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Abstract

Fractal dimension has been used extensively as a de-
scriptor of the rugged outlines of fine-particles. Poten-
tially, it may be a useful parameter for characterizing
the outlines of fine-particles which have been subjected
to some form of chemical degradation. Here, fractal di-
mension values have been computed for the outlines of
microscopic lead fine-particles both before and after
weak hydrochloric acid dissolution experiments. Values
obtained for the post-dissolution rugged profiles were
greater than those of the pristine fracture grains which
had a Euclidean form. The profiles of the degraded
fine-particles could be characterized by a single fractal
dimension value, or they exhibited multifractal behavior.
Data from profiles of fine-particle lead from the natural
environment of the soil suggest that fractal dimension
calculations may provide a useful descriptor for particles
which have undergone chemical dissolution and transfor-
mation in such an environment.

Key Words: Fractal, fine-particles, lead, scanning elec-
tron microscopy, etching, dissolution, bioavailability.
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Introduction

The rugged outlines (boundaries) of many phenome-
na in the natural environment exhibit a self-similarity
irrespective of the scale at which they are observed. A
now commonly used descriptor of the roughness of such
outlines is the fractal dimension. In essence, fractal di-
mension describes the space filling ability of these out-
lines (Mandelbrot, 1982). Studies have shown that vari-
ations in the ruggedness of fine-particle profiles result in
different fractal dimensions, and this has led to the ex-
tensive use of fractal dimension as an outline descriptor
in fine-particle research (Kaye, 1989). As a result of its
potential usefulness in this capacity, fractal dimension
has also been used to define the roughness of fine-parti-
cles in a variety of environmental contexts (e.g., Orford
and Whalley, 1983; Katrinak ez al., 1993).

The fractal dimension of a rugged particle outline
can be calculated by measuring the length of the profile
at different scales of observation. For self similar pro-
files, the amount of increase in observed outline length
1s the same at any scale. A value for the fractal dimen-
sion is easily derived from a plot of the outline length
against the unit length at which it was measured at vari-
ous scales. Referred to as a Richardson plot, the slope
of the line fitted to the data points on the plot yields the
fractal dimension of the boundary (Mandelbrot, 1967).

The value of a grain shape descriptor in the study of
fine particles derives from the ability of such a parame-
ter to provide information on particle source based on
the rugged nature of its profile. For example, Xie ez al.
(1994) and Kindratenko er al. (1994) attempted to char-
acterize airborne particles of different form and origin
on the basis of fractal dimension values derived from the
particle outlines. Fractal dimension may also, under
certain circumstances, provide information on the envi-
ronmental history of fine-particles. Orford and Whalley
(1987) describe the irregular outlines of crushed quartz
and carbonate beach sand grains which, under near
shore marine conditions, as Kaye (1989) indicates, are
likely to undergo mechanical abrasion resulting in a
change in shape.
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Table 2. Fractal dimension values for six cerussite fine-particles etched in a suspension of 0.1 N HCI for 5 minutes.

Single Fractal Multi-Fractal
Texture Structure Macro-Form
b b () b () o (%) |
8z () b2 () |
1.060 (0.99) - - -
1.108 (0.98) - - -
1.116 (0.98) - - -
- 1.078 (0.99) 1.162 (0.98) -
- 1.083 (0.99) - 1.049 (0.92)
- 1.067 (0.98) 1.103 (0.99) - 1.033 (0.75)

Table 3. Fractal dimension values for two pyromorphite fine-particles before and after immersion in 0.1 N HCI for
2 hours.

Particle ~ Time (minutes) 8 () o7 (1) bg ()
1 0 1.025 (0.89) - -
1 120 - 1.050 (0.97) 1.083 (0.95)
2 0 1.021 (0.96) - -
2 120 - 1.055 (0.97) 1.144 (0.94)
0.7 4
0.6
0.6
505 | |
£ £ |
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Figure 4. Richardson plots for two un-etched fine-parti- Figure 5. Richardson plots for two etched fine-particle
cle cerussite profiles. Symbols described in text. cerussite profiles. Symbols described in text.
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cerussite fracture grains with concave sections in the
profile, a foreshortening of the perimeter at large step
sizes will occur when the algorithm "cuts across” the
concavity. Recurring embayments in the profile, which
are accompanied by large scale projecting features, will
be stepped around at smaller step sizes and will produce
a characteristic structure fractal.

Richardson plots for the profiles of the etched par-
ticles revealed both single and multi-fractal forms. In
the case of the multi-fractal plots, at the bigger step
sizes the line segment either becomes steeper (an in-
crease in §) or less inclined (a decrease in §) than the
preceding line segment. Where § increases, the texture
component in the profile is stepped over and the struc-
ture elements which are present are stepped around giv-
ing a convex form to the Richardson plot. This segment
describes the structure component and the associated
fractal dimension is 6. The less steep (large step size)
line segment is produced by particle profiles that exhibit
a generalized ellipsoidal form (Figs. 3b and 3d). In the
case of this type of profile, at the large step sizes, the
texture elements are stepped over and the absence of
major structure elements results in the macro-form of
the outline being stepped around. This results in a less
rapid progressive decrease in estimated perimeter, which
produces an overall concave form in the Richardson
plot. As this line segment does not report on prominent
structural units in the outline, but follows the overall
form of the profile, we refer to the associated fractal di-
mension as & to distinguish it from &g which reports on
major structural elements. The small scale irregularities
(texture) in the profiles of two of the three multi-fractal
grains are accounted for by a single line segment (),
while the third (Fig. 3b) develops two textural fractal
segments producing a tri-fractal plot (Fig. 5). The pres-
ence of two texture components arises from a distinctive
spinescent element in the profile. In the resulting Rich-
ardson plot, the first line segment follows the fine tex-
ture of the grain outline (here designated as 6;;) which
varies little until the spinose component becomes impor-
tant, giving rise to a second line segment (6,5). The
acid etched particles which form single line segment
Richardson plots display apparent textural and structural
irregularities in their profiles. As there is no distinctive
transition in these Richardson plots from a texture fractal
to a structure fractal, and as the single fractal dimension
reports on both small and large scale changes in profile
roughness (consistently self similar), the single line seg-
ment simply describes the fractal dimension (8) of the
profile.

The post-acid treatment profiles differ significantly
in terms of their fractal dimension compared to the pre-
treatment grain outlines (Table 2). The more irregularly
textured etched grains have consistently greater 6. values
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(x = 1.083 £ 0.02) than the main line segment & values
obtained for the un-etched particles x = 1.019 +
0.007). The fractal dimension (8) values for those
etched profiles consisting of a single line segment
Richardson plot (x = 1.095 + 0.035) are also greater
than & values for the un-etched profiles. The & values
for the main line segment produced by the pristine pro-
files are significantly less than the 8, d; and g values
for the etched profiles at the p = 0.01 rejection level for
the Mann-Whitney U statistic.

In situ single etching of fractured pyromorphite
grains

Individual fractured pyromorphite fine-particles
were imaged before and following an in situ immersion
for 2 hours in 0.1 N hydrochloric acid. In pristine con-
dition, the grains displayed a fracture surface morpholo-
gy (Figs. 6a and 6b). After a continuous period of 2
hours under etching conditions, the grains were found to
be extensively degraded. The pattern of corrosion was
observed to be similar in both cases with each particle
acquiring a platy appearance following the acid treatment
(Figs. 6¢c and 6d). The rate of dissolution under these
weak acid conditions was sufficient to permit factors
such as fracture surfaces (and stresses caused by fractur-
ing) and crystallographic form of the mineral to largely
control the pattern of etching.

Pristine particle profiles and the rugged outlines
created by the apparently overlapping plates which con-
stitute the etched grains were used to assess the effects
of the acid on grain shape. The Richardson plots ob-
tained for the fine-particle pyromorphite prior to immer-
sion in the weak acid depicted a single line segment,
which essentially reports on an unvarying change in pro-
file, roughness giving & values of 1.025 and 1.021 (Tab-
le 3), closely correspond to the & values obtained for the
freshly fractured cerussite grains (Table 1). The con-
choidal fracture of the pyromorphite particles is more
regular than the sub-conchoidal or uneven fracture of the
pristine cerussite grains, and this is the likely origin of
the more irregular cerussite profiles which produce a
second line segment at large step sizes in the Richardson
plot. The post-dissolution values obtained for 4, and &
(Table 3) were both higher than those for the un-etched
profiles. The multifractal behavior observed in the
Richardson plots obtained for the post-etch outlines
clearly indicates that the etching process had resulted in
a degree of ruggedness in the profile at the texture level,
and had also revealed structural elements in the profile
(Fig. 7).

In situ multiple etchings of a single fractured pyro-
morphite grain

An in situ multiple etching experiment was conduct-
ed to assess time-dependent changes in the value of é for
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reading of the manuscript. We would also like to thank
the reviewers for bringing many important points to our
attention.
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Discussion with Reviewers

X. Maldague: Why was particle dissolution conducted
both ex situ and in situ? Please elaborate on this point.
Authors: The two methods take different approaches to
particle dissolution. The in situ procedure has the ad-
vantage of allowing the same particle(s) to be re-exam-
ined after one or more exposures to a test reagent. The
ex situ approach, which provides data on populations of
similar particles, is less labor intensive since time con-
suming particle re-location is avoided. Within the ex-
perimental framework discussed here, both methods
make it is possible to follow changes in grain shape that
result from exposure to a chemical environment condu-
cive to particle dissolution.
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of 400 dpi, without any change in contrast and bright-
ness, and stored as TIFF files. Grey scale digital im-
ages acquired directly from the SEM were collected at
a resolution of 1024 x 800 pixels and 124 grey levels
and were also saved in TIFF format. Conversion to a
binary image was accomplished using commercially
available image processing software by thresholding the
image at the point on the grey scale histogram where the
transition occurred from black background to the much
higher intensity particle region of the image. Finally,
before detzrmining the x,y addresses of the boundary
pixels, the image was re-sized (generally by cropping
excess off the feature background) to fit within a 700 x
700 pixel array.

W.B. Whalley: How many grains have been used in
the experiments, only those seen?  Mineralogical
variability, e.g., cleavages, might give different etching
results according to where the digitized surface was
related to zones of maximized or minimized etching.
Authors: The results described here are preliminary
and are presented as proof of concept. Our discussion
is restricted to data from 23 profiles from 15 particles
(sequential acid etching producing several outlines). The
question of sample versus analytical variability is not
easily addressed with this initial data set. Etching of the
grains will be related to crystal structure, fracturing, de-
fects and various other factors. However, the data pre-
sented are not for unrepresentative particles; we did ob-
serve the same dissolution effects as those reported in
other grains which were either not imaged at time zero
in the single in situ etching study or not imaged in detail
throughout the sequential in situ etching study. By way
of illustration, the pyromorphite particles in Figure A,
which were imaged at the conclusion of the 2 hour in
situ weak HCI etching, have the same post acidification
form as those set out in Figure 6. Similarly, the larger
un-etched pyromorphite particles in Figure B (including
the grain followed in detail in Figure 8), which were re-
peatedly immersed in situ in dilute HCI, displayed char-
acteristically similar rugged outlines at subsequent time
intervals (Fig. C). To assess how the variability in the
projected profiles of these grains effects the fractal
dimension calculations will require data from a larger
number of grain outlines.

R. Thibert: Could you suggest a better approach than
visual inspection in the evaluation of the break point to
distinguish the presence of multifractal behavior?

Authors: For line segment analysis related to other ap-
plications, we have experimented with a "pipe” algori-
thm. When the Richardson plot points are visualized as
joined into a rigid line, a rectangle (pipe) of user speci-
fied length and width is moved sequentially down the
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line from one end until no more of it can "fit" within the
selected dimensions. If the length requirement has been
satisfied, a segment is then removed and the process re-
peated on the remaining points with removal of addition-
al segments as needed. This approach can identify the
number of segments in a Richardson plot, but accurate
location of segment break points requires an iterative
procedure with movement of the "pipe” in both direc-
tions on the various segments. Discontinuities in the
Richardson plot, such as those exhibited by the Medalia
reference feature, present additional problems with its
implementation; but we remain convinced that if visual
inspection can deselect such curve regions, programming
code with appropriate rule-based structures can also be
constructed.
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