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Abstract 

Atomic force microscopy (AFM) has been used to 
visualise the formation of bacterial biofilms on polished 
surfaces of 316 stainless steel. Imaging under ambient 
conditions revealed both the bacterial cells and the 
matrix of exopolymeric substances (EPS). These images 
exhibited good resolution with cell surface features as 
small as 30 nm distinguishable. In situ imaging was also 
carried out, and although the resolution was considerably 
reduced, images revealing the process of bacteria divi
sion have been obtained. 
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Introduction 

In recent years, the use of atomic force microscopy 
(AFM) techniques in the study of biological materials 
has expanded rapidly. Although most attention has fo
cused on the smallest structures, such as DNA (Hansma 
et al., 1992), there have also been a number of studies 
of larger samples such as bacterial cells (Farina et al., 
1993; Kasas et al., 1994) and eukaryotic cells (Horber 
et al., 1992; Henderson, 1994; Le Grimellec et al., 
1994). On the scale of a single bacterium, AFM can be 
used alongside more conventional techniques such as 
scanning electron microscopy (SEM) and transmission 
electron microscopy (TEM). However, unlike these 
techniques, samples require little or no preparation prior 
to AFM imaging . Furthermore, AFM images contain 
information in three dimensions, valuable when attempt
ing to accurately visualise complex heterogeneous struc
tures such as biofilms . 

Biofilms are ubiquitous in nature (Ellwood et al., 
1982) forming on almost any surface. In industry , the 
presence of biofilms is often considered a problem, and 
has been acknowledged as contributing to the accelerated 
deterioration of unprotected metal surfaces (Tatnall, 
1981), a process known as microbially influenced corro
sion (MIC). This phenomenon has been studied exten
sively using electrochemical techniques (Mansfeld and 
Little, 1991), however, the detailed nature of the bio
corrosion mechanism remains to be fully understood . 

The complex structures formed by biofilms depend 
on the physical, chemical and biological nature of the 
environment. A simplified model consists of bacterial 
cells encased in a matrix of exopolymeric substances 
(EPS) (Trulear and Characklis, 1982). The use of mi
croscopy techniques allows the direct observation of the 
structure and interaction of biofilms with their substrata. 
Of the techniques currently available, optical methods 
lack the resolution to study individual bacterial cells in 
detail, whilst SEM and TEM require potentially damag
ing sample preparation in the form of fixation and de
hydration. AFM has the potential to overcome both of 
these drawbacks. 
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Figure 1. AFM images of an air-<lried pipeline consortium biofilm on 316 stainless steel obtained using (a) contact 

mode and (b) tapping mode. 

To date only a few studies of biofilms have been 
carried out using AFM (Bremer et al., 1992; Steele et 
al., 1995a,b). Steele et al. (1995b) have shown that air 
dried samples provide the best resolution images and 
have used these to monitor the pitting of 316 stainless 
steel. Bremer et al. (1992) have reported in situ imag
ing of biofilms grown on copper. However, little is 
known of the potentially damaging effects of tip-surface 
interactions or how dehydration affects these delicate 
structures. In this paper, we report on the AFM operat
ing and preparative conditions which give most informa
tion about biofilm structures and discuss prospects for 
future imaging capabilities . 

Materials and Methods 

Organisms, media and substrates 

A number of different bacterial cultures have been 
employed to generate biofilms in batch cultures under 
stagnant conditions on surfaces of 316 stainless steel. 

Pipeline consortium: Samples of biofilms recov
ered from corroding cast iron potable water mains were 
placed in modified Wolfes' media (Kucera and Wolfe, 
1957). After 8 weeks incubation at 10°C, 1 ml aliquots 
were transferred into basic sulphate media (Herbert and 
Gilbert, 1984) and incubated at 27°C. 

A4 consortium : A natural consortium obtained 
from a marine corrosion failure supplied by Dr . V. 
Chau (British Steel Technical, Swinden Laboratories, 
UK) was grown in Postgate (1984) medium C at 27°C. 

Alaskan sulphate reducing bacteria (SRB) consor
tium: Isolated from a marine corrosion failure grown 
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in basic sulphate media at 37°C. For each culture, the 
cell suspension was adjusted by haemocytometer counts 
to give an initial inoculum concentration of 107 cells/ml. 
Coupons of 316 stainless steel, 1 cm in diameter, were 
ground (to 1200 grit SiC) and polished (using 1 µm 

diamond paste). Coupons were placed aseptically in the 
bacterial cultures and incubated for 7-14 days. 

AFM Imaging 

Imaging was carried out using a NanoScope III 
(Digital Instruments, Santa Barbara, CA) scanning probe 
microscope. For ex situ imaging, the stainless steel 
coupons were removed from the bacterial cultures, gent
ly rinsed with sterile distilled water, and allowed to air 
dry for approximately five minutes. The coupons were 
imaged in both the contact and tapping AFM modes us
ing microfabricated silicon nitride (nominal spring con
stant k = 0.06 N/m) and silicon (k = 17-60 Nim) canti
levers, respectively. In situ imaging was carried out 
using the AFM fluid cell and silicon nitride cantilevers. 

Ex situ imaging 

Images of air dried biofilms formed by the pipeline 
consortium are shown for both the contact (Fig. la) and 
tapping (Fig. lb) modes of operation. In both cases, 
imaging is relatively straightforward with features as 
small as 30 nm distinguishable. There are, however, 
subtle differences between the two images which suggest 
that tapping mode is the preferred technique. In the 
contact mode, image artifacts due to the geometry of the 
tip are clearly apparent as the images reveal angular 
sides to the steep walls of bacterial cells. This can be 
attributed to the fact that the silicon nitride tips used for 
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Figure 2. Contact mode AFM image of an air-dried 
pipeline consortium biofilm showing EPS surrounding 
individual bacterial cells. 

contact mode have a half cone angle a - 35°, com
pared with a - 18 ° for the silicon tips used for tapping 
mode. Also, the surfaces of the bacteria in the contact 
mode image have more pronounced undulations than on 
the tapping mode images. This appearance reflects the 
dehydration of the bacteria but is likely to be more pro
nounced with the higher force applied during contact 
mode imaging. Furthermore , a covering layer of EPS 
may also be present, which the tip may penetrate in con
tact mode but not in tapping mode. Imaging on areas of 
samples with incomplete coverage of biofilm indicate 
that EPS is present (Fig. 2), extending around individual 
bacterial cells. 

To study the process of dehydration in greater de
tail, samples of pipeline consortium biofilms were pre
pared in the manner described earlier allowing an initial 
five minutes of air drying before mounting the sample 
on the AFM stage . A suitable area was located and im
aged at intervals over a period of 440 minutes using con
tact mode AFM whilst maintaining a constant force . 
Figure 3 shows linescans across a bacterium after 30, 
100 and 440 minutes of air drying. The bacterium has 
dried down on to the surface, the peak height reducing 
from 412 nm after 30 minutes to 318 nm after 440 min
utes. However, the magnitude of the undulations on the 
bacterial surface have not changed significantly. The 
feature labelled A in the lower linescan was attributed to 
use of the force calibration mode to adjust the force ap
plied to the surface. In this mode, the tip is periodically 
indented into the surface by application of a triangular 
waveform to the z piezo. This demonstrates that the 
surface of the bacteria are still compliant even after con
siderable air drying, in agreement with the observations 
of Fritz et al. (1994) who obtained contrast from the 
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Figure 3. AFM cross-sections showing the dehydration 
of a bacterium. Feature A resulted from periodically 
indenting the tip into the bacterium . 

force modulation mode in their study of magnetotactic 
bacteria. 

Ex situ imaging also allowed observation of internal 
bacterial structures. Each cell type dehydrated in a very 
characteristic manner as shown, for example, by com
parision of Figure 1 with Figure 4. Differences between 
the surface morphologies reflects variations in the hydra
tion state and rigidity of the intracellular structures. To 
fully exploit this capability of the AFM to probe internal 
detail, comparison with other microscopies or the use of 
labelling techniques will be required. 

In situ imaging 

To more accurately reproduce the conditions in 
which biofilms exist in nature, samples were studied im
mersed in a liquid using the AFM fluid cell. Prior to 
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Figure 4. A deflection mode image of an air-dried 
Alaskan consortium SRB biofilm with a different cell 
surface morphology to that shown in Figure 1. 

imaging , samples were lightly rinsed with sterile distilled 
water as described earlier. A droplet of sterile distilled 
water was placed on the sample which was then trans
ferred to the AFM stage. In this way , imaging was car
ried out without any dehydration occurring. As shown 
in Figure 5 for an A4 consortium biofilm , the resolution 
is much poorer than in air , and there is considerable 
streaking across the image. In addition, bacterial cells 
were removed from the scanned area on a regular basis. 
These observations are indicative of there being a move
ment of the sample under the tip . This can be attributed 
to a much reduced adhesion between the biofilm and its 
steel substrate . Also, a transient force, described by 
Henderson (1994) as being caused by poor tracking of 
the tip when it encounters a steep sided object , is likely 
to be significant with this type of sample. Despite these 
imaging difficulties , the use of the AFM tip to move 
bacteria could be potentially employed as a method of 
studying the strength of adhesion of a biofilm to its 
support, which is an important factor in understanding 
MIC. 

One way to improve the adhesion of the biofilm to 
its substrate is to allow a period of drying prior to imag
ing under a liquid. Other methods, such as chemically 
treating the substrate with poly-L-lysine, were also con
sidered, although it could be argued that this will alter 
the natural biofilm growth process. Figure 6 displays an 
in situ image of a pipeline consortium biofilm which was 
first air-dried for five minutes. The drying down of the 

986 

2. lpm 

Opm 

(5) 

3 ~llTI 

O~tm 

(6) 

Figure 5 (top). In situ AFM image of an A4 consor
tium biofilm . The streaking in the image suggests 
movement of the biofilm under the tip. 

Figure 6 (bottom). An AFM image showing a pipeline 
consortium biofilm , air-dried for five minutes prior to 
imaging in situ. 

biofilm led to a significant improvement in attachment of 
the cells and therefore in imaging, although possibly at 
the expense of the hydrated EPS matrix and certain cell 
types which were not able to withstand the desiccation. 
Cells, which were rehydrated, were still susceptible to 
movement by the tip . Surprisingly, some cells could be 
rehydrated to their original state after being exposed to 
air for several days. 

An alternative method of imaging poorly adhered 
samples is to use intermittent contact techniques, such 
as, tapping mode. Recently, tapping mode has been suc
cessfully demonstrated in a liquid environment (Hansma 
et al., 1994). Preliminary investigations using this tech
nique have not shown significant improvements in reso
lution for fully hydrated biofilms. Allowing a short 
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Figure 7. A sequence of deflection mode AFM images revealing a bacterium in the process of dividing. Images 
correspond to time T = 0 (a), 100 (b), and 220 minutes (c). Photo Width = 7 µ,m. 

--------------------------------------------------------------------------------------
period of dehydration prior to imaging gave a slight 
improvement in the resolution over contact mode, how
ever, the most noticeable difference was the ability to 
image for long periods without removing any cells. 

One of the rewards of in situ imaging using AFM is 
the ability to visualise dynamic biofilm processes. The 
sequence of images shown in Figure 7 demonstrates this 
capability. The images were obtained for an A4 consor
tium biofilm using contact mode AFM in a sterile distil
led water environment without prior dehydration. Imag
ing was not continuous: the tip was withdrawn between 
scans and therefore needed to be relocated for each scan. 
A cell is observed in the process of division. The error 
signal images clearly show the separation of the two 
daughter cells after 100 minutes, with a further sub
division of the lower cell in progress after 220 minutes. 

Conclusions 

Atomic force microscopy shows great potential as a 
technique to reveal the complex structure of bacterial 
biofilms in their natural environment. There are, how
ever, a number of issues to consider when imaging these 
structures, particularly the state of hydration and the 
influence of tip-surface interactions. Tapping mode 
AFM is the technique of choice for in air characterisa
tion, revealing fine structure on cell surfaces and poten
tially EPS. Imaging in a liquid is possible, although 
care to minimise deformation or movement of cells by 
the tip is of paramount importance. Fixation with glu
teraldehyde has been purposely avoided during these 
studies to reduce the number of preparative steps prior 
to imaging. It is likely though to help preserve the bac
terial structure during desiccation, as demonstrated by 
SEM studies, although this may not resolve the problems 
of accurately imaging EPS. However, as the AFM tech
niques become Jess invasive, it may not be necessary to 
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carry out chemical fixation in order to reveal the 
intricate structures of biofilms. 
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Discussion with Reviewer 

M.J. Miles: Can the types of bacteria be identified 
from these images? 
Authors: There is no reason why AFM would not pro
vide some means of bacteria identification from size, 
shape and even dehydration characteristics, although we 
have not studied this in detail. 
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