Takagi and Sasaki, 1986, 1988), has been 
excluded as a candidate gene (MacDougall et al., 1992, 
1994). 

Dentinogenesis imperfecta associated with osteogene
sis imperfecta (type I DI) 

Osteogenesis imperfecta (01) results from family
specific mutations ·in both genes coding for the pro-a 
chains of type I collagen (Sykes et al ., 1986; Byers et 
al. , 1992). The patients suffer from fragile and deform
ed bones, and they may also have hearing impairment, 
cardiovascular abnormalities, blue sclerae , and abnormal 
dentin . Depending on the site and type of the gene 
mutation, the severity of the disease varies from mild to 
lethal. The dentin defect (type I DI) seems, however , to 
occur independently of the severity of the general 
manifestations of the disease , except that the patients 
with the heterogenous type I OI (Levin et al., 1980; 
Sillence, 1988), who also have DI, are usually more 
severely affected (Paterson et al . , 1983). On the other 
hand, children who died shortly after birth because of OI 
have had ultrastructurally either abnormal (Godfrey, 
1973) or normal teeth (Levin et al., 1982) . 

. Types I and II DI appear to share many features . 
The primary teeth of patients with DI associated with OI 
are commonly more severely affected than are the per
manent teeth in which the signs of DI may be virtually 
lacking (Sillence et al., 1979a, b; Lukinmaa et al., 
1987). Also in primary teeth, the abnormality can be so 
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mild as to be disclosed only by histological and ultra
structural studies (Waltimo and Lukinmaa, unpublished 
observations). The histological appearance of teeth af
fected by 01 markedly varies, but irregularly scattered 
dentinal tubules and lamellar dentin matrix are character
istic features (Fig. 2c). 

Sparse, thin, and irregular dentinal tubules are con
sistent findings in SEM (Skinner et al . , 1978; Levin et 
al., 1980). The most versatile features revealed by 
TEM are those found in type I DI associated with 01. 
These include vesicular structures, remarkably thick 
hyperfibers (thus far described in one patient only) , and 
uncoiled collagen fibers (Waltimo, 1994; Waltimo et al., 
1994; Waltimo and Lukinmaa, unpublished observations) 
(Figs. 6b-6d) . In general, the dentin matrix contains 
both normal-appearing tubular areas and abnormal areas 
where the ultrastructure markedly varies. The tubules 
may be irregular in shape and diameter, sparse or even 
absent. The collagen fibers may be tightly packed or 
scarce (Fig. 6a), and their organization pattern varies 
from a haphazard meshwork to abnormal, parallel align
ment, yet distinct from bundle formation (Takagi et al., 
1980; Ranta et al., 1993; Waltimo, 1994) (Fig. 6d). 
The size of the collagen fibers may be normal (80-100 
nm), occasionally increased (Ranta et al ., 1993) or often 
reduced to 40-60 nm (Waltimo et al., 1994). 

The abundant thin fibers, seen in dentin matrix (Fig. 
6d), are suggestive of the presence of type III collagen. 
Reactivity of type III collagen, which was previously 
observed at the light microscopic level in dentin in DI 
(Sauk et al., 1980; Lukinmaa, 1988), was shown to be 
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Figure 6. Transmission electron microscopic appearance of dentin of primary teeth from two patients representing type 
I dentinogenesis imperfecta in association with type IB osteogenesis imperfecta (OI) (a-c) and type IVB OI (d). (a) 
In the irregular, atubular areas of dentin, the collagen fibers occasionally form tightly packed bundles (C) , which alter
nate with loose-textured areas (A) lacking fibrillar collagen. (b) Especially the borders of the collagen fiber bundles 
show abnormally thick hyperfibers (H; also seen in c), in which the increase of diameter is accompanied by the loss 
of a clear cross-striational pattern (arrow). (c) Pathological vesicular structures , surrounded by a trilaminar membrane 
(arrows), are seen in the dentin matrix [ electron micro graphs illustrating the affected dentin of this patient have been 
published earlier in Waltimo (1994)]. (d) Abnormally thin fibers (arrows) are present among the parallel but loosely 
arranged collagen fibers. Note also the tendency of either the entire fiber or the ends of the fibers to unravel into fine 
filaments (arrowheads) . Bars = 1 µm (a); 200 nm (b and c); 400 nm (d) . 

associated with cross-striated collagen fibers by immuno
TEM (Waltimo et al., 1994). Type VI collagen (found 
in types I and II DI, but not in normal teeth) seemed, on 
the other hand, to be located in delicate material, inter
mingling with the cross-striated collagen fibers (Waltimo 
et al., 1994). Thus, abnormalities in the constitution of 
dentin matrix in OI do not appear to be restricted to the 
genetically defective type I collagen . 
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Discussion and Conclusions 

The particular properties of dentin matrix as a dense 
connective tissue , forming a framework for the mineral 
phase, make it a difficult subject to study. The inconsis
tent data, regarding the constitution and ultrastructure of 
normal dentin, complicate the interpretation of findings 
in abnormal dentin. For example, concepts of the pres
ence in dentin of certain collagen types other than type 
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I, as well as of the contents of the dentinal tubules, dif
fer. In structural analyses of the (aberrant) dentin ma
trix, the methods used for fixation and demineralization 
make it difficult to optimize the conditions for simultane
ous examination of cells and dentin matrix . For studies 
of heritable dentin defects, we have thoroughly deminer
alized the teeth with EDT A to facilitate detailed analyses 
of the dentin matrix even at the expense of preservation 
of the cellular structures. 

As seen in TEM , the most characteristic feature of 
heritably abnormal dentin matrix , i .e., the irregularity 
and sparsity of dentinal tubules, which is thought to re
flect a reduced number of adequate! y functioning odonto
blasts (Siar, 1986), is common to types II DD and types 
I and II DI. This feature has also been shown in light 
microscopic and SEM studies, which have extended this 
finding to type III DI as well (Levin et al., 1983). 
However, TEM has facilitated the detection of more 
subtle dentinal structures such as vesicles, hyperfibers 
and unravelled fibers in OI. Also, it has been possible 
to compare the sizes and the organization pattern s of the 
collagen fibers in the affected teeth . Independent of the 
type of the defect, the diameter of the collagen fibers 
tends to be normal in areas showing a tubular struc ture , 
occasionally increased in areas where the collagen is 
densely packed, and usually decreased in loose-textured 
areas. Formation of thick collagen fiber bundles is char
acteristic for type II DD (Waltimo et al., 1991) , and 
bundles parallel with the dentinal tubules are also seen 
in type II DI (Herold, 1972) . Teeth from patients with 
OI may as well contain thick collagen fiber bundles, but 
instead of being scattered in the collagenous meshwork, 
they alternate with areas poor in collagen (Waltimo, 
1994). 

The finding that coarse fibers, resembling the so
called von Korff fibers [thick fibers present in mantle 
dentin and presumably produced by subodontoblastic 
cells of the pulp (Shroff and Thomas, 1992)], were pre
sent in circumpulpal dentin in type II DI, led Herold 
(1972) to suggest that mantle dentin-like matrix had been 
formed continually. The presence of vesicular forma
tions (normally found only in mantle dentin) in circum
pulpal dentin of patients with type I DI (Waltimo, 1994, 
Waltimo et al., 1994), supports this interpretation. On 
the other hand, dentin in different types of DI closely 
resembles tertiary or reparative dentin (Kerebel, 1975) 
which is deposited by pulpal cells differentiated into 
dentin-forming cells (Lesot et al., 1993). This may 
happen in normal teeth after the destruction of odonto
blasts due to caries, for instance . Reparative dentin has 
a similarly irregular organic matrix (for review, see 
Karjalainen, 1984) and calcification front (Levin et al., 
1980, 1983), and it also contains matrix vesicles (for 
review, see Bonucci, 1984) as well as type III collagen 
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(Karjalainen et al., 1986; Magloire et al., 1988), as 
does dentin in types I and II DI (Sauk et al., 1980; 
Lukinmaa, 1988; Waltimo et al., 1994). Furthermore, 
the lamellar structure of dentin (Aldred, 1992), a zon
ated pattern of immunostaining for cellular fibronectin 
(which is not a normal constituent of dentin) described 
in one patient (Lukinmaa and Vaheri, 1994), and entrap
ment of cells in the dentin matrix in types I and II DI, 
suggest that at least in some cases , the original odonto
blasts fail to complete dentinogenesis and that other 
cells, presumably pulpal fibroblasts differentiated into 
hard tissue-forming cells, continue the formation of den
tin (Kerebel , 1975; Waltimo, 1994). This might also 
explain the deficiency of the dentin-specific phospho 
protein in the affected dentin. 

Like von Korff fibers, fibers showing type III col
lagen reactivity occasionally seem to extend from the 
pulp to predentin (of intact or carious teeth), and pass 
the odontoblasts (Becker et al., 1986; Nagata et al., 
1992, Lukinmaa et al., 1993; Ohsaki and Nagata, 1994). 
Despite that odontoblasts appeared to express mRNA for 
type III collagen during early stages of dentinogenesis 
(Lukinmaa et al., 1993), dentin matrix may contain 
products of the dental papilla cells and/or remnants of 
pre-ex1stmg tissue. In a light microscopic and TEM 
study on developing abnormal teeth of patients with OI, 
Godfrey (1973) found that odontoblasts, after having 
formed the normal-appearing mantle dentin, lost their 
columnar shape and confluent pattern of organization . 
He suggested that such odontoblasts were incapable to 
resist involution of pulp tissue into dentin, which hence 
contained capillaries and collagen fiber bundles of non
odontoblastic origin (Godfrey, 1973). Thus , in the case 
of DI, the origin of dentin matrix may, in fact, be 
"dual" (Shroff and Thomas, 1992) in the sense that cells 
other than the first-generation odontoblasts may con
tribute to the formation of dentin . 

The ultrastructural features of the heritable dentin 
defects differ to such an extent that their classification 
into distinct entities is justified, at least until otherwise 
indicated by further molecular genetic studies. How
ever, there are also many similarities which can be as
sumed to be secondary in nature, i.e., to result from in
teraction s between the matrix macromolecules . For ex
ample, types I and III collagen tend to form mixed fibers 
(Henkel and Glanville, 1982). Also fibronectin, proteo
glycans/glycosaminoglycans, and possibly types V and 
VI collagen as putative organizers of connective tissue 
matrix (Holbrook and Byers, 1989) could be affected. 
Through such molecular interactions, shared by different 
connective tissues , a single, genetically defective mole
cule could cause a variety of structural abnormalities. 
For example, the changes in collagen fibers in abnormal 
teeth resemble those observed in affected skin. These 
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include variation in fiber size, formation of hyperfibers/ 
composite fibers, and presence of uncoiled fibers 
(Holbrook and Byers, 1989; Waltimo, 1994; Waltimo et 
al., 1994; Waltimo and Lukinmaa, unpublished observa
tion). The finding that there is a limited repertoire of 
change in collagen fibrils in the skin (Holbrook and 
Byers, 1989) also seems to be true for dentin. Thus, the 
aberrations do not appear to be tissue-specific. 

The need for further ultrastructural studies on herit
able dentin defects, both classified and thus far unclassi
fiable, is obvious. While the morphology of the aber
rant dentin may be clarified by TEM, more detailed in
formation of the molecular composition of the abnormal 
dentin matrix may be obtained by immuno-TEM. Par
ticularly in 01, where the manifestations of DI can be so 
mild as to remain beyond the level of detection of other 
diagnostic methods, histological and ultrastructural stud
ies are likely to increase the estimated frequency of the 
dental defect. Furthermore, dental aberrations occur in 
association with a variety of diseases other than OI 
(Witkop, 1975; Gorlin et al., 1990) , and the possible ul
trastructural changes in dentin of those patients provide 
an unexplored field . 
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Discussion with Reviewers 

H. Lesot: What causes obliteration of the pulp cham
bers in type I and type II DD as well as in type II DI? 
In case a single mechanism is involved in all cases, 
which is not sure, is it due to a deregulation of odonto
blast metabolism, to a change in the activity of pulp cells 
or to more complex processes? 
Authors: The mechanism(s) causing obliteration of the 
pulp chambers not only in type II but also in type I DI, 
as well as in type II DD (in deciduous teeth), and par
tially in type I DD, are unknown. The possible explana
tions, which may even differ in the distinct types of 
heritable dentin defects, are discussed in this paper. 
These include abnormal, continual secretory function of 
the odontoblasts, contribution to the formation of the ab
normal dentin matrix by pulpal cells differentiated into 
hard tissue-forming cells, or both. Because such teeth 
are usually not obtained until the pulp chamber has been 
completely obliterated, the precise nature of obliteration 
is difficult to clarify. 

H. Lesot: How is the dentin-enamel junction affected 
in the different DD and DI? 
Authors: In some earlier reports, the dentin-enamel 
junction was found to be smooth in DI, and this was 
thought to explain the chipping of the apparently normal 
enamel. Later, a scalloped junction was, however, ob
served in some teeth (Sunderland and Smith, 1980). We 
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have also found that the degree of scalloping (which is 
low even in normal deciduous teeth) varies from tooth to 
tooth. 

H. Lesot: According to what is mentioned in the 
Discussion and Conclusions, could the authors com
ment on the similarities and differences when comparing 
dentin(s) formed in type I and II DI with reparative 
dentin? 
Authors: Dentin matrix in both type I and type II DI is 
similar to that in reparative dentin in terms of the re
duced number of dentinal tubules, the irregular tubular 
pattern, immunoreactivity of type III collagen, as well as 
the poor mineralization (for review, see Karjalainen, 
1984). Information of an irregular calcification front 
concerns type I DI (Levin et al., 1980) and types II and 
III DI (Levin et al., 1983). Vesicular structures have 
been documented in type I DI only (Waltimo, 1994). 

H. Lesot: Why are there different manifestations in 
primary and permanent teeth? What are the subjacent 
mechanisms? 
Authors: The different manifestations in primary and 
permanent teeth are still a puzzle. So is the absence of 
DI in the majority of patients with OI. Furthermore, of 
the permanent teeth those, which develop first, are often 
most severely affected by both inherited enamel and den
tin defects. Hopefully, further studies on normal tooth 
development will also help us to better understand the 
abnormal development. 

H. Lesot : It is suggested that epithelial cells could 
primarily be responsible for type I DD. Could the 
authors comment on this point? 
Authors: For decades, the reason for defective root 
formation in type I DD has been a matter of discussion . 
Histological findings on the abnormal structure of Hert
wig's epithelial root sheath in type I DD, and the conse
quent suggestion that the defect could reside in the epi
thelial component (Sauk et al., 1972; Witkop, 1989), 
were contradictory with the earlier general belief that 
mesenchymal cells guided tooth development. Later, it 
was shown that the information was in the epithelium 
(Mina and Kollar, 1987) in early stages of tooth mor
phogenesis. Now we know that tooth results from se
quential, reciprocal inductive epithelial-mesenchymal in
teractions. Even currently, the site of the very first 
signal or tooth-specific information is not known. Even 
though root formation has not been studied as extensive
ly as crown formation, the mechanism behind type II 
DD may also well be related to the epithelial-mesenchy
mal interactions since the level of transition from the 
normal coronal dentin to the abnormal radicular dentin 
in permanent teeth affected with type II DD coalignes 
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with the level of enamel-cementum junction (Ranta et 

al., 1990, 1993). 

H. Lesot: How do you explain the genesis of "branched 
tubules"? Is this observation confirmed at the 
ultrastructural level? 
Authors: Branched tubules are also seen in normal den
tin. The side branches presumably form in the same 
manner as do the main tubules and result from branching 
of the odontoblast process. Narrow extensions of 
odontoblast processes have been shown to fill the side 
branches, which are thus not artefactual. At the ultra
structural level, the branching can be seen in longitudi
nal sections, and the side branches appear as small, 
round openings in transverse sections. The extensive 
branching of the tubules in DI, which is evident both in 
light microscopic and ultrastructural examination, is one 
of the irregularities associated with odontoblasts /dentin 
matrix in this disease group. Why or how the odonto
blasts send side branches is not known . 

H. Lesot: The irregularity and sparsity of dentinal tu
bules was reported "to reflect a reduced number of ade
quately functioning odontoblasts". What does this mean 
and do the authors think that this might reflect any com
mon alteration in different diseases? 
J.H.M. Woltgens: I miss findings on odontoblasts or 
cells of the subodontoblastic layers supporting the hy
pothesis quoted above . The arguments for this are based 
on fiber structures only in the absence of cells or non
collagen matrix proteins and are thus indirect. Please 
comment. 

Authors: The statement quoted was made by Siar 
(1986). It is also in line with our own findings on DI 
(particularly type I) that, compared to mantle dentin, the 
abnormal inner dentin often contains a smaller number 
of dentinal tubules per area. This would mean that part 
of the odontoblasts fail to produce dentin matrix normal 
ly, and thereby, to continue their normal pathway in a 
pulp-ward direction. The abnormally functioning 
odontoblasts probably become entrapped in the newly 
formed defective dentin matrix as also suggested by the 
presence of cells in dentin (this can be seen in histo
logical sections). We agree that the statement (Siar , 
1986) is based on indirect findings and it only concern s 
teeth affected by DI, not all types of heritable dentin de
fects. Because these teeth are not obtained at a stage 
when the dentin is still being formed (for an exception, 
see Godfrey, 1973), the analysis of the cells is difficult, 
and the speculations cannot be based on observations 
other than indirect ones. 

0. Johari: Could you please give a reference for the 
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staining methods used? 
Authors: The hematoxylin and eosm as well as 
Schmorl's picric acid and thionin methods have been 
described, for example, by Stevens (1982) and Page 
(1982), respectively. 
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