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Abstract 

Laser irradiation at and above parameters producing 
the modification threshold for dentin causes structural 
changes to the dentin surface. This study determined the 
microhardness of dentin before and after laser modifica
tion and acid treatment using a repeated-measures de
sign. Seven dentin sections (4 mm in thickness) were 
cut from freshly extracted non-carious third molars using 
a diamond saw. The middle occlusal third was used as 
the test dentin surface. One section served as a control 
(C); three received laser modification (L) and then acid 
treatment (L + A); and three received acid (A) and then 
laser treatment (A + L). Laser modification was made 
using a pulsed (120 µs) fiber-optic-delivered (500 µm 
diameter) Nd:YAG (>-. = 1.06 µm) laser at the physical 
modification threshold of 207 J/cm2. Acid treatment 
consisted of 10% nitric acid applied for 45 seconds. 
Twenty Knoop indentation microhardness measurements 
(KHN) were obtained using 300 g force engaged for 15 
seconds for each section before and after each treatment 
(n = 400). Knoop microhardness values recorded: C 
= 62 ± 3; L = 149 ± 35; A = 24 ± 5; L + A = 40 
± 16; and A + L = 33 ± 5. Multifactor-repeated 
measures, with analysis of variance (ANOV A; p :s;; 
0.05), indicated significant differences between all 
treatment groups. Scanning electron microscopy analy
sis of dentin surfaces documented unique surface mor
phology for all treatment conditions. Laser modification 
of dentin before or after acid treatment increased dentin 
microhardness. 
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Introduction 

Application of Neodymium: Yttrium-Aluminum
Garnet (Nd: Y AG) pulsed infrared laser energy to dentin, 
using parameters at and above the physical modification 
threshold, has been documented to produce physical and 
chemical changes of the surface layer (White et al., 
1993a,b). The physical modification threshold is de
pendent on specific laser parameters (wavelength, pulse 
duration and energy density) at which the first observ
able interaction occurs causing macro changes in the 
dentin structure. This threshold effect has been docu
mented as a function of laser exposure, and laser para
meters have been correlated to morphological changes 
on the dentinal surface (Goodis et al., 1989; Nammour 
et al., 1992; Shariati et al., 1993). Studies have further 
determined that laser-modified sound dentin demon
strates increased surface microhardness and that laser 
modification increases bond strength of composite resin 
restorations to dentin (Cooper et al., 1988; White et al., 
1991a). Goodis and others found that laser modification 
also reduces bacteria on contaminated dentin surfaces 
(White et al. , 1991b; Marshall, 1993; Goodis et al., 
1994). Alternate studies considering the microhardness 
of demineralized dentin and enamel have determined that 
a linear correlation exists between volume percent min
eral content and microhardness, microhardness decreas
ing as mineral content decreases (Davidson et al., 1974; 
Featherstone et al., 1983). 

Micro hardness 

Arends and ten Bosch (1992) reviewed 10 tech
niques currently in use to measure demineralization and 
remineralization and found the most practical techniques 
for quantitative measurement to be microhardness testing 
(both Knoop and Vickers), light scattering and microra
diography. Panighi and G'Sell (1992) measured micro
hardness and wettability and found positive correlations 
between the degree of mineralization, dentin compact
ness and hardness. Panighi and G'Sell (1993) reported 
strong correlations between microhardness and shear 
bond strength and found that microhardness is also 
strongly correlated to calcium concentration. 
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Laser effects 

Laser-produced effects in dentin can be efficacious 
when they create a protective barrier. Tay et al. (1994) 
examined surface morphology and observed, as a natural 
phenomenon, the sealing of exposed dentin tubules as a 
tissue-protective strategy in the inherent process of 
arresting caries. Using scanning electron microscopy 
(SEM), they further observed the dynamics of chemical 
adhesion which imitates the natural protective process by 
forming "an outer zone" which acts as a sealant. Laser 
energy has been documented to create this sealing proc
ess through the surface melting of dentin. Additionally, 
researchers found laser-exposed dentin fundamentally al
tered. Lobene et al. (1968) observed the destruction of 
the organic contents of the dentin tubules following ex
posure from a CO2 laser. Scheinin and Kantola (1969) 
reported increased mineralization and Kantola (1972) 
described recrystallization of enamel and dentin follow
ing CO2 exposure. 

Melcer et al. (1984) found that carious dentin dem
onstrated increased resistance to chemical or physical 
demineralization. Nelson et al. (1986) found the CO2 
laser effective in the inhibition of caries formation. In 
1987, Featherstone and Nelson used the CO2 to effect 
enamel surface fusion and inhibit the progression of 
demineralization due to acid attack. 

Similarly, the Nd: Y AG has been observed to create 
a sealed tooth surface which resists caries formation 
(Yamamoto and Sato, 1980). Burkes et al. (1992), 
using an Er: Y AG, reported melted enamel surfaces. 

Further, Cooper et al. (1988) found a 300% in
crease in shear bond strength in laser-treated samples 
using a non-contact CO2 laser, applying laser energy to 
adhesive-coated dentin and untreated controls. White et 
al., 1991a,c) obtained similar results using the pulsed 
contact-delivered Nd: Y AG. 

Acid effects 

Featherstone et al. (1985) studied the gradual devel
opment of artificial caries-like lesions by simulating the 
acidic environment corresponding to conditions in vivo 
and documented varying degrees of calcium and phos
phorus decline. Fusayama (1991) documented the proc
ess of acid etching and provided SEM images of turbid, 
transparent and normal dentin after etching. Zero et al. 
( 1990) studied enamel demineralization and found miner
al loss of calcium and phosphorous to be directly pro
portional to dissolution time. Lewinstein and Rotstein 
(1992) reported approximately 25 % decrease in the mi
crohardness of dentin after a 90-second exposure to tri
chloracetic acid and documented with SEM an etched tu
bule surface. Ruse and Smith (1991) documented the 
effects of acid etching on dentin followed by analysis 
with X-ray photo-electron spectroscopy and SEM. They 
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reported almost complete demineralization under hydro
chloric acid etching; calcium and phosphorus decreased 
tenfold. Phosphoric acid etching decreased calcium lev
els even lower, and a phosphorus content approached 
zero. Their observations indicate the value of additional 
research on laser-and-acid-exposed dentin to determine 
specific mineral levels before and after exposure and the 
degree of mineral conservation achieved through laser 
exposure. 

Ogawa et al. (1983) measured the varied microhard
ness of sound dentin and of carious transparent and inner 
dentin, documenting crystalline density with SEM and 
TEM. This provided a foundation for the work of Fusa
yama (1991) who described the mechanisms involved in 
demineralization caused by carious acid, which dissolves 
apatite crystals and eventually the intermolecular cross 
links of collagen. He recommended the development of 
mineral conservation strategies through the preservation 
of the carious inner dentin layer. Baier (1992) pointed 
out the vulnerability of the organic collagen layer as the 
foundation for bonding: "This underlayer can dominate 
a hard biological material's response to environmental 
stress even in the presence of overlayers of organic in
teguments. These considerations help explain how adhe
sive bonds to biological solids fail under stress." 

The work of these researchers demonstrated the po
tential value of alternative strategies for surface treat
ments and sealants beyond current acid-etching proce
dures. The purpose of this investigation was to deter
mine if there were changes in the microhardness of den
tin treated with the Nd: Y AG laser before and after acid 
demineralization. 

Materials and Methods 

Specimen preparation 

Seven freshly extracted (less than 28 days), non-car
ious human third molars with complete root formation 
taken from adults were first sterilized by gamma radia
tion (cesium-137 source, 16 hours). The teeth were sec
tioned transversely into discs using a water spray-cooled 
diamond wheel modified with a thin blade to minimize 
smear layer (Buehler Limited, Lake Bluff, IL). The 
specimens were cut into sections 4 (± 0.25) mm thick, 
the first cut being slightly below the dentino-enamel 
junction at the occlusal surface. The sectioning process 
produced a uniform dentin surface with little smear layer 
detectable using SEM techniques. Sections were stored 
in distilled and filtered water prior to use and during the 
course of the study. This storage solution causes no sig
nificant spectroscopic changes in mineral peak from 1 to 
28 days (Strawn et al. , 1993). 

Procedures 

In the experiment, seven of the dentin discs were 
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Figure 1. Experimental flow diagram for microhardness tests, laser and acid treatment. KHN: Knoop indentation 
microhardness measurements. 

used. Of these, one served as a control (C) disc. The 
control dentin disc received repeated microhardness 
measurements: 10 pretreatment, 20 when test teeth re
ceived laser treatment and 20 when test teeth received 
acid treatment. This control dentin disc allowed for 
validation of accuracy of the microhardness measure
ments over the course of the study. All dentin sections 
were treated and measured wet. The laser-and-acid 
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treated (L + A) samples were bio-prepared and three of 
the dentin discs received 20 microhardness pre-treatment 
measurements. These discs were then laser-treated (L) 
with the Nd:YAG (207 J/cm2) and again measured. 
Finally, the three discs were immersed in 10% nitric 
acid for 45 seconds, followed by 20 additional micro
hardness readings. 

A second set of dentin discs were microhardness 
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tested, immersed in 10% nitric acid (A) for 45 seconds, 
and then laser-treated (207 J/cm2; A + L). Twenty 
post-treatment microhardness readings were obtained, 
following each respective step (Fig. 1). 

Microhardness testing 

A Kentron microhardness tester (Riehle Testing 
Machines, East Moline, IL) was used with a highly pol
ished, pointed, rhombic-based, pyramidal diamond 
which included longitudinal edge angles of 172.5° and 
130° (± 0.83°) to measure hardness. Tue tester was 
examined using the cross-calibration results of two 
operators as well as repeatability measures and found to 
be within 2 % error using block standards of 50 g and 
300 g. The 300 g force was used for all measurements 
for consistency and to measure both surface and subsur
face microhardness. Measurements were taken in Filar 
using a measuring microscope at lOx and converted into 
Knoop (KHN). The accuracy of the measurements was 
confirmed using a calibrated reference slide and com
puter image analysis. Any measurement in which one 
leg of the long diagonal was 20 % greater than the other 
was disregarded. If both ends of the diagonal were not 
in the same field of focus, the reading was disregarded, 
also. These procedures were based on a standard test 
method, ensuring that the surface to be tested was 
parallel with the table of the hardness (ASTM, 1985). 
Further criteria used in accepting an indentation value 
were clearness, absence of cracks, and symmetry. 

A 300 g force load applied for 15 seconds was em
ployed for all specimen measurements and converted in
to Knoop hardness. KHN measurements were read 
before and after all treatments were performed and com
pared using multifactor repeated measures analysis of 
variance (ANOV A; p S: 0.05). Knoop hardness was 
calculated from the following equation: 

KHN= C*P/ L2 

where: 
C = indenter constant relating the projected area of 
the indentation to the square of the length of the 
long diagonal (C = 14229) 
P = load = gram force (300 g) 
L = length of the long diagonal in µm 

Scanning electron microscopy 

Dentin sections were first reviewed visually for the 
presence or absence of interactive effects from the re
spective treatments. Dentin sections were examined by 
SEM to record the nature of the morphological changes 
which occurred. Wet SEM examination was performed 
with a model SX40A ISi (International Scientific Instru
ments, Inc., Milpitas, CA) SEM fitted with a Robinson 
scintillator backscatter detector, at specimen chamber 
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pressures of 0.12-0.5 torr according to the methods de
scribed by Marshall et al. (1989) and techniques previ
ously used for the physical modification threshold deter
mination (White et al. , 1993b). The SEM was operated 
at accelerating voltages of 15-30 kV. 

Laser treatment 

A pulsed fiber-optic-delivered Nd: Y AG laser with 
an emission wavelength of 1.06 µm (Sunrise Technol
ogies, Fremont, CA) was used to modify the dentin sur
faces of the specimens. A 120 µs pulse duration was 
delivered through a circular quartz fiber-optic probe with 
a diameter of 500 µm. The probe was placed in direct 
contact with the dentin surface and an energ1 level of 
207 J/cm2 rendered in single pulses; 207 J/cm has been 
defined as the parameter of the modification threshold of 
dentin, the energy parameter at which dentin modifica
tion occurs at this emission wavelength (White et al., 
1993b). A physical modification in dentin occurred with 
the delivery of a single pulse at this energy level. An 
optical detector (Molectron, Portland, OR) was used to 
confirm the correct energy level before each laser treat
ment was performed. 

Line exposures were made across the specimen with 
the probe in contact with the dentin surface, moving at 
a uniform rate at a laser frequency of 10 Hz. The rate 
was determined so there would be no overlap of laser 
modification of dentin and controlled using a mechanical 
testing machine (Instron Corp., Canton, MA) at a rate 
of 5 mm/s. 

Acid treatment 

Specimens were immersed in 10 % nitric acid for 45 
seconds. Based on our preliminary tests, 10 % nitric 
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Figures 3-7. Representative scanning electron micro
graphs (taken at 20 kV) of: a prepared untreated dentin 
surface prior to laser or acid exposure (No Tx; Fig. 3); 
a nitric-acid-treated dentin (A; Fig. 4); a Nd: YAG laser
modified dentin, exposed at the physical modification 
threshold (PMT) of 207J/cm2 (L; Fig. 5); an acid and 
then laser treatment of dentin (A + L; Fig. 6); and a 
laser followed by acid treatment of dentin (L + A; Fig. 
7). Bars = 10 µm. 
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acid was used as it was the most convenient way of re
ducing microhardness by at least half of the original 
value in a reasonable amount of time. 

Results 

Significant differences in microhardness were ob
served for all treatment conditions and untreated control 
dentin sections (ANOV A, p ~ 0.05) . The following 
Knoop microhardness values were recorded: C = 62 ± 
3; L = 149 ± 35; A = 24 ± 5; L + A = 40 ± 16; 
and A + L = 33 ± 5. Our results indicated that laser 
exposure at the threshold of physical modification 
increased the microhardness of dentin. In addition, laser 
modification preceding acid treatment presented higher 
average microhardness values than acid treatment alone. 
Lastly , laser modification following acid treatment 
increased microhardness values compared to acid 
treatment only. 

Results are presented in Figure 2. 

Scanning electron micrographs 

In a representative scanning electron micrograph at 
20 kV and l,OOOx of prepared, untreated dentin, the 
morphologic surface is apparent, including tubules, 
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intertubular and peritubular dentin (Fig. 3). In compari
son, a scanning electron micrograph of nitric acid-treat
ed dentin provides visual evidence of acid effects in per
itubular dentin, and the widening of the dentinal tubules 
(Fig. 4). 

A clear contrast in morphology is evident in a scan
ning electron micrograph of dentin laser-modified by the 
Nd: Y AG at the physical modification threshold (PMT) 
of 207 J/cm2 (Fig. 5). Melting and resolidification of 
the surface is present with no remaining unaltered dentin 
morphology. The surface is irregular in appearance 
with multiple surface cracks and small holes, presumably 
from the melting and resolidification process caused by 
the laser. A lighter color is evident in the micrograph, 
presumably from the increased mineral content on the 
surface (White et al., 1994a). 

In a scanning electron micrograph of the acid-and
then-laser treatment, the surface is unique and different 
than untreated dentin, acid-treated dentin, or laser-treat
ed dentin (Fig. 6). There appear to be combustion prod
ucts on the surface (white spheres), and there is no re
maining dentin morphology. Minimal evidence of sur
face cracking can be observed: all acid-treated dentin has 
apparently been removed by the laser, with evidence of 
melting and resolidification of the underlying mineral. 

Comparing micrographs of laser-followed-by-acid 
treatment of dentin (Fig. 7) with acid-treated dentin, 
dentinal tubules appear to be affected in a smaller sur
face area. There also appear to be areas of laser-modi
fied collagen which were not removed by the acid. The 
surface morphology is relatively flat in comparison with 
that of laser-modified dentin. The acid has removed the 
majority of the laser-modified collagen but not all of the 
laser-modified material. Although closest to the acid 
treated surface, the resulting appearance is unique from 
all previous treatments. The remaining surface displays 
representative adherent melting and the resolidification 
of dentin. The original dentinal tubule morphology is 
present with slightly widened tubules. 

Discussion 

This study demonstrated the improvement of the 
mechanical property of microhardness from pulsed fiber
optic delivered Nd:YAG laser treatment of dentin. Im
portant considerations are the clinical utility and safety 
at the physical modification threshold. If the findings of 
this in vitro study are confirmed by clinical testing, then 
there would be clinical use for hardening dentin based 
on the ease of delivery using the fiber-optic in contact 
with the dentin. Potential applications would be for 
hardening root surfaces and dentin prior to adhesive res
torations. The laser parameter used (207 J/cm2, for a 
single pulse) is not sufficient to cause a pulpal response 
in shallow cavities where there is greater than 2 mm 
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remaining dentin thickness (White, et al., 1991d, 1992, 
1993c, 1994b, 1995a,b,c; Gelskey, et al., 1993). This 
paper demonstrates resistance of laser treated dentin sur
faces to acid attack in vitro. Laser treated dentin acid 
resistance from bacterial sources has not been investi
gated in vivo. It is not known how long this resistance 
would last in a clinical situation or if other laser param
eters would be equally effective. We hypothesize that a 
more highly absorbing wavelength may be able to pro
duce a similar effect using a lower energy density, with 
higher temperatures, but this has not been demonstrated 
for dentin. 

SEM techniques used in this study allow for the elu
cidation of the surface morphology of treated dentin. In 
order to define possible effects to the underlying dentin, 
longitudinal sections need be prepared and evaluated. 
Although surface sealing is observed using SEM, a limi
tation of the techniques is that it is only descriptive and 
does not directly measure fluid flow through the dentin. 
It appears that although surface sealing is present, fluid 
flow still occurs (White et al., 1991e). The blockage of 
fluid flow is hypothesized to be caused by both dentinal 
tubule occlusion and the coagulation of proteins within 
the tubules (Goodis et al., 1993). 

The microhardness values for sound dentin reported 
in this experiment are in general agreement with the 
findings of Craig and Peyton (1958) and with the prelim
inary data of Goodis et al. (1994) for laser-modified 
dentin. 

Testing sites for this study were limited to periph
eral dentin in an effort to avoid the influence of the pulp 
horns or chamber and typically were taken at a constant 
distance from the dentino-enamel junction. 

Through experimentation, we found a 300 g load 
applied for 15 seconds most suitable for this study; this 
load provides enough force to create a readable measure
ment in Filar units using the Kentron microhardness tes
ter with a lOx objective on a laser-modified dentin sur
face. Forces less than this create indentations too small 
to read accurately; forces larger often cause cracking 
and distorted readings. 

The experimental methods used in this study charac
terize the physical properties of microhardness and relate 
this property to surface morphology, as observed utili
zing SEM. To fully understand acid and laser effects on 
the dentin surface, analysis of surface chemistry is 
needed. We have previously utilized Fourier transform 
infrared spectroscopy and found that laser-modified 
surfaces have increased mineral content with the elim
ination of the organic component of dentin (White et al., 
1991f, 1993a,b). Further characterization of the sub
surface is needed and characterization of regional differ
ences noted in scanning electron micrographs have yet 
to be completed. 
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Conclusions 

Research utilizing microhardness as a physical prop
erty is relevant to a number of major research issues in 
contemporary dentistry: the understanding of caries pre
vention, because it is the reverse process of demineral
ization which correlates with the process of caries pro
gression; the development of successful bonding agents, 
adhesive wetting and bond strength through a more com
plete understanding of surface morphology; the evolution 
of innovations as a result of laser modification, which 
has been documented to change the fundamental struc
ture of the dentin and its surface; and the exploration of 
new bonding agents or processes based on findings re
lated to acid and microhardness (given the role of bio
acids in caries progression and of acid treatments in sur
face preparation for dental bonding). Research findings 
indicate that the fundamental microhardness of dentin is 
altered by exposure to laser energy. 

In our experiment, we confirmed that pulsed 
Nd: Y AG laser treatment above the physical modification 
threshold approximately doubles the microhardness of 
dentin. Additionally, we discovered that laser treatment 
at the same parameters increases the microhardness of 
dentin before or after acid treatment, thus creating a sur
face more resistant to acid attack than untreated dentin . 
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Discussion with Reviewers 

K. Matswnoto: Only one dentin disc was served as a 
control in this study, but it is too small. You should 
serve more than 3 discs as a control. 
Authors: One dentin disc served as a repeated measure 
control with multiple (10, 20 and 20) measurements over 
the course of the study. Microhardness measurements 
for this control section were within the ASTM standards 
for accuracy of the testing mechanism. 

K. Matswnoto: The microhardness tests with 300 g 
load is too high for demineralized dentin. Is a lOx 
objective lens for measurements in this study? Usually 
a lOx objective lens is not for measurements but for 
focusing in conventional microhardness machines. 
Authors: The 300 g load measures both surface and 
subsurface microhardness. It is true that lighter loads 
(50 g) would measure surface effects and small changes 
in demineralized dentin. We utilized the 300 g load to 
consistently determine hardness for a wide range of 
hardness values of dentin, demineralized dentin and laser 
treated dentin. The repeatability of measurements were 
within 2 % using standard blocks with 50 g and 300 g 
loads. The lOx objective lens allowed for the accurate 
measurement of the length of indentation. The accuracy 
of the Filar measurements using the lOx objective was 
confirmed using a calibrated reference slide and compu
ter image analysis. 

K. Matswnoto: In Discussion, there is no mention of 
thermal effect. Is it possible to use this laser at the 
parameter (207 J/cm2) clinically without thermal damage 
to pulp tissue? 
Authors: The laser parameter used (207 J/cm2) for the 
physical modification of dentin is not sufficient to cause 
a pulpal response where there is 2 mm remaining dentin 
thickness. This laser treatment has been investigated for 
the potential of light and heat effects, and there are no 
pulpal effects at this parameter as referenced in the dis
cussion of this paper. 

T .D. Myers: In Introduction, the authors state: "The 
physical modification threshold is dependent on specific 
laser parameters (wavelength, pulse duration and energy 
density) at which the first observable interaction occurs 
causing macro changes in the dentin structure. " Are the 
authors referring to micro-alterations or clinically 
observable macro changes? Also, is this interaction a 
universally constant change independent of wavelength? 
Authors: The physical modification threshold (PMT) is 
defined as the set of laser parameters where the first 
observable interaction occurs. This is a macro physical 
change in the dentin structure. It is theoretically pos-
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sible that micro alterations such as desiccation or chem
ical changes would occur before the PMT. However, 
due to the high peak powers and short interaction times, 
it is predicable to measure the macro change which is 
clinically relevant. The interaction is dependent on both 
the substrate (dentin) and the specific laser parameter, 
and is not independent of wavelength. 

T .D. Myers: In Results, the authors state: "A lighter 
color is evident in the micrograph, presumably from the 
increased mineral content on the surface ... " What 
factors may account for the change in color? 
Authors: The primary factor effecting the SEM image 
is the reflection of the beam to the detector. Higher 
density objects, such as mineralized tissue, reflect more 
of the beam as compared to less dense tissue, such as 
organic tissue. The melted and resolidified surface from 
the laser treatment ablates the organic and leaves a more 
highly mineralized surface. The results of this paper 
demonstrate the correlation between hardness and the 
observed increase in SEM image. 

T.D. Myers: Do the authors have evidence that the 
laser-treated dentin is indeed more resistant to acid 
attack? If so, how long would they estimate this laser 
effect to last? Do they believe all wavelengths are 
capable of this effect? 
Authors: This question asks of the relationship between 
acid treatment and caries attack. This in vitro study did 
not measure the hardness from caries attack, which is a 
different mechanism than acid treatment. Having the 
knowledge obtained from this study provides the basis 
for moving the research direction towards laser effects 
and caries. The estimated laser effect duration would be 
dependent upon the pH, buffering capacity, fluid flow 
and presence of fluoride and can only be determined 
from clinical trials. We believe that these effects may 
be able to be reproduced using different wavelengths, 
assuming they can achieve similar surface temperatures 
to melt and resolidify dentin. 
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