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Abstract 

The paper presents a review of the results obtained 
by the authors on the study of external (gamma) and in
ternal (J-131) radiation effects on the functional mor
phology and linkage of the diffuse neuroendocrine sys
tem (DNES) and amine precursor uptake and decarboxy
lation (APUD) cells of the stomach and duodenum. The 
investigations performed enabled us to determine that the 
morphological changes noted in APUD cells had a dose 
and time dependency. The present study supports the 
point of view that the radiation initiates serotonin release 
from APUD cells, which appears to initiate the mecha
nism of early postirradiation dysfunctions of the gastro
intestinal tract and the subsequent adaptive response of 
DNES . Analysis of our results, together with a review 
of the literature, indicates that APUD cells actively par
ticipate both in pathogenesis of radiation injury and de
velopment of organ and tissue radiosensitivity. 

Key Words: Diffuse neuroendocrine system, amine 
precur sor uptake and decarboxylation (APUD) cells, 
enterochromaffin cells, gut, radiation injury. 
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Introduction 

Analysis of systems that control and integrate adap
tation processes associated with ionizing radiation stress 
is of great interest. One of these systems appears to be 
the diffuse neuroendocrine system (DNES). The current 
concept is that DNES appears to functionally integrate 
chemically similar substances, such as neurotransmitters 
acting as information transfer agents within the nervous 
system and hormones within the endocrine system that 
act either locally or distally [30). Current morpho-func
tional views on DNES are based on the amine precursor 
uptake and decarboxylation-concept suggested and devel
oped in detail by A. Pearse, an English histochemist and 
pathologist [26, 27, 28, 29), as well as on the funda
mental work ofB. Falck at Lund University (Sweden) in 
which the "formaldehyde histofluorescence technique for 
biogenic amines" was developed and used to define sev
eral peripheral endocrine systems, based on the identifi
cation of amine-accumulating cells following precursor 
loading [8, 9, 24, 34, 35) . 

In 1966-69, Pearse suggested that a specialized, 
highly organized cell system exists in organisms whose 
main feature was the capability of component cells to 
produce peptide hormones and biogenic amines. The 
concept was based on the extensive series of experiments 
on distinguishing endocrine cells in different organs by 
a thorough cytochemical and ultrastructural identification 
of endocrine cell-generated products. Different types of 
cells, widely dispersed in the organism, have a common 
ability to take up and decarboxylate monoamine precur
sors, thus producing biogenic amines . This ability ac
counts for the term "APUD," an acronym for "amine 
precursor uptake and decarboxylation" used by Pearse to 
designate the cell series. 

Recent investigations have shown that biogenic 
amines and active peptides, i.e., regulatory peptides, are 
present both in neurons of the central and peripheral ner
vous system and in APUD cells located in different or
gans [12, 31). The data on the identification and loca
tion of monoamines and identical regulatory peptides 
both in neural and endocrine cells of different organs 
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suggests that these elements are incorporated into a com
mon, but diffuse regulating system, namely the DNES. 
Located in practically all organs and producing vitally 
important biological active substances, DNES cells fulfill 
the role of tissue regulators of homeostasis, controlling 
a multitude of physiological processes via neurocrine, 
endocrine and paracrine mechanisms of messenger mole
cule-effects on target cells. 

The analysis of the biological features of many 
physiologically active substances produced by DNES 
cells suggests an important role of this system in the 
mechanism of radiation injury. On the one hand, regu
latory peptides and biogenic amines are able to serve as 
radiomodifiers, on the other hand, these substances par
ticipate, to a certain extent, in pathogenesis of those dis
orders which are described as typical ones for the effects 
of even low and sublethal doses of ionizing radiation, 
viz., changes in the vascular tonus and permeability; 
vegetative alterations in arterial pressure rates, contrac
tion frequency and breath rhythm; desynchronization of 
biological rhythms; abnormalities of mediators exchange 
and transmitter reception by neurons; abnormalities of 
the proliferative activity and others . 

Having the above features, regulatory peptides and 
biogenic amines are able to influence various pathologi
cal processes resulting from radiation injury, via either 
the direct potentiation, or reduction, of the radiation ef
fect, or indirectly via their participation in the mecha
nisms mentioned above. 

Thus, the study of the role and significance of the 
diffuse neuroendocrine system and, in particular, its en
docrine part, APUD cells, in pathogenesis of radiation 
injury lends a new perspective in the interpretation of 
endogenous mechanisms of ionizing radiation-induced re
sponses of several organ and tissue systems, as well as 
the organism as a whole. 

Recent investigations indicate that together with 
DNES cells, some non-endocrine cells, i.e., natural kil
ler cells, mast cells, eosinophilic leukocytes and endo
thelial cells, are able to synthesize, or accumulate, bio
genic amines and active peptides [20]. The study of the 
functional morphology and behavior of these cells in ma
lignant tumors suggests their direct participation in the 
endogenous mechanisms of carcinogenesis regulation and 
ionizing radiation effect on tumor cells. This fact opens 
new prospects for hormonal modification of antitumor 
radiation therapy. 

Many investigations, papers and reviews [ 1, 2, 5, 
11, 14, 15, 16, 21, 22, 33, 36, 41, 45] are dedicated to 
the biological effect of ionizing radiation on healthy tis
sues and neoplasms, molecular and cellular targets of ra
diation injury, radiation histopathology of the nervous 
and endocrine systems, hormonal dysfunctions, late ef
fects of radiation injuries both due to external sources 
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and incorporated radioactive substances. By contrast, 
there are few reports on DNES responses following radi
ation exposure. This is most unfortunate, because the 
induced responses of the DNES, either as a whole or 
from its composite cell types, could well account for the 
often noted, varied and disorganized functions of the or
ganism as a whole. 

The purpose of this paper, therefore, is to present 
a summary of results of long-term research carried out 
at our laboratory on the role of the DNES in modulating 
radiation injury . It should be noted, however, that even 
in a review paper, it is impossible to summarize all ma
terial obtained by our team, relative to the influence of 
ionizing radiation on the functional morphology of 
APUD cells of different endocrine and non-endocrine or
gans. Taking into account the fact that most APUD 
cells were located in the gastro-intestinal tract, we con
sidered it prudent to focus on gut endocrine cells, with 
the special relevance to enterochromaffm (EC) cells, as 
well as to assess the possible significance of the presence 
of biogenic amines and peptide hormones in endocrine 
and non-endocrine cells for oncoradiobiology . 

We lay no claim to the complete review of all re
sults available in the literature and making some pro
posals, sometimes rather disputable, we would like to 
call attention to some features of the pathological devel
opment of enteroendocrine cells following exposure to 
ionizing radiation. 

Modeling of Radiation Effects, 
Methods of Studies and Terminology 

DNES injury under external and internal irradiation 
was examined and modelled using both C57Bl/6 mice 
(F 1 hybrids; CBA x C57Bl/6 cross) and Wistar rats. 
Male Fl mice were exposed to single whole-body doses 
up to 20 Gy of gamma-rays from a Co-60 source, at a 
dose rate of 2.25 Gy/min. Internal irradiation effects 
were achieved by oral 1-131 administration at a dose 
level of 1.0 µCi per gram of body weight (b.w.). 
Female Wistar rats were used in these studies. 

Average cumulative radiation doses and dynamics of 
their accumulation following 1-131 introduction were cal
culated under radiometry data for individual organs and 
the whole body according to the automatic system of 
dosimetric control [38] developed at MRRC RAMS (Ob
ninsk, Russia) . The contribution of the entire spectrum 
of radionuclide irradiation to the absorbed dose was 
taken into account. To calculate "probable absorbed 
shares" of energy in organs and tissues an animal phan
tom for dosimetric calculations was used. The universal 
dose functions of point sources of electron, quantum and 
{1-irradiation were applied. The calculations were per
formed by the method of superposition of dose functions 
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Figure 1. Pyloric mucosa of the control mouse showing 
serotonin-containing EC cells in the basal areas of the 
glands; photo width (P.W.) = 275 µm. Immunoperoxi
dase avidin-biotin method for the localization of sero
tonin in Bouin's-fixed, paraffin-embedded tissue ; poly
clonal rabbit antibody to serotonin (Dianova); SINtm 
universal anti-rabbit kit (Sigma diagnostics); 3-amino-9-
ethylcarbazole, haematoxylin. 

of point sources. The description of the procedure, pa
rameters and gamma-irradiation doses, calculation of the 
absorbed doses and dynamics of their accumulation in 
internal irradiation as well as animal series, details of 
experiments, and preparation of the material for histo
logical investigations were published previously [45] . 

To study the structural and functional organization 
of DNES at a given radiation exposure level, a complex 
approach based on a stage analysis of APUD cell popu
lation was used [19]. We used general silver staining 
methods in the study of endocrine cells [10], and specif
ic immunocytochemistry methods for the detection of se
lect types of regulatory peptides and biogenic amines 
[39, 40). For the latter, we applied immunoperoxidase 
techniques (PAP and ABC) using polyclonal rabbit's an
tibodies to serotonin (Dianova, Hamburg, Germany) 
(Fig. 1), melatonin (CIDtech Research Inc., Missis
sauga, Ontario, Canada), beta-endorphin, insulin, 
glucagon, somatostatin (all Dako, Glostrup, Denmark) 
and kits for immunocytochemical analysis {Amersham 
(Slough, U.K.), Sigma (St. Louis, MO), Dianova}. 

The various radioautographic and electron micro
scopic techniques applied were performed as described 
previously [43]. 
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Figure 2. Silver stains in the study of endocrine cells. 
(a) Argyrophil cells in the mucosa of duodenum of a 
control rat in Bouin's-fixed, paraffin-embedded tissue. 
Grimelius stain; P.W. = 282 µm. (b) Argentaffin cells 
in the duodenal mucosa of a control rat in 4 % buffered 
formaldehyde-fixed, paraffin-embedded tissue. Masson
Hamperl stain; P.W. = 121 µm. 

For quantitative studies each control and experimen
tal group consisted of 5-7 animals. Rats were killed 
with Nembutal (Pharma Fact., St. Petersburg, Russia) 
anesthesia. Mice were sacrificed by rapid cervical dis
location. Tissues were immediately removed, fixed both 
in Bouin's fluid with 5% acetic acid and 4% buffered 
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Figure 3. Argyrophil (a) and argentaffin (b) cell density, expressed as the number of cells per 1 mm2, in pyloric area 
of gastric mucosa in F 1 mice at various intervals after single whole-body exposure to different doses of gamma-rays. 
Each value represents the mean of 5-7 animals per group . Asterisks indicate statistically significant difference from 
controls, which were not irradiated, at p < 0.05 according to the Mann-Whitney U test. 

formaldehyde (pH 7 .2) for 24 hours, rinsed, dehydrated, 
embedded in paraffin and then sectioned at 7-µ,m thick
ness. Endocrine cell population as a whole was stained 
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using the Grimelius argyrophil technique with Bouin's 
fixative (Fig. 2a). Serotonin-producing EC cells were 
stained by Masson-Hamperl argentaffin method using 
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Figure 4. Argyrophil (a) and argentaffin (b) cell content, expressed as the number of cells per 1 cross-section of the 
organ , in duodenal mucosa in Fl mice at various intervals after single whole-body exposure to different doses of 
gamma-rays . Each value represents the mean of 5-7 animals per group . Asterisks indicate significant difference from 
unirradiated controls, at p < 0.05 according to the Mann-Whitney U test. 

buffered formaldehyde as a fixative (Fig. 2b). Mor
phometric analysis of cell content was performed using 
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some principles according to Weibel et al. [42]. Nu
merical density indicating the number of cells per unit of 
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Figure 5. Electron micrographs showing gastric endocrine cells of mice after exposure to a dose of 5 Gy of gamma
rays. (a) Edema of cytoplasm and mitochondrions in endocrine cell, 1 day; P.W. = 2.4 µm. (b) Decrease in number 
of the secretory granules in endocrine cell, 1 day; P. W. = 2.5 µm . (c) Excess accumulation of the characteristic 
cytoplasmic vesiculus in ECL cell, 1 day; P.W . = 3.1 µm. (d) The cytoplasmic granules in G cell are numerous, 3 
days; P .W. = 4.3 µm . 
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Figure 6. Destruction of hemato-cellular barrier in gastric mucosa of mice after gamma-irradiation to a dose of 5 Gy. 
(a) Distension of venule, marginal location of platelets and formation of perivascular edema (arrows), 1 day; P .W. = 
13.3 µm. (b) Endothelial swelling and some granules in the cytoplasm of endothelial cell, 3 days; P.W. = 4.8 µm. 

section area was calculated using a multipurpose test 
system. The examinations were performed with l0X 
eye-piece and 40X objective (visual field of the test 
system 170 µm x 140 µm; 100 test points). The cells 
were counted in 50-100 randomly selected visual fields, 
e.g. , transverse sections of the stomach and cross sect
ions of duodenum, from each section. At least 3 sec
tions from each specimen were examined. The cell 
counts were expressed as the number of cells per 1 
mm2• The results were statistically evaluated. Non-par
ametric Mann-Whitney U-test was used to determine sig
nificant differences between control and irradiated ani
mals; p < 0.05 was considered significant. 

To assess the functional activity of APUD cells, ra
dioautography was applied, using tritium-labeled precur
sor of dopamine . Accordingly, both control and irradi
ated (5 Gy gamma-rays) male C57Bl/6 mice were inject
ed intraperitoneall y with isotopicall y labelled D ,L-3, 4-di
hydroxy (2,5,6-3H3) phenylalanine (10 µCi/g b. w. ; 1.1-
1. 15 Ci/mmol specific activity; Isotope firm, Moscow, 
Russia). All animals were killed 2 hours after the injec
tions. Small (1 mm3) specimens of stomachs and duode
nums were fixed by immersion in 2.5 % glutaraldehyde 
in 0. 1 M phosphate buffer (pH 7. 2) for 2 hours at 4 ° C 
and then rinsed in 0.1 M phosphate buffer (three 
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changes, 2 hours each) at 4 °C, dehydrated and embed
ded in epoxy resin. We applied semithin-thin technique : 
radioautography on semithin resin sections (1 µm) and 
comparison of labeled cells with the adjacent ultrathin 
section. Ultrathin sections were mounted on copper 
grids and stained with uranyl acetate and lead citrate. 

Ultrastructural study of cells was carried out using 
aJEM-lO0S (JEOL, Tokyo, Japan) electron microscope . 

Some comment on the terminology used in this re
view is warranted. Currently, the interpretation of terms 
associated with Pearse's APUD concept and DNES can
not be considered simple [32]. In particular, since it 
was stated that amine handling was not a basic feature of 
cells incorporated into APUD System, and furthermore, 
some non-endocrine cells such as mast, Paneth, gastric 
chief and pancreatic exocrine cells appeared to show 
amine handling, the term "APUD" was replaced by 
"neuroendocrine" [3]. However, the widespread term 
"neuroendocrine" cells, which has been used in recent 
years by many authors to designate the relation of endo
crine cells to DNES, to our mind, is more acceptable for 
the group of specific neurosecretory cells. So, in this 
review the term "APUD cells" is kept as a synonym of 
endocrine cells producing peptide hormones and biogenic 
amines and forming endocrine part of DNES . 
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Functional Morphology of 
Gut APUD Cells at Radiation Influence 

Most commonly identified types ofDNES endocrine 
cells are located in the mucosa of the digestive tract both 
in animals and man [32]. In the pyloric and fundic parts 
of stomach there are 6 types of APUD cells: EC (which 
produce serotonin and melatonin), G (gastrin), D (soma
tostatin), ECL (histamine), Dl and AL cells. In addi
tion to the above cells, other cells are identified in the 
small intestine, for instance, I, K, L, N, and S cells 
which produce cholecystokinin, gastro-inhibitingpeptide, 
enteroglucagon, neurotensin, and secretin, respectively. 

The time-dependent pathomorphological picture of 
radiation injury to gut organs has been fairly well docu
mented and is largely determined by the inherently high 
radiosensitivity of processes governing cellular renewal 
[5, 14], However, data on the role of APUD cells in 
postradiation syndrome are sparse. In particular , there 
is little information on the physiologically active sub
stances produced by these cells and on the diagnostic 
significance of the change in the functional activity of 
the several types of endocrine cells, needed to foreca st 
developing postradiation dysfunctions. 

Influence of total single external gamma-irradiation 

Quantitative and qualitative changes in APUD cells 
were studied after gamma-irradiation with a sublethal 
dose of 5 Gy and lethal doses of 9, 16 and 20 Gy . The 
dose of 9 Gy caused death due to the hematopoi etic form 
of radiation sickness. The intestinal form of radiation 
sickness occurred with doses of 16 Gy and 20 Gy . 

Dynamics of endocrine cell content in the pyloric 
part of stomach and duodenum in mice after total irradi 
ation of different doses is given on Figures 3 and 4 . 
For the stomach, the calculation of quantitative cell 
density was made per 1 mm2 of the basal part, i .e. , at 
the localization of gastric glands , 140 µm from their bot
tom. In the duodenum, endocrine cell number was cal
culated per cross-section of the organ. 

The total content of endocrine cells in the stomach 
tended to decline at early stages after irradiation with a 
dose of 5 Gy. On the third day, the number of endo
crine cells reached the minimal level with the same 
dose. Subsequently , the density of endocrine cell con
tent increased and by 4 months this cell density did not 
differ significantly from control levels. With a dose of 
9 Gy, the number of argyrophil cells markedly de
creased ( ~50% control levels) by the third day after ir
radiation and remained at this level up to the time of 
death. Already by 3 hours after irradiation, with doses 
of 16 Gy and 20 Gy, the number of APUD cells ap
peared significantly reduced, as indicated by the ar
gyrophil method and the capacity of endocrine cells to 
accumulate reducible silver ions from the solution into 
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secretory granules [ 10). 
Argyrophil cells with the duodenum exhibited the 

following quantitative characteristics. With a dose of 5 
Gy, the maximum reduction in number of endocrine 
cells occurred on the third day postirradiation; 3 weeks 
later, recovery of endocrine cell number occurred, but 
did not achieve control levels even up to periods as late 
as 4 months later. During early postirradiation periods 
following lethal dose exposures, the decline in tissue 
density of APUD cells was dose dependent. 

Results of our morphometric analyses showed that 
about 50 % of endocrine cell population, both in the py
loric part of stomach and in the duodenum, appeared to 
be serotonin-producing EC cells and showed the positive 
argentaffin reaction; EC cell argentaffin reaction was 
shown as a condensation product between serotonin and 
formaldehyde-b-carboline derivative . The change in the 
number of argentaffin cells after irradiation with differ
ent doses indicated that the response dynamics of APUD 
cell population was determined, to a large extent, by the 
reaction of EC cells. Further analysis, however, re
vealed differences in the response dynamics of the ar
gyrophil and argentaffin cell populations in the pyloro
duodenal area at early stages after irradiation. The sta
tistically significant decrease of the number of argentaf
fin cells, with obvious lower staining intensity, was ob
served earlier (one day later with a dose of 5 Gy and in 
3 hours with a dose of 9 Gy) than the comparable re
sponse noted in argyrophil cell population, i.e . , the 
argyrophil cells exhibited a peculiar "delayed reaction." 
These results , to our mind, indicate that ionizing radi
ation initially causes the release ofbiogenic amines from 
APUD cells (in this case, serotonin) that, in tum, serves 
to initiate the early postradiation processes and transfor
mations in tissues and adaptive response of cells to ho
meostatic alterations . 

Electron microscopic studies showed clearly defined 
changes in APUD cells 1-3 days after gamma-irradiation 
exposure to a dose of 5 Gy (Figs. Sa and Sb). These 
changes included: increa sed structural heterogeneity of 
intracellular organelles, development of the focal swell 
ing of mitochondria , extension of Golgi complex and 
channels of endopla smic reticulum. However, there was 
little evidence of such structural damage to many endo
crine cells. The noted variability of ultrastructural or
ganization corresponded to normal variation and was 
largely attributed to differences in degrees of differentia
tion and the stages of the functional cell cycle. Con
comitant to these changes, we noted an "excess" accu
mulation of the secretory granules in some APUD cells 
(Figs. Sc and Sd) . Greater effects were expressed by 
stromal elements at early stages of postradiation pathol
ogy; e.g., the paretic vascular distensions and formation 
of the local parts of perivascular and interstitial edema 
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(Fig. 6). These changes were poorly marked in the ear
ly periods following sublethal irradiation, but with ex
tended postexposure times following lethal doses , they 
were more clearly marked; e.g., small foci of damage 
to plasma membranes and lamellar complexes progressed 
into large defects. In APUD cell's cytoplasm, the con
tent of myelin structures and cytolysosomes increased, 
along with foci of damage. These alterations developed 
in concert with a growing mucosa) edema. 

Cytoplasmic degranulation is a common but specific 
response of the APUD cell during early postirradiation 
periods following lethal exposures. This response corre
lates with the decrease in the tissue density of endocrine 
cells identified by argyrophil method . Despite the extent 
of degranulation, a fraction of cytoplasmic granules ap
peared resistant and retained typical morphology and 
tinctorial features . That latter was the case even in dead 
cells. 

The complex of cytochemical and ultrastructural 
changes noted within APUD cells following radiation ex
posure reflects serious functional abnormalities of these 
cells and their activities at early stages of postradiation 
pathology. The noted changes are likely the combined 
result of both direct cellular damage, as well as indirect, 
cell-damaging responses brought about developing , intra
cellular edema. 

The capacity of APUD cells to absorb amine precur
sors such as dihydroxyphenylalanine (DOPA) and 5-hy
droxytryptophane, to decarboxylate and to accumulate 
the generated biogenic amines in the secretory granules 
is a fundamental feature of these cells. As L-DOP A is 
more intensively incorporated into endocrine cells during 
differentiation, some authors have suggested that DOPA 
accumulation reflects the degree of active, amino acid 
transport, and in tum , the metabolic activity of these 
cells [25]. 

Our studies showed that 3H-DOPA administration 
results in a highly selective, accumulation of label over 
gut APUD cells (Fig. 7a). Analysis of serial (semithin 
to ultrathin) sections indicated that labelled DOPA was 
incorporated into practically all types of gastric APUD 
cells and most endocrine cells of intestine in animals that 
were not irradiated. By comparing the ultrastructural 
features of gut cells with their ability to accumulate 3H
DOPA, we showed that cells with small number of the 
secretory granules are minimally labelled. However, by 
contrast, heavily labelled cells have cytoplasms filled 
with mature secretory granules. It is rather difficult to 
draw a conclusion on the considerable discrepancies in 
precursor accumulation by different types of endocrine 
cells in the marked heterogenic distribution of a label 
over APUD cells. 

One day later after gamma-irradiation exposure with 
a dose of 5 Gy, a decrease in label concentration over 
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Figure 7. Radioautographs of 3H-DOPA incorporation 
into APUD cells. Semithin sections (1 µm) of mouse's 
pylorus. (a) High selectivity of label accumulation over 
endocrine cells is observed in unirradiated mice; P. W. 
= 130 µm. (b) Label concentration over cells de
creases in area of the developing mucosa! edema 1 day 
after gamma-irradiation to a dose of 5 Gy; P.W. = 121 
µm. (c) The same EC cell (arrowhead, b) contents the 
typical secretory granules; P.W. = 7.3 µm. 



J.M. Kvetnoy et al. 

210 

0 
200 

i, 160 ... ... ... 
=- 120 "" .., 
~ 
0 

80 "" 

10 

0 

2h 12h 24h 3d 7d 14d 

TiMe 

u 
L, 

0 .5 

0.1 

~ 0 . 3 ... 
=-
~ 

~ 0 .2 

"' 

[El 

2 h 

1 - StoMach 
2 - DuodenuM 
3 - SMall intestine 
4 - Colon 
5 - Kidney 

12h 2 4h 

. . 

3 d 7 d 14d 

TiMe 

Figure 8. Average cumulative radiation dose to the thyroid gland (a) and other organs (b) as a function of time after 
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endocrine cells was noted in the pyloro-duodenal area 
(Fig. 7b). In contrast to the tests of control animals, 
which were not irradiated, it was not uncommon to find 
that the concentration of label (silver grains) over APUD 
cells did not always correlate with the number of the se
cretory granules within the APUD cell's cytoplasm . 
Furthermore, we had the impression that the decrease in 
label concentration was mostly marked in areas of the 
developing mucosa) edema. Some endocrine cells iden
tified in ultrathin sections also appeared to be unlabelled 
(Fig. 7c). 

Results of our electron microscopic analyses sug
gests that a primary effect of ionizing radiation is on 
development of intracellular edema, with the specific 
damage to membrane apparatus . Such intracellular ede
ma could result in vital subcellular organelles being 
damaged and functionally altered; e.g., pathologic modi
fication of vital mitochondrial structures, and in tum 
suppression of system energetics. 

In summary, disorders of transport, ion and energy 
intracellular mechanisms in endocrine cells could well 
lead to the noted decrease in precursor transport and 
abnormalities of synthesis and accumulation of biogenic 
amines within the secretory granules of the targeted 
APUD cell. This proposed process might well account 
for the fact that the gut APUD cells have a reduced ca
pacity to bind exogenous dihydroxyphenylalanine after 
gamma-radiation exposure. 

One should note that ionizing radiation in the suble
thal dose range does indeed affect endocrine cells. Dur
ing late postirradiation periods, APUD cells showed dys
trophic changes in mitochondria and endoplasmic reticu
lum, higher content of myelin structures and lipofuscin 
granules. Such changes to a certain extent may account 
for the functional incarnations of the post irradiated 
APUD cells. 
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Internal irradiation influence 
The active application of radionuclide 1-131 in the 

clinical treatment of patients with thyroid cancer necessi
tates a continued evaluation of its long-term medical 
consequences. The major fraction of radionuclide ad
ministered repeatedly to patients is known to accumulate 
in the thyroid, in associated primary tumors and in tu
mor metastases. However, the administered 1-131 dam
ages not only tumor cells but also intact tissues. In re
gard to the latter, the kidneys are considered as critical 
organs in the thyroid blockade, due to the passage and 
release of the administered radionuclide . Further, the 
gastrointestinal system appears sensitive as well. There 
are data in literature suggesting that radioiodine con
stantly recirculates by way of the walls of stomach and 
intestine. Clearly, this cannot happen without affecting 
the structures of these organs, and indeed, this is what 
appears to happen. A number of clinical studies have 
indicated that after radionuclide administration, particu
larly in several courses of treatment, patients often show 
symptoms of a dyspeptic character and develop the pro
gressing chronic gastritis. 

Based on the above, it is clear that further study of 
1-131 distribution and its pathologic consequences to gut 
tissues is needed. Taking into account the fact that sero
tonin plays a specific role in the regulation of selected 
functions within the stomach and intestine, the dynamics 
of enterochromaffin cell response within these tissues 
following 1-131 administration provided the focus for 
further study . 

Animals were given 1.0 µCi/g body weight of 1-131 
orally by esophageal intubation. The material to be 
studied was taken in 3, 12 and 24 hours, 3 days, 1, 2 
and 3 weeks following radionuclide administration. 

The results of investigations and calculations (Figs. 
8a and 8b) showed that the thyroid gland incurred the 
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Figure 9. Accumulation of radioautographic label in the 
intestinal epithelium 1 day after oral administration of 
I-131 at a 1.0 µ,Ci/g b .w . dose level ; P.W. = 400 µ,m. 

largest absorbed dose, as was expected. The levels of 
absorbed radiation doses within individual organs of the 
gut were less than those found in the thyroid. The lev
els noted , in descending order, are as follows: stomach, 
duodenum , small intestine and colon. However, when 
the various organs of the gut were considered in total, 
the radiation levels appeared to be actually higher than 
those levels found in the kidneys. Therefore, the gut 
together with the kidneys need to be considered as 
critical organs in oral I-131 treatment protocols. 

Radioautographic study of stomach and intestine 
showed the accumulation of silver grains mainly over 
surface capillaries of the gastric mucosa. One day later, 
label incorporation occurred over the epithelium of 
stomach, as well as in crypt epithelium of small intestine 
(Fig. 9) and mucous layers of these organs. In the co
lon, the label was distributed diffusely with a slight ac
cumulation in the bottom of the crypt. 

These radionuclide studies mentioned above, enabled 
us to consider the stomach and intestine as radiation-sen
sitive organs for I-131 therapeutic administrations. Fur
thermore, radioautographic analyses suggest specific 
structural sites within these tissues for primary radioio
dine incorporation. These tissues sites included the sur
faces of the gastric mucosa and crypt epithelia of the 
small intestine. 

The cell density of argyrophil and argentaffin cells 
within the pyloro-duodenal intestinal region of mice 
marked I y changed short! y following I-131 administration 
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(Figs. 10 and 11). Within the first few hours, a consid
erable decrease in both the common APUD cell popula
tion and in EC cell population was noted. However, lat
er an imbalance in the density of endocrine cells as a 
whole and the enterochromaffin cells occurs . 

Our results indicates that within the first few hours 
after I-131 radionuclide treatment, I-131 recirculates 
through the walls of the stomach and intestine, exposing 
these tissues to ionizing radiation and causing the release 
of serotonin from EC cells, particularly, in the intestine. 
Considering, the relatively high density of EC cells with
in gut mucosa and the expected serotonin-release re
sponse, one can readily expect pathology to ensue, and 
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Figure 12. Electron micrograph of EC cell of the rat 
duodenum 12 hours later after oral administration of 
1-131 (1.0 µCi/g). Note the reduction in the number of 
the secretory granules in cytoplasm, edema and mito
chondrion destruction; P.W. = 5.7 µm. 

indeed, this is what happens. Through our ultrastructur
al analyses, we showed that the APUD cells of the py
loro-duodenal mucosa were damaged following parenter
al I-131 administration (Fig. 12). 

Serotonin is known to promote mucin formation by 
epithelium and pyloric glands of stomach, increase pep
sinogen formation by chief cells and lead to the reduc
tion of the number of parietal cells by blocking of ECL 
cells degranulation. Therefore, one cannot discount the 
strong possibility that serotonin plays a active role in the 
pathogenesis of chronic gastritis in patients with thyroid 
cancer following repeated radioiodine therapy. 

The prophylaxis and treatment of radiation-stimu
lated gut dysfunctions require the application of pharma
cological drugs. However, often in the oral administra
tive route, an optimal, slow rate of drug absorption from 
the enteral medium to gut mucosa is not obtained, thus 
restricting a gradual accumulation and prolongation the 
drugs' effects. 

One of the major factors regulating drug deposition 
and absorption appears to be a layer of mucous lining 
the luminal surface of the intestine (Fig. 13). Hydro
lytic enzymes embedded into the mucosa! layer, along 
with its very heterogenous chemical nature, often times 
tends to inactive and block transport of many drugs. 

Using a combination of microscopic techniques [4, 
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23], we showed that we could selectively accumulate and 
transport specific drugs to the specific tissue sites within 
the gastrointestinal tract. In one study, we demonstrated 
the process by which liposome encapsulated drugs were 
transported from a gel-like, mucosa! layer of the luminal 
surface of the intestine (Fig. 14) to the glycocalyx of 
microvilli, partially stratified and gradually released. In 
sum, these results indicated it might be possible to trans
port drugs following the parenteral introduction and to 
achieve effective levels of absorption while still main
taining biological activity. 

Discussion 

There are strong arguments for the endodermal ori
gin of gut APUD cells [6, 7, 32]. Common histogenesis 
perhaps might explain the common postirradiation kinet
ics of the seemingly diverse epithelial and endocrine 
cells. Ionizing radiation is well known to inhibit the 
proliferative capacity of epithelial stem cells, and as a 
result, elicits subsequent reduction in more mature epi
thelial lining populations. Our observations suggest that 
the noted quantitative changes within APUD cells of the 
stomach and duodenum are the result of a sequence of 
radiation injury and repair of a progenitorial APUD pro
genitor population . Endocrine-determined stem cells 
stressed with sublethal doses of ionizing radiation proba
bly fosters the increase in APUD cells populations with
in the duodenum and stomach. 

The duodenum is known to be a more radiosensitive 
tissue than the stomach [14). This difference is ac
counted for by the peculiarities of the tissue kinetics. 
However, the underlying reason for such differences, es
pecially in terms of differences in radiosensitivities of 
the various stem cell species, remains unclear. For ex
ample, the speed of renewal of the intestinal epithelium 
is higher than that of hemopoietic system, and the time 
of radiation exhaustion of cellular renewal system is 
shorter for it than for bone marrow [ 17]. However, the 
intestinal epithelium exhibits greater resistance than 
hemopoietic tissues, in terms of the radiation exposure 
levels that limit tissue function; lethal doses causing the 
death of the organism due to the hematopoietic form of 
radiation sickness are smaller than those determining the 
death from the intestinal form. Stem cells of the gastric 
epithelium appear to be more resistant than those of the 
intestinal epithelium. It is quite possible that radiosensi
tivity is affected by natural radioprotective agents; for 
example, the vasoactive hormones, serotonin and hista
mine. These biogenic amines are able to limit blood 
supply of the sensitive organs and to reduce radiosensi
tivity by hypoxia. In this connection, EC and ECL cells 
are of specific interest. Serotonin-producing cells make 
up a remarkable part of APUD cell population both in 
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Figure 13 (at left). Scanning electron micrographs of villi of rat small intestine. (a) Isolated villus coated with a thick 
layer of mucus; P.W. = 30.8 µm. (b) Villi after mechanical removal of mucus; P.W. = 10.5 µm. 

Figure 14 (at right). Scanning electron micrographs of liposomes. (a) Liposomes located in mucus coated villi of 
rat intestine, 5 minutes after their introduction in the digestive cavity; P.W. = 13.2 µm . (b) Fragment of Figure 13a: 
early stage of liposome immersion in mucus (arrowhead); P.W . = 5.4 µm. 
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stomach and duodenum. However, the bulk of hista
mine-producing ECL cells are located in the stomach. 

It is of interest to note the early development of the 
vascular response in pyloro-duodenal mucosa at gamma
irradiation exposure. Pathomorphological pictures of 
disordered hemodynamics and the development of hem
orrhagic diathesis, typical for the primary period and 
early reactions of radiation sickness, has been well stud
ied [5, 14]. During these early post-irradiation periods, 
there are distinct relationships between the accumulation 
of vasoactive substances in organs, the change in the 
sensitivity of arterioles, venules and capillaries to adren
aline, histamine, serotonin and acetylcholine, the in
crease in the permeability of vascular wall, and the de
velopment of the interstitial edema [13, 16, 37, 41]. It 
is shown that one of the links of pathogenesis of postir
radiation vascular abnormalities appear to be degranula
tion of mast cells and the release of histamine and sero
tonin from them. Some clinical manifestations of the 
syndrome of the primary reaction to irradiation are asso
ciated with the excess release of biogenic amines, vaso
active and other peptide hormones from APUD cells. 
However, the role of the latter substances in the devel
opment of these postirradiation dysfunctions remains 
practically unknown. 

To date, the problem of the correlating the type and 
degree of pathology associated with direct versus indi
rect (via microcirculation disorder) radiation exposures 
has remained undetermined. It is not unexpected that 
the quickly developing interstitial and intracellular edema 
results from release of substances with different vasoac
tive mechanism and leads to the decrease in the intracel
lular oxygen concentration, thus creating an hypoxic, 
survival-promoting tissue situation for cells under select 
conditions of irradiation. This mechanism, might pro
mote an increase in radioresistance of gut stem cells; the 
additional protective effect in the stomach seems to be 
accounted for by histamine release from ECL cells. Al
so, the mechanism may in part account for the radiosen
sitivity of the critical composite organ system or, clearly 
in the case of radiation therapy of malignant tumors, the 
development of the intracellular edema and hypoxia of
ten contributes to the survival of tumor cells [44]. 

In this connection, identification of biogenic amines 
in non-endocrine cells is of great interest [18, 20]. The 
data on localization of serotonin and melatonin in natural 
killer cells, mast cells, eosinophilic leukocytes and some 
endothelial cells which may play an important oncoradio
biological role. In particular, the results of our investi
gations showed that mast cell accumulation and the asso
ciated release of biogenic amines within tumors results 
in a "radioprotective shield" which needs to be taken in
to account in radiation therapy [20, 44]. Taking into 
consideration the biological function typical for the 
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above non-endocrine cells and their role in homeostasis 
regulation, these cells could serve, to a certain extent, as 
possible endogenous radiomodifying factors. It should 
be that the early morpho-functional vascular responses 
that promote the formation of the local hypoxic tissue 
sites and trophic abnormalities may represent an impor
tant pathogenic process, as well. 

The results found in the open literature, as well as 
the results of our studies, strongly indicate that ONES 
cells play an important role in the mechanism of patho
genesis resulting from ionizing radiation exposure. The 
release of vasoactive substances from APUD cells and 
their local accumulation in tissues, even short-term, in
evitably leads to microcirculation disorders, hypoxia, de
velopment of metabolic acidosis and other abnormalities 
of metabolic processes in different cells, including ho
meostatic regulators. The ultimate result may be disor
ganization of neuro-humoral regulation of the functional 
parameters of the vascular system and formation of vi
cious circle increasing the primary injuries [41]. 

The structural and functional effects of radiation in
jury to ONES cells highly favor risk evaluation of early 
postradiation dysfunctions, namely, the development of 
aplastic, hypoplastic and sclerotic states of visceral or
gans, as well as dyshormonal, dysimmune and other dis
orders. The development of therapeutic approaches to 
the early treatment of radiation injury to the ONES and 
its associated dysfunctions is equally important. 

To date, the problem of physiological significance 
of monoamine synthesis by APUD cells and many non
endocrine cells has remained unclear. A number of in
direct results obtained by us in the study of ionizing ra
diation effect on cells indicate the possible role of bio
genic amines in the initiation of exocytosis processes. 
It is possible that the detected excess accumulation of the 
secretory granules in some endocrine cells is associated 
with the disorder of APUD mechanism. 

General Conclusion and Future Perspectives 

The wide spread tissue distribution of APUD cells, 
in the organism together with neurons and non-endocrine 
cells capable of the synthesis, accumulation, separate us
age and intertissual transport of regulatory peptide and 
biogenic amines suggests an urgency and significance of 
future ONES studies in radiobiology and oncoradiology. 
The analysis of the experimental results described here 
shows the direct participation and active role of APUD 
cells in both the pathogenesis of radiation injury and for
mation of radiosensitivity of those organs and tissues in 
which they are located. 

Taking into account the fact that some hormones 
synthesizing and producing APUD cells have a radio
modifying effect and are also able to activate and sup-
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press cell proliferation, we consider it important to carry 
out thorough studies on the development of organ radio
sensitivity by changing the functional activity of APUD 
cells in situ. 

The success of future investigations may determine 
an effective means for the protection, prophylactics and 
treatment of radiation injuries. 

For practical reasons, the pharmacological inhibition 
non-endocrine and ONES cell activities in tumor growth 
promotion may appear helpful for modification and opti
mization in radiation therapy of malignant tumors . 

In conclusion, it should be noted that the available 
data on the structural and functional ONES organization, 
role and significance of biogenic amines and peptide 
hormones in homeostasis regulation indicate an exclu
sively important role which APUD cells play in patho
genesis of different dysfunctions including the mecha
nisms of radiation injury. We consider the performance 
of such studies to be one of the fundamental directions 
in modern radiobiology. 
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Discussion with Reviewers 

Z. Somosy: Are there any differences in the magnitude 
of the radiation-induced reductions in endocrine cells 
found in crypt versus those found in the villus? 
Authors: We have quantitative results received in rats 
after gamma-radiation with a dose of 5 Gy [45], but not 
included in this review, that such differences are avail
able and start to manifest 1 day later after total irradia
tion. In 3 days, the number of endocrine cells in duo-
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denal crypts is reliably decreasing by half while their 
quantitative density in the villus is higher for this period 
of time; however, the difference between irradiated and 
rats that were not irradiated was not statistically signifi
cant, p > 0.05. During the next period of time, the 
quantitative dynamics of endocrine cells in crypts and 
villus has a distinct phase character. 

Z. Somosy: Is there any relationship between the two 
results: that is (a) the number of cells at the 3rd postir
radiation day nadir and (b) the turnover time of the so
called enteroendocrine cells, i.e., 3.9 days in the duode
num and 4.0 days in the jejunum [6]? 
Authors: We think that there is a direct relationship be
tween these results. In 3 days, stem cells damage, 
which has a dose dependence seems to develop as much 
as possible. It should be noted that in radiation damage 
turnover time of enteroendocrine cells would probably 
differ from the data received by Cheng and Leblond. 

Reviewer II: The use of 5-hydroxytryptophane (5-HTP) 
as a precursor instead of DOPA is indicated when study
ing serotonin-containing APUD cells. Why did the au
thors not use this approach? 
Authors: Unfortunately, we had no opportunity to use 
tritium-labeled 5-HTP to study serotonin-containing 
APUD cells. As known, such research has been carried 
out previously [i.e., Rubin W, Gershon MD, Ross LL 
( 1971) Electron microscope radioautographic identifica
tion of serotonin-synthesizing cell in the mouth gastric 
mucosa. J Cell Biol SO: 399-415]. 

H.L. Waldum: What is the role of the neuroendocrine 
cells in postradiation fibrosis? 
Authors: We think that tissue hypoxia develops as a re
sult of the simultaneous release of vasoactive substances 
from neuroendocrine cells. This response appears to be 
one of the reasons for the noted late arising pathologic 
effects, including postradiation fibrosis. To our mind, 
this problem should be a subject of thorough study and 
discussions among specialists in radiation medicine. 

H.L. Waldum: Can the authors discuss the impact of 
new knowledge that the neuroendocrine cells are able to 
self-replicate? 
Authors: We are in the process of carrying out the spe
cific studies to address this question , i.e., the capability 
of endocrine cells to self-replicate, especially following 
radiation insult. 

Reviewer V: One of the major problems is that rela
tively unspecific methods for identification of endocrine 
cells have been used. Thus, e.g., argyrophil cells com
prise several distinct types of endocrine cells with differ-
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ing functional properties. 
Authors: Methods of silver stains, argentaffin/Masson 
and argyrophil/Grimelius, appear to be rather sensitive 
in the study of endocrine cells, easily applicable and in
expensive when it is necessary to analyze and count hun
dreds of samples for the quantitative analysis. There is 
an evidence that argyrophilia of endocrine cells corre
lates with immunohistochemical identification of chro
mogranin A in them (see reference [29]). 

Reviewer V: The illustrations provided include some 
questionable transmission electron micrographs, e.g., the 
Figure Sd legend the cell shown is stated to be a G cell; 
this is rather an EC cell. G cell granules are clearly 
different from those shown in the figure. Figure Sc is 
supposed to show accumulation of ECL cell granules. 
This is impossible to judge without an accompanying 
control cell. In Figures 9 and 10, how where these cells 
identified? 
Authors: The types of endocrine cells were identified 
under the specific character of secretory granules ultra
structure. 

Despite the fact that secretory granules are relatively 
resistant to gamma-irradiation, the developing edema of 
cytoplasm influences their ultrastructure. Cell granules 
showed in Figure 5d have mainly a round form and 
variable electron-density which are typical of G-cells, as 
mentioned in the literature. 

Figure Sc shows the excess accumulation of ECL 
cell granules which is found only in some cells in the 
sites of the developing edema of tissues . The figures 
presented in the paper of Bottcher et al . (1989) Cell 
Tissue Res 256: 247-257 show a similar picture for daily 
treatment with large doses of antisecretory agent ome
prazole. 

Figures 9 and 10 demonstrate the dynamics of ar
gentaffin and argyrophil endocrine cells. 

Reviewer V: Do the EC cells along the gastrointestinal 
tract show a uniform reaction pattern upon radiation? 
Authors: In the early periods following gamma-radia
tion, the decrease in argentaffin reaction and numerical 
density (ND) of EC cells is observed in pylorus, duo
denum and large intestine. However, ND recovery of 
these cells and phase character of dynamics with the 
same radiation doses differ. 

Reviewer V: How is the "reaction delay" of argyrophil 
cells defined? 
Authors: At the same doses of radiation, the decrease 
in argyrophil reaction and, respectively, statistically sig
nificant reduction of ND argyrophil cells occurs later 
than the decrease in argentaffin reaction. We think that 
ionizing radiation primarily initiates serotonin release 
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from secretory granules, maybe by molecular diffusion 
due to the disturbance of ion links in granules, and that 
cell degranulation is an adaptive response to homeostasis 
change. 

Reviewer V: Are there chemical data supporting a 
"massive release" of serotonin from EC cells upon ex
posure to ionizing radiation? 
Authors: The results of the changes in the content of 
endogenous serotonin in GI tract were obtained in the 
sixties [for example, 21]. Results of those experiments 
showed that intestinal 5-HTP decreased after X-irradia
tion. According to literature data, 80 % to 95 % of endo
genous serotonin in the organism are stored in EC cells 
of GI tract. The reduction of argentaffin reaction and 
immunostaining of EC cells to serotonin for the first 
hours after radiation exposure enables "massive release" 
of serotonin in these organs to be supposed. 

Reviewer V: What are the practical implications of 
liposome drug delivery? 
Authors: The opportunity to transport drugs through 
the layer of mucous linings by liposomes is shown in the 
paper. 
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