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This study is a result of a project titled ‘‘Useful to Usable (U2U): Transforming Climate 
Variability and Change Information for Cereal Crop Producers”. This paper responds to 
the project goal to improve farm resiliency and proftability in the U.S. Corn Belt region 
by transforming existing meteorological dataset into usable knowledge and tools for the 
agricultural community. 
A high-resolution agro-climatic dataset that covers the U.S. Corn Belt was built for the U2U 

project based on a Land Data Assimilation System (LDAS) framework. This data referred to as 
the Purdue Agro-climatic (PAC) dataset is a gridded, continuous dataset suitable for agrocli-
matic and crop model studies over the U.S. Corn Belt. The dataset was created at 4 km, sub-
daily spatiotemporal resolution and covers the period of 1981–2014. The dataset includes a 
range of variables such as daily maximum/minimum temperature, solar radiation, rainfall, 
evapotranspiration (ET), multilevel soil moisture and soil temperatures. The data were com-
pared to feld measurements from Amerifux and the Soil Climate Analysis Network (SCAN), 
and with coarser but widely used atmospheric regional reanalysis data products. Validations 
indicate an overall good agreement between this dataset and feld measurements. The agree-
ment is particularly high for radiation and temperature parameters and lesser for rainfall and 
soil moisture data. Despite the differences with observations, the data show improvements 
over the coarser resolution products and other available models and thus highlights the value 
of the dataset for agroclimatic and crop model studies. 
This high-resolution dataset is available to the wider community, and can fll gaps in 

observed data records and increase accessibility for the agricultural sector, and for conduct-
ing variety of if-then assessments. 
� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

1. Introduction 

Agriculture is highly dependent on weather and climate. The U2U (www. Agclimate4u.org) project aims to ‘‘transform 
climate variability and change information for cereal crop producers” for improving the resiliency and proftability of farms 
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Fig. 1. Operational fow of large-scale crop modeling. 

in the U.S. Corn Belt. This project seeks to deliver improved decision support tools, datasets and trainings. The U2U team is a 
diverse scientifc group including climatologists, crop modelers, agronomists, economists, and social scientists (Prokopy 
et al., 2015). One of the objectives of climatologists and crop modelers group is to provide useful and usable dataset for users 
including crop modelers and producers (Niyogi and Andresen, 2011). 

A majority of the agroclimatic assessments until now is based on point/feld scale studies. Studies of food security under a 
changing climate and extreme weather, highlight an increasing demand for large spatial scale crop yield simulations ( 
Hansen and Jones, 2000; Niyogi and Andresen, 2011; Rosenzweig et al., 2013; Takle et al., 2014; McDermid et al., 2015). 
As a result, a growing number of studies have been conducted on largescale crop simulations using traditional crop models 
(e.g., Rosenzweig et al., 2014; Elliott et al., 2014; Liu et al., 2015). 

Fig. 1 summarizes the building blocks and the operational fow of such regional largescale simulations. Generally, the 
input data comprises of four groups: (i) weather (e.g. air temperature, solar radiation and precipitation), (ii) management 
practices (planting date, plant population and irrigation), (iii) plant genotype and (iv) regional soil texture and characteris-
tics. These data are provided/needed at grid-by-grid basis across the study domain to the different crop simulation models. 
The models being run are either statistical models (e.g. Lobell et al., 2008) or traditional crop models, such as DSSAT (Jones 
et al., 2003), Hybrid-Maize (Yang et al., 2004), or part of land modeling system such as CLM-Crop (Drewniak et al., 2013), 
Noah-MP-Crop (Liu et al., 2016), ISBA (Garrigues et al., 2015), Agro-IBIS (Kucharik, 2003), ISAM (Song et al., 2013). The typical 
output of interest from these models are the crop yield, leaf area index, and evapotranspiration. The availability and usability 
of current input datasets however, are inadequate to fll the increasing demand for high spatiotemporal resolution regional 
crop simulations (Rosenzweig et al., 2013). 

In this paper, we focus on one particular aspect of the data needs, those related to the weather input dataset. The regional 
agro-meteorological applications are often constrained by the spatially discontinuous meteorological data from regular 
weather stations. Further, the application of crop models is often limited by lack of hydro-meteorological input data, such 
as solar radiation, soil moisture and evaporation/transpiration. These variables are not routinely available from weather sta-
tions except for specifc experimental feld programs. The representation of spatial heterogeneity of weather and climate 
information is important for regional crop modeling (Doering, 2002; Niyogi et al., 2015). As a result, most models are run 
with default values or approximations based on empirical rules, and highlight the need for a high-resolution spatial, agro-
climate dataset. 

The climate community widely relies on reanalysis datasets that blend observations with detailed models in creating the 
gridded products (e.g. Kalnay et al., 1996; Mesinger et al., 2004). These reanalysis products are available as a scientifc 
resource to the atmospheric community for a wide range of applications, and have also been a source of meteorological input 
for crop models studies. These datasets while suitable for large scale dynamical studies are generally too voluminous to store 
locally and too coarse for regional scale crop studies. Further, these data are not easy to use or work with for lay users (see for 
e.g. Table 1). Additionally, it is also diffcult to extract the necessary data that is needed as an input for regional studies. 
Hence, an outstanding issue has been: how do we make these datasets useable for the broader agroclimate community, 
and crop modelers, more specifcally? 

Table 1 
Examples of current reanalysis datasets (Including PAC dataset in this study). 

Dataset Time period Highest Temporal Spatial Coverage Typical Spatial resolution Reference 
resolution (Approximately) 

NARR 1979–2015 3 h North America 32 km Mesinger et al. (2004) 
MERRA-2 1980–present 3 h Global 50 km Rienecker et al. (2011) 
NLDAS-2 1979–present Hourly North America 12 km Mitchell et al. (2004) 
AgMERRA 1980–2010 Daily Global 27 km Ruane et al. (2015) 
Daymet 1980–2015 Daily North America 1 km Thornton et al. (2016) 
PAC 1980–2014 Sub-daily U.S. Corn Belt 4 km This study 
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Fig. 2. Methodology fow chart for generating the PAC dataset. 

This paper presents and builds on an approach that uses the Land Data Assimilation System (LDAS, ldas.gsfc.nasa.gov/) 
framework to create a high-resolution (4-km) agro-meteorological dataset: the Purdue Agro-climatic (PAC) dataset, to inte-
grate weather and climate data suitable for crop-climate studies. Developing such a high-resolution dataset is expected to 
provide better access to tools that are needed for regional agricultural/climatic impact assessments and decision support 
studies. 

Section 2 describes the process of developing the PAC dataset. Section 3 provides validations of this dataset with in situ 
meteorological data, along with the comparison with existing reanalysis based solar radiation and model generated solar 
radiation. Section 4 focuses primarily on the validations of soil moisture and soil temperature. 

2. Datasets 

The overall procedure is summarized in Fig. 2 and described further in this section. 
At the heart of the dataset generation is a Noah land surface model (LSM) based Land Data Assimilation System (LDAS) 

framework. This system is used for downscaling and simulating surface hydrological parameters. The Noah LSM is a widely-
used community model. It was developed on the concept of diurnally dependent Penman-based potential evaporation 
approach (Mahrt and Ek, 1984), the multilayer soil model (Mahrt and Pan, 1984), and a canopy transpiration model (Pan 
and Mahrt, 1987). Chen et al. (1996) extended this model by including the canopy resistance approach and Ek et al. 
(2003) added the formulation of bare soil. A large number of academic and operational research community users have 
developed this model further and is considered as a major component of the land/boundary layer atmospheric models, 
for both weather, hydrometeorology, and regional climate studies (Niu et al., 2011). 

Originally, Noah LSM was developed to provide the land state for the NOAA/NCEP mesoscale Eta model (Betts et al., 1997; 
Chen et al., 1997; Ek et al., 2003). It has been included in LDAS, coupled with the Weather Research and Forecasting (WRF) 
regional atmospheric model. The Noah LDAS frameworks adopted in this study is based on the NCAR High Resolution LDAS 
(HRLDAS, Chen et al., 2007) and NASA Land Information System (LIS, Kumar et al., 2006). 

In running the LDAS, the initial task was to compile different meteorological data into the NLDAS-2 (32-km resolution 
analysis). The NLDAS-2 uses bias-corrected GOES satellite-based downward shortwave radiation data, and precipitation data 
is mainly derived from hourly Doppler Stage II radar precipitation data (Mitchell et al., 2004). Additionally, land-surface ini-
tialization data (e.g., soil temperature, soil moisture, and canopy water content) were obtained from EDAS (Eta Data Assim-
ilation System, Rogers et al., 1996). These were extracted to obtain different parameters separately into Grib fles. A look up 
table as used in Noah/WRF was used to defne the model land use/cover properties, terrain, soil texture, and monthly green 
vegetation fraction for Noah. The land-use input is based on 30-s U.S. Geological Survey (USGS) 24 categories. Terrain height 
is based on USGS-derived 30-s topographical height data, soil texture is based on the U.S. STATSGO soil map, and green veg-
etation fraction is based on monthly satellite-derived green vegetation fraction. 

The next task was to downscale the raw meteorological data from 1/8 degree spatial resolution to 4-km grid spacing by 
running in a LDAS mode. This provides the foundation for high-resolution meteorological data that is integrated every hour 
and used for initializing landsurface conditions in the model at the start of each calendar year. The ‘‘input” data across the U. 
S. Corn Belt contain a total of 222,070 grids. The parameters included in each grid are listed in Supplementary Table S1. In  
this research, the hourly 4-km resolution meteorological data were grouped as ‘‘Database 1”. 

The 4-km resolution meteorological data was then used to drive the Noah LSM in a LDAS mode to simulate the soil con-
ditions (e.g., soil moisture, soil temperature), ET (evapotranspiration), etc. During this process, Noah LSM simulates the sur-
face conditions at a more detailed representation of topography, land cover, soil texture and vegetation type, obtained from 

https://ldas.gsfc.nasa.gov
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Fig. 3. The LDAS process fow. 

Table 2 
Variables included in the PAC daily dataset. 

Name Unit Description 

Tmax 
Tmin 
SR 
Prep 
Soil_M 
Soil_T 
ET 

�C 
�C 
MJ m{-2} 
mm 
m{3} m{�3} 
�C 
mm 

Daily maximum temperature at 2 m 
Daily minimum temperature at 2 m 
Daily solar radiation 
Daily precipitation 
Daily averaged soil moisture (At 4 layer: 10 cm, 40 cm, 1 m, 2 m) 
Daily averaged soil temperature (At 4 layer: 10 cm, 40 cm, 1 m, 2 m) 
Daily evapotranspiration 

Fig. 4. Building the Purdue agro-meteorological dataset (PAC) from LDAS framework. 

the high-resolution land cover information. The land model requires a ‘‘spin-up” period to account for hydro-dynamic bal-
ance. The ‘‘spin-up” time for Noah LSM typically requires few months (Chen et al., 2007; Charusombat et al., 2012). In this 
work, the spin-up was taken conservatively as 24 months (January 1979 to December 1980). 

The output from LDAS is at a hourly and 4-km resolution for each grid. The output parameters generated for each grid are 
listed in Table S2. Fig. 3 presents the overall process of running the data processing and LDAS framework. The hourly 4-km 
resolution output data are grouped as ‘‘Database 2”. 

The objective of building PAC is to provide data that can be ‘‘useful and useable” for crop models and other agronomic 
decision tools. The minimum requirements of meteorological inputs for crop models (e.g., the Hybrid Maize model, Yang 
et al., 2004) include daily minimum temperature, daily maximum temperature, total solar radiation, and total precipitation. 
Therefore, to meet these needs, data extraction from the hourly database into daily data was necessary. A NCAR Command 
Language (NCL, Brown et al., 2012) script was developed and a module installed for data extraction. Careful attention had to 
be paid for ensuring data veracity while redoing the data fle structures. For some variables, unit conversions were also nec-
essary to make the data more usable (e.g. kg/m2 of soil moisture to mm or m3/m3 etc). 

The data extraction from hourly to daily was applied for different variables such as air temperature, precipitation, solar 
radiation, soil moisture and soil temperature. ‘‘Database 3”, the PAC daily dataset was then compiled using these daily data 
(Table 2 and Fig. 4). A sample spatial plot for the maximum and minimum air temperature, daily precipitation, and daily 
solar radiation in shown in Fig. 5. 
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Since the domain covers different time zones, the data are stored in Universal Time Coordinate (UTC) system. If the daily 
meteorological data will be downscaled at local time, additional bias might be introduced due to different time zones. Here 
the data has not been corrected to local time because: (i) the research domain crosses three different time zones (Eastern 
Time, Central Time, and Mountain Time Zones); (ii) It is expected that daily maximum and minimum temperature are 
not signifcantly infuenced by the time zone gap especially since they are developed from reviewing the hourly data. For 
example, in UTC, a day is defned from 00:00 to 00:00, while converted to the Eastern Time Zone the local time will be from 
previous day’s 19:00 to current day 19:00. The daily maximum and minimum temperature usually occur during this time 
period. We also need to highlight that, the PAC dataset we presented here focuses on daily data, but the PAC framework 
can provide data at varying time-scales, from hourly to daily, so we call it as a ‘‘sub-daily” dataset. 

3. Meteorological data validations 

To validate the agro-meteorological database, 30-years (1981–2010) of observed temperature data for 18 counties (Fig. 6) 
were processed from the National Centers for Environmental Information (NCEI); solar radiation data for Bondville, IL were 
collected from Amerifux (from 1997–2007) along with soil temperature/moisture data from different Ameifux and SCAN 
sites. County-level yields were obtained from National Agricultural Statistics Service (NASS) annual survey, and are available 
as part of the broader dataset. 

Fig. 5. Sample images of agrometeorological data from PAC: (a) Daily maximum temperature; (b) Daily minimum temperature; (c) Daily accumulated 
precipitation and (d) Daily solar radiation, for day 200 (i.e. 19 July) in 2011. 
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3.1. Maximum, minimum temperature and precipitation 

The PAC dataset were compared with site daily observations, and the coeffcient of determination (R2) values are sum-
marized in Table 3. The results indicate that the PAC daily maximum and minimum temperature have good agreement with 
the observations (R2 = 0.97, for both maximum and minimum temperature). Since the data sample size is relatively large 
(�11,000 point for each site), Fig. 7 only shows the scatter plots for Johnson County, IA in 2001 as an example. For precip-
itation, the averaged R2 is much lower and is 0.70. This is not surprising considering the rainfall can have both spatial and 
temporal errors (and also possibly due to a mismatch in the observed versus modeled day). Further, although the spatial res-
olution in PAC is 4-km, it is still diffcult for reanalysis data to capture the spatial pattern and total amount of rainfall for a 
specifc site. We also compared the PAC dataset with daily observations for growing season (April to October) only, the 
results are similar as the whole-year analysis, detailed results can be found in Supplementary Table S3. 

3.2. Solar radiation 

As mentioned before, crop models are often constrained by the lack of solar radiation data. The lack of data means, models 
have to rely on empirical approximations (Grant et al., 2004) or use data from synthetic weather generators such as 

Fig. 6. Validation study domain and sites. 

Table 3 
Coeffcient of Determination (R2), Root-Mean-Square deviation (RMSE) and Bias between in situ daily observations and PAC reanalysis data at 18 sites for 
30 years (1981–2010). 

County Tmax Tmin Precip 

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias 

Johnson, IA 0.98 2.65 0.99 0.98 2.52 �0.36 0.89 3.66 0.11 
Winnebago, IA 0.97 3.26 �0.12 0.97 3.18 �1.63 0.70 5.56 �0.03 
DeKalb, IL 0.96 3.25 0.31 0.97 3.17 �1.81 0.71 5.55 0.05 
Douglass, IL 0.97 3.07 0.62 0.97 3.05 �1.67 0.70 5.99 �0.03 
Huntington, IN 0.96 3.41 0.54 0.97 3.63 �2.4 0.63 5.86 0.05 
Jasper, IN 0.96 3.33 0.01 0.97 2.95 �1.7 0.64 6.09 0.07 
Shawnees, KS 0.97 2.97 �0.29 0.97 3.23 �1.92 0.74 5.59 0.08 
Olmstead, MN 0.98 2.71 �0.29 0.98 2.99 �1.36 0.75 4.76 0.02 
Renville, MN 0.97 3.69 �0.21 0.97 3.43 �1.97 0.69 4.66 �0.11 
Adair, MO 0.97 3.07 �0.20 0.97 2.94 1.44 0.75 5.88 0.03 
New Madrid, MO 0.94 3.40 �0.39 0.96 3.09 �1.66 0.66 7.73 0.04 
Platte, NE 0.96 3.52 �0.67 0.97 3.18 �1.40 0.78 4.29 �0.02 
Union, OH 0.97 2.76 0.71 0.97 2.93 �1.69 0.66 5.32 0.14 
Rock, WI 0.96 3.44 0.23 0.97 3.01 �1.2 0.64 5.98 0.09 
Sauk, WI 0.95 3.49 0.98 0.94 4.28 �2.5 0.60 5.90 0.06 
Grand Forks, ND 0.98 3.53 �0.3 0.97 3.80 �1.57 0.74 3.71 0.04 
Lucas, OH 0.98 2.53 0.46 0.96 3.11 �1.58 0.76 4.21 �0.01 
Brookings, SD 0.97 3.93 �1.20 0.97 4.17 �3.13 0.71 4.29 0.02 

Average 0.97 3.22 0.07 0.97 3.26 �1.56 0.70 5.28 0.03 
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WeatherAid (Yang et al., 2005). PAC provides daily solar radiation data, which can be used by not only crop models, but also 
other agronomic decision tools. The solar radiation data from PAC, which is based on satellite product (Mitchell et al., 2004), 
was compared with the observed solar radiation data from Bondville, IL, Amerifux site. The validation results (Fig. 8) 
indicate a good ft with the observations (R2 = 0.81). The solar radiation values from PAC were also compared against the 
weather generator, and the R2 between generated solar radiation and measured observations is 0.67 (Fig. 9), results from 
Bondville site suggest the solar radiation data from PAC are potentially better than the solar radiation values generated 
by the weather generator. We also validated the daily solar radiation with another Amerifux site: Mead, NE for year 
2005, The R2 is 0.69. In this study, due to the limitations of observations and data accessibility, we only presented results 
from two sites. More validation sites will be needed in the future studies that focus on solar radiation. 

4. Soil moisture and soil temperature analysis 

Soil moisture and soil temperature are important components of land-atmosphere interactions and critical variables in 
agrometeorology and crop production systems (Ochsner et al., 2013). Climate change and associated feedbacks in soil tem-
perature and soil moisture are expected to affect agricultural systems with effects on crop productivity, crop variety, and 
planting and harvest times (Lobell et al., 2014). As mentioned in Section 1, hydroclimatic reanalysis products including soil 
moisture and temperature are available at coarse resolutions, and as a result not aligned with land surface model or crop 
model interfaces. In addition, while some in situ datasets for soil moisture and soil temperature measurements at the point 
scale are available, the quality of the datasets and record lengths vary. To validate the soil moisture and soil temperature 
estimates generated by the LDAS/Noah LSM, we compared (i) point observations from ten sites with corresponding model 

Fig. 7. (a) Minimum temperature, and (b) Maximum temperature for PAC dataset versus site observations for Johnson County, IA (2001). 

Fig. 8. (a) Daily solar radiation from PAC (grid) compared to the observations and (b) daily solar radiation from Weather generator (WeatherAid) vs. site 
observations, both plots are for Bondville, IL, 2001. 



30 30 

25 Bo1 25 KFS 

20 20 

15 15 

10 0 10 

5 5 
305 10 15 20 30 305 10 15 20 25 30 

25 25 

20 20 

15 15 
.--. 
u 10 10 
0 - 5 5 
(]) 305 10 15 20 25 30 305 10 15 20 25 30 .... 
::::, - 25 MM/ 25 WCr ro .... 
(]) 20 20 c.. 
E 15 15 
Q) - 10 10 
·5 
(/) 5 5 

'U 305 10 15 20 25 30 305 10 
Q) Dexter - 25 ro 
::::, 20 E 

en 15 

10 10 

5 
30 305 10 15 25 30 

0 0 
25 25 Mandan ~ 
20 20 0 O O 

0~ 
0 

15 

10 

5 5 
5 10 15 20 25 30 5 10 15 20 25 30 

Observed soil temperature (°C) 

68 X. Liu et al. / Climate Risk Management 15 (2017) 61–72 

grids, and (ii) spatial representation of soil moisture with coarser resolution reanalysis products at the regional scale. A more 
comprehensive evaluation and application of the soil moisture data is reported in Niyogi et al. (in review) and the disserta-
tion of Jacobs (2016). We focused here on the time period of interest, i.e. the growing season broadly defned as April through 
October consistent with other studies in the region (e.g. Kellner and Niyogi, 2015). 

4.1. Point scale validation 

Volumetric soil moisture and soil temperature observations from four USDA-NRCS Soil Climate Analysis Network (SCAN; 
Schaefer et al., 2007) and six Amerifux (http://amerifux.ornl.gov/) sites (Table 4) were analyzed. The sites were chosen on 
the basis of geographical distribution throughout the study domain. Results are compared with corresponding model grids at 
a monthly time step. Note that the data record lengths vary by site. Because observations of deeper soil layers were lacking or 
limited, the focus is on the topsoil layer (0–10 cm). Soil temperature estimates compared well with observations at all ten 
sites, with R2 values generally greater than 0.90 (Table 5, Fig. 9). A few sites (e.g. Ames/Mandan/Johnson Farm) show larger 

Fig. 9. Comparison of observed and simulated (PAC) top layer soil (0–10 cm) temperature for the growing season (circles), with linear regression fts (lines) 
at ten sites within the PAC domain. 

http://ameriflux.ornl.gov/
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Table 4 
Observation sites used for comparison with the PAC data. Additional site information can be found at http://amerifux.ornl.gov/ and http://www.wcc.nrcs. 
usda.gov/scan/. Note that the dates indicate the total length of the data record for all variables at each site. Soil moisture and soil temperature records may not 
be available for the entire record period. 

Name ID State Lat Lon LULC Soil texture From To Network 

Bondville Bo1 IL 40.006 �88.2904 Cropland Silt loam 8/25/1996 11/4/2008 Amerifux 
Kansas Field Station KFS KS 39.056 �95.1907 Grasslands Silt loam 6/16/2007 12/31/2012 Amerifux 
Mead rainfed Ne3 NE 41.18 �96.4396 Cropland Silt clay loam 5/25/2001 12/31/2012 Amerifux 
Ohio Oak Openings Oho OH 41.555 �83.8438 Deciduous broadleaf Sand 1/1/2004 12/31/2011 Amerifux 

forest 
Morgan Monroe MMS IN 39.323 �86.4131 Deciduous broadleaf Clay loam 1/1/1998 12/31/2010 Amerifux 

State Forest forest 
Willow Creek1 WCr WI 45.806 �90.0798 Deciduous broadleaf Sandy loam 1/1/1998 12/31/2012 Amerifux 

forest 
Ames 2031 IA 42.02 �93.73 Cropland Clay loam 9/19/2001 12/31/2011 SCAN 
Dexter 2048 MO 39.78 �89.93 Cropland Silt loam 1/9/2001 12/31/2012 SCAN 
Johnson Farm 2111 NE 40.37 �101.72 Cropland Silt clay loam 10/1/2005 12/31/2012 SCAN 
Mandan 2020 ND 46.77 �100.92 Grassland Silt loam 1/1/1997 12/31/2012 SCAN 

The data for WCr are described in Cook et al. (2004) 

Table 5 
Coeffcients of determination (R2) for linear regression fts to 
growing season volumetric soil water content [m3 m�3] and soil 
temperature [�C] of PAC product to in situ observations. 

Vol. soil-water content Soil temperature 

Site R2 R2 

Bo1 0.60 0.92 
KFS 0.62 0.93 
Ne3 0.59 0.93 
Oho 0.39 0.76 
MMS 0.77 0.98 
WCr 0.24 0.96 
Ames 0.50 0.59 
Dexter 0.45 0.96 
JF 0.70 0.72 
Mandan 0.57 0.68 

variability between observed and modeled soil temperature. This could be due to the monitoring equipment used at the 
sites, microclimatic differences that are averaged out over the larger grid scale, and model error. For example, quality control 
of observed soil moisture data sets is variable, Recently, efforts to automate the quality control of network data have been 
undertaken (Xia et al., 2015a). Further analysis is underway to determine the cause of these discrepancies (Jacobs, 2016; 
Niyogi et al., in review). It is worth to note that the sites with the largest temperature deviations perhaps coincidentally 
belong to the SCAN network. 

Point scale comparisons of observed and modeled soil moisture show that there are larger deviations as compared to soil 
temperature (Fig. 10, Table 5). This is to be expected due to the more complex nature of the soil hydrologic processes and 
related soil properties. Yet, the R2 are generally above 0.50 and in some cases above 0.70. The model over the sites with soils 
containing a large fraction of sand typically performed worse than fner soil types (i.e. Ohio Oak Forest, Willow Creek). Also 
the model versus observed values for winter season show large discrepancies. After contacting the site scientists, these dis-
crepancies were narrowed down to the high uncertainty in the measurement protocols for winter months and, also due to 
the error that persist in the model for snow cover period (Barlage et al., 2015). There is a large number of studies focusing on 
validation of modeled soil moisture (e.g. Koster et al., 2009; Xia et al., 2015b; Coopersmith et al., 2016). Volumetric soil mois-
ture is variable over short distances due to diverse soil types, land-cover, and topographic changes (Xia et al., 2015c; 
Coopersmith et al., 2016). Most LSMs are run at a relatively coarse grid scale (�1–100 km) and to simplify the diversity 
in surface and subsurface properties each grid cell represents the dominant soil type, vegetation type, and topographic con-
dition over each model grid cell. Because the spatial variability within a grid cell is not fully represented in the LSM, disparity 
between the model output and in situ observations are common. Soil moisture sensors are generally geographically sparse 
and, depending on region, only one site may be available within a model grid cell which makes it diffcult to fully analyze the 
reason behind biases between observations and models in terms of spatial variability vs. model limitations (Xia et al., 2015b). 
Others claim that simulated soil moisture should not be treated as equivalent to observed soil moisture at all, but rather 
viewed as a wetness index used to balance water losses through evapotranspiration and runoff (Koster et al., 2009). Again, 
the reasons for discrepancies between observations and PAC estimates are not clear, but are likely due to the point to grid 
scale differences, soil hydrology model parameterization and the soil information used as model input (see e.g. Chen and 
Dudhia, 2001 for details). 

http://ameriflux.ornl.gov/
http://www.wcc.nrcs.usda.gov/scan/
http://www.wcc.nrcs.usda.gov/scan/
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Fig. 10. Same as Fig. 9 but for volumetric soil moisture content. Note the difference in x-axis scale for Oho. 

5. Conclusion 

The goal of building this high resolution agro-meteorological PAC dataset is to bring available meteorological reanalysis 
information to usable agronomic applications, such as crop models. This goal was achieved by using a Land Data Assimilation 
System (LDAS) framework, and hydrodynamically downscaling data from 32-km into 4-km grid spacing in Noah LSM. The 
LDAS output based on the NCAR HRLDAS and NASA LIS recomputed the surface energy and water balance at the new reso-
lution and corresponding land cover, soil texture, and topography; by processing the LDAS feld hourly, regional agroclimatic 
dataset was created. To help most agronomic applications, a daily database of 30+ years (1981–2014) was built, and includes 
variables such as maximum and minimum air temperature, solar radiation, precipitation, surface ET, and soil moisture and 
soil temperature at different depths. Results of the initial evaluation undertaken indicate that the variables in the agro-
meteorological database show good agreement with in situ data and other popular reanalysis datasets. Data from PAC also 
showed a better ft with observations especially for solar radiation particularly when compared with that from a weather 
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generator output. These results are encouraging and provide confdence to apply this high-resolution agro-meteorological 
database in agronomic applications. The availability of the PAC dataset helps provide better access to agroclimatic dataset 
in term of data resolution, quality and data continuity. These data are expected to help investigations seeking to study 
the infuence of climate on crop growth at the regional scales over the U.S. Corn Belt (e.g. Liu et al., 2016). 
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