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Abstract 

Scanning force microscopy (SFM) and scanning 
electron microscopy (SEM) were used to examine the 
tissue structure of the electric organ of Torpedo mar
morata in air and in liquid after applying fracturing and 
cryosectioning techniques and chemical fixation. The 
electric organ is organized in columns of stacked electro
cytes, arranged in a honeycomb pattern. The columns 
were cut along a plane normal to the cell stack and thin 
sections were transferred to polylysine coated glass 
coverslips. The polarity of the electrocytes was made 
apparent by immunofluorescence microscopy directed to 
different domains of the acetylcholine receptor (AChR), 
thus revealing the innervated face of the cell. SFM and 
SEM both showed cell surfaces to be overlaid by a net
work of collagen fibers by their characteristic banding 
pattern with about 64 nm periodicity and about 2.5 nm 
corrugation amplitude. In liquid, significantly lower 
structural resolution was achieved by SFM, probably 
due to sample elasticity. 

Key Words: Atomic force microscopy, scanning elec
tron microscopy, tissue structure, collagen. 

• Address for correspondence: 
T.M. Jovin 
Department of Molecular Biology, 
Max Planck Institute for Biophysical Chemistry, 
Am Fassberg 11, 
D-37077 Gottingen, Germany 

Telephone number: +49-551-201-1381 
FAX number: +49-551-201-1467 

E-mail: tjovin@mpc186.mpibpc.gwdg.de 

963 

Introduction 

The electric organ from Torpedo marmorata has 
been regarded as a model system for the study of choli
nergic development, innervation and the chemistry of 
neurotransmitter release (for a detailed introduction see 
Whittaker, 1992). The subcellular organization of elec
trocytes from Torpedinidae and Narcinoidae has been 
investigated by anatomical, physiological, cytochemical 
and microscope techniques (Cartaud et al., 1995; Kor
delli et al., 1986, 1987, 1989; LaRochelle et al., 1990; 
Luft, 1958; Richardson et al., 1987; Rosenbludt, 1975; 
Schoffeniels, 1959; Sealock and Kavookijan, 1980; 
Walker et al., 1985). The adult electric organ extends 
from the dorsal to the ventral side of the animal. Elec
tric organs are rather gelatinous, and a large fraction of 
their volume consists of extracellular space, containing 
a considerable amount of connective and other accessory 
tissues as well as blood vessels and motor nerves (Ben
nett, 1971). Removal of the skin reveals individual col
umns in a honeycomb arrangement. Each column is 
composed of a stack of thin horizontally flattened, disc
shaped multinuclear cells, the electrocytes, which exhibit 
a striking functional and structural polarity. The elec
trocytes possess a dorsal, non-innervated and a ventral 
richly-innervated cell membrane (Bennett, 1971; Whit
taker, 1992). The former is rich in the Na+, K+ 
A TPase and chloride channels and the latter in the 
acetylcholine receptor (AChR) (Baumann et al., 1970; 
Miller, 1983; White and Miller, 1979). Both the dorsal 
and ventral membranes are highly invaginated and the 
whole cell is invested with a prominent basal membrane 
that fills the synaptic cleft and continues around the dor
sal face, penetrating into the deepest invaginations and 
lining their walls (Whittaker, 1992). A layer of collagen 
covers the outer dorsal and ventral surface of the elec
trocyte and is colocalized with small nerve fibers and 
with blood vessels (Sheridan, 1966; Whittaker, 1992). 

Since its inception in 1986, scanning force micros
copy (SFM) has become a powerful tool for the investi
gation of cell morphology and subcellular structures 
(Hansma and Hoh, 1994; Lal and John, 1994). The 
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SFM offers the potential for atomic/molecular resolution 
of cellular and molecular structures in air and in liquid 
(Henderson, 1994; Hoh and Hansma, 1992; Shao et al., 
1996), even with living cells under physiological condi
tions (Barbee et al., 1994; Lal et al., 1995; Shroff et 
al., 1995). SFM has been applied to studies of the cell 
membrane, cell organelles, and the cytoskeleton of fixed 
and living cells (Chang et al., 1993; Harber et al., 
1992; Kasas et al., 1993; Parpura et al., 1993a,b; 
Pietrasanta et al., 1994; Putman et al., 1993a,b; 
Radmacher et al., 1992; Yater et al., 1995). 

In this study, we investigated structural features of 
thin sections of the electric organ from Torpedo marmo
rata with a combination of various techniques: scanning 
force microscopy (SFM), scanning electron microscopy 
(SEM), and immunofluorescence microscopy (IFM). 

Materials and Methods 

Biological material 

Adult Torpedo marmorata were obtained from the 
Institut de Biologie Marine at Arcachon, France, and 
kept alive in Gottingen in an artificial sea water aquari
um maintained at 18°C. All animals were anesthetized 
with ethyl-m-aminobenzoate (0.5 mg/ml in sea water, 
Sigma, Deisenhofen , FRG) and killed by spinal section. 
The electric organ was crudely dissected into small 
pieces of about 1 cm3. 

Sample preparation from electric organ 

Dissected pieces from the electric organ were sliced 
transversally and longitudinally with respect to the stack 
of electrocytes. 

Transversal cross-sectioning and cryoslicing. 
Electric organ samples were fixed in 5 % glutaraldehyde 
buffered at pH 7.4 with 0.4 M sodium cacodylate for 2 
hours at room temperature. The fixed sample was 
washed in buffer for 1 hour and postfixed with 1 % os
mium tetroxide in cacodylate buffer. The sample was 
dehydrated in increasing concentrations of ethanol (50-
100 % ) and critical point dried (Critical Point Dryer, 
Balzers, Liechtenstein) in either ethanol or acetone using 
CO2 as the transition fluid. Transversal cross-sectioning 
was performed with a razor blade after critical point 
drying of the sample. 

For cryoslicing, samples of electric organ were 
fixed with 4 % paraformaldehyde, buffered to pH 7.4 by 
phosphate-buffered saline (PBS), for 2 hours at 4 °C. 
The tissue was impregnated with increasing concentra
tions of sucrose (5 % , 10 % , 20 % wt/vol in PBS), and 
then rapidly frozen according to the procedure of Kor
delli et al. (1986). Transverse frozen sections (5-10 µm 

thick) were cut with a freezing microtome (Cryostat 
Frigocut Model 2700, Reichert-Jung, Cambridge Instru-
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ments, Cambridge, U.K.) at -20°C. Individual sections 
were mounted onto glass slides coated with either Vecta
bond (Vector Laboratories, Burlingame, CA) or polyly
sine. SFM imaging was conducted directly on sections 
immersed in liquid or on air dried sections. 

Longitudinal mechanical fracturing for SEM and 
SFM. For SEM the critical point dried dissected piece 
of electric organ (see above) was mechanically fractured 
longitudinally with tweezers and attached to a specimen 
stub with double sided sticky tape. For SFM, dissected 
columns of prefixed and frozen tissue were cut transver
sally with a razor blade in slices of about 4-5 mm thick
ness. The slices were mounted between polylysine-coat
ed coverslips and transferred to a metallic basket used 
for critical point-drying. After fixation in the vapor 
phase of 25 % glutaraldehyde at 4 °C for 2 days, the 
slices were dehydrated in increasing concentrations of 
ethanol prior to critical point drying (see above). The 
coverslips were carefully separated such that part of the 
tissue remained attached to the glass. The surface was 
contacted with sticky tape to produce a freshly cleaved 
surface suitable for SFM (Pietrasanta et al. , 1994). 

Scanning Electron Microscopy (SEM) and Scanning 
Force Microscopy (SFM) 

For SEM (Stereoscan 150, Cambridge Instruments, 
U.K .) samples were sputter coated with gold (Union 
Sputtering Device, Balzers) in a 0.1 mbar argon atmo
sphere at 30 mA for 2 minutes, with a specimen distance 
of 5 cm. SFM measurements were performed with 
NanoScope II and III-multimode SPMs {Digital Instru
ments (DI), Santa Barbara, CA}. Scanning was with a 
G-scanner with a 85 µm X 85 µm (x,y) X 4 µm (z) 
scan range or with a J-scanner (135 µm X 135 µm X 5 
µm). The SFM was operated under ambient conditions 
(18-27°C, relative humidity 15-40%) in the permanent 
contact mode (with and without feedback electronics, 
i.e., in the isoforce mode for measurements of the 
topography or in the error mode (Fritz et al., 1994; 
Putman et al., 1992), and in the tapping mode. The 
error mode provides higher contrast images of the sur
face relief. We used microfabricated pyramidal shaped 
Si3N4-tips (DI) and conical shaped Si-tips (Ultralever, 
Park Scientific Instruments, Sunnyvale, CA) integrated 
into a triangular cantilever with a spring constant of 
about 0.1 Nim. For tapping, the resonance frequency 
of the Ultralever was about 160 kHz. The loading force 
of the tip was always minimized by adjusting the damp
ing amplitude to a minimum value (tapping mode) or by 
adjusting the setpoint of the optical readout signal to a 
minimum value (permanent contact mode). The latter 
typically corresponds to a cantilever bending force as 
low as 1 nN. The total load of the tip is estimated to be 
typically 1-2 orders of magnitude higher in air, and is 
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cell urface stack of electrocytes 

Figure 1. Electric organ from Torpedo marmorata imaged in the SEM. (A) Historical representation of a partially 

dissected Torpedo marmorata (Fritsch, 1890). Head-to-tail length: 25-40 cm. (B) Scheme of the arrangement of elec

trocytes within the electric organ. Individual electrocytes are stacked and are organized into columns. (C) Scanning 

electron micrograph of critical-point dried cell stack after longitudinal fracturing. (D) Overall morphology of a column 

after transversal cryosectioning in the SEM (e: electrocyte; ie: intercellular space). 

appreciably reduced in fluid (Weisenhorn et al., 1989). 
SFM imaging in liquid was carried out using a commer
cial fluid cell (DI) and without prior drying of the sam
ple. All images were taken at a line scan rate of ap
proximately 6 Hz. The standard planefit and flattening 
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correction (3rd order fits) were applied to the data. The 
various images were combined and processed for presen
tation with the programs Photoshop (Adobe Systems, 
Mountain View, CA) and Canvas (Deneba Systems, 
Miami, FL) for the Apple Macintosh computer. Cross-
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0 1.5 µm 

Figure 2. The cell surface of the sections is covered by a mesh of collagen fibers. (A) Scanning force micrograph 
of a selected surface area after longitudinal cleavage of the cell stack mounted between coverslips for fixation and 
critical point drying . A flat cleavage plane was exposed to the tip which revealed a dense network of collagen fibers. 
Perspective view (tilt 81 °; rotation 5°). Tapping mode. Height information is coded in pseudo color according to the 
horizontal color bar. (B) Scanning electron micrograph of critical-point dried cell stack after longitudinal fracturing. 
Topview of cell surface of an electrocyte showing a dense fibrous feltwork. 

sectional and Fourier transform analyses were performed 
with the NanoScope software. The reported lateral di
mension of a surface feature is the full width at half 
maximum (FWHM) height determined by the sectioning 
software of the NanoScope, providing a practical and 
simple compromise between the point and face detection 
modalities of a tip (Fritzsche et al., 1994a). 

hnmunofluorescence microscopy (IFM) 

For immunofluorescence microscopy samples from 
transversal sections were washed with PBS and preincu
bated with 1 % bovine serum albumin and 0.1 % Triton
XlO0 in PBS for 15 minutes at room temperature in or
der to permeabilize the tissue section and to reduce non
specific binding. The sample was stained for 1 hour 
with a monoclonal antibody (88B, kindly provided by 
Dr. S. Froehner) directed against the cytoplasmic do
mains of the r and o subunits of the AChR, and subse
quently rinsed with 0.1 % Triton-XlO0 in PBS. For sec
ondary antibody labeling, tetramethylrhodamine-conju
gated goat anti-mouse IgG (Jackson Immunoresearch, 
West Grove, PA) was applied. For AChR labeling, at 
the postsynaptic membrane of the electrocyte, fluores-
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cein labeled a-bungarotoxin (Molecular Probes, Eugene, 
OR) was used in combination with the second antibody. 
The samples were rinsed with buffer and mounted with 
Mowiol 4-88 (Hoechst, Frankfurt, FRG). Fluorescence 
imaging was conducted using a confocal laser scanning 
microscope (CLSM, Zeiss model LSM 10, Zeiss Ober
kochen, FRG; 40 X NA 1.3, Plan-Apo oil-immersion 
objective). Fluorescein and tetramethylrhodamine were 
excited at 488 run and 514 nm, respectively, by an inter
nal argon-ion laser. The emission filters were BP525 
for fluorescein and LP610 for tetramethylrhodamine. 
Optical sections (8 bit) were acquired with frame aver
aging and transferred to a DEC Micro VAX II (Digital 
Equipment Corp. , Palo Alto, CA), and subsequently to 
a Macintosh computer for contrast enhancement and 
image processing with the programs Photoshop, Canvas, 
and NIH-Image (National Institutes of Health, Bethesda, 
MD). 

Results 

Overall morphology of the electric organ and fluores
cence labeling of the AChR receptor 

In this study, we dissected the electric organ of 
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Figure 3. Fluorescence 
patterns in stereo repre
sentation of a tissue sec
tion after immunofluores
cence labeling of the 
AChR. The thickness of 
the section was 8 µm. 
(A) Fluorescence patterns 
with the probe for the in
tracellular and (B) for the 
extracellular domains of 
the AChR, respectively. 
Bar = 10 µm. Mechani
cal distortions including 
twisting ( central section) 
are apparent. 

adult Torpedo marmorata (Figs. IA, 1B and IC) and ex
amined the characteristic electrocyte morphology by 
SEM, SFM, and IFM. A typical scanning electron mi
crograph of a cross-section of an individual column of 
the electric organ is shown in Figure ID. The column 
consists of a stack of individual electrocytes about 20 
µmin width and separated by about 1-2 µm intercellular 
space. Electrocytes extend laterally over areas more 
than 1 cm wide, and the samples exhibit a pancake-like 
morphology. Cryoslicing (see below) was performed 
transversal to the cell stack (Fig. ID). After longitudi
nal fracturing of a column, the cell surface was covered 
with fibers of different size (Fig. IC), forming a dense 
network typical of collagen feltwork in connective tissue . 
For SFM, an alternative preparation procedure for fro
zen samples was devised to eliminate difficulties from 
folding of the tissue block during drying, a phenomenon 
wh.ich led to appreciable surface roughness ( data not 
shown). The folding of the entire fixed and dried tissue 
block was a general problem for SFM imaging since: (i) 
the structural resolution normal to the surface was limit
ed by the maximum z extension of the scanner, about 5 
µm in our case; and (ii) fewer topographic features were 
accessible because of surface invagination and bulging, 
both of which increased the volume excluded from the 
tip and led to an apparent broadening of steeper struc
tures. Significantly, improved sample stability was 
achieved by mounting the tissue block in a sandwich ar
rangement between polylysine coated coverslips prior to 
fixation and critical-point drying. Figure 2A shows a 
selected surface area after separation of the coverslips 
and surface cleavage by a sticky tape. The cleavage 
plane obtained parallel to the glass surface was amenable 
for imaging in the tens of µm range; that is, the surface 

967 

corrugations were generally within the z limit of the 
scanner. The network of collagen fibers, visible during 
preparation, was resolvable by SFM (Fig. 2A) and thus 
similar to the SEM image in Figure 2B. In addition, 
some amorphous material was visible between the fibers, 
probably representing some form of cellular precipitate. 
We conclude that an appropriate and entirely unperturb
ed orientation of the tissue section could be easily and 
reproducibly achieved by the sandwich arrangement de
scribed above. The longitudinal fracturing of a column 
occurred preferentially between adjacent electrocytes. 
Our SEM and SFM data indicate that a thick collagenous 
sheath surrounds each electrocyte and also pervades the 
interelectrocyte space, i.e., effectively encasing the cell. 

The functional surface of the electrocyte was also 
investigated. The subcellular distribution of AChR was 
determined by indirect IFM of cryostat sections of fixed 
tissue. Since the AChR is exclusively localized on the 
ventral surface such an essay should provide information 
about the orientation of the tissue. Simultaneous locali
zation of different domains on the receptor molecule was 
achieved by double labeling experiments using fluoresce
in-conjugated a-bungarotoxin, a specific label for the 
extracellular domain of the a subunits (Fig. 3B), and the 
combination of a rhodamine-conjugated second antibody 
and the monoclonal antibody 88B directed against the 
intracellular domain of the AChR (Fig. 3A). From the 
fluorescence pattern in Figures 3A and 3B, it is obvious 
that the whole cell body was stained homogeneously. 
Thus, both the ligand binding site and intracellular epi
tope were accessible by the fluorescence probes, a con
sequence of the porous structure persisting after partial 
release of the cell contents and fixation, sectioning, and 
permeabilization. The intensity distribution suggests that 
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the membrane surface was aligned parallel to the glass 
surface in contrast to the orientation of the cryosection 
plane (see Discussion). 
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Figure 4. Overall morphology as revealed by SFM of 
a cryostat section from electric organ of Torpedo mar
morata. The x,y dimensions are denoted by the hori
zontal bar and the height is color-coded according to the 
horizontal bar placed below the panels. Permanent con
tact mode. (A) Surface topography of the individual 
cells (cell 1-4) which exhibit a ribbon-like morphology. 
The glass surface is clearly visible in the intercellular 
space (s). (B and C) Cross-sections along the lines 
drawn in panel A. (D) Zoom and perspective view (tilt 
69 °; rotation 21 °) of a region on an electrocyte. 

-------------------------------------

The cell surface of the sections is covered by a mesh 
of collagen fibers 

By SFM in air, we imaged transversal cross-sections 
after cryoslicing. Figure 4A shows an SFM image of a 
surface area with four individual cell bodies (cell 1-4) 
extending as a flat ribbon over the polylysine coated 
glass surface (s). The surface profile along lines B and 
C are presented in Figures 4B and 4C. From different 
images, we obtained a width of 9.6 ± 1.3 µm and a 
height of 1.3 ± 0.4 µm for the cell body of the electro
cyte. Figure 4D shows the cell surface at higher resolu
tion. A felt-work of collagen fibers covered the cell 
bodies. The bundles of collagen fibers appeared in a 
cross-striated pattern (Fig. SA), indicating a role in the 
maintenance of the structural integrity of the columnar 
arrangement. Individual collagen fibers lying on the 
poly lysine coated glass substrate in the vicinity from the 
cells were also perceived during imaging of the cryosec
tions. The polylysine coated glass substrate appeared 
relatively flat with some oblate-shaped background pro
trusions of nanometer dimensions, presumably due to 
distortions from the coating (Yater et al., 1995). Thus, 
the individual fibers were amenable to metrology. Their 
apparent width was about 150-170 nm and their height 
about 40-60 nm. This distinct deviation from the cylin
drical fiber geometry was mainly due to drying artifacts 
and to SFM related distortions of the "real topography", 
including geometric tip-sample convolution and elastic 
(plastic) depression as discussed elsewhere (see e.g., 
Fritzsche et al., 1994b; Valer et al., 1995). A periodic 
substructure of the collagen fiber normal to the fiber 
long axis can be seen (Figs. SA and SB). Fourier trans
form analysis of the periodic pattern along the dashed 
line indicated in Figure SC revealed a periodicity of 64 
± 2 nm (Fig. 5D). The topographic image of the colla
gen substructure (Fig. SE) showed the corrugation am
plitude along the collagen long axis to be 2.5 ± 1 run. 

Cryosections of the electric organ in liquid 

We also performed SFM imaging of the tissue sec
tion in liquid without intermediate drying (Fig. 6). The 
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Figure 5. Collagen fibers from tissue sections imaged by SFM. (A) Area of a typical region with several cross con
tacts. Topview ; error mode. (B) Structural details of an individual collagen fiber; isoforce mode. (C) Same fiber 
as in B imaged in error mode . This mode is more sensitive to changes in the surface relief . (D) The Fourier transform 
analysis along the dashed line indicated in panel C reveals a periodicity of 64 nm. (E) Zoom of a collagen fiber. (F) 
Cross-section along the line shown in panel E . The amplitude of the surface corrugations is 2.5 ± 1 nm. 

intercellular spacing (Fig. 6A) was reduced, probably as 
a consequence of the hydration and volume increase of 
the cell body . From the cross-section (Fig. 6B), the cel
lular structures were about 16 µmin width (the thickness 
of the cut) and up to 3 µmin height. Upon comparison 
with the dried specimen, the sections exhibited greater 
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structuring with prominent features and modulations. At 
higher magnification (Fig. 6C), the presence of fibers 
(presumably collagen since nerve fibers are typically > 
1 µmin diameter) was apparent (arrows) but the spatial 
resolution was appreciably reduced compared to that of 
the dried sample. One reason for the loss of resolution 
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Figure 6. Cryosections of the electric organ imaged by 
SFM in liquid; isoforce mode. (A) Perspective view 
(tilt angle 81 °; rotation 95°). (B) Cross-section along 
the line drawn in A. (C) Topview at higher magnifi
cation. The arrows point to a surface region where 
collagen fibers are evident. 
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could be that the hydrated complex biological material 
was soft and compliant under the tracking forces exerted 
by the tip (Fritzsche et al., 1994b), a notion supported 
by the scan line distortions in Figure 6A. Such scanning 
artifacts are typically observed with heterogeneous 
patches varying in topological discontinuity and/or elas
ticity during the imaging of soft material. A second 
possibility is that the collagen matrix in the entire native 
structure encompasses the cell and is thus more confined 
to the interstitial spaces. The latter would tend to 
collapse upon drying of the sample. 

Discussion 

SFM reveals the "membrane surface view" of the thin 
section on the solid support 

The unambiguous identification of orientation in tis
sue sections is of primary importance for the interpreta
tion of fluorescence data. According to the SFM data in 
Figure 4, the thickness of the electrocyte cell body was 
about 1.5 µm with a lateral dimension of about 10 µm; 
furthermore, the cell body was covered with a felt-work 
of collagen. Since collagen lies between the stacked 
electrocytes of a column, it appeared that the tissue 
cryosections were tilted during deposition on the solid 
support and/or air drying. That is, the electrocyte mem
brane was exposed in a frontal orientation to the scan
ning tip and did not present as a cross-sectional plane 
through the cell bodies, contrary to the expectation from 
the initial orientation of the dissected tissue block. The 
thickness of a cell in a column after critical point drying 
was about 10 µm (Fig. ID), i.e., 3-4 times larger than 
the height extracted from the surface profile of the 
hydrated tissue section in Figure 6C . We conclude that 
most of the cell content was released during sample 
preparation. 

In the immunofluorescent pattern of Figure 3, the 
entire cell body appeared brightly stained after fluores
cence labeling of the AChR. Such a pattern is contra 
dictory to that expected for the AChR-rich ventral sur
face. That is, one would expect an anisotropic distribu
tion of fluorescence intensity at the dorsal and ventral 
membranes. However, our experimental finding is in 
agreement with the tilted section hypothesis stated 
above, but not with the other proposals (Fiedler et al., 
1986; LaRochelle et al., 1990) according to which the 
collapse of the cryostat sections produces so-called "en 
face" views of both the dorsal and ventral membranes 
after spreading and drying. Such a process involves a 
sliding of the dorsal and ventral membranes due to vis
cous drag during tilting of the section on the solid sup
port, leading to uneven distribution of the AChR recep
tor at the dorsal and ventral membranes and thus an in
homogenous fluorescence intensity distribution at the cell 
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margins. From the entire data and considerations, it is 
obvious that the overall morphology of cryosections de
pends critically on the actual preparation conditions, 
e.g., constitution of the tissue, fixation, and orientation 
of the tissue block during slicing. Thus, care must be 
taken in interpreting fluorescence data of such 
specimens. A better approach for the determination of 
the polarity of the ventral and dorsal electrocyte 
membranes would be to embed the tissue in a solid 
matrix (Fox and Richardson, 1979; Zimmermann and 
Whittaker, 1974). 

In situ observation of the collagen type I substructure 
bySFM 

An important feature of our system was the observa
tion of collagen in situ, inasmuch as this protein general
ly cannot be extracted from tissue without degradation 
because of existing chemical crosslink with the mem
brane (except for collagen from tail tendons of young 
rats). It is for this reason that SFM has been limited in 
previous experiments to the imaging of native isolated 
collagen fibers from rat tail and monomeric and recon
stituted fibrillar collagen type I from bovine skin (Baselt 
et al., 1993; Chernoff and Chernoff, 1992; Revenko et 
al., 1994). In our system, the collagen remained asso
ciated with the cell membrane and details of the collagen 
fiber substructure could be obtained (Fig. 5). 

The band pattern of the collagen substructure in the 
SFM images is similar to that perceived by transmission 
electron microscopy (Gelman et al., 1979) and to images 
of isolated collagen type I fibers (Baselt et al., 1993; 
Chernoff and Chernoff, 1992). The banding period was 
about 64 nm, in agreement with the structural parame
ters of the collagen type I fiber and the aggregation of 
tropocollagen into ordered arrays in the ridges and 
grooves (Hodge et al., 1965). Our data indicate that 
collagen type I is the most abundant protein in the elec
tric organ. The difference in height between the ridges 
and grooves normal to the collagen fiber long axis was 
about 2.5 nm, irrespective of the fiber diameter. This 
value is somewhat lower than the 4 nm reported by 
Revenko et al. (1994) and the measurements of Baselt et 
al. (1993), who recovered a peak-to-peak value between 
about 5 nm for small diameter fibrils and about 15 nm 
for large-diameter fibrils from rat tail tendon collagen. 
Since we used the same Si3N4 tips as in these cited stud
ies, a similar three-dimensional resolution was to be ex
pected. One possibility for the apparently smaller peak
to-peak height is that some material associated with the 
gap persisted during sample preparation according to our 
protocols. 

Conclusion 

We have shown that the structure of thin sections of 
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the electric organ from Torpedo marmorata is amenable 
to study by SFM, yielding additional information on the 
morphological aspects of these preparations. The im
ages obtained have nanometer spatial resolution and re
veal molecular details conforming to the molecular sub
structure of collagen type I fibers in the tissue sections. 
The combination of electron, light, and probe micro
scopic techniques is emphasized, demonstrating their 
complementarity in the investigation of tissue structures. 
For future studies, one can hope to elucidate the native 
three-dimensional architecture by taking advantage of the 
potential for imaging under physiological conditions. 
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Discussion with Reviewers 

M. Heim: Could you observe an increase in resolution 
when applying tapping mode? From many soft samples 
it is reported to improve the image stability and resolu
tion by applying tapping mode in the liquid cell. Did 
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you try tapping in liquids and what were your 
experiences? 
Authors: Tapping mode is advantageous in the event 
that lateral (shear) forces exerted by the tracking tip on 
the surface topography result in image distortions. From 
our experience, a pronounced surface instability is not 
an intrinsic property of the biomaterial but rather derives 
from insufficient adhesion between the biomolecules and 
the solid support. Such behavior can be checked experi
mentally by switching between the permanent contact 
and tapping modes on the same surface area. We could 
not detect any difference in image contrast between the 
permanent contact and tapping modes, in agreement with 
other studies (cf. Yater et al., 1995). However, this 
behavior depends on the actual sample or system under 
investigation and needs to be checked for every sample. 
We did not perform tapping in fluid with our samples. 

Y. Lyubchenko: Can it be that intercellular filaments 
are made of other proteins similar to collagens or are 
they complexes of collagen type I and other proteins? 
Is there other direct evidence for this specific tissue that 
the filaments are exclusively the collagen filaments? 
Authors: Collagen is the major component of the con
nective tissue between electrocytes. There are other 
compon ents such as nerve fibers and blood vessels. We 
tried to image those structures but failed, probably due 
to their rare appearance and/or to their trapping within 
the collag en feltwork. 

R. Lal: There are now AFMs available which allow for 
simultan eous multimodal imaging, including simultane
ous light fluorescence and force microscopy. How diffi
cult would it be to extend your work to such systems? 
Authors: We believe that such combined studies would 
be useful, particularly for studying the distribution of the 
AChR. The receptor(s) can be localized by a fluores
cence tag for fine positioning of the SFM tip. Such an 
approach is being implemented in our laboratory using 
a near-field scanning optical microscope (Kirsch et al., 
1996). However, one has still to get rid of the ubiqui
tous collagen. In an alternative approach, one could 
perform morphological studies on individual electrocytes 
obtained by enzymatic dissociation of the electric organ 
of some species of skate (Fox et al., 1990). 

R. Lal: Have you imaged at high resolution, in order 
to obtain the molecular structure of AChRs? If not, how 
difficult it would be to undertake such studies? 
Authors: Due to the ubiquitous appearance of collagen, 
it is very difficult to access the cell without any addition
al surface treatment of the dissected tissue, e.g., by col
lagenase, or by other known methods of membrane puri
fication . Such experiments would be a promising exten-
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sion of our work since the ventral membrane is rich in 
the AChR. One could try to achieve the degradation of 
collagen in the fluid cell of the SFM . If one is only in
terested in resolving structural details of the AChR, a 
more appropriate system is offered by isolated mem
brane vesicles purifi ed from the electric organ. Such 
vesicles are extremely rich in cholinergic receptor mole
cules (Heuser and Salpeter, 1979). The main problem 
in this approach is the sample preparation for the SFM 
since the highest resolution can only be achieved on flat 
surfaces. The possibility is to fuse the vesicles and 
collapse them on a flat support, such as mica, prior to 

imaging. 

R. Lal: The images of collagen are great and every 
indication is that they are Type I. How difficult it 
would be to label them with Type I specific markers and 
show their regional distribution? 
Authors: The imrnunolabeling of single collagen fibers 
would be possible (Fleischmajer et al., 1990). How
ever, we consider that the imrnunolabeling of this 
macromolecule in the complex three-dimensional tissue 
would be difficult to achieve. 
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Abstract 

We have developed scanning near-field optical/ 
atomic force microscopy (SNOM/AFM). The SNOM/ 
AFM uses a bent optical fiber simultaneously as a dy
namic force AFM cantilever and a SNOM probe. Reso
nant frequency of the optical fiber cantilever is 15-40 
kHz. Optical resolution of the SNOM/ AFM images 
shows less than 50 nm. The SNOM/ AFM system con
tains photon counting system and polychrometer/ 
intensified coupled charge devise (ICCD) system to 
observe fluorescence image and spectrograph of micro 
areas, respectively. Cultured cells were stained with 
fluorescein isothiocyanate (FITC)-labeled anti-keratin 
antibody or FITC-labeled phalloidin after treatment with 
Triton X-100. Fluorescence and topographic images 
were obtained in air and water. The fluorescence 
images showed clear images of keratin and actin fil
aments. The SNOM/ AFM is perfect to observe bioma
terials in liquid with a liquid chamber while the to
pographic Images showed subcellular structures which 
correspond to keratin and actin filaments. 
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Introduction 

Scanning near-field optical/atomic force microscopy 
(SNOM/AFM) is an excellent tool to observe biological 
materials because it provides simultaneously topographic 
and optical images in high resolution. The resolution of 
topographic and optical images is much higher than that 
of the conventional far-field microscopy. Unlike elec
tron microscopy, SNOM/ AFM can observe samples in 
air and liquid. SNOM/ AFM has also advantage to give 
various information such as fluorescence images and 
spectrographs in a micro area [7]. 

Various kinds of scanning near-field optical micros
copy have developed in the variation of method to con
trol tip-sample separation such as utilizing scanning 
transmission microscopy (STM) [5], lateral shear force 
[1], and contact-mode AFM [13, 15]. Aaron Lewis and 
coworkers originally developed SNOM/ AFM using bent 
capillary tubes in which fluorescence material is settled 
on the tip of the tube to illuminate a sample surface 
[13]. After that, we developed the bent optical wave 
guide probe for the current type SNOM/ AFM in which 
a method of the dynamic mode AFM was used to con
trol the tip-sample separation [2, 9]. An optical fiber 
with a sharpened tip was bent for using the probe as a 
cantilever for AFM, and the vibration amplitude of the 
cantilever was held constant during scanning. The 
SNOM/ AFM may be superior in biological observation 
to other SNOM systems because this system operates 
excellently in liquids [10]. It is safely applicable for 
observation of soft samples with great variations in 
height, such as cultured cells. The SNOM/ AFM may 
also be superior in liquid to other cyclic contact AFM 
(e.g., tapping mode); the latter use flat type cantilevers 
[4, 6, 12], while the optical-fiber cantilever of SNOM/ 
AFM is round, which helps to reduce viscositic resis
tance of liquid. In the case of the shear force mode, 
AFM may work in liquid but, to our knowledge, there 
are no published images of biological materials in liquid, 
such as cultured cells. In the tuning fork mode, where 
a tuning fork is used for the force detection of an optical 
fiber glued onto the fork [8], AFM needed improvement 
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Figure 1. Schematic diagram of SNOM/AFM system . 

for use in liquid because electrodes are patterned on the 
surface of the tuning fork, and electrical leakage would 
inhibit function in aqueous solution. 

This paper reports the performance of SNOM/ AFM 

in the observation of a standard specimen of chromium 
patterns and fluorescence beads and displays fluores
cence SNOM/ AFM images of cultured cells in the air 
and an aqueous solution. 

Experimental Setup 

The SNOM/ AFM system is shown in Figure 1. 
The optical-fiber cantilever is mounted on a bimorph and 
vibrated vertically against the specimen stage at the 
resonant frequency (typically 15-40 kHz). The vibration 
voltage applied on the bimorph was between 0.1 and 5 

ACVp-p for 0.11 nm/V bimorph. The vibration ampli
tude 1s monitored by detecting the deflection of the laser 
beam, which is reflected on the ground surface of the 
optical fiber cantilever. The probe tip-sample distance 
is controlled by decreasing the vibration amplitude to a 
appropriate level when the distance between the probe 
tip and the sample decrease. This operation was con-
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trolled by a commercialized AFM controller (model SPI 
3700, Seiko Instruments, Chiba, Japan). 

Laser beams of multi-line Ar ion laser (maximum 
150 mW) were selected by polychromatic acoustic opti
cal (AO) modulator and coupled to the optical fiber on 
the other side of optical fiber probe. Signal light from 
the sample is collected by objective lens (typically: 100 
X oil immersion type) and separated by dichroic mirror 
to the coupled charge devise (CCD) camera and detec
tors. Photomultiplier and intensified-CCD camera with 
spectrometer are connected as the detectors. 

Figure 2 shows a liquid chamber designed for the 
present experiment. Water and cell culture media were 
held between the glass plate and an upper window. Both 
the probe and the sample were immersed in solution. 

The probe was prepared as previously described [2]. 
Briefly, an optical fiber, single mode for wavelength of 
500 nm, was sharpened by chemical etching to make a 
tip, and then bent with irradiation of a CO2 laser. The 
chemical etching is performed at room temperature for 
45 minutes in 50% HF solution . CO2 laser is at a maxi
mum of 25 W and modulated to control power. Un
focused laser beam is used for bending. The probe was 
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Figure 2. Schematic diagram of the liquid chamber in 
SNOM/ AFM system. 

-----------------------------------
coated with a 100-200 nm-thick metal layer (aluminum 
or gold), and an aperture was made by vapor deposition 
in rotating optical fiber tip (Fig. 3). 

The spring constant was approximated by a spring 
constant equation for a rod: 

(1) 

where k is the spring constant, d is the diameter of the 
rod, E is Young's modulus, and 1 is the length of the 
rod. A spring constant for 3 mm long probe was calcu
lated at 97 Nim. Q factor is typically 200-600 in the air 
and 20-200 in water [11]. The oscillation amplitude em
ployed was between 10-100 nm (0.1-1 ACVp-p in the 
air, or 0.5-5 ACV p-p in water for driving the bimorph). 
Under typical imaging conditions, average sample -probe 
separation was controlled by the amplitude of the vibra 
tion, which became 80-96 % of the free vibration ampli
tude. The interaction force between the probe and the 
sample was as small as that of normal cyclic contact 
mode AFM. 

The advantage of the instrument operating in liquid 
was proved by resonance curves of an optical fiber 
probe and a silicon cantilever in liquid. The resonance 
curve for the silicon cantilever showed many peaks and 
was not stable, but that for the optical fiber probe 
showed a clear single resonance peak in liquid, as seen 
in Figure 4. 

Results and Discussion 

Figures Sa and Sb show representative topographic 
and optical images of a standard sample observed with 
a 514.5 nm laser beam. The standard sample is a pat-

terned chromium layer of 2 µm by 2 µm checker with 
20 nm thickness on a quartz glass plate. In the 
topographic image, the higher part shows the chromium 
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Figure 3. A representative scanning electron micro
scope image of the probe made from an optical fiber 
coated with aluminum. 
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Figure 4. Typical resonance curve for the optical fiber 
cantilever in water. The resonant frequency is 12.2 
kHz, and the Q factor is 23. 

---------------------------

layer. The chromium layer produces dark parts in the 
optical image because the chromium layer blocks the 
transmitting a light from the optical fiber probe to the 
objective lens. In the SNOM/AFM operation, the laser 
beam was modulated with an AO modulator by the same 
frequency of probe vibration. The phase between probe 
vibration and irradiation cycle was tuned as the irradia
tion allows when the tip-sample separation is smallest in 
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Figure 5. Topographic (a) and near-field optical (b) 
images of a standard chromium pattern on quartz glass 
plate. The optical profile (c) of A-A' in Figure Sb. A• 
of Figure Sc is equivalent to the A' of Figure Sb. 

Figure 6 (at right). Topographic (a) and fluorescence 
(b) images of 100 run fluorescence beads coated with 
PVA film on a cover glass. The fluorescence profile (c) 
of fluorescence of the beads in Figure 6b. Scan area is 
1.2 µ.m by 1.2 µ.m. 
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Figure 7. Spectrograph with 488 nm excitation when 
the probe tip was on the fluorescence beads (a) and 750 
nm from the beads (b). 

the vibration cycle. The separation between the tip and 
sample surface is a factor in the resolution of the optical 
image; for example , illuminating in wide separation 
decreases the optical resolution. When illumination is 
performed at the range of smallest separation during the 
vibration, the resolution will be kept in high level [3]. 

Figure Sc shows the optical profile which is marked 
as A-A' in Figure Sb. Generally, the resolution is de
fined as a distance of two particles or point-light-sources 
which can be imaged separately. In the case of point
light-sources, the distance of the two points should be 
slightly wider than the width of the half peak value 
(SO%) of the &aussian profile which was detected by the 
probe. A width of 40% of the peak value enables a tip 
to image the two points separately. We applied this con
cept to the step of the metal layer. If the probe scans on 
a pin hole which is smaller than the aperture, the profile 
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of optical image will be a reflected image of optical pro
file at intensity between O % to 50 % . The width of 20 
to 80% in Figure Sc corresponds to the width of 40% of 
the left slope and 40 % of the right slope of the peak in 
the reflected image. Actually, the width of the slope be
tween the dark part and bright part shows 50 nm in 20-
80 % threshold. 

When the probe tip is just on the edge of the chro
mium step, a half of the aperture is on the chromium 
layer while the other half of the aperture is 20 nm above 
the glass surface. This 20 nm distance is significant, 
particularly when considering the spreading of light at a 
coupling region of near field wave . Therefore, the aper
ture of the probe must be smaller than the width of 
slope, i.e., the aperture is smaller than 50 nm in this 
result. 

In the fluorescence measurement, we used the pho
ton counting type photomultiplier instead of the analog 
type photomultiplier in the transmission mode. Topo
graphic and fluorescence images of 100 nm fluorescence 
beads are shown in Figures 6a and 6b, where beads 
were spread on cover glass with poly-vinyl-alcohol 
(PV A) film by spin coating the beads and PV A solution 
mixture to control the density of the beads on the glass 
plate. The PV A film was prepared thinner than the 
height of beads to enable the tip imaging topography and 
optical image of beads. The topographic image shows 
a round shape of beads and wrinkles of PV A film 
around the beads. The fluorescence image was observed 
with a 488 nm laser beam for excitation and showed the 
clear round shape of the fluorescence beads. The profile 
of fluorescence intensity of Figure 6b shows that the 
width of the fluorescence peak for the beads is about 
200 nm (Fig. 6c). In this case, the diameter of the 
beads is 100 run. In the fluorescent beads experiment, 
we used a probe which showed 100 nm resolution of our 
step sample, therefore, this result is reasonable. Scat
tering light produced at probe tip and sample surface 
may cause the slope of the fluorescence profile of the 
beads extending about 500 run to the right and to the left 
of the peak. The slope profile may depend on the struc
tural factor of the probe and sample surface. 

Figure 7a is a fluorescence spectrograph, taken 
when the probe tip was on the fluorescence beads. In 
this experiment, the spectrum window is limited to a 515 
to 600 nm range , because the system has a dichroic mir
ror of 500 run and long wave pass filter of 515 nm to 
cut the excitation light, and short wave pass filter of 600 
nm to cut the laser beam of optical lever (670 nm). The 
long wave pass filter will be removed when a self-sensi
tive probe, such as the tuning fork probe, is used. 
When the probe tip was located at 750 nm of lateral 
movement from the center of the beads, the spectrograph 
showed only a small peak of 514.5 nm (Fig. 7b). This 
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Figure 8. Topographic (a) and fluorescence (b) images of cultured cells of human esophageal squamous cell carcinoma 

(KESC2, C7) in the air in which cell were stained with FITC-labeled phalloidin after treatment with Triton X-100. Scan 

area is 30 µm by 30 µm . 

------------------------------------------------------- --------------------------------

peak was caused by leaking of the 514.5 nm beam from 
the polychromatic AO modulator, and easily cut by add
ing a band pass filter of 488 nm next to the AO modu
lator. This result shows that SNOM/ AFM can obtain 
spectrograph in a submicron area. This function may be 
useful in analytical applications in biology and other 

fields. 
Fluorescence and topographic images of cultured 

cells immunostained with fluorescein isothiocyanate 
(FITC)-labeled anti-keratin antibody or FITC-labeled 
phalloidin were obtained in air and water. Figures 8a 
and 8b show topographic and fluorescence images of 
cultured cells of human esophageal squamous cell carci
noma (KESC2, C7 subclone) in the air. The cells cul
tured on collagen-coated cover glass were treated with 
1 % Triton X-100, stained with FITC-labeled phalloidin 

and air dried. The topographic image is deteriorated in 

quality compared with that by normal dynamic mode 
AFM [14], but it clearly shows the shape of the cell nu

clei. On the other hand, the fluorescence image shows 

actin filaments patterns with high resolution. 
Figure 9 shows topographic and fluorescence images 

of the cultured cells (KESC2, C7) which were immuno

stained with FITC-labeled anti-keratin antibody after 
treatment of 1 % Triton X-100, and observed by SNOM/ 
AFM in aqueous solution. The fluorescence image 
shows the precise arrangement of keratin filaments. The 
topography apparently shows structures corresponding to 
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keratin filaments as well as round cell nuclei. 
The optical images in Figures 8 and 9 recorded 128 

lines and 85 pixels per line for a scan of approximately 
15 minutes. The images were not displayed to demon
strate optical resolution but to show a possibility of 
fluorescence imaging in liquid. The appearance resolu
tion from images strongly depends on the sample itself. 

The difference of fluorescence images in Figures 8 
and 9 is caused because actin filament is a straight struc
ture and keratin filament is a curled structure. Topo
graphic images in Figure 9 show more natural structure 
than the image in Figure 8, which is a dried up struc
ture . It is better to image the living or nearly living 
state to obtain the real structure. Therefore, observa
tion of cultured cells is desirable to perform in liquid. 

The importance of SNOM/ AFM for simultaneous 

imaging of topography and fluorescence image should be 

noticed. It enables us to compare topography and fluo

rescence image. The interest of the cellular specimens 

is in the display of filament structure, as well as in the 

distribution of actin and keratin molecules in the cells. 
Thus, SNOM/ AFM introduces a new method for the 

study of cellular structures at high resolution unob

tainable by conventional optical microscopy. This tech
nique may reveal cell characteristics which are undetec
ted by optical or electron microscopy. In addition, this 
study suggests that the SNOM/ AFM system is widely 
applicable to specimens in water and other fluid media. 
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(a) 

(c) 

Figure 9. Topographic (a and c) and fluorescence (band d) images of cultured cells of human esophageal squamous 
cell carcinoma (KESC2, C7) in an aqueous solution, in which cells were stained with FITC-labeled anti-keratin antibody 
after treatment with Triton X-100. Scan areas are 30 µm by 30 µm (a and b) and 10 µm by 10 µm (c and d). 

--------------------------------------------------------------------------------------------------
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