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A B S T R A C T  

In this paper, elasto-plastic analysis of a thick-walled cylinder made of functionally graded 
materials (FGMs) subjected to constant internal pressure and cyclic temperature gradient loading 
is carried out using MATLAB. The material is assumed to be isotropic and independent of tem-
perature with constant Poisson's ratio and the material properties vary radially based on a power 
law volume function relation. The Von Mises’ yield criterion and the Armstrong-Frederick non-
linear kinematic hardening model were implemented in this investigation. To obtain the incre-
mental plastic strain, return mapping algorithm (RMA) was used. At the end, the Bree's inter-
action diagram is plotted in terms of non-dimensional pressure and temperature which represents 
an engineering index for optimum design under thermo-mechanical loading. 

1. Introduction 

Strain measurement at raised temperatures is vital for the investigation of specific thermo-mechanical properties of materials 
employed in high-temperature environment. This is effectively of interest in the energy sector (such as gas turbines and steam 
pipelines) where hot parts need highly maintenance to extend their life as they operate at high temperature and pressure. To deal 
with thermomechanical loads, a novel generation of engineered materials are needed. A functionally graded material (FGM) has 
increasingly been used in the thermo-elasto-plastic analyses. The thermomechanical properties of FGM exhibit a smooth and con-
tinuous change through the thickness of structure, thus mitigating thermal stress concentration and eliminating interface debonding 
problems, often being observed in laminated composite structures. The mentioned advantage of FG material is achieved by gradually 
altering over the volume fraction of bulk materials which are generally consisting of metal and ceramic parts. The ceramic con-
stituents of FGMs are capable of withstanding high-temperature environments for better thermal fatigue resistance characteristics, 
while the metal constituents provide stronger mechanical performance and reduce the possibility of catastrophic fracture [1]. 

Numerous applications in dental implant, aerospace, gears, turbine rotors etc., have made this new class of engineered material 
much more attentive to scientists. Hence, new methodologies must be developed to analyze stress-strain response and design FGMs 
[2,3]. 

Recently, some studies have been carried out on thermo-mechanical analyses of various structures. Jalali et al. [4,5] presented 
free vibration analysis of rotating FG annular disk of in thermal environment. It was shown that by increasing the temperature change 

⁎ Corresponding author. 
E-mail address: rezam@purdue.edu (R. Moheimani). 

https://doi.org/10.1016/j.csite.2018.08.004 
Received 9 June 2018; Received in revised form 19 July 2018; Accepted 21 August 2018 
Available online 22 August 2018 
2214-157X/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/). 

http://www.sciencedirect.com/science/journal/2214157X
https://www.elsevier.com/locate/csite
https://doi.org/10.1016/j.csite.2018.08.004
https://doi.org/10.1016/j.csite.2018.08.004
mailto:rezam@purdue.edu
https://doi.org/10.1016/j.csite.2018.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csite.2018.08.004&domain=pdf
http://creativecommons.org/licenses/BY-NC-ND/4.0


M. Damadam et al. Case Studies in Thermal Engineering 12 (2018) 644–654 

in the microbeam, the natural frequencies decreased, and results could improve the design of the rotating FG disk in order to avoid 
resonance condition. Khoei and Bahmani [6] presented a formulation for the pressure-dependent thermo-mechanical contact problem 
using the X-FEM method. A staggered approach based on the Newton–Raphson method was developed to show the effect of thermal 
contact in fracture modeling. The governing equations of a FGM Timoshenko beam resting on a non-linear strain foundation are 
derived and numerically solved by Sun et al. [7]. According to a power law function, they investigated thermal buckling and post 
buckling responses of the FGM beam with the assistance of shooting method. 

Hosseini et al. [8] developed an asymmetric elastic-plastic-creep constitutive model for representation of thermo-mechanical 
response of cast irons under monotonic and cyclic loading conditions. The model was capable of effectively implementation to 
different Finite element (FE) packages. Effect of thermal gradient load on thermo-elastic vibrational behavior sandwich plates with 
FG nanocomposite face sheets was also investigated by Safaei et al. [9]. 

Using Tresca's yield criterion and its associated flow rule, Bland [10] determined the deformation of a thick-walled tube of work 
hardening material subjected to internal and external pressures. Derington [11] studied the principal stresses in a long elastic cylinder 
subjected to uniform internal or external pressure and steady state heat flow under a variety of loading conditions incorporating 
Tresea's yield criterion with no change of elastic constants with temperature. The effects of the gradation of strength and deformation 
of thick walled Functionally Graded (FG) tubes under internal pressure was investigated by Fukui and Yamanaka [12]. Obata and 
Noda [13] investigated the thermal stresses in a FGM hollow sphere and hollow circular cylinder. They also studied the effect of inner 
radius on the resulting stresses. Using incremental theory of plasticity method for thick walled cylindrical pressure vessels, Loghman 
and Wahab [14] obtained the plastic strain, plastic stress, and plastic zone progress for different loading conditions and thickness 
ratios. 

An exact solution for one-dimensional thermal stresses of FGM spheres [15] and cylinders [16] presented by Lutz and Zimmerman 
who considered variation of Young's modulus and the thermal expansion coefficient along the radius. Shabana and Nods [17] 
obtained the elastoplastic thermal stresses in a functionally graded rectangular plate subjected to different kinds of temperature 
conditions using finite element method. Tutuncu and Ozturk [18] presented the closed-form solutions for stresses and displacements 
in functionally graded cylindrical and spherical vessels subjected to internal pressure alone, using the infinitesimal theory of elas-
ticity. 

Nayebi and Abdi [19] developed a numerical program to investigate the steady state behavior of thick walled spherical and 
cylindrical pressure vessels using linear kinematic hardening in the plastic condition and a Norton power law in the creep condition. 
Oral and Anlas [20] obtained closed form solutions for stress distribution in a nonhomogeneous anisotropic FG cylindrical body and 
compared the results with FE results. 

Safari et al. [21] investigated dynamic characteristics of a FGM thick hollow cylinder under thermal shock loading. Dynamic 
thermo-elastic equation of the problem was analytically solved by employing the Laplace transform and series solution across the 
thickness of cylinder. They obtained a good agreement between obtained results of presented method and published data. 

You et al. [22] analyzed the steady state creep in thick walled FGMs cylinders subjected to internal pressure. The impact of radial 
variations of material parameters on the stresses in the cylinder was also investigated. Reddy and Chin [23] studied the dynamic 
thermos-elastic response of functionally graded cylinders. They used first order shear deformation plate theory and developed a finite 
element model of the formulation. 

Chen et al. [24] investigated the creep effect of thick-walled FGM cylinders subjected to both internal and external pressures. 
They gained the approximate solutions on the basis of a Taylor expansion series and compared it with the results of Finite Element 
analysis (FEA) obtained by using ABAQUS software. Abrinia et al. [25] obtained analytical solution to give solutions for FGM hollow 
cylindrical vessels that are under the influence of internal pressure and an arbitrary steady state temperature field. They obtained the 
optimum value of β, an arbitrary value affecting the stresses in the cylinder, and studied the effect of non-homogeneity in FGM thick 
cylinder. 

Darijani et al. [26] derived an exact elasto-plastic analytical solution for a thick walled cylindrical vessel made of elastic linear-
hardening material by considering the Bauschinger effect and Tresca's yield criterion. They determined best Autofrettage pressure 
and showed that the design of vessels based on the elasto-plastic methods is much more economic than elastic methods. Using a new 
approach completely different from the previous methods for solving a Fredholm integral equation Peng and Li [27] investigated the 
influence of the gradient variation of the material properties on thermal stresses and found that appropriate gradient can make the 
distribution of thermal stresses gentler in the whole structure. Naghdabadi et al. [28] obtained an analytical elastic-plastic solution 
for thick walled cylinders made of functionally graded materials. They developed a mathematical model to predict yielding through 
the thickness. Bayat et al. [29] accomplished a thermo-mechanical analysis of functionally graded hollow sphere subjected to me-
chanical loadings and one-dimensional steady-state thermal stresses and compared the solutions with finite element results. Steady 
state creep in a functionally graded thick-walled cylinder subjected to internal pressure was investigated by Singh and Singh [30]. 
Nayebi et al. [31] studied how continuum damage mechanics affect the behavior of a FG rotating disk. Nami et al. [32] analyzed 
thermal buckling of functionally graded rectangular nanoplates considering two types of uniform and nonuniform temperature 
distributions. Mahdavi et al. [33] studied the thermo-mechanical behavior of a FGM rotating disk with variable thickness and 
constant angular velocity using a power law for material properties along the radius. They compared the results with FEM and 
showed that the temperature dependent material properties of FGM has significant effect on the values of stress. 

In the present paper, a thick-walled FG cylinder subjected to internal pressure and temperature gradient loading under plane 
strain condition is studied. The novelty of this work is to solve the problem numerically for a functionally graded material using 
return mapping algorithm and nonlinear kinematic hardening model. In addition, the well-known Bree's diagram used for designing 
is plotted to show the material behavior under different conditions of loadings. 
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2. Mathematical formulation 

Through this study, inner surface of the cylinder is assumed to be metal and outer one ceramic. Distribution of the material 
properties is based on the following volume fraction model [31]: 

n
⎛ r − ri ⎞f r = VB  + −1 V )B V  o( )  o ( i = r ⎟ rin ≤ rout⎜ − ri⎝ a ⎠ (1) 

where B is a material property such that Bi and Bo are the material properties of the inner, rin, and outer radii, rout , respectively and n 
(n ≥ 0) is the gradient parameter index. A parameter is presented such as ( < ≤ 10 a ) to be able to decrease the volume fraction of 
ceramic in the outer layer of the disk. Due to the brittleness of ceramic, it is aimed not to have 100% of it in the outer layer [32]. 
Elastic modulus, heat conduction coefficient, thermal coefficient of expansion, yield stress and the nonlinear kinematic hardening 
constants follow Eq. (1), except Poisson's ratio which is assumed to be constant; however, it varies in a very small range. 

3. Thermal solution 

For a steady state heat conduction problem considering axisymmetric conditions without internal heat generation, we have: 

d ⎛K r( )r dT ⎞ = 0
dr ⎝ dr ⎠ (2) 

where K (r) is the heat conductivity varying according to Eq. (1) and T r( ) is the temperature distribution along the radius. Differ-
entiating the above relation, the following differential equation is obtained: 

′ F r( )T′ ( )r + F ( )r T′( )r = 0 (3)1 2 

where 

dK ( )rF r( ) = rK  ( )r  andF  ( )r = K ( )r + r1 2 (4)dr 

Finding an analytical solution for Eq. (3) is difficult. So, a semi-analytical method is implemented in this investigation. In this 
method, the cylinder is divided into m sub-domains where t denotes the radial width of each sub-domain. Calculating the coefficients 
of Eq. (3) at r = rk (mean radius of the kth division), leads to an ordinary differential equation with constant coefficients which is valid 
within the kth sub-domains. [See Fig. 1]. 

Solving the above differential equation [Eq. (3)]: 

k k k k kT = Y + Y exp(−rF  /F ) (5)1 2 2 1 

where Y1 k and Y2 k are unknown constants for kth sub-domain determined by applying boundary conditions between each two adjacent 
sub-domains. Temperature in the inner and outer surfaces of the cylinders are as follows: 

Fig. 1. Dividing the thick-walled cylindrical with denomination of the radii domain into some finite sub-domains [34]. 
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T r( )i = Ti an T ro = 0d  ( )  (6) 

The continuity of temperature and its gradient at the interfaces of the adjacent sub-domains are as follows: 

k k+1T = T 
k t k 1 t= +r r  r r= + − 2 (7)2 

k k+1dT dT 
k t k+1 t= + = r r  = − 2 (8)

r rdr 2 dr 

Using the continuity conditions between each two adjacent sub-domains and thermal boundary conditions in inner and outer 
domains, yield a set of linear algebraic equations in terms of Y1 k and Y2 k . Solving these equations for Y1 k and Y2 k and substituting them 
in relation (5), temperature distribution is obtained for all layers. 

4. Elastic deformation 

For the state of plane strain (εz = 0) and infinitesimal deformations, stresses can be obtained in the cylindrical coordinate system 
as follows: 

E r( )  
r = [( −v εr + vεθ − +1 υ α r Tσ 1 ) ( r) ( ) ( )] 

(1+v)(1 − 2 )v (9) 

E r( )σ = [vεr + − ) (1 υ α r T rθ (1 v εθ − + )  ( )  ( )]  
(1+v)(1 − 2 )v (10) 

= v (σr +σ ) − ( ) ( )  (r) (11)σz θ E r α r T  

where E is the Young's modulus, v Poisson's ratio and α the coefficient of thermal expansion. 
For an axisymmetric hollow cylinder, components of strain can be calculated from the following geometric relations: 

du uεr = , εθ = dr r (12) 

with u being the displacements in r direction and substituting the radial and circumferential stresses in terms of displacement into the 
following equilibrium equation 

d ( ) − σθ = 0rσrdr (13) 

We obtain an equation in terms of radial displacement (Navier equation) as: 

2d u  du+ C r2 ( )  + C r u  + C4 r = 0C r1 ( )  3 ( )  ( )
dr2 dr (14) 

in which C1 to C4 are: 

rE ( )rC r1 ( ) = 1+v (15) 

E r( )  r dE ( )r 
2 ( ) = +C r  

1+v 1+v dr (16) 

υ dE ( )r E r( )C r( ) = −3 21−υ dr r (1+v) (17) 

−r dC r  = ( ( )  ( )  ( ))r4 ( )  E r α r T
1−v dr (18) 

5. Plastic deformation 

In the plastic model, plastic strains are emerged in governing equations. So, we can capture total strain as below. 

M T Pεij = εij + εij + εij (19) 

where M, T, and P index denote mechanical, thermal, and plastic conditions respectively. Using Hooke's law, stresses are obtained in 
terms of strains. 

E r( )  p p pσr = −v εr + υεθ – (1 )−v εr − υεθ − υεz – (1+υ α r T r[(1 )  ) ( )  ( )]  
+ − v (20)(1 v)(1 2 ) 
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E r( )  σ p p p
θ = [(1 )− v ε +θ υεr – (1 )− v ε −θ υε −r υεz –  (1  +υ)  α (r )  T (r)]  

(1+v)(1−2v) (21) 

σ z = v (σr + σ ( ) P 
θ) − E r α r T( )  ( )  r  − E ( )r ε  z (22)

With the help of strain-displacement relation and substituting stresses into equilibrium equation, we have stress components in 
terms of radial displacement as: 

d u  2 duC r1 ( )  + C r2 ( )  + C r3 ( )u + C 4 ( )r = 0
dr2 dr (23) 

where coefficients C1 to C4 are as follows: 

rEC1 = (1 − 2v)(1+υ) (24) 

dE
Eυ E r 

C2 = + + dr

(1−υ 2)(1 − 2υ) (1−υ 2) (1+v)(1 − 2v) (25) 

−
dE

E vE v 
C = − + dr
3 r (1−υ 2) r (1−υ 2 )(1 − 2υ) (1−v 2)(1 − 2v) (26) 

− r dEE +p p v v αT (1− dr v),C4 = 2 (ε −r εθ ) (ε p + ε p + ε p + )−
1−υ (1+v)(1 − 2v) r 1−v θ 1−v z (1−v) 

rE d v v 1+⎛ ⎛ p p p v dε + + ⎞ + ⎞ 
(1+v)(1 − 2v) ⎝dr ⎝ 

r ε θ ε z (αT)
1−v 1−v ⎠ 1−v dr ⎠ (27) 

Using the same technique mentioned before, Eqs. (14) and (23) with variable coefficients for elastic and plastic deformations, 
respectively, can be transformed into a system of m ordinary differential equations with constant coefficients. The solution for the 
obtained ordinary differential equation is: 

k 
u k = X kexp(λ k C 

r) + X k k − 4
1 1 2 exp(λ2 r) Ck

3 (28) 

where Xk and Xk are unknown constants for kth 1 2 domain and 

− ±Ck k 2 
2 ( )  C −k k 2 4Ck

3 Ck

λ , λ = 1
1 2 2Ck

1 (29) 

The coefficients Xk and Xk 
1 2 can be determined based on continuity conditions. So, the continuity of the radial displacement u and

radial stress σr are applied at the interfaces of the adjacent sub-domains. 

u k k+1
= + = k+1 tr rk t u r r= −2 2 (30) 

σk = σ k+1t r = +k k+1 tr r r r r= −2 2 (31) 

The boundary conditions for inner and outer radii are: 

σr (r = ri) = −P , σr (r = ro) = 0 (32) 

where σr is the stress along the radius and P is the internal pressure. The continuity conditions between adjacent domains together 
with the boundary conditions in inner and outer domains of the cylinder yield a system of 2m×2m linear equations. Solving these 
linear equations for Xk 

1 and Xk 
2 in each sub-domain and then substituting these coefficients in relation (28), radial displacement is 

obtained. Having radial displacements, Eq. (12), we can readily generate radial and circumferential strains as follows: 

ε k =r λ k k k k k k
1 X1 exp(λ1 r) + λ2 X2 exp(λ2 r) (33) 

k Xk X k Ck
ε = 1 exp(λ rk + 2 
θ 1 ) exp(λ rk ) − 4

r r 2 rCk
3 (34) 

Finally, stresses are obtained for elastic deformation as: 

k k 
σk E ⎡ υ υ υC

= ⎛ −r v λ k + ⎞⎢ (1 ) 1 Xkexp(λ k r) + ⎛(1−v)λ k + ⎞Xkexp(λ k r) − 4 − (1 +υ α) k kT ]
(1+v)(1 − 2v) ⎣⎝ r ⎠ 1 1 ⎝ 2 r ⎠ 2 2 rCk 

3 (35) 
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k Ek ⎡ k 1 k k k 1 k k ⎤ = ⎛(1 v υλ  + ⎞X exp(λ r) + ⎛(1−υ)λ + ⎞σθ − ) 1 1 1 2 X2 exp(λ2 r) (1+v)(1 − 2v) ⎣⎢⎝ r ⎠ ⎝ r ⎠ ⎦⎥ (36) 

k k k k k k  σz = v σ( r + σθ ) − E α T  (37) 

And for plastic deformation as: 

k Ek ⎡ k υ k k υ k k υC4k pk pk pk k k⎤ σ = ⎛(1−v λ) + ⎞X + ⎛(1−v)λ + ⎞X exp(λ r) − − ((1−v)ε + υε + υε ) − +υ)α T r 1 1 2 2 2 r θ θ (1 
(1+v)(1 − 2v) ⎣⎢⎝ r ⎠ ⎝ r ⎠ rC3k ⎦⎥ 

(38) 

Ek 1 v 1 v v C4k k ⎡ k − ⎞ k ⎛ k − ⎞ k k −
(1− ) 

− − pk pk r
pk (1 k k⎤ σ = ⎛υλ + X + υλ  + X exp(λ r) ((1 v)ε + υεr + υε ) − +υ)α T θ 1 1 2 2 2 θ k (1+v)(1 − 2v) ⎢⎣⎝ r ⎠ ⎝ r ⎠ rC3 ⎥⎦ 

(39) 

k k k k k k k pk σ = v σ( + σ ) − E α T  − E  εz (40)z r θ 

6. Nonlinear kinematic hardening 

Armstrong and Frederick (1966) suggested a refi nement upon the linear kinematic hardening model. They introduced their model 
by adding an extra term to the Prager's rule as: 

2 p dXij = Cdεij − γXij dp 3 (41) 

where Xij and dp are back stress (equilibrium stress) and eff ective plastic strain respectively. C and γ are material constants. 

2 p p dp = dεij dεij 3 (42) 

The plastic strain increment can be obtained using the following associated fl ow rule: 

∂f σ( )ij p dε = dλ  ij ∂σij (43) 

where dλ is the plastic multiplier and f is the von Mises yield criterion which is defi ned as: 

f = J σ′ − X′ − y (44)2 ( ) σ 

1 

J (σ′ − X′) = ⎡ 3 (σ′ − X′):(σ′ − X′)⎤
2 

2 
⎣ 2 ⎦ (45) 

where σ′ is the deviatoric stress and Eq. (45) can be expressed in cylindrical coordinates as: 

2 2 2 2 (σ′ − Xr′) + (σ′ − Xθ′) + (σ′ − Xr′ − X ′) = 2 σyr θ z θ 3 (46) 

where X′ is the deviatoric back stress that defi nes the position of the yield surface and σy is the initial yield stress. Normality rule can 
also be rewritten as: 

p 1 dε = (n dσ  )n ij pq pq ij kp (47) 

∂ ∂/f σij nij = ∂ ∂/ ijf σ  (48) 

where nij is the outward surface normal and kp proportionality factor called plastic modulus. Using consistency condition: 

∂f ∂f 
df = dσij + dXij = 0 

∂σij ∂Xij (49) 

And substituting Eq. (43) into Eq. (37), kp is determined as: 

p 2 (σij′ − Xij′)Xij k = C − γ 
3 σy (50) 

649 



M. Damadam et al. Case Studies in Thermal Engineering 12 (2018) 644–654 

Table 1 
Material properties [37]. 

Metal 
Ceramic 

E (GPa) 

200 
351 

ρ (kg/m3) 

7860 
5700 

×α 106 (1/ 

11.7 
10 

°C) K (W/m K) 

42 
2 

υ 

0.3 
0.3 

7. Numerical method 

In this investigation, return mapping algorithm (RMA) [35,36] was used to solve the plastic part of the problem. This method 
represents a well-established integration scheme of the elasto-plastic constitutive equations. The return mapping algorithm includes 
two steps: an elastic predictor and a plastic corrector. The elastic predictor leads to the so-called elastic trial error, used to formulate a 
concise computational loading/unloading criterion for the material. In the plastic corrector phase, a closest point projection algo-
rithm is utilized to reinforce consistency, rendering an implicit and first-order accurate integration method [35]. The iterative method 
steps for computing the plastic behavior of material is presented in Appendix B. 

8. Results 

In this study, inner and outer radii of the FG cylinder are 0.17 m and 0.21 m respectively and the material properties are assumed 
to be independent of temperature and are listed in Table 1. We divided the total thickness into 200 sub-domains to make sure that the 
thickness of each sub-domain becomes too small to get higher accuracy (In fact for each sub-domain, the mean radius where the 
ordinary differential equations are calculated at, overlaps with its inner radius in a good approximation). The cylinder is subjected to 
internal pressure and cyclic temperature gradient loadings. Temperature is increased linearly and incrementally from zero tem-
perature in a way that each increasing step is 1 °C, then when the cylinder reaches the yield point, temperature is decreased till it 
reaches zero value. In this situation, a cyclic loading and unloading is completed. 300 cycles (low cycle) have been applied to the 
cylinder to study its behavior under cyclic loading [36]. The analysis is conducted using steel as the inner surface metal and zirconia 
as the outer surface ceramic. 

Results are presented for two different cases according to the ceramic percentage in outer radius as: 

1) n = 2, a = 0.989 (90% ceramic in the outer layer) 
2) n = 2,a = 0.927 (50% ceramic in the outer layer) 

Considering non-dimensional pressure of p T  = 0.8 and non-dimensional temperature of  = 1.8, after one cycle of loading, py Ty  

plastic strain remains constant and does not vary by repeating the loading cycles. In this condition, cylinder behavior will be 
thoroughly elastic after one cycle which is denoted as elastic shakedown. Fig. 2, shows the variation of tangential stress in terms of 
tangential mechanical strain for this case. 

Upon increasing the nondimensional temperature up to T T/ y = 4, it can be observed in Fig. 3, that plastic strain increases 

8 
x 10 
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s(

Pa
) 

Tangential mechanical strain -3 

x 10 

( /p p  n  /Fig. 2. Tangential stress in terms of tangential mechanical strain for 90% ceramic in the outer layer y = 0.8 a  dT Ty = 1.8). 
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y a dT Ty = 4Fig. 3. Tangential plastic strain in terms of cycle for 90% ceramic in the outer layer ( /p p  = 0.8 n / ). 

continuously by increasing cycles. This phenomenon is called ratcheting which is a non-safe domain. Fig. 4. illustrates tangential 
stress, the dominant stress in ratcheting domain, versus tangential mechanical strain. For ratcheting case, the loop doesn't close and 
stabilize. 

Now, Bree's interaction diagram can be obtained for different temperatures and pressures to study the behavior of the material. As 
we see from Figs. 5 and 6, the boundaries between each domain is specified based on the behavior of each point in specific tem-
perature and pressure. 

9. Conclusion 

In the present paper, the elastoplastic analysis on a FG thick-walled cylinder subjected to constant internal pressure has been done 
to study how the cylinder behaves under cyclic thermo-mechanical loading. A model of nonlinear kinematic hardening based on 

x 108 

8 

6 

4 

0 1 2 3 4 5 6 

Ta
ng

en
tia

l 
st

re
ss

 (P
a)

2 

0 

-2 

-4 

Tangential mechanical strain -3 
x 10 

y a dT Ty = 4Fig. 4. Tangential stress in terms of tangential mechanical strain for 90% ceramic in the outer layer ( /p p  = 0.8 n / ). 

651 



4 

3.5 Ratch1 ~tine: 

3 

2.5 

2 s~ akedown ;>omain 

s 1.5 

1 

0.5 

0 

-----~ iElastic ---~ 
0 0.2 0.4 0.6 0.8 1 

P/Py 

4 

3.5 
Ratcheting Domain 

3 

2.5 

~ 2 j::::-

1.5 

1 

0.5 

0 
0 0.2 0.4 0.6 0.8 1 

P/Py 

M. Damadam et al. Case Studies in Thermal Engineering 12 (2018) 644–654 

Fig. 5. The Bree's diagram (90% ceramic in the outer layer). 

Fig. 6. The Bree's diagram (50% ceramic in the outer layer). 

Armstrong and Frederick was used. Return mapping algorithm was employed to get the plastic strains increments. The presented 
Bree's diagram is capable of demonstrating the safe boundary of loading for different temperatures and pressures. Dividing the Bree's 
diagram into three regions, it can be deduced that reducing the amount of ceramic in the outer layer can change the boundary 
between shakedown and ratcheting domain that results in enlarging the ratcheting domain and subsequently lowering the loading 
capacity and failure is more likely to happen then. The optimal design must be under the ratcheting domain. 
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Appendix A. Notation 

B Typical material property u Radial displacement field 
V Volume fraction υ Poisson's ratio 
n Gradient index P Internal pressure 
rin inner radius E Young Modulus 
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rout Outer radius Xij Back stress (equilibrium stress) 
K Heat conductivity X′ Deviatoric back stress 
Ti Temperature of inner surface dp Effective plastic strain 
T Temperature distribution c Material constant 
k Number of division γ Material constant 

pt Radial width of each sub-domain Plastic strain increment dεij 
σr Radial stress σ′ Deviatoric stress 
σθ Circumferential stress σY Initial yield stress 
σz Longitudinal stress kp plastic modulus 
εr Radial strain Py Yield pressure 

εθ Circumferential strain Ty Yield temperature 

εz Longitudinal strain α Coefficient of thermal expansion 
ρ Density f Yield function 

Appendix B 

1) The cylinder thickness is divided into m sub-domains. 
total p2) Stresses and strains are determined for a pressure below the yield pressure. (σij = σij ) 

3) Thermal loading is divided into N steps. 
4) Variables of total and incremental plastic strain and accordingly those of total and incremental back stress are assumed to be 

pzero. (dεij = 0, dXij = 0) 
ΔL5) Elastic stress is determined for one-step thermal loading considering p = 0. (dσij ) 

total total ΔL6) For total stress (σij = σij + dσij ), yield surface function and relation (n dσpq pq) are calculated for each sub-domain. 
7) If for each domain <0, elastic loading status has been occurred. 

ΔL8) If for each sub-domain f >0 and (n dσ  ) > 0, plastic loading status will occur for that sub-domain, which then plastic cor-
rection step will be applied. 

pq pq 

9) Using normality relation, dεij
p is determined for plastic sub-domains and then dXij is determined for all plastic sub-domains. 

10) Having dεij
p for plastic sub-domains and dεij

p = 0 for elastic ones, stresses (dσijΔL) are determined in each layer. 
total total11) Considering total stress sij = sij + dsijDL and total back stress (Xij = Xij + dXij), yield surface function is investigated. If for all 

plastic sub-domains f 2 <0.01, plastic correction has been done and we return to step (5), otherwise return to step (9) in order to 
sy 

pdetermine new dεij 
12) Steps (9)–(11) are repeated until f 2 <0.01 is applied for all plastic sub-domains of cylinder simultaneously. 

sy
pN p N13) (deij = deij ),deXij = dXij 
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