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Abstract 

The problem of electron excitation induced by inter
action of charged particles with solids is investigated on 
theoretical grounds. The excitation probability is calcu
lated both in homogeneous media and at surfaces . The 
surface wake potential, needed in the latter, is reviewed . 
The cases of transmission and aloof geometries are con
sidered separately. Surface plasmons are shown to play 
a crucial role in the latter . An application to coin
cidence scanning transmission electron microscopy 
(STEM) experiments is also discussed . Finally, a spatial 
representation of the excitation probability is presented. 

Key Words: Electron emission, wake potential , sur
faces, plasmons. 
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Introduction 

Electron emission induced in condensed matter by 
fast charged particles has been the subject of many ex
perimental and theoretical studies since its discovery 
early this century [67, 72]. A realistic theoretical de
scription of the phenomenon needs to incorporate both 
electron excitation and transport. The latter consists of 
a complicated cascade of successive electron scattering 
processes and the eventual crossing of the surface. 
Starting several decades ago , with the first plausible de
scriptions of electron emission [2, 5, 70, 75], the elec
tron transport has been analyzed by different authors ap
plying Monte Carlo simulation techniques [10], solving 
the appropriate Boltzmann equation [10, 65] , or using 
semi-classical approximations [69] . A reasonable agree
ment with experiments has been achieved [28] . How
ever, there are some problems connected with particle
induced electron emission that still lack a first -principles 
description . For instance, that is the case in the trans
port of electrons near surfaces and in the role of surface 
plasmons in electron emission. Also , the basic theory of 
the so-called shock-electrons [6, 66] , which are thought 
to travel perpendicularly to the shock front of the wake 
of electron density fluctuations induced by a charge 
moving inside a metal [15], has not yet been presented . 

In this paper, we will concentrate on some of the 
mechanisms of electron-hole (e-h) excitation . First, we 
will derive the excitation probability in terms of the 
screened potential. The production of e-h pairs induced 
by a charged projectile will be studied both in the homo
geneous electron gas and near surfaces . A description 
of screening at surfaces will be given as well. Finally, 
the spatial representation of e-h pair production will be 
discussed. 

Some of the basic features that characterize the 
emission of electrons in solids can be understood by ana
lyzing their spectrum of electronic excitations, repre
sented in Figure 1. Figure la corresponds to the homo
geneous electron gas. The dashed region represents 
allowed transitions between free electron states. The 
shaded region shows the electronic excitations of the 
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Symbol Table 

Fermi energy 
Occupation probability of state k 
Total charge current, induced charge current, 
external charge current 
Bessel functions of 0th and first order 
Momentum vectors 
Components of the momentum vectors 
parallel to the surface 
Modified Bessel functions of 0th and first 
order 
Ratio between coincidence counts and elec
tron energy loss spectroscopy (EELS) counts 

P Probability per incoming particle 
r Spatial coordinate 
r

8 
One-electron radius 

R Distance to the trajectory of the particle 
S Stopping power 
sh, se, SP1 Stopping power associated to holes , 

V 

Vp 
W, W 

'Y 
r 
e(k,w) 
es(Q,z,w) 

fzek 
P, pi , Pe 
</>, </>i, </>e 

X 
Xo 

electrons, and plasmons 
Time 
Height of the surface barrier 
Particle velocity 
Fermi velocity 
Screened interaction, induced part of the 
screened interaction 
Damping 
Probability per incident particle per unit time 
Dielectric function 
Surface dielectric function 
Energy of state k 
Charge density 
Screened potential, induced potential, 
external potential 
Polarizability 
Polarizability m the random-pha se 
approximation 
Wave function of state k 
Wave function in the z direction 
Solid angle around the direction given by q 
Frequency of an elemental excitation 
Bulk plasmon frequency 
Surface plasmon frequency 

media that can be induced by an infinite mass particle 
moving with velocity v. The self-consistency of the re
sponse is translated into the emergence of collective ex
citations, the bulk plasmons. The plasmon line has been 
broadened in the figure to indicate that these collective 
modes can decay, giving rise to further e-h pairs. The 
decay of bulk plasmons is forbidden in a non-interacting 
free electron gas, except at the resonance point labeled 
C in the figure [ 4]. It has been shown that the main 

mechanism of plasmon decay consists in transferring 
momentum to the lattice in order to fulfill the momen
tum and energy conservation, that is, via inter-band 
transitions [8, 65]. 

Electron transitions are also made possible when the 
translational symmetry of the medium is broken. That 
is the case in homogeneous surfaces, where the excita
tion spectrum is better understood in terms of parallel 
momentum transfer, liQ, as shown in Figure lb. The 
resulting collective modes are the surface plasmons, first 
predicted by Ritchie [52]. It has been shown that bulk 
and surface plasmons approach the same point C for 
large momentum [33] (Fig. 1). Notice that the e-h pair 
region includes most of the Q-w plane, and overlaps the 
plasmon line. In other words, since the electrons are no 
longer free due to the presence of the surface, surface 
plasmons can decay by inducing intra-band transitions, 
unlike what happens with bulk plasmons . A study of the 
relative importance of intra- and inter-band transitions in 
the decay of surface plasmons is still lacking. 

The perturbation generated in the medium by an ex
ternal charge will be described in terms of the classical 
external potential throughout this work. This constitutes 
a reasonable approximation for ions or hot electrons. 
That is not the case for low-energy electrons, where the 
Pauli exclusion principle must be taken into account, in 
the sense that not all of the excitations in the shaded 
region of Figure la are allowed . This fact has been 
considered in a nice theoretical development , due to 
Ritchie and coworkers [54, 56, 62], who calculated the 
flux of coupled electrons and holes in the low energy 
end, finding remarkable agreement with experiment. 

Atomic units (a.u.), in which m = h = e2 = 1, 
will be used in some of the figures. More precisely, a 
velocity of v = 1 a. u. corresponds to approximately 25 
keV-H+ or 13.6 ev-e- projectiles . 

Electron-Hole Pair Excitation Probability 

We will express the perturbation introduced by the 
external probe in the medium in terms of the external 
scalar potential </>e (r,t). The energy transferred to the 
medium by this perturbation can in tum be translated 
into the production of e-h pairs . The probability of e-h 
pair creation will be derived below following these con
siderations, within the framework of linear response 
theory. The random-phase approximation (RP A) will be 
invoked eventually, which means that the solid will be 
described as a set of independent electrons that respond 
to the self-consistently-screened external field. 

The density of energy deposited per unit time at the 
position r can be expressed in terms of the work exerted 
by the screened electric field -V<J,(r,t) acting on the 
induced charge current i(r,t) as 
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Figure l. (a) Schematic representation of the spectrum of excitations in a homogeneous electron gas. llq and llw 
represent the momentum and energy transfers, respectively . llkp is the Fermi momentum. wp is the classical plasma 
frequency. The dashed region corresponds to allowed electron-hole pair excitations. The shaded region stands for 
electronic excitations that can be created by an infinite mass particle moving with velocity v. (b) The same as (a) for 
a homogeneous surface. fzQ represents the component of the momentum transfer parallel to the surface. w

8 
is the 

classical surface plasma frequency. 

(1) 

It is important to use the screened potential <t>(r,t), rather 
than the external potential in eq. (1), since the induced 
part of the potential plays the role of redistributing the 
deposited energy. Integrating eq . (1) over r by parts 
and using the continuity equation, it is easy to prove that 
the induced potential contributes with a conservative 
work . 

The total energy loss is obtained from eq. (1) by 
integrating over r and t. Using the procedure just 
described, one finds 

where 

dP 
dw 

00 

E = Jdwflw dP, 
dw 

= - rrlh Im{f d 3r f d3r1q, * (r, w) • 

Xo ( r, r 1, w) ¢ ( r 1, w) } 

(2) 

is the probability distribution for delivering energy llw 
to the medium, <t>(r,w) is the time-Fourier transform of 
<t>(r,t), and x0(r,r' ,w) is the electric polarizability. 
Then, one can express the induced charge pi(r,t) in 
terms of the screened potential as 

11 

p ( r, w) = d r xo ( r, r , w) q, ( r, w) • i f 3 I I 

Eq. (2) is exact within the linear response approxima
tion , provided one knows the exact polarizability. The 
latter reads, in the RP A, 

Xo (r,r 1, w) = 

2 e2 ,v/ (r) ,vk,(r) ,vk i" (r') ,vk(r') 
- 'h- L (fk - fk') £k - £k 1+W+iy 

Jc,k' 

y~o +, 

(3) 

where ·,h(r) represents a spatial basis set eigenfunction 
of energy llek and occupation probability fk, and the fac
tor of 2 arises from the summation over electron spin. 

It is convenient to rearrange eq. (3) so that it con
tains the expression fk,(1-fk). In this way, the corre 
sponding term refers to an electron in the state Y'k and a 
hole in the state Y'k'· Then, inserting eq. (3) into eq. 
(2), one obtains 

where 

dw 

dP 
dw 

2e 2 
= fz2fkt( 1-f k) · 

I (kl¢lk 1
) 1

2o(ek-ek,-w) 

(4) 

(5) 
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Figure 2. (a) Doubly differential electron excitation rate due to the interaction of a homogeneous electron gas with a 
unit charge moving with constant velocity v = 5 a.u . , according to eq. (7). The momentum and direction of motion 
of the electron are given by lik andµ = cos(k,v), respectively. The Mermin dielectric function [40] has been used to 
represent the response of the medium. Electron gas parameters appropriate to aluminum have been utilized ( one
electron radius r

9 
= 2.07 ao and damping li-y = 1.35 eV). (b) Under the same conditions, creation rate of holes of 

momentum lik' around the directionµ' = cos(k' , v), according to eq . (8). 

------------------------------------------------ ------------- --------------- -------- ------------

is the probability of creating an e-h pair of frequency w 
= Ek-Ek'· The matrix element in this equation reads 

(kjq,jk 1) = fd3r,t,k. (r)q,(r,w)ife(r). 

Eq. (5) is the Fermi golden rule for a perturbation 
described by the screened potential ¢. 

Electron Excitation in Homogeneous Media 

In this section , we shall consider that the external 
perturbation is provided by a charged particle of charge 
eZ 1 moving with constant velocity v in a homogeneous 
gas of independent electrons. Then , the perturbing 
screened potential is the well-known wake potential [13 , 
15, 45, 46]. Performing partial summations in eq. (4) , 
one obtains different quantities of interest. For instance, 
summing only over the holes k' and integrating over w, 
one finds the electron excitation probability . This func
tion was first studied for the homogeneous electron gas 
by Ritchie [53], who showed that this result is the same 
as that obtained from the self-energy method [15]. An 
exhaustive comparison between this result and the 
Rutherford scattering of an electron gas by the bare 
Coulomb potential can be found in reference [4]. 

We will take the states 1/,-k as plane waves of 
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momentum lik. Since eq . (4) is the total probability, we 
need to divide it by the interaction time in order to get 
transition rates. This can be done by considering that 
the screened potential is switched on (oft) at the finite 
time t = -a (t = a), so that , for a point charge Z 1e 
moving at constant velocity v, 

( klcplk') = 2Z 1 W(q, w) sin [ (w-q-v) a] 
0 w-q-v 

Here, 0 is the normaliz.ation volume, q = k-k' is the 
momentum transfer, and 

4rre 2 
W(q,w) = 

q 2e (q, w) 
is the screened interaction, expressed in terms of the 
dielectric function e(q,w) . Taking the a""* oo limit, the 
differential transition rate is found to be 

dr 

dwdkdk 1 
= 1 . 1 dP lm-------

a-00 2a dwdkdk 1 

(6) 
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where we have made use of the identity [41) 

. 2 
lim sin ax = no (x) . 
a--oo ax2 

Integrating eq. (6) over w and all possible hole 
states k', one finds the differential electron excitation 
rate 

= O, for rest 

whereµ = cos(k,v), 

q 2 = 2[k 2 (1-µ 2) +t(kµ -mv/n) 

-kcoscpJ 1-µ 2 

. ✓ 1k-mv/nl 2 -(kµ-mv/n-r> 2 ], 

(7) 

Vp and Ep are the Fermi velocity and energy , respective 
ly, and we have replaced the electron energy hek by E. 

Figure 2a represents the dependence of the electron 
excitation rate on momentum and angle for a unit charge 
particle moving with constant velocity v = 5 a.u . inside 
aluminum . The RP A dielectric function [36) has been 
used, together with the Mermin prescription [ 40) , which 
permits the use of finite values of the electron gas damp
ing parameter while maintaining the number of electrons 
in the medium constant. The spectrum of excited elec
trons is characterized by a peak in the k-µ plane [4]. 
This peak comes from energy-momentum transfers 
around the resonance point C of coordinates (CJc,Wc) 
(Fig. la) . The position of the peak is given by ~ = 
2mwc/hqc - kp and µc = w/qv, where hkp is the Fermi 
momentum (in aluminum , this corresponds to electrons 
of 35 .3 eV) . 

Similarly , integrating eq. (6) over k, one obtains the 
energy and angle distribution of holes 

(8) 
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whereµ'= cos(k',v), 

q 2 = 2[k12 
( l-µ 12) +t(mv /n -k 1µ 1) 

-k 1coscpJ 1-µ 12 

. ✓ 1k1-mv/nl 2 -(mv/n-k 1µ 1-r> 2 ], 
and E' = hek'· 

Figure 2b shows that most of the electrons are ex
cited from the region near the Fermi level (i .e., most of 
the holes are left there). The holes are preferentially 
created roughly around the same direction observed 
above for electrons. This anisotropy should be consid
ered when analyzing the cascade of e-h pairs originated 
in the passage of swift charges through an electron gas . 
The relative importance of holes in the cascade will be 
discussed later by analyzing the fractions of energy 
carried by electrons and holes. 

Screening at the Surface 

Part of this work is concerned with electron excita
tion at surfaces . To do this one needs to know how to 
calculate the screened potential </> near the surface. The 
present section is devoted to the study of the features 
that characterize the screened potential created by an ex
ternal moving charge in the vicinity of a homogeneous 
solid surface. The so-called surface wake potential [21, 
22 , 23) can be expressed in terms of the screened inter
action Was 

e¢ (r, t) = f d 2
Qdw ei(Q·R - wt) 

(2rr} 3 

· fdz 1W(Q,z,z 1,w)pe(O,z 1,w), 
(9) 

where some magnitudes are expressed in the space of 
Fourier transformations with respect to the directions 
parallel to the surface and the time {i.e. , (Q,z,w)} . 
Upper-case vectors will be reserved for components 
parallel with the surface from now on . 

The complexity of the surface response requires one 
to adopt strong assumptions in order to make it numer
ically tractable without employing extensive computer 
calculations . The specular-reflection model of Ritchie 
and Marusak [58] provides an approximation to the 
problem that has the virtue of incorporating dispersion 
effects by expressing the surface response in terms of 
the bulk dielectric function. In this model, the medium 
is described by a 'jellium,' in which the surface is as
sumed to be abruptly terminated; the electrons forming 
the response of the medium are considered to be specu
larly reflected at the surface. Thus, the electronic 
charge density vanishes outside the surface. The 
screened interaction takes the form 



F.J. Garcfa de Abajo 

I W(Q,z,z ,w) = 
21Te 

~ 

X es(Q,w) -l -Q(z+z') -Qlz-z 11 -...,.....,.-.......,...--e +e , 
es(Q,w) +l 

for z~o, z 1~o; 

x 2 es(Q,z,w) e-Qz', for z<O, z 1~o; 
es(Q,w) +1 

I 
X 

2es(Q,z ,w) -Qz 
------e I 

es(Q,w) +1 
for z~o, z 1<o; 

I I X es (Q, z-z , w) +es (Q, z+z , w) 
I 2es(Q,z ,w)es (Q,z,w) 

es(Q,w) +1 

for z<O, z 1<0; 
(10) 

where 
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Figure 3. (a) Induced surface wake potential created by 
a charged particle of charge eZ 1 moving with constant 
velocity v = 2 a. u . parallel to an aluminum surface for 
various impact parameters: '4:JA = 0.4, 0.2, 0, -0.2, 
-0.4, -0.6, and -0.8 (from top to bottom), where >-. = 
7rV/2w

8 
(= 4.04 A). Eqs. (10), (11), and (12) have 

been used. The surface, represented by vertical lines , 
is placed at z = 0. The vacuum occupies the z > 0 
region. Each grid extends from z = ->-. to z = >-. along 
the surface normal, and from x = -4>-. to x = >-. along 
the direction of motion. The subdivisions in the grids 
correspond to squares of side >-./10. The particle (black 
circles) is located at x = 0 and moving from left to 
right. (b) The same as (a) for a larger value of the 
velocity, v = 10 a.u. (A = 20.2 A), and 2,JIA = 0.4, 
0.2, 0, -0 .2, and -0.4. 

es (Q, z, w) 

is the so-called surface dielectric function, first used by 
Newns [47], and we have taken the vacuum in the z > 
0 region and k = (Q2+k\) 112. The response in the 
vacuum is dominated by surface plasmon terms, as seen 
in eq. (10). The poles E:8(Q,w) + 1 = 0 in those terms 
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Figure 4. Induced surface wake potential created by a charged particle of charge eZ1 moving with constant velocity 

v = 2 a. u. perpendicular to an aluminum surface for the cases of incoming (left) and outgoing (right) trajectories. The 
surface is represented by vertical lines, with the medium located on the right/left side in the incoming/outgoing 
trajectory. The dimensions of each grid are 50x15 a.u . (i.e., 26.4 x 7 .9 A). The subdivisions in the grids correspond 
to squares of side 1 a.u. The particle (black circles) is moving from left to right. R is the direction perpendicular to 

the trajectory. 
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define the possible self-sustained collective excitations in 
the surface; that is, they provide the surface plasmon 
dispersion relation [58], schematically shown in Figure 
lb. Although more sophisticated treatments are neces
sary to describe a real surface, the specular-reflection 
model has found wide application when one needs to 
characterize the complete response function of a bounded 
metal, as in the calculation of the image potential [7, 19, 
26, 30], the energy loss of fast charges moving near sol
id surfaces [31, 35, 48] and the surface wake potential. 
The latter has been obtained using different approxima
tions to the dielectric functions: the local response [64, 
71], thehydrodynamicapproximation[17, 21], theplas
mon pole approximation [22] and the full random-phase 
approximation [23, 27]. 

For a charge eZ 1 traveling parallel to the surface 
with constant velocity v and impact parameter 7{), the 
external charge density reads 

and accordingly, 

<J,(r,t) = 

z1J d2Q 2eiQ·(R-vt)w(Q,z,zo,Q· v). 
( 27T) 

(11) 

Figure 3 represents the induced surface wake potential, 
calculated from eqs . (10) and (11), for a charge moving 
with velocity (a) v = 2 a.u. and (b) v = 10 a.u. parallel 
to an aluminum surface. The projectile position is indi
cated by black circles. The plasmon-pole approximation 
has been used for the bulk dielectric function [38], in 
which case 

= w ( w + i -y) e -QI z I + 
n 

p e e Qw
2 

~l zlR_ -lzlR+} 
-Ar-+-_-A-.--_ _R _ - -A .... +_R_+_ I 

(12) 
where: 

0 = w(w+ir)-w/; 

A± = m{32Jh ± {(m{32Jh)2+ 0} 112; and 

{3 = (3/5) 112vp is the velocity of propagation of disturb
ances in the medium, R+ = (Q2+2mA+lh) 112, and the 
square root is understood to yield positive real parts . 

The excitation of surface plasmons is translated into 
oscillations of frequency w

8 in the potential. This hap
pens only when the external charge moves near the sur
face, that is, at distances smaller than the characteristic 
length of screening of the surface wake potential v/w

8
• 

16 

Bulk plasmons do not show up when the particle travels 
inside the medium close to the surface. As the ion 
moves deeper inside the material, surface plasmon oscil
lations slowly fade off, giving way to oscillations of 
frequency characteristic of bulk plasmons . In the 
specular-reflection model used here, the latter only 
appear in the potential when the particle travels a few A 
below the surface. More sophisticated models for the 
surface response allow for the "penetration" of bulk 
plasmons in the vacuum region [16]. 

When the particle moves along a straight line, the 
external charge density takes the form pe(r,t) = 
eZ 1o(r-vt). Inserting this expression into eq. (9), and 
using eq. (10), one can study the surface wake potential 
for trajectories that cross the surface [22, 23]. This case 
is contemplated in Figure 4, where the projectile is taken 
to move along the surface normal, both towards the solid 
(left) and away from it (right), with velocity v = 2 a.u. 
The plasmon pole dielectric function [38] has been used 
to describe the bulk material. The wake potential crea
tion and destruction processes can be clearly observed in 
the figure. In the outgoing case, the wake remains al
most unchanged until the particle reaches the surface . 
The potential at the position of the charge is approx
imately given by -eZ 11rw/2v when it is at the surface, 
which is a value in-between the bulk limit, -eZ 1 r.wp/2v, 
and the classical induced potential asymptote, -eZ 1/4z , 
valid at large distances z from the solid. 

The Loss Function 

Summing over all electrons and holes in eq. (5), one 
gets back the probability of creating excitations of fre
quency win the medium {eq. (2)}. A more convenient 
expression for this quantity can be obtained by invoking 
the conservation of energy, which leads to the conclu
sion that the energy deposited in the medium equals 
minus the energy expended in moving the charge against 
the induced electric field, i.e . , 

Starting from this instead of eq. (1), and following the 
procedure indicated below that equation, one obtains 

~~ = n\ Im{J d3r<J,i (r, -w) pe (r, w)}. 
This expression can be worked out for a particle travel
ing parallel to a solid surface with the help of eq. (11) . 
Dividing by the total interaction time, in a way similar 
to that shown in eq . (6), the probability of creating an 
excitation of energy hw in the medium per incident par
ticle per unit time is found to be 
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df 
- (a.u.) 
dw 
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v = 75. 1 a.u. (100 keV e- ) 

1 

v = 5 a. u. ( 625 ke V H+) 
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0 

Figure 5. Creation rate of excitations of frequency w induced by unit charge particles traveling parallel to an aluminum 
surface with impact parameter 7-o and different velocity regimes (see text in figure). 7-o < 0 means inner trajectories. 
The specular-reflection model has been used together with the Mermin dielectric function [40] {eqs. (10) and (13)}. 

dr _ zf e Joo {- i } ____ dQ1.Im W (Q,z 0 ,z 0 ,w) , 
dw 1T2hv o 

(13) 

where Q = (Q.1 2 + w2/v2) 112. For high velocity elec
trons, this probability can be measured by using STEM 
techniques [9, 32, 39]. One finds good agreement with 
experiment [14, 37, 76]. Good agreement is also ob
tained when considering more complex target geometries 
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[18, 63]. The question of the extreme spatial sensitivity 
of this technique has been addressed by Ritchie et al. 
[55, 57, 60, 61] by analyzing the impact parameter 
representation of the inverse electron mean free path, 
obtained from eq. (13) as >,_-l = vr. This procedure 
will be extended below in order to obtain a spatial 
representation of the e-h creation probability. 

In the local response approximation, eq. (13) 
reduces to the well-known expression [12, 48, 76] 
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dw rrfiv 

. {x [ 2w I zo I ]7 m{ e ( w) -1} 
O V r e(w)+l 

[ lqcv] ~wl zol l] + ln -- -K 0 W V 

· Im{~}o ( -z 0 ) }, 
e(w) 

(14) 

where Ko is the modified Bessel function of the second 
kind, e(w) is the local dielectric function of the material, 
and 4: is a momentum cutoff, usually chosen to corre
spond to point C in Figure la. This expression was ap
parently first given by Nuiiez et al. [48]. The first term 
in the above expression represents losses due to the exci
tation of surface modes [12, 52], while the last term cor
responds to bulk losses. The logarithmic term modifies 
the bulk losses in the sense of inhibiting them in the 
region near the surface. The expression inside square 
brackets exactly vanishes at the surface if one corrects 
the logarithmic divergence of the Ko function by em
ploying a finite momentum cutoff 4:. This is the bound
ary effect, predicted by Ritchie [52] and named 
"begrenzung" later [3]. 

Figure 5 shows dr/dw for a unit charge projectile 
moving near aluminum, calculated using the specular-re
flection model and the Mermin dielectric function [ 40]. 
Two different velocity regimes have been studied. The 
bulk plasmon losses dominate for negative impact pa
rameters, that is, inside the solid, while the surface 
losses are more important near the surface region . The 
figure clearly shows the effect of begrenzung. The 
influence of the surface in the loss probability extends 
up to the characteristic screening length v/w

8
• This can 

be observed in Figure 5 by comparing the different pro
jectile velocities under consideration : for large velocities 
(upper sheet), the surface plasmons play a relevant role 
even at large distances from the surface. 

It is interesting to note that the surface losses 
concentrate near the surface plasma frequency w

8 
both 

for large velocities and for large distances to the surface, 
that is, in the limits of validity of the local response 
approximation {eq. (14)}. For small velocities, the sur
face plasma losses occur at slightly larger frequencies in 
the near-the-surface region (see lower part of Fig. 5) . 
This result is related to the fact that the surface plasmon 
dispersion is positive within the specular-reflection 
model used here {eq. (10)}. 

18 

Free < states 

Surface 
Potential 

Bound 
states 

Incoming 
wave 

Outgoing 
wave 

s id e 

Yo 

···············* ··· 

Figure 6. Schematic representation of the basis set of 
states used to calculate the ejection of electrons from a 
solid surface . The wave functions are solutions of the 
Schrodinger equation with the potential shown in the up
per part of the figure. The arrows are intended to show 
the directions of the plane waves in terms of which the 
wave functions can be written for large distances from 
the surface , where the potential becomes flat. 

Electron Excitation in Homogeneous Surfaces 

The homogeneity of the surface guarantees that the 
one-electron states can be written in the form 

'Pk (r) = 

(15) 

where A is the area of the surface and lik is the momen
tum in the solid side. Thus, E = li9'. = (lik)2/2 is the 
energy of the electron with respect to the bottom of the 
conduction band. 
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A complete basis of wave functions cj,kz includes 
both bound states and free states, as Figure 6 illustrates 
in a schematic way. Since the process of electron emis
sion involves the detection of electrons in the vacuum 
side, far from the surface, one has to use a suitable set 
of free states. The one depicted in Figure 6 has the 
virtue that only the outgoing wave states contribute to 
the direct emission [20], thus avoiding the complication 
of handling possible interferences between degenerate 
states at an infinite distance from the surface [74]. The 
states that we have actually employed to perform the 
numerical calculations discussed below are solutions of 
the Schrodinger equation for a square barrier potential. 

The electrons are refracted at the surface, since they 
have to cross a potential barrier of height VO = Ep + <I> 

(Fermi energy + work function; see Fig. 6) . We will 
denote liq the momentum of the electron in the vacuum 

side, so that QII = KIi and q/ = k/-2mV 0/li2
. 

Transport of excited electrons up to the surface will 
be accounted for through the simple procedure of multi
plying the final state wave functions by an exponentially 
decaying function of the distance that the electron has to 
travel until it crosses the surface. The rate of decay is 
approximated by its value in the bulk of the material, 
expressed in terms of the mean free path of the excited 
electron, Xk, according to 

(16) 

where the factor 1/2 in the exponent indicates that this 
attenuation is incorporated through the probability ampli
tude. For typical metals like aluminum, the electron 
inelastic mean free path has a minimum of some A for 
electron energies of the order of 50 eV [1, 49, 59]. 
This should be compared with the screening length of 
the surface wake potential, v/w8 • Thus , eq. (16) is valid 
for small velocities. Its range of validity is extended to 
larger velocities in the case of grazing trajectories, due 
to the fact that the length v/w

8 
is an overestimate in the 

direction perpendicular to the surface, as can be seen in 
Figure 3b. 

Before focusing in a particular orientation of the 
trajectory relative to the surface, let us rewrite eq. (5) 
for a homogeneous surface. One finds [24] 

(17) 
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Figure 7. Domain of integration in eq. ( 18) in the K' 11-
plane. lik is the electron momentum inside the solid. 

where 

(kzl<t>lk
1
z) = 

Jdzcpt (z)<t>(Q,z,w)cpk, (z), 
z z 

Q = K11-K' JI is the parallel momentum transfer, and E' 
= liEk'· Mil s has derived this result using a technique 
similar to the one described above [42]. 

Grazing Incidence 

When a charge eZ 1 moving along a straight line 
parallel to the surface with constant velocity v is con
sidered, the time of interaction with the medium is infi
nite , and therefore, one has to follow a procedure simi
lar to that which led to eq. (6) in order to convert the 
transition probability given by eq . (17) into a transition 
rate. After some algebra, the rate at which electrons are 
ejected with energy E around the solid angle dO

4 
is 

found to be, from eqs . (11) and (17) [24], 

dr 2 (mez 1) 2qqz 
= 

dEdflq (2n) 3fz5kz 

d2KI 
· J--ll ecEF-E

1
)0(k

2-K112
-2mw/fz) 

kl 
z 

xj (k z jW(Q,z,z 0 ,w) jk:) 1
2 

(18) 
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Figure 8. Differential rate of electron emission induced by a 150 keV-H+ moving parallel to an aluminum surface at 
the surface edge. The angle () determines the direction of emission in the plane given by the trajectory and the surface 
normal (see inset). 

------------------------------

where k'/ = k2-K' 2 11-2mw/li, w = Q.V., and &-func
tion normalization is used in the z-direction. The inte
gral in eq. (18) is rest{icted to the dashed region shown 
in Figure 7. 

Figure 8 shows the differential emission rate in
duced by a 150 keV proton, calculated from eq. (18), 
using the response function given by eq. (10) and the 
Mermin dielectric function [40]. The projectile trajec
tory is placed right in the surface. No significant dif
ference is observed when the values of the mean free 
path Ak introduced in eq. (16) are allowed to vary in the 
range typical for the electron energies under considera-
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tion [59]. The figure shows that the electrons are pref
erentially emitted in the forward direction, in qualitative 
agreement with recent experimental results [29]. 

The main feature observed in Figure 8 is the peak 
in the energy spectrum at the position liw8-</>. This peak 
is formed by electrons which are excited from the top of 
the Fermi sea when a surface plasmon mediates in the 
process. Notice that within the specular-reflection mod
el used here, the induced charge is confined below the 
surface. Inclusion of a more realistic description of the 
surface response [16] has been shown to result in the 
excitation of bulk plasmons even when the external ion 
moves in the near-surface region [25]. 
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Figure 9. Probability of ejecting electrons along the normal to an aluminum surface, according to eq. (19), as a func
tion of their energy when a 150 keV proton enters or leave the surface (dashed and continuous curves, respectively). 
The electron energy E-<I> is given relative to the vacuum level. Only electrons that do not suffer any further scattering 
process since they are excited by the projectile have been considered. The specular-reflection model, together with the 
Mermin dielectric function [40), has been used to describe the screened potential. 

----------------------------------------------------------------------------------------
Transmission Geometry 

For an arbitrary orientation of the (constant) ve
locity v with respect to the surface, eq. (17) reduces to 

dP 2me2qqz 
= 

dEdflq ( 2 1T) 41i4k z 

· Jak10(Ep-E
1
) I (kzl<l>(Q,z,w) lk~ 1

2
• 

(19) 

It is important to stress that neither eq. (18) nor eq. 
(19) incorporate a reliable description of transport, apart 
from the exponential attenuation of the final wave func
tions in the solid side (see eq. 16). Thus, no account of 
electron cascade is given. These equations can be inter
preted as describing the electrons emitted without suffer
ing any further scattering once they have been excited . 

Figure 9 represents the emission probability for an 
incoming/outgoing trajectory perpendicular to the surface 
(dashed/solid curve), when the electron is emitted along 
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the surface normal. It has been calculated from eq. 
(19), using the same approximations to the surface re
sponse as in Figure 8, which incorporates both collective 
excitations and single-particle excitations. The two 
peaks appearing in the spectrum for the outgoing trajec
tory are located at the surface and bulk plasmon energies 
(relative to the vacuum level) minus the work function, 
respectively. In the incoming trajectory, the ion inter
acts during a shorter period of time with the bulk plas
mons while it is near the surface. Furthermore, the e-h 
pair excitations which correspond to the bulk plasma 
resonance in the response of the medium give rise to the 
emission of electrons preferentially oriented in the for
ward direction [65] (Fig. 2a). This may explain why 
bulk plasmons do not make any contribution to the emis
sion in the incoming trajectory, if one neglects the elec
tron cascade within the present approximation to the sur
face response. It must be stressed that the dominant true 
secondary electron peak has to be added to the features 
presented in Figure 9 in order to compare with experi
mentally observed spectra; then, these features appear as 
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Figure 10. Region of non-vanishing values of~ in eq. (20) . ~ = 1 inside the dashed region. The plane of representa
tion of the figure is perpendicular to the ky axis. All curves have cylindrical symmetry with respect to the ~ axis, 
except the surface plane, which is perpendicular to the ~ axis . 

shoulders superimposed to the main secondary electron 
peak. 

The yield of emission associated to the decay of 
surface plasmons, estimated from Figure 9, is r::::s0.2 
electrons per ion for the outgoing trajectory and r ::::s0.06 
for the incoming one. This contribution to the total 
electron yield tends to enhance the difference of electron 
emission yield in the foiward and backward directions. 
It represents a small fraction of the experimentally ob
served yield [28). Nevertheless, it is enough to create 
a distinct signature in the derivative of the energy 
spectra at the energy hw9-</> [28]. 

Application to Coincidence Experiments 

Next, the theory described in previous sections is 
applied to recent experimental results on secondary elec
tron emission in coincidence with energy loss events of 
a primary electron beam [11, 34, 43, 50, 68, 73). The 
beam is usually made to cross a thin film (transmission 
geometry) or directed parallel to one of the faces of a 
small cube at a distance of a few nm (aloof geometry). 

For transmission geometry, the effect of transport 
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(multi-scattering) becomes dominant, since the source of 
excited electrons extends over all of the depth of the 
target. 

In the aloof geometry, in analogy to the grazing 
incidence on surfaces discussed previously, the emitted 
electrons originate in the sub-surface area, and there
fore, they are not likely to suffer any further scattering 
process before they leave the medium . Thus, transport 
effects are of minor importance and eq. (17) is expected 
to be a good approximation of the electron emission 
probability. We will focus on this geometry and neglect 
transport effects. After some algebra, one finds 

where 

dr - cM 
dkdw - '- kw' 

2me 2 

(20) 
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Figure 11. Ratio of a coincidence spectrum to the nor
mal EEL spectrum in the case of an aloof 100 keV e
beam, for a CVD diamond sample. Experiment [44]: 
black circles. Theory {eq. (23)}; solid line (electron gas 
parameters : damping hr = 5 eV, rs = 1.24) . 

f = 2m(E/fz2-w/fz)-k'/, k'x = Isc-w/v, k} = f-k'/, 
E = (fzk)212m is the electron energy relative to the 
bottom of the conduction band, and ~ = 1 when k lies 
in the dashed region shown in Fig. 10 and vanishes 
elsewhere. Notice that eq. (18) can also be obtained 
from eq. (20) by integrating over w. 

In typical coincidence experiments, electrons ejected 
along different directions with the same energy are si
multaneously collected . Therefore, it is convenient to 
integrate eq. (20) over all possible angles of emission. 
One obtains 

dr 
dEdw 

(21) 

whereµ.. = cos(k,v), cJ, is the azimuth angle of kin the 
z-y plane, 

µ..0 = max{a_,-b}, µ..1 = min{a+,b}, a± = (w/kv) ± 
(1-fzw/E)112, and b = (1-V0/E)112. The energy of the 
emitted electrons must satisfy the relation 'Y/ ::;; E ::;; fzw 
+ Ep, where 'Y/ = max{fzw,V0) and V0 is the height of 
the surface barrier (Fig. 6). 

Since the impact parameter of the primary electron 
beam Zo is usually quite large, it is useful to derive the 
asymptotic behavior of eq. (21) in the Zo _. oo limit. 
After some algebra, one finds, using the solutions of the 
Schrodinger equation for a step potential of height VO as 
electron wave functions, 
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where 

dr 
dEdw 

cos- 1J rJf E 
1-µ.2 

p = ✓2mV0/fz2 -k~ 
kz = k✓ 1-µ. 2 

COS(;?, 

k 1
z = ✓k;-2mw/n2 , 

(22) 

e(w) is the local dielectric function of the bulk material, 
and K1 is the modified Bessel function of first order. In 
obtaining eq. (22), we have made the assumption that v 
> > wkp. Since Zo is large, the velocity of the primary 
electrons must also be large so that the argument of the 
Bessel function in the above equations becomes small in 
order to guarantee non-negligible contributions to the 
secondary electron emission. Electron beam energies of 
the order of 100 keV, typical in STEM, ensure that this 
condition is fulfilled. 

An interesting quantity is provided by the ratio N of 
drcoin/dw {obtained from eq. (22) by integrating over E} 
to the differential probability of electron energy loss 
[12], dreels/dw, given by eq. (14). One finds 
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N = drcoin / dw 

dreels/dw 
8mw8 (w -q,) 

N represents the probability that an excitation of energy 
l'lw gives rise to the emission of a secondary electron. 
In Figure 11, eq. (23) is contrasted to experimental data 
for the emission of electrons coming from chemical va
por deposited (CVD) diamond in an aloof geometry, 
taken from reference [44]. A Drude dielectric function 
has been employed. Despite the simplicity of the model, 
free of adjustable parameters, the right order of mag
nitude of N is obtained at the energy corresponding to 
the surface plasmon, where the Drude model is expected 
to work best. At energies above the surface plasmon , 
the experiment shows a linear increase with energy , 
whereas this theory predicts a constant value for N . 
This discrepancy may be due to electron multi-scat
tering, not contained within the present theory. Obvi
ously, the effect of multi-scattering increases with the 
energy transferred to the medium. 

Distribution of Energy Deposited 
in Electrons and Holes 

When an e-h pair is created, the energy deposited in 
the medium can be divided into (i) the energy of the 
electron relative to the Fermi level and (ii) the energy 
difference from the Fermi level to the hole. Both of 
these terms can be converted into further e-h pairs or 
other kind of excitations . If one is interested in finding 
out the way the energy transfer is distributed along the 
spatial extension of the solid, one has to consider the 
transport of energy associated with both electrons and 
holes, each of them involving different mechanisms of 
propagation [54, 56, 62]. Therefore, it is interesting to 
know what amount of the energy lost by, e.g . , an exter
nal particle traversing a solid medium is converted into 
kinetic energy of electrons {term (i) above} and potential 
energy of the holes {term (ii)}. 

For simplicity, we shall consider a point charge eZ 1 
moving with constant velocity v in a homogeneous elec
tron gas. According to the above discussion, the dif
ferential stopping power can be written 

dS 
dw 

(24) 
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where l'lw is the energy loss, shle represents the part of 
the stopping power attributed to holes/electrons, and SP1 

corresponds to the excitation of plasmons. Now, using 
the rate of e-h pair creation given in eq. (6), one has 

and 

These expressions can be further worked out to yield 

and 

where 

=O, for rest. 
The integration limits in eqs. (25) and (26) , 

(25) 

(26) 

restrict the possible excitations to the e-h pair region 
(Fig. la). 
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Figure 12. The various contributions to the stopping 
power of a homogeneous medium to a moving unit 
charge are shown as a function of the velocity of the 
charge {eqs. (25 to 27)}. The solid has been described 
by a gas of independent electrons with density corre
sponding to that of aluminum. S is the total stopping, 
SP1 is the stopping due to excitation of plasmons, se is 
the contribution of the energy transferred to the electrons 
in e-h pairs, relative to the Fermi level, and sh comes 
from the energy of the holes relative to the Fermi level. 

------------------------ ------------

The plasmon contribution to the stopping power can 
be extracted from eq . (24) and the total stopping power, 
related to the dielectric function as 

dS 
dw 

= 2 ( eZ 1) 2 f ex, dq wim{ -1 } . 
1TV2 wlv q e ( q, w) 

(27) 

Notice that the sum of e-h pair contributions, that is, 
eqs. (25) and (26), results in an expression similar to 
this one with different integration limits (q+)- In eq. 
(27), the response function is evaluated all over the 
shaded region of Figure la, whereas in the sum of eqs. 
(25) and (26), it is restricted to the dashed area. Eq. 
(27) can be obtained by multiplying the loss function by 
hw/v {e.g., taking the Zo ➔ oo limit in eq. (13)}. 

Figure 12 compares the magnitude of these contri
butions to the differential stopping power, calculated 
from eqs. (25), (26), and (27) integrated over w. Obvi
ously, the electrons take most of the energy transferred 
to e-h pairs in the large w region. The holes take the 
same energy as the electrons in the w ➔ 0 limit. This 
will also be the case in the v ➔ 0 limit, as shown in Fig
ure 13a. Notice that the plasmon losses appear above 
the threshold velocity for creation of plasmons, which is 
such that the line w = qv crosses the resonant point C 
in Figure la (v = 1.27 a.u. for Al). For velocities 
larger than that value, plasmons contribute with losses 
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Figure 13. Dependence of the various contributions to 
the stopping power shown in Figure 12 on the frequency 
for different particle velocities v = 0 .25 (a), 1 (b) and 
2 (c) a.u., according to eqs. (25), (26), and (27). 

peaked at the plasmon frequency (Fig. 13c); they domi
nate for small w. Now, since in the large v limit the 
total energy losses due to the creation of plasmons take 
approximately the same value as those due to e-h pair 
creation, this sum rule leads to the conclusion that the 
differential stopping power has to be dominated by the 
latter for large w. 
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charge, assumed to be moving with constant velocity v. 
This function has been represented in Figure 14 for a 
unit charge particle moving inside aluminum with differ
ent velocities . In all cases, a peak is found at 1-2 A 
from the trajectory. 

Similarly, a spatial representation of the excitation 
probability can be obtained from eq. (1) by expressing 
the induced current of charge density in terms of the 
current-density response function 1/o, implicitly defined 
by 

R (,. u.) J (r,w) = d r11o(r,r ,w)q,(r ,w). ·i J 3 / / / 

Figure 14. Spatial representation of the excitation 
probability for a unit charge particle moving inside an 
electron gas of density equal to that of aluminum with 
different velocities (2, 5 and 40 a.u .), according to eq. 
(28). The Mermin dielectric function [40] has been used. 

Spatial Representation of the 
e-h Pair Excitation Probability 

The experimental evidence for ion/electron-induced 
electron emission provides a valuable source of informa
tion to analyze the dynamical response of solid media. 
Nevertheless, transport of excited electrons (and possibly 
transport of holes as well) makes it difficult to relate 
experimental observations to the excitation probability 
itself. Therefore, a quantity that describes the spatial 
distribution of the latter (i .e., its z-dependence, assum
ing that the z coordinate runs perpendicular to the sur
face) would be of some help for that purpose. The elec
tron emission probability would emerge from the spatial 
convolution of such a quantity with the transport of both 
electrons and holes from every particular point up to the 
vacuum. The spatial extension of the track left behind 
the projectile could be also expressed in these terms. 

An impact parameter representation of the mean free 
path in the homogeneous electron gas has been given re
cently by Ritchie et al . [60, 61] in order to explain the 
extreme spatial sensitivity of STEM techniques . With 
our notation, their result can be derived from eq. (1) to 
obtain the spatial representation of the excitation rate, 

2 
dr = (eZi) R food f1fl2d(J 2sin20 
dR rrfz Jo q Jo q 

x ( sinfJ Ko (RqsinfJ) J 0 (RqcosfJ) 
+ cosfJ K1 (RqsinfJ)J 1 (RqcosfJ)] 

· Im • , { 
-1 } 

e ( q, qvsin0) 

(28) 

where R is the distance to the trajectory of the external 
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It reads , in the RP A, 

I -ie 2 
11o(r,r ,w) = nm L (fk-fk1) 

k,k' 

X ({ire (r) [Vfe(r) ] - [Vfe (r)] fe(r)} 

ir;,(r
1
)irk(r

1
) l + 

-----__,,., - , ,,➔o • 
ek -ek 1+w + 1. ')' 

Then, the energy loss can be written 

where 

dP I 
E = f 00 dwnwfd 3r L k,k , Jo I drdw 

k,k 

dP , e2 
k,k = f 1(1-f) 

drdw rrfzmw k k 

X Im { (f ;, (r) [ V\1-1 (r) ] 

- [Vfk~ (r) ] 'Pk (r)} 

Vcp(r,w) <1cl¢lk1 ) 
ek - ek ,-w-1. ')' 

+ {fk,. (r) [Vfk1(r) ] 

- [Vfe (r) Jire(r)} 

Vcp* (r,w) <1c11¢lk >} 
ek -ek ,+w + 1. ')' 

(29) 

can be interpreted as the spatial representation of the 
probability of creating a hole in the state k' and an 
electron in the state k with energy loss liw. 
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When eq. (29) is applied to a homogeneous electron 
gas, the rate of creation of electrons of energy E and 
holes of energy E' at a distance R from the trajectory, 
followed by a charge eZ 1 moving with constant velocity 
v, is found to be 

dr 

dEdE 1dR 

· Im{1/[(E-E 1) 2-(liw+i-y) 2h 

X rn:/1 (QR) 

. ] 

(30) 

whereJ 0 andJ 1 are Bessel functions, Q = (q2-w2Jv2) 112, 

and 

The spatial representation of electron and hole 
creation probability, calculated by integration of eq. (30) 
with respect to hole and electron energies, respectively, 
is represented in Figures 15 and 16. The latter shows 
that the holes are mainly produced near the trajectory or 
near the Fermi level. These functions take negative val
ues for some combinations of R and E (E') as an evi
dence of their quanta! character (they are not really 
probabilities, but a spatial representation of the prob
ability). The oscillations shown in the figure may also 
have a quanta! nature. Notice that the probability of hole 
creation receives a certain weight at distances as large as 
20 a.u. for v = 10 a.u. (Fig. 16b). Those are holes of 
low potential energy (E' close to the Fermi level), which 
are related to the low-energy electron structure observed 
in Figure 15b at those distances. Thus, this effect repre
sents low-energy e-h pairs, which can be created at dis
tances as large as v/w, where hw is the energy trans
ferred to the e-h pair. 

Further research on the spatial distribution of e-h 
pair creation probability needs to be done in order to ap
ply it to study the transport of electrons created in the 
bulk and near surfaces. 

27 

0.0 4 

b 
15 

v = 2 a.u. 

Alurni num 

2 . 5 

V::: ]() ;1 11 

Aluminum 

20 

I I 
I/ 

I 
I 

/ 
/ 

/ 

1 
/// 

1 
/ 

/ I 
/ I 

/ I 
/ 

I 
I 

Figure 15. Spatial representation of the rate of creation 
of electrons shown in Figure 2a, calculated by integra
tion of eq. (30) over E', for v = 2 a.u. and v = 10 a.u. 

Conclusions 

In this paper, the ion/electron induced electron 
emission from solids has been analyzed. The concept of 
surface wake potential, employed here to calculate elec
tron emission probabilities at solid surfaces, has been 
reviewed. First-order perturbation theory has been used 
to obtain probabilities of creation of electrons and holes. 
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Figure 16. Spatial representation of the rate of creation 
of holes shown in Figure 2b, calculated by integration of 
eq. (30) over E, for v = 2 a.u. and v = 10 a.u. 

The present theory predicts a significant contribution 
from surface plasmons to electron emission in grazing 
particle-surface collisions. The energy spectra of the 
emitted electrons should present a peak around the ener
gy of the surface plasmon minus the surface work func
tion, in agreement with experimental work by Rau et al. 
[51, 77]. For transmission geometry, bulk and surface 
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plasmons represent a major source of excitation. Rea
sonable quantitative agreement is found between this 
theory and recent experiments of coincidence [44) (Fig. 
11). 

The stopping power of an ion moving inside an 
electron gas has been decomposed into kinetic energy of 
excited electrons, potential energy of holes, and creation 
of plasmons. Electrons and holes share similar amounts 
of energy at low velocities, whereas the latter take a 
much smaller portion at large velocities. 

Finally, a spatial representation of the probability of 
creation of electrons and holes by a charge moving in
side an electron gas has been derived, finding that the 
impact parameters, at which the probability take signifi
cant values, increase with the velocity of the charge. 
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Discussion with Reviewers 

H. Milllejans: In the last sentence of the paper, refer
ring to Figures 15 and 16, you say that negative values 
are an evidence for the quanta! character. Could you 
please clarify this point further? Do negative intensities 
indicate annihilation rather than creation of electrons and 
holes? 
Author: The calculations leading to those figures as
sume that the medium is initially prepared in its ground 
state. Therefore, electrons and holes cannot be anni
hilated within the framework of first-order perturbation 
theory used here. The data displayed in the figure con
stitute a spatial representation of electron and hole cre
ation probability: they give an idea of how much a given 
impact parameter R contributes to the probability. 
Therefore, they are not probabilities, and can take 
negative values in some places. 

H. Milllejans: In Figure 9, you show the probability of 
electron ejection for an incident proton. If this is cal
culated for an incident electron, are the differences as 
pronounced? Do the calculations for incident electrons 
compare to experiments? 
Author: The present theory does not discriminate be
tween incident electrons and protons. The incident pro 
jectile is considered to have infinite mass. An electron 
traveling with the same velocity as the proton of Figure 
9 would have 81 eV, for which that approximation is 
questionable. On the other hand, both for incident pro
tons and for incident electrons, the transport of the ex
cited electrons that suffer scattering processes before 
they leave the surface, as well as cascade electrons, 
must be added to the spectra depicted in Figure 9 in 
order to properly compare to experiments. 

H. Milllejans: It would be interesting to see the results 
for the differential stopping power (Fig. 13) for incident 
electrons of 100 keV primary energy. 
Author: The results for 100 keV primary electrons look 
very similar to those shown in Figure 13c, except that 
dSh/dw is almost negligible and dSe/dw is much smaller 
than the plasmon losses for w < 1 a.u. dSe/dw domi
nates for large w. That is, plasmons dominate for small 
w, whereas the target electrons behave like free electrons 
at rest for large energy transfers fzw. 

H. Milllejans: How does the spatial representation of 
e-h pair creation relate to the spatial resolution observed 
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in electron microscopes for secondary electron and plas
mon loss imaging? 
Author: Following the argument given by Ritchie et al. 
[61], from Figure 14, one concludes that the impact pa
rameters of relevance are below 1 nm, keeping in agree
ment with Figs . 15 and 16 and with the experimentally 
observed spatial resolution. 

R.H. Ritchie: Results found for the spatial dependence 
of electron-hole pair generation are shown in the last 
two graphs, but are a bit difficult to read . Qualitatively, 
one would expect that the differential probability of e-h 
creation should decrease quite a bit faster with increas
ing distance from the ion track than does the probability 
of bulk plasmon creation. Is this confirmed in the de
tailed results? Can one characterize the e-folding dis
tance in space for a representative group of electrons or 
holes? 
Author: The answer to the first question is yes. Figure 
14 contains both plasmon excitations and e-h pairs, 
whereas Figures 15 and 16 contain only the latter. The 
integral over the whole hole energy range in Figure 16a 
yields a curve which lies below and decreases faster with 
R than the one corresponding to v = 2 a.u. in Figure 
14. Concerning the e-folding distance , v/w, one can 
observe in Figure 15b that the maximum impact param
eter below which df takes significant values decreases 
with increasing energy E. Also , Figure 16b shows that 
the holes with the largest potential energies (minimum 
E') pile up near R = 0. 

R.H. Ritchie: Figure Sb nicely illustrates the operation 
of the boundary ( or begrenzung) effect in surface and 
bulk plasmon excitation. There is a maximum in the 
probability of surface plasmon excitation as a function of 
the position of the ion relative to the surface, but it oc
curs in this figure not exactly at the surface. Why is 
this? 
Author: When the ion travels in the vacuum side or on 
the surface, the position of the centroid of induced 
charge is placed below the surface in the specular
reflection model if one uses a bulk dielectric function 
with a positive plasmon dispersion relation (Fig. 5) . 
Therefore, since the strength of the surface plasmon is 
connected to the convolution of the bare potential with 
the induced charge, the maximum in the losses due to 
the creation of surface plasmons do not have to be 
placed right at the surface, but displaced towards the 
solid. How much it is displaced depends on the actual 
value of the damping and on the magnitude of the dis
pers10n. 

M. Rosier: In reference [29], two different features of 
the electron emission (the proton impact energies are 
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below 30 ke V) were observed. At low energies, a struc
ture appears, which is located (in energy) in the same 
region as the calculated feature shown in Figure 8 
(which shows an enhanced emission in forward direction 
and a small shift of the energetic position). The ob
served structure is independent of the angle of emission 
and nearly independent of the impact energy [29]. The 
second feature appears in the spectra of [29] at distinct 
higher energies (in this case, there is a shift to higher 
energies with increasing impact energy). These high-en
ergy electrons are emitted preferentially in the forward 
direction. I believe that it is not possible to compare 
this emission feature with the calculated structure shown 
in Figure 8. Can you give a comment? 
Author: The high-energy peak in reference [29] seems 
to behave with velocity like a binary peak. The low
energy peak intensity shows a cos(8) angular dependence 
similar to Figure 8. Unlike what happens in Figure 8, 
it cannot be ascribed to the decay of surface plasmons 
directly created by the projectile, since this travels with 
velocities under the threshold needed to create plasmons. 

H. Rothard: Consider heavy ions or clusters instead of 
protons and electrons. Can the much stronger pertur
bation and ionization density with this heavy projectiles 
be treated within linear theory? How can charge ex
change and excited projectile states be included? 
Author: That depends on the velocity of the projectiles. 
For relatively low velocities (smaller than the projectile 
charge), one should consider using non-linear ap
proaches. Charge exchange and excited projectile states 
are commonly treated within first-order perturbation 
theory in cases like Auger charge transfer (see reference 
[15] for details). 

H. Rothard: Brice and Sigmund [4] calculated "sec
ondary electron spectra from dielectric theory," and 
found a resonance in angular distributions at emission 
angles 8 = cos-1(v/vp) (Mach relation with a shock 
wave group velocity v

8 
and projectile velocity vp) which 

were interpreted as emission of low energy shock elec
trons [additional reference 78]. What are the similarities 
and differences between the calculations of Brice and 
Sigmund [4] and the formalism that you apply? In Fig
ure 8, you show energy spectra for perpendicular elec
tron emission. It should be possible to calculate double 
differential electron energy and angular distributions 
within your theory. Can you say something about the 
angular dependence of the peaks seen in Figure 8? Is 
there a resonance of the type mentioned above? 
Author: The dielectric theory used here for the 
homogeneous electron gas fully coincides with that first 
given by Ritchie [53] and also with the calculations 
performed by Brice and Sigmund [4]. The derivation 
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given here is somewhat different, allowing us to study 
electron excitation at surfaces and derive a spatial rep
resentation of the e-h excitation probability. The reso
nance in the distribution in angle and energy pointed out 
in reference [4] is the same as that illustrated in Figure 
2a. In the present work, the distribution of holes is 
given as well . In Figure 8, the emitted electron is con
sidered to form an angle 8 with the surface normal, so 
that the angular dependence of the emission is shown 
there. In this case, there is not a resonance of the kind 
commented above (see discussion on point C in Fig. 1). 
The electrons are preferentially emitted in the forward 
direction due to momentum conservation. 

Additional Reference 

[78] Schafer W, Stocker H, Muller G, Greiner W 
(1980) Mach shock electron distributions from solids. Z 
Phys B36: 319-322. 
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