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Motivations and Challenges in Unmanaged Edge Computing 

Shikhar Suryavansh, Kwang Taik Kim

Purdue University


In this document, we consider a motivating example for the unmanaged edge 

computing scenario and look at the unique challenges introduced by the unmanaged 

edge. 

Motivating Example 

Consider a typical application from the domain of autonomous self-driving cars [30]. 

It has the tasks listed below and we use this application in our evaluation (one of 

three). 

(a) Driver state detection using face camera 

(b) Driver body position using driver cabin camera 

(c) Driving scene perception using a forward-facing camera 

(d) Vehicle state analysis using instrument cluster camera 

Task (c) can further consist of multiple tasks like pedestrian detection, obstacle 

detection, traffic signs analysis, etc. All these tasks would operate on the same input 

data, i.e. the feed from the forward-facing camera. In this work, we focus on how 

to offload user requests pertaining to the latency-sensitive applications (such as the 

example above), in a heterogeneous unmanaged edge computing scenario. We aim at 

minimizing latency while providing a configuration parameter that determines how 

bandwidth conserving the allocation of tasks to UEDs is. 
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(a) Computational and geographical hetero
(b) Heterogeneity in interference pattern 

geneity 

Fig. 3.1.: Challenges in unmanaged edge orchestration 

3.0.2 Challenges and Responses 

The notion of unmanaged edge introduces a set of unique challenges unseen in 

traditional edge computing. Following are the main challenges involved in the orches

tration of tasks in an unmanaged edge scenario and a brief statement about how we 

handle each challenge. 

Substantial heterogeneity in computational capacity and geographical dis

tance of edge devices: The edge devices, which are personal laptops, tablets, 

desktops, etc., in our case, consist of heterogeneous hardware and hence, the per

formance of a task varies significantly on different edge devices. Also, different edge 

devices are at different geographical distances from the orchestrator. Consequently, 

the network delay also varies. Figure 3.1a shows the average service time (average 

network delay + average computation time) of executing an image classification task 

on four heterogeneous edge devices at varying distances from the orchestrator in a 

production setting. The four UEDs are Samsung Galaxy Tab S4-2018 (UED1), Dell 

Inspiron 15R-2013 (UED2), Macbook Pro-2018 (UED3) and iMac-2017 (UED4). 

Note the huge disparity between the average network delay (max-min ratio 6:1) due 

to geographical heterogeneity and the average computation time (max:min ratio 4:1) 

due to computational heterogeneity among the UEDs. 
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Heterogeneity in task interference pattern: Different tasks, when running on 

the same edge device, may interfere with each other affecting their service time. 

There is a heterogeneity in the interference experienced by different types of tasks 

on a UED. For instance, Figure 3.1b considers task T1, an image segmentation task, 

which is simpler compared to T2, an image classification task. It shows the difference 

between the interference of tasks of type T1 on T2 

(
f21(T2, kT1)UED1

) 
and T2 on T1 

(
f12(T1, kT2)UED1

) 
on UED1. The interference is quantified using fij (Ti, kTj )UEDp 

which gives the execution time of a new task of type Ti on UEDp, given that k 

tasks of type Tj are already running on the UED. It can be seen from the figure that 

there is a high interference of T1 on T2 but almost negligible interference of T2 on 

T1. Not only do different types of tasks interfere differently on the same device, but 

also there is variation in interference pattern across multiple devices. Figure 3.1b 

shows the comparison between the interference of T1 on T2 on two different UEDs 
(
f21(T2, kT1)UED1 and f21(T2, kT1)UED2

)
. The interference of T1 on T2 is higher on 

UED2 than that on UED1. Thus, interference depends on the ordered pair of tasks 

and also the UED. I-BOT performs a novel interference profiling of the UEDs to 

handle this heterogeneity in interference pattern (Section 5.3). 

Online variations in the usable capacity of an edge device: Depending upon 

the personal applications that the owner is running on a UED, the amount of re

sources available for edge services will vary. To prevent a slowdown of the UED, we 

need to reduce the usage of the device if the owner starts running a computationally 

demanding personal application. I-BOT handles this using online readjustment based 

on a feedback mechanism (Section 5.6). 

Lack of monitoring information from edge devices: Most of the current edge 

orchestration schemes [18–21] utilize monitoring information, such as CPU usage, 

frequency, memory consumption, etc., from the edge devices to make offloading deci

sions. However, we do not use any such information because of the following reasons: 

1. As the edge devices in our case are not managed by a single entity, the moni

toring information may not be readily available. Also, the owners of the devices 
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may be privacy sensitive about sharing such information with a third party. 

Note that they have signed up to contribute some compute resources to the 

unmanaged edge platform, but that can rarely be interpreted to mean that the 

device owners want the usage on their devices to be monitored. 

2. Monitoring a large number of edge devices with the level of frequency needed to 

be useful would result in a huge overhead. The devices would have to transmit 

monitoring information continuously as their usable capacity is susceptible to 

variations, due to co-located applications starting up and other factors that do 

not occur at a set frequency. 

In I-BOT, the orchestrator learns from external observation and predicts the ser

vice time of tasks without using any monitoring information from the edge devices 

(Section 5.5). 

Sporadic availability of unmanaged edge devices: Unlike the traditional servers 

in a managed edge setting which are always available, the availability of an unmanaged 

edge device would depend upon the owner of that device. Hence, we cannot rely on 

the device being available for computation all the time. Depending upon the work 

pattern of the owner of a device, it may be available intermittently at different times 

of the day. Based on the history of the availability of UEDs, we predict their future 

availability and use it in our orchestration scheme (Section 5.4). 
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SYSTEM OVERVIEW 

In this section, we present a high level overview of the main components of I-BOT. 

Figure 4.1 shows the timeline exhibiting the steps involved in adding a new UED to the 

system, orchestrating tasks to the available UEDs, performing online readjustment 

and gracefully removing a UED when it wishes to exit the system. As shown in 

Figure 4.1, when a new UED enters the system, our orchestrator profiles it using our 

novel interference-based profiling method (Section 5.3) and adds it to the UED profile 

database which stores the profiling information of all the added UEDs. This method of 

profiling handles the heterogeneity in the computational capabilities and interference 

patterns among the UEDs. When an application instance (consisting of N different 

tasks) from an end user arrives at the orchestrator, the orchestrator first predicts 

which UEDs would be available throughout the execution of the application instance. 

It then updates the available UED set to include only those UEDs which have a high 

probability of not leaving the system. This handles the sporadic availability of the 

UEDs, an inherent characteristic of unmanaged edge computing systems. An initial 

schedule for the N tasks is then determined using the UED profile database and the 

data structure containing the number of tasks of different types already running on 

the available UEDs. This data structure is updated by the orchestrator whenever it 

sends a new task to a UED or receives an execution result from a UED. The initial 

schedule is a many-to-one mapping of the N tasks to the available UEDs, aimed 

at minimizing the service time of the tasks. Next, I-BOT updates the schedule to 

reduce the bandwidth overhead at the cost of a slight increase in the service time 

by trying to schedule the tasks that require the same input data on the same UED. 

I-BOT includes a bandwidth overhead control parameter that manages this trade-

off. The tasks are then sent to the selected UEDs. Upon receiving the execution 

results, the orchestrator sends them back to the end user. It then updates the UED 
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Fig. 4.1.: System Timeline 

profile database based on the error between the estimated and actual service time 

of the tasks on the selected UEDs. The error in the estimation of the service time 

can occur because of inaccurate profiling of a UED or online heterogeneity such as 

a variation in the available capacity of a UED. Updating the UED profile based on 

the feedback error handles such heterogeneities. In the event that a UED wishes to 

exit the system, its profiling information is saved by I-BOT so that re-profiling is not 

required whenever the UED re-enters the system. 
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DESIGN 

The system consists of our orchestrator running on a managed edge device that can 

offload tasks to multiple UEDs connected to it, as shown in Figure 1.2. The managed 

edge device is controlled by an infrastructure provider and can be a wireless access 

point, switch, low to mid range servers installed at the cellular base stations, etc. 

The end users send application instances to the managed edge device acting as the 

orchestrator. The orchestrator serves the instances in the order in which they arrive. 

Our goal is to minimize the total service time of all the tasks in the application 

instances while reducing the bandwidth overhead. The symbols used in this thesis 

and their definitions are summarized in Table 5.1. 

5.1 Application Structure 

Each application instance consists of N tasks, some of which may require the same 

input data to execute. The structure of a typical application instance is shown in 

Figure 1.2. It is more bandwidth efficient to send the tasks that require the same 

input data to the same UED. In our current implementation, we use a linear chain 

of tasks, though this can be extended to a DAG of tasks with no conceptual novelty 

(but some engineering effort), as discussed in Section 7. 

5.2 Pairwise Incremental Service Time Plots 

We define pairwise incremental service time plots fij (Ti, kTj )p to characterize the 

execution time of a new task of type Ti on UEDp, given that k tasks of type Tj 

are already running on the UED. This captures the heterogeneity in the interference 

caused by the tasks. Examples of such plots can be seen in Figures 3.1b and 5.1. 
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Symbol Definition 

T = {T1, T2, ..., TN } 
N different types of tasks for a given application 

instance 
UED = 

{UED1, UED2, ..., UEDQ} 
Q is the total number of UEDs 

fij (Ti, kTj )p = mij ∗ k + cij 
=< mij , cij >p 

Pairwise incremental service time plots on UEDp 

characterized by slope mij and y-intercept cij 

A = [< mij , cij >p] 
Pairwise incremental service time matrix (each 
row corresponds to a different UED; Figure 5.2) 

Z = [zpi] 
(Task count matrix) Number of tasks of type Ti 

currently running on UEDp 

STexp(Ti)p 
Expected service time of a task of type Ti on 

UEDp 

STactual(Ti)p Actual service time of a task of type Ti on UEDp 

R(t)p 

Probability that UEDp is available continuously 
between the current time and t time units in the 

future 

Hyper-parameters: 
(i) δ (ii) β (iii) γ 

(i) δ controls the amount of readjustment 
performed online (ii) β controls the amount of 
reduction in the bandwidth overhead (iii) γ is 

minimum threshold for a UED availability for it to 
be used 

i, j ∈ [1 : N ] ; p ∈ [1 : N ]
 

Table 5.1.: Symbols and their definitions.
 

We observed that these plots are always straight lines but with varying slopes and 

y-intercepts due to the task interference and heterogeneity in interference patterns, 

as elaborated in Section 3.0.2. On a given UED, for a new task Ti, we can plot N 

pairwise incremental service time plots, one for interference with every other type 

of task (including Ti). Hence, N2 such plots exist for every UED and we need to 

store only N2 pairs of m and c values to characterize all the plots for that UED. We 

compute the expected service time of any new incoming task Ti on UEDp, which has 

α1, α2, · · · , αN tasks of each type already running using the following equation: 
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fi,(1,2,··· ,N)

�
Ti, (α1T1, · · · , αiTi, · · · , αN TN )

� 
= fi1(Ti, α1T1)+ 

· · · + fii(Ti, αiTi) + · · · + fiN (Ti, αN TN ). (5.1) 

This assumes that the interference patterns are independent and additive. We ver

ify this experimentally as can be seen in Figure 5.1. The figure shows that the curve 

obtained by adding f21(T2, jT1) and f22(T2, kT2) is very similar to f2,(1,2)(T2, (jT1, kT2)). 

We define a pairwise incremental service time matrix A, each row of which contains 

the N2 pairs of m and c values for a particular UED. See Figure 5.2 for the structure 

of matrix A. The element < mij , cij >p means that if we want to schedule a new task 

of type Ti while k instances of task Tj are running on a UEDp, the service time of 

this task Ti will be estimated as mij ∗ k + cij . We also define a task count matrix 

Z, each row of which contains the number of tasks of all the different types currently 

running on a particular UED. Since the orchestrator sends the tasks and receives the 

execution results from the UEDs, it keeps updating the matrix Z, whenever needed. 

Fig. 5.1.: Experimental validation for computing the expected service time of a new 
incoming task using Eq. (5.1); j and k are the number of tasks of T1 and T2 already 
running on the UED respectively 
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⎛
< m11, c11 >1 · · · < mij , cij >1 · · · < mNN , cNN >1 

⎞ 

< m11, c11 >2 · · · < mij , cij >2 · · · < mNN , cNN >2 
. . . . . 

⎜⎜
. . . . . 

⎟⎟
. . . . .

⎜ ⎟
AQ,N2 = ⎜ ⎟⎜

< m11, c11 >p · · · < mij , cij >p · · · < mNN , cNN >p 
⎟ 

. . . . .
⎜⎜

. . . . . 
⎟⎟

. . . . .⎝ ⎠ 

< m11, c11 >Q · · · < mij , cij >Q · · · < mNN , cNN >Q 

Fig. 5.2.: Pairwise incremental service time matrix A; Q is the total number of UEDs 
and N is the total number of different types of tasks in each application instance 

Note that, in practice, the application instances arriving at the orchestrator will not 

be of the same application type. The application instances can be of different types, 

each consisting of a different set of tasks. At the orchestrator, there will be a separate 

matrix A for each application type. However, for ease of exposition, we will present 

our algorithms as if all application instances that arrive belong to a single type of 

application consisting of N tasks. 

5.3 Interference Profiling: Adding a New Unmanaged Edge Device 

Adding a new UED to the system requires obtaining all the N2 pairs of m and c 

values for the UED and adding them as a new row to matrix A (Figure 5.2). One way 

to obtain the N2 pairs is to recreate all the required pairwise interference patterns 

by actually running tasks on the UED. Since each pairwise interference pattern is 

a straight line, the m and c values for that pattern can be obtained by extracting 

any two points on the plot. However, this method of profiling a new UED is not 

desirable for large N since it would require a lot of time and resources to obtain all 

N2 pairs. For some UEDs, the amount of time needed to profile may be in the order 

of several minutes. Also, since the availability of UEDs in the unmanaged setting is 

sporadic, spending a lot of time in profiling a UED would be inefficient if the UED is 

not available for long. 

To quickly profile a new UED, we use a technique similar to [31], which relies on 

Singular Value Decomposition (SVD) and PQ reconstruction. This technique is based 
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on the algorithm Netflix uses to provide movie recommendations to new users who 

have only rated a handful of movies. The idea is to find similarities between the new 

user and the existing users who have rated a lot of movies. We profile the first few 

UEDs by actually obtaining all the N2 pairs. Thereafter, for every new UED, we get 

as many pairs as possible within a fixed time bound (1 minute in our experiments and 

configurable) and estimate the missing pairs using SVD and PQ-reconstruction. The 

time complexity of SVD and PQ-reconstruction is linear in N and, in practice, only 

takes a few milliseconds even for a large N (∼ 30). Hence, this scheme is much quicker 

than obtaining all the N2 pairs. The inaccuracies in the estimation are handled by 

online readjustment (Section 5.6). 

5.4 UED Availability Prediction 

One of the challenges in unmanaged edge computing is the sporadic availability of 

the UEDs (Section 3.0.2). UEDs may enter or exit the system without prior notice. 

If a task is scheduled on a UED which is unavailable, or which exits the system before 

task completion, it would be required to reschedule the task thereby increasing the 

task completion time. I-BOT predicts the availability of the UEDs and schedules 

tasks on a UED only if there is a high probability of it being available throughout 

the task completion. We utilize a semi-Markov Process (SMP) model, similar to 

[32], to predict the reliability R of a UED. This is the probability of the UED being 

available throughout a future time window. In an SMP model, the next transition 

not only depends on the current state (as would happen for a pure Markov model) 

but also on how long the system has stayed at this state. We observed that the 

availability pattern of a UED is comparable in the most recent days. Hence, using 

the availability history of a UED on previous days, we calculate the parameters of 

the SMP to evaluate R(t), the probability that the UED is available continuously 

between the current time and t time units in the future. Tasks are scheduled on a 
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UED only if the probability of it being available throughout the time that it takes to 

complete the most demanding task in the application is greater than a threshold γ. 

5.5 Orchestration Scheme 

The orchestration algorithm, the largest part of I-BOT, is shown in Algorithm 1. 

The algorithm consists of four segments: UED availability prediction, minimum ser

vice time scheduling, reduction in the bandwidth overhead, and online readjustment. 

When a new application instance arrives, we first predict the probability of each UED 

being available throughout the execution of the application instance. The UEDs for 

which this probability is lower than a threshold γ are dropped out of the scheduling 

for the current application instance. The orchestrator maintains a count (in matrix 

Z) of the number of tasks of different types currently running on the available UEDs. 

The orchestrator uses this count and the pairwise incremental service time matrix A 

to predict the service time of the tasks on every available UED and create an initial 

mapping between the tasks and the UEDs. This mapping assigns each task to a UED 

on which the expected service time for the task is minimum under the current state 

of other tasks running on each UED. Predicting the service time of a task involves 

extracting the corresponding entries from the A matrix and using Eq. 5.1. 

Next, the orchestrator tries to reduce the bandwidth overhead by making modifi

cations to the initial schedule. For every group of tasks that require the same input 

data but are scheduled on different UEDs, the orchestrator tries to schedule them on 

the same UED to reduce the bandwidth overhead. A change in the assigned UED 

for a task is made only if the relative increase in its service time due to the change 

is less than a threshold β, which is the bandwidth overhead control parameter. It 

decides the trade-off between the bandwidth overhead and the average service time. 

If β is higher, I-BOT becomes more bandwidth conserving at the expense of higher 

service time. Finally, the tasks are sent and executed by the assigned UEDs. Upon 

receiving the execution result, the orchestrator computes the actual service time for 
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Algorithm 1: Main Orchestrator
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Input: A new application instance T 
Initialization: UED, A and Z 
Let tmax be the maximum time to execute the most computationally intensive task on the 
devices in UED 
// UED availability prediction 
for UEDp ∈ UED do 

Compute Rp(tmax) using semi-Markov Process (SMP) 
if Rp(tmax) ≤ γ then 

Remove UEDp from UED 
end 

end 
// Minimum service time scheduling 
for Ti ∈ T do 

for UEDp ∈ UED do 
STexp(Ti)p = GetExpectedServiceT ime(i, p) ; 

end 

ST min 
exp [i] = min 

�
STexp(Ti)p

� 
; 

p 

UEDsel[i] = argmin 
�
STexp(Ti)p

� 
;
 

p
 

end 
// Reduction in bandwidth overhead 
Let K = [k1, k2, ...kR] be a group of tasks which require the same input data 
for every K do 

ued1 = UEDsel[k1] ; 
for j = 2, ..., R do 

uedj = UEDsel[kj ];
 
if uedj �
= ued1 then
 

= ST min
STmin [kj ];exp 

ST1 = GetExpectedServiceT ime(kj , ued1); 
ST1−STminif ≤ β thenSTmin
 

UEDsel[kj ] = ued1;
 
end 

end 
end 

end 
// Online readjustment 
for Ti ∈ T do 

p = UEDsel[i] ; 
Schedule task Ti on UEDp and compute the actual service time STactual(Ti)p 

= ST minSTexp(Ti)p exp [i];��STexp(Ti)p−STactual(Ti )p

��
if > δ thenSTactual (Ti)p
 

P erformGradientDescent
�
i, p, STexp(Ti)p,
 
STactual(Ti)p

� 
; 

end 
end 
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each task. If the difference between estimated and actual service times for a task 

is greater than an error threshold (δ), then the orchestrator updates A as described 

(Section 5.6). For Q total number of UEDs and N tasks in each application instance, 

the time complexity of our orchestration scheme is O(NQ). Hence, our scheme can 

easily scale up without significant overheads. 

5.6 Online Readjustment 

Online readjustment of the pth row of matrix A is needed when there is a large 

difference (greater than δ) between the expected and the actual service time of a task 

Ti on UEDp. This difference arises if there is an inaccuracy in the N incremental 

service time pairs < m, c > corresponding to Ti in the pth row of A. Following are 

the main reasons for the inaccuracy: 

Imperfect information: As described in Section 5.3, most of the < m, c > pairs in 

the row added for a UED are computed using SVD and PQ reconstruction and may 

not be completely accurate. 

Online variation: Even if all the < m, c > pairs are correctly profiled initially, 

the true values may change over time if the owner of the UED starts using a larger 

portion of the device’s compute capability for his/her personal applications. This will 

result in a change in the pairwise incremental service time plots, thereby changing 

the < m, c > values. 

Algorithm 2: P erformGradientDescent(i, p, STexp, STactual) 

1 Input: i, p, STexp, STactual 

2 M = [< mij >p] ; 
3 C = [< mij >p] ; j ∈ 1, 2, ..., N 

// M and C extracted from pth row of A 
4 X = T askCountUEDp = Z[p, :] = [Zpj ]; j ∈ 1, 2, ..., N 

// pth row of Z 
Mnew, Cnew

5 = GradientDescent(M, C, X, STactual, STexp); 
6 Update A with Mnew and Cnew; 
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Therefore, we need to make online adjustments to the matrix A. For this, we use 

gradient descent as described in Algorithm 2. For a task Ti scheduled on UEDp, if 

the difference between the expected and the actual service time exceeds δ, gradient 

descent is performed to minimize the error between the expected and actual service 

time and obtain the new values of < m, c > for task Ti on UEDp. 

5.7 Unmanaged Edge Device Exit 

A UED may leave the system if there is a sudden unexpected crash or if the owner 

of the UED exits the system. Not much can be done in the case of an unexpected 

crash. However, in the other case, we perform an additional step for a graceful exit 

which can save us from re-profiling the UED if it re-joins the system in the future. 

When the owner of the UEDp wants to exit the system, the information corresponding 

to the UED stored in the pth row of the A matrix is saved by the system. The row can 

then be removed from A in the orchestrator. Later, if the UED rejoins the system, its 

profiling information can be loaded to the orchestrator during the entry phase which 

significantly reduces the time needed to profile the UED on the system. 
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8. RELATED WORK 

In this section we contrast our work with the other efforts in the field of task scheduling 

in heterogeneous edge computing systems. 

Low latency edge scheduling: Petrel [13] and LAVEA [14] propose orchestration 

schemes aimed at minimizing the service time in a multi-edge collaborative environ

ment. We have shown that I-BOT outperforms these schemes in terms of the service 

time and bandwidth overhead in a heterogeneous unmanaged edge computing setting. 

MSGA [15] jointly studies the task and network flow scheduling and uses a multi

stage greedy algorithm to minimize the completion time of the application. In [17], 

a gateway-based edge computing service model has been proposed to reduce the la

tency of data transmission and the network bandwidth. Low latency task scheduling 

schemes for edge have also been proposed in [38–40]. However, all of these works 

are in the context of managed edge and do not consider the unique challenges intro

duced by unmanaged edge, such as the lack of monitoring information, heterogeneity, 

and unexpected entry-exits. One exception to this is CoGTA [41], which considers 

scheduling of delay-sensitive social sensing tasks on a heterogeneous unmanaged edge. 

However, its main focus is on devices that are not trusted and therefore it formulates a 

game-theoretic technique to perform the task allocation. Its performance in a benign 

setting like ours is likely to be sub-optimal. 

Availability and Interference based edge scheduling: There have been a few 

efforts that take into account the availability and interference while devising strategies 

for task scheduling on the edge. An overhead-optimizing task scheduling strategy has 

been proposed in [18] for ad-hoc based edge computing nodes formed by a group 

of mobile devices. [19] proposes a score based edge service scheduling algorithm that 

evaluates network, compute, and reliability capabilities of edge nodes. However, these 

works rely on sharing monitoring information which can be a huge overhead in highly 
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dynamic environments. Also, the time and energy consumption models are theoretical 

and have not been tested on real systems. INDICES [42] proposes a performance-

aware scheme for migrating services from cloud to edge while taking into account 

the interference caused by co-located applications. However, this is geared towards 

service migration and not task scheduling. Also, it does not consider the impact of 

online variations in the availability and compute capabilities of edge devices. 

Energy efficient edge scheduling: A lot of existing works [43–46] utilize dynamic 

voltage-frequency scaling (DVFS), which is an attractive method for reducing energy 

consumption in heterogeneous computing systems. ESTS [47] deals with the prob

lem of scheduling a group of tasks, optimizing both the schedule length and energy 

consumption. They formulate the problem as a joint linear programming problem 

and propose a heuristic algorithm to solve it. In [48], a computational offloading 

framework has been proposed which minimizes the total energy consumption and 

execution latency by coupling task allocation decisions and frequency scaling. The 

paper [16] also performs joint optimization of energy and latency through a rigorously 

formulated and solved mixed integer nonlinear problem (MINLP) for computation of

floading and resource allocation. However, the execution models used in these works 

do not consider the impact of online heterogeneties in the computation capacity or 

the effect of interference. 

Volunteer or opportunistic computing: In a completely different context, under 

the moniker “volunteer computing”, a slew of works designed solutions to utilize 

under-utilized compute nodes (such as, on a university campus) or mobile devices to 

run large-scale parallel applications. An example of the former is HTCondor [49] and 

an example of the latter is Femtocloud [50]. Our design borrows some features from 

Femtocloud (identifying devices with spare capacity and some stability); however, 

Femtocloud did not have to deal with the majority of the challenges that we solve here 

(great heterogeneity from a compute, network, and application standpoint, unknown 

tasks, runtime variations due to interference). 
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A. APPENDIX 

A.1 Theoretical Analysis 

We present the theoretical analysis of our solution under the following simplifying 

assumptions. First, we assume that the UEDs are homogeneous and a task of type k 

has exponentially distributed processing rate µk for k = [1 : N ], where 1 �N λ/µk <Q k=1 

1. We further assume that tasks of type 1 to N are dispatched to the chosen UED’s 

queue in order. Queue state for UEDq, q = [1 : Q], is then defined by 

φn = {(0)} ∪ {(t1, t2, . . . , tn)|n ≥ 1}, 

where ti is the type of the ith task in the (type independent) FIFO order (t1 is 

the type of a task being served) and (0) represents the empty system. Under these 

assumptions, queue length determines the expected service time. Specifically, the 

expected service time for all tasks in UED is a monotonically increasing function of 

the UED queue length. 

The evolution of the system over φn is an irreducible Markov chain. Using the 

Lyapunov theorem, it can be verified that the Markov chain is positive recurrent, and 

thereby has a unique stationary distribution. Let π(t1, t2, . . . , ti) denote the station

ary distribution of UEDq, i.e., the probability that the queue state is (t1, t2, . . . , ti) 

at UEDq. Here, the index q is ignored because the stationary distributions are iden

tical across UEDs. We have 
�

i iπ(t1, t2, . . . , ti) = 
�

i iπ(φi) = 
�

i iπi < c, where a 

constant c > 0. 

Consider the queue evolution of one UED in the system. At steady state, each 

queue forms an independent Markov chain, as described in the following lemma: 
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Lemma 2 Under our proposed solution, the transition rates qi,j (π) given distribution 

π for j  = i is given by 

⎧ 
µI i if j = i − 1,lN−i+1

N 

1−(Q−1)

⎪⎪⎪⎨  i
l=0 
−1 πlqi,j (π) =  i if j = i + N , i < τπ,1+(Q−1) l=0 πl⎪⎪⎪

0, otherwise,⎩ 

1where τπ = min{j : �j−1 ≥ } and πl denotes the stationary distribution ofl=0 πl Q−1 

UED queue, i.e., the probability that the queue size is l at a UED. 

Proof The transition rates will be determined by our solution used to dispatch tasks 

to UEDs. We will derive the transition rates for our strategy. First, the down-crossing 

transition rate from state i to state i − 1 is 

qi,i−1 = µt1 

= µI i lN −i+1
N 

because the processing time of a task of type t1 is exponentially distributed with 

mean µt1 and the type of a task being served is uniquely determined by queue length 

i as 1
N
i lN − i + 1 due to our dispatch strategy. 

Second, the up-crossing transition rate from state i to state j for j > i is 

qi,j = λ 
� 

P(η) · P(j|η, i), 
η 

where η is a (Q − 1) vector that denotes the queue lengths of the other Q − 1 UEDs; 

thus, 
Q−1

P(η) = 
Q 

πηq 

q=1 

and P(j|η, i) is the probability that a UED’s queue length becomes j when the UED 

is in state i and the states of the other Q − 1 UEDs are η. 
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Assume ties are broken uniformly at random. If 
�Q−1 1ηq ≤i−1 ≥ 1, then q=1 

⎧
1 if j = i,⎨

P(j|η, i) = 
0 if j =� i⎩ 

because the tasks will be dispatched to UEDs, original queue lengths of which are 

smaller than i. On the other hand, if 
�Q−1 < 1, then the UED with queue q=1 1ηq ≤i−1 

length i will receive N tasks, and P(j|η, i) = 1 for j = i + N . 

WLOS, we assume UEDQ has queue size i. Given any j ≥ 0, we define Tj = 
�Q−1 

q=1 1ηq =j , which is the number of UEDs with queue length j excluding UEDQ. Tj 

is then the sum of Q − 1 i.i.d. Bernoulli r.v.’s with mean πj ; thus, E Tj = (Q − 1)πj . 

Now, the probability that UEDQ receives N tasks is given by 

�
1 − 

�i−1 Tj 

�+ 

E 
1 + 

�i

j=0 

Tj 

, 
j=0 

which, at steady state, can be approximated by 

�
1 − (Q − 1) 

�i
j
−
=0
1 πj 

�+ 

1 + (Q − 1) 
�i

j=0 πj 

because Tj converges to (Q − 1)πj in distribution and the term inside the expectation 

is bounded and continuous in terms of Tj . This concludes the proof. 

According to Lemma 2, the queue length dynamic of a single UED can be represented 

by the Markov chain in Figure A.1. Intuitively, τπ indicates the queue length so that 

the probability that a UED with queue size i(≥ τπ) receives N tasks is 0. Based on 

Lemma 2, we can calculate the stationary distribution of the queue length of a single 

UED numerically by finding π̂ that satisfies the global balance equation. 
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Fig. A.1.: The Markov chain representing the system

Lemma 3 The expected service time TQ(λ, µ1, · · · , µN) of an application instance

that is dispatched to Q UEDs is given by

N−1∑

r=0



∞∑

i=1


bi− 1

N
c

N∑

l=1

1

µl
+ 1d i

N
eN−i+1−r≥1

N−r∑

m=d i
N
eN−i+1−r

1

µm
+

1d i
N
eN−i+1−r<1

d i
N
eN−i+1−r+N∑

m=N−r

1

µm


 ·





(
∞∑

j=i−1

πj

)Q

−
(
∞∑

j=i

πj

)Q





 .

Proof Task of typeN becomes the ith task in the queue with probability
(∑∞

j=i−1 πj(t)
)Q

−
(∑∞

j=i πj(t)
)Q

. Thus, the expected time a task spends in the system under our

dispatch solution is

∞∑

i=1


bi− 1

N
c

N∑

l=1

1

µl
+

N∑

m=d i
N
eN−i+1

1

µm


 ·





(
∞∑

j=i−1

πj

)Q

−
(
∞∑

j=i

πj

)Q


 .

For other type N − r of a task, the cyclic structure in queue should be taken into

account and there by changes an expression for the summation
∑N

m=d i
N
eN−i+1

1
µm

,

which leads to the desired result.
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