
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Electrical and Computer
Engineering Working Papers

Department of Electrical and Computer
Engineering

2020

Motivations and Challenges in Unmanaged Edge Computing Motivations and Challenges in Unmanaged Edge Computing

Shikhar Suryavansh

Kwang Taik Kim

Follow this and additional works at: https://docs.lib.purdue.edu/ecewp

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/359175786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecewp
https://docs.lib.purdue.edu/ecewp
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecewp?utm_source=docs.lib.purdue.edu%2Fecewp%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

16

Motivations and Challenges in Unmanaged Edge Computing

Shikhar Suryavansh, Kwang Taik Kim

Purdue University

In this document, we consider a motivating example for the unmanaged edge

computing scenario and look at the unique challenges introduced by the unmanaged

edge.

Motivating Example

Consider a typical application from the domain of autonomous self-driving cars [30].

It has the tasks listed below and we use this application in our evaluation (one of

three).

(a) Driver state detection using face camera

(b) Driver body position using driver cabin camera

(c) Driving scene perception using a forward-facing camera

(d) Vehicle state analysis using instrument cluster camera

Task (c) can further consist of multiple tasks like pedestrian detection, obstacle

detection, traffic signs analysis, etc. All these tasks would operate on the same input

data, i.e. the feed from the forward-facing camera. In this work, we focus on how

to offload user requests pertaining to the latency-sensitive applications (such as the

example above), in a heterogeneous unmanaged edge computing scenario. We aim at

minimizing latency while providing a configuration parameter that determines how

bandwidth conserving the allocation of tasks to UEDs is.

1.4

1.2

--1.0
1/1

;o.s
E i= 0.6

0.4

0.2

0.0
Avg network Avg computation

delay time
Metric

Avg service
time

--6
!!. -+- f12(T1, kT2)uE01

k

17

(a) Computational and geographical hetero
(b) Heterogeneity in interference pattern

geneity

Fig. 3.1.: Challenges in unmanaged edge orchestration

3.0.2 Challenges and Responses

The notion of unmanaged edge introduces a set of unique challenges unseen in

traditional edge computing. Following are the main challenges involved in the orches

tration of tasks in an unmanaged edge scenario and a brief statement about how we

handle each challenge.

Substantial heterogeneity in computational capacity and geographical dis

tance of edge devices: The edge devices, which are personal laptops, tablets,

desktops, etc., in our case, consist of heterogeneous hardware and hence, the per

formance of a task varies significantly on different edge devices. Also, different edge

devices are at different geographical distances from the orchestrator. Consequently,

the network delay also varies. Figure 3.1a shows the average service time (average

network delay + average computation time) of executing an image classification task

on four heterogeneous edge devices at varying distances from the orchestrator in a

production setting. The four UEDs are Samsung Galaxy Tab S4-2018 (UED1), Dell

Inspiron 15R-2013 (UED2), Macbook Pro-2018 (UED3) and iMac-2017 (UED4).

Note the huge disparity between the average network delay (max-min ratio 6:1) due

to geographical heterogeneity and the average computation time (max:min ratio 4:1)

due to computational heterogeneity among the UEDs.

18

Heterogeneity in task interference pattern: Different tasks, when running on

the same edge device, may interfere with each other affecting their service time.

There is a heterogeneity in the interference experienced by different types of tasks

on a UED. For instance, Figure 3.1b considers task T1, an image segmentation task,

which is simpler compared to T2, an image classification task. It shows the difference

between the interference of tasks of type T1 on T2

(
f21(T2, kT1)UED1

)
and T2 on T1

(
f12(T1, kT2)UED1

)
on UED1. The interference is quantified using fij (Ti, kTj)UEDp

which gives the execution time of a new task of type Ti on UEDp, given that k

tasks of type Tj are already running on the UED. It can be seen from the figure that

there is a high interference of T1 on T2 but almost negligible interference of T2 on

T1. Not only do different types of tasks interfere differently on the same device, but

also there is variation in interference pattern across multiple devices. Figure 3.1b

shows the comparison between the interference of T1 on T2 on two different UEDs
(
f21(T2, kT1)UED1 and f21(T2, kT1)UED2

)
. The interference of T1 on T2 is higher on

UED2 than that on UED1. Thus, interference depends on the ordered pair of tasks

and also the UED. I-BOT performs a novel interference profiling of the UEDs to

handle this heterogeneity in interference pattern (Section 5.3).

Online variations in the usable capacity of an edge device: Depending upon

the personal applications that the owner is running on a UED, the amount of re

sources available for edge services will vary. To prevent a slowdown of the UED, we

need to reduce the usage of the device if the owner starts running a computationally

demanding personal application. I-BOT handles this using online readjustment based

on a feedback mechanism (Section 5.6).

Lack of monitoring information from edge devices: Most of the current edge

orchestration schemes [18–21] utilize monitoring information, such as CPU usage,

frequency, memory consumption, etc., from the edge devices to make offloading deci

sions. However, we do not use any such information because of the following reasons:

1. As the edge devices in our case are not managed by a single entity, the moni

toring information may not be readily available. Also, the owners of the devices

19

may be privacy sensitive about sharing such information with a third party.

Note that they have signed up to contribute some compute resources to the

unmanaged edge platform, but that can rarely be interpreted to mean that the

device owners want the usage on their devices to be monitored.

2. Monitoring a large number of edge devices with the level of frequency needed to

be useful would result in a huge overhead. The devices would have to transmit

monitoring information continuously as their usable capacity is susceptible to

variations, due to co-located applications starting up and other factors that do

not occur at a set frequency.

In I-BOT, the orchestrator learns from external observation and predicts the ser

vice time of tasks without using any monitoring information from the edge devices

(Section 5.5).

Sporadic availability of unmanaged edge devices: Unlike the traditional servers

in a managed edge setting which are always available, the availability of an unmanaged

edge device would depend upon the owner of that device. Hence, we cannot rely on

the device being available for computation all the time. Depending upon the work

pattern of the owner of a device, it may be available intermittently at different times

of the day. Based on the history of the availability of UEDs, we predict their future

availability and use it in our orchestration scheme (Section 5.4).

20

SYSTEM OVERVIEW

In this section, we present a high level overview of the main components of I-BOT.

Figure 4.1 shows the timeline exhibiting the steps involved in adding a new UED to the

system, orchestrating tasks to the available UEDs, performing online readjustment

and gracefully removing a UED when it wishes to exit the system. As shown in

Figure 4.1, when a new UED enters the system, our orchestrator profiles it using our

novel interference-based profiling method (Section 5.3) and adds it to the UED profile

database which stores the profiling information of all the added UEDs. This method of

profiling handles the heterogeneity in the computational capabilities and interference

patterns among the UEDs. When an application instance (consisting of N different

tasks) from an end user arrives at the orchestrator, the orchestrator first predicts

which UEDs would be available throughout the execution of the application instance.

It then updates the available UED set to include only those UEDs which have a high

probability of not leaving the system. This handles the sporadic availability of the

UEDs, an inherent characteristic of unmanaged edge computing systems. An initial

schedule for the N tasks is then determined using the UED profile database and the

data structure containing the number of tasks of different types already running on

the available UEDs. This data structure is updated by the orchestrator whenever it

sends a new task to a UED or receives an execution result from a UED. The initial

schedule is a many-to-one mapping of the N tasks to the available UEDs, aimed

at minimizing the service time of the tasks. Next, I-BOT updates the schedule to

reduce the bandwidth overhead at the cost of a slight increase in the service time

by trying to schedule the tasks that require the same input data on the same UED.

I-BOT includes a bandwidth overhead control parameter that manages this trade-

off. The tasks are then sent to the selected UEDs. Upon receiving the execution

results, the orchestrator sends them back to the end user. It then updates the UED

Anew
application

instance arrives

Update the schedule
to reduce bandwidth

overhead
Perform online
readjustment

Determine
Save its profile Interference orchestration schedule Receive execution information and profiling of to minimize service results from the remove the UED theUED time of tasks UEDs from the system I I I

I I
Predict the availability 1 Send the tasks I

AnewUED ofUEDs and update I to the selected AUED I
enters the UED set UEDs wants to exit I

I I I I I

0 ! <> t ! ! ! 0 time

UED profile Availability UED profile # of tasks currently UED profile it}! matrix history of UEDs matrix running on the UEDs matrix

21

Fig. 4.1.: System Timeline

profile database based on the error between the estimated and actual service time

of the tasks on the selected UEDs. The error in the estimation of the service time

can occur because of inaccurate profiling of a UED or online heterogeneity such as

a variation in the available capacity of a UED. Updating the UED profile based on

the feedback error handles such heterogeneities. In the event that a UED wishes to

exit the system, its profiling information is saved by I-BOT so that re-profiling is not

required whenever the UED re-enters the system.

22

DESIGN

The system consists of our orchestrator running on a managed edge device that can

offload tasks to multiple UEDs connected to it, as shown in Figure 1.2. The managed

edge device is controlled by an infrastructure provider and can be a wireless access

point, switch, low to mid range servers installed at the cellular base stations, etc.

The end users send application instances to the managed edge device acting as the

orchestrator. The orchestrator serves the instances in the order in which they arrive.

Our goal is to minimize the total service time of all the tasks in the application

instances while reducing the bandwidth overhead. The symbols used in this thesis

and their definitions are summarized in Table 5.1.

5.1 Application Structure

Each application instance consists of N tasks, some of which may require the same

input data to execute. The structure of a typical application instance is shown in

Figure 1.2. It is more bandwidth efficient to send the tasks that require the same

input data to the same UED. In our current implementation, we use a linear chain

of tasks, though this can be extended to a DAG of tasks with no conceptual novelty

(but some engineering effort), as discussed in Section 7.

5.2 Pairwise Incremental Service Time Plots

We define pairwise incremental service time plots fij (Ti, kTj)p to characterize the

execution time of a new task of type Ti on UEDp, given that k tasks of type Tj

are already running on the UED. This captures the heterogeneity in the interference

caused by the tasks. Examples of such plots can be seen in Figures 3.1b and 5.1.

23

Symbol Definition

T = {T1, T2, ..., TN }
N different types of tasks for a given application

instance
UED =

{UED1, UED2, ..., UEDQ}
Q is the total number of UEDs

fij (Ti, kTj)p = mij ∗ k + cij
=< mij , cij >p

Pairwise incremental service time plots on UEDp

characterized by slope mij and y-intercept cij

A = [< mij , cij >p]
Pairwise incremental service time matrix (each
row corresponds to a different UED; Figure 5.2)

Z = [zpi]
(Task count matrix) Number of tasks of type Ti

currently running on UEDp

STexp(Ti)p
Expected service time of a task of type Ti on

UEDp

STactual(Ti)p Actual service time of a task of type Ti on UEDp

R(t)p

Probability that UEDp is available continuously
between the current time and t time units in the

future

Hyper-parameters:
(i) δ (ii) β (iii) γ

(i) δ controls the amount of readjustment
performed online (ii) β controls the amount of
reduction in the bandwidth overhead (iii) γ is

minimum threshold for a UED availability for it to
be used

i, j ∈ [1 : N] ; p ∈ [1 : N]

Table 5.1.: Symbols and their definitions.

We observed that these plots are always straight lines but with varying slopes and

y-intercepts due to the task interference and heterogeneity in interference patterns,

as elaborated in Section 3.0.2. On a given UED, for a new task Ti, we can plot N

pairwise incremental service time plots, one for interference with every other type

of task (including Ti). Hence, N2 such plots exist for every UED and we need to

store only N2 pairs of m and c values to characterize all the plots for that UED. We

compute the expected service time of any new incoming task Ti on UEDp, which has

α1, α2, · · · , αN tasks of each type already running using the following equation:

-6
l/l

Q) 5
E

~4
>
l....

Q) 3
l/l
Q)

~2
l....
Q)

~l

f21(T2, jT1)

f22(T2, kT2)

f2,(1.2)(T2, UT1, kT2))

f21(T2,jT1) + f22(T2, kT2)

.-.-.-
.....

. -·.-.-.- ---,,,,,.,,. . ---
~ .---·--- ······ _... .---·---

~ .---
. ---·--:-..... . ~-....

0 4 8 12 16 20
j, k

24

fi,(1,2,··· ,N)

�
Ti, (α1T1, · · · , αiTi, · · · , αN TN)

�
= fi1(Ti, α1T1)+

· · · + fii(Ti, αiTi) + · · · + fiN (Ti, αN TN). (5.1)

This assumes that the interference patterns are independent and additive. We ver

ify this experimentally as can be seen in Figure 5.1. The figure shows that the curve

obtained by adding f21(T2, jT1) and f22(T2, kT2) is very similar to f2,(1,2)(T2, (jT1, kT2)).

We define a pairwise incremental service time matrix A, each row of which contains

the N2 pairs of m and c values for a particular UED. See Figure 5.2 for the structure

of matrix A. The element < mij , cij >p means that if we want to schedule a new task

of type Ti while k instances of task Tj are running on a UEDp, the service time of

this task Ti will be estimated as mij ∗ k + cij . We also define a task count matrix

Z, each row of which contains the number of tasks of all the different types currently

running on a particular UED. Since the orchestrator sends the tasks and receives the

execution results from the UEDs, it keeps updating the matrix Z, whenever needed.

Fig. 5.1.: Experimental validation for computing the expected service time of a new
incoming task using Eq. (5.1); j and k are the number of tasks of T1 and T2 already
running on the UED respectively

25

⎛
< m11, c11 >1 · · · < mij , cij >1 · · · < mNN , cNN >1

⎞

< m11, c11 >2 · · · < mij , cij >2 · · · < mNN , cNN >2
.

⎜⎜
.

⎟⎟
.

⎜ ⎟
AQ,N2 = ⎜ ⎟⎜

< m11, c11 >p · · · < mij , cij >p · · · < mNN , cNN >p
⎟

.
⎜⎜

.
⎟⎟

.⎝ ⎠

< m11, c11 >Q · · · < mij , cij >Q · · · < mNN , cNN >Q

Fig. 5.2.: Pairwise incremental service time matrix A; Q is the total number of UEDs
and N is the total number of different types of tasks in each application instance

Note that, in practice, the application instances arriving at the orchestrator will not

be of the same application type. The application instances can be of different types,

each consisting of a different set of tasks. At the orchestrator, there will be a separate

matrix A for each application type. However, for ease of exposition, we will present

our algorithms as if all application instances that arrive belong to a single type of

application consisting of N tasks.

5.3 Interference Profiling: Adding a New Unmanaged Edge Device

Adding a new UED to the system requires obtaining all the N2 pairs of m and c

values for the UED and adding them as a new row to matrix A (Figure 5.2). One way

to obtain the N2 pairs is to recreate all the required pairwise interference patterns

by actually running tasks on the UED. Since each pairwise interference pattern is

a straight line, the m and c values for that pattern can be obtained by extracting

any two points on the plot. However, this method of profiling a new UED is not

desirable for large N since it would require a lot of time and resources to obtain all

N2 pairs. For some UEDs, the amount of time needed to profile may be in the order

of several minutes. Also, since the availability of UEDs in the unmanaged setting is

sporadic, spending a lot of time in profiling a UED would be inefficient if the UED is

not available for long.

To quickly profile a new UED, we use a technique similar to [31], which relies on

Singular Value Decomposition (SVD) and PQ reconstruction. This technique is based

26

on the algorithm Netflix uses to provide movie recommendations to new users who

have only rated a handful of movies. The idea is to find similarities between the new

user and the existing users who have rated a lot of movies. We profile the first few

UEDs by actually obtaining all the N2 pairs. Thereafter, for every new UED, we get

as many pairs as possible within a fixed time bound (1 minute in our experiments and

configurable) and estimate the missing pairs using SVD and PQ-reconstruction. The

time complexity of SVD and PQ-reconstruction is linear in N and, in practice, only

takes a few milliseconds even for a large N (∼ 30). Hence, this scheme is much quicker

than obtaining all the N2 pairs. The inaccuracies in the estimation are handled by

online readjustment (Section 5.6).

5.4 UED Availability Prediction

One of the challenges in unmanaged edge computing is the sporadic availability of

the UEDs (Section 3.0.2). UEDs may enter or exit the system without prior notice.

If a task is scheduled on a UED which is unavailable, or which exits the system before

task completion, it would be required to reschedule the task thereby increasing the

task completion time. I-BOT predicts the availability of the UEDs and schedules

tasks on a UED only if there is a high probability of it being available throughout

the task completion. We utilize a semi-Markov Process (SMP) model, similar to

[32], to predict the reliability R of a UED. This is the probability of the UED being

available throughout a future time window. In an SMP model, the next transition

not only depends on the current state (as would happen for a pure Markov model)

but also on how long the system has stayed at this state. We observed that the

availability pattern of a UED is comparable in the most recent days. Hence, using

the availability history of a UED on previous days, we calculate the parameters of

the SMP to evaluate R(t), the probability that the UED is available continuously

between the current time and t time units in the future. Tasks are scheduled on a

27

UED only if the probability of it being available throughout the time that it takes to

complete the most demanding task in the application is greater than a threshold γ.

5.5 Orchestration Scheme

The orchestration algorithm, the largest part of I-BOT, is shown in Algorithm 1.

The algorithm consists of four segments: UED availability prediction, minimum ser

vice time scheduling, reduction in the bandwidth overhead, and online readjustment.

When a new application instance arrives, we first predict the probability of each UED

being available throughout the execution of the application instance. The UEDs for

which this probability is lower than a threshold γ are dropped out of the scheduling

for the current application instance. The orchestrator maintains a count (in matrix

Z) of the number of tasks of different types currently running on the available UEDs.

The orchestrator uses this count and the pairwise incremental service time matrix A

to predict the service time of the tasks on every available UED and create an initial

mapping between the tasks and the UEDs. This mapping assigns each task to a UED

on which the expected service time for the task is minimum under the current state

of other tasks running on each UED. Predicting the service time of a task involves

extracting the corresponding entries from the A matrix and using Eq. 5.1.

Next, the orchestrator tries to reduce the bandwidth overhead by making modifi

cations to the initial schedule. For every group of tasks that require the same input

data but are scheduled on different UEDs, the orchestrator tries to schedule them on

the same UED to reduce the bandwidth overhead. A change in the assigned UED

for a task is made only if the relative increase in its service time due to the change

is less than a threshold β, which is the bandwidth overhead control parameter. It

decides the trade-off between the bandwidth overhead and the average service time.

If β is higher, I-BOT becomes more bandwidth conserving at the expense of higher

service time. Finally, the tasks are sent and executed by the assigned UEDs. Upon

receiving the execution result, the orchestrator computes the actual service time for

5

10

15

20

25

30

35

40

28

Algorithm 1: Main Orchestrator

1

2

3

4

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

26

27

28

29

31

32

33

34

36

37

38

39

41

42

43

Input: A new application instance T
Initialization: UED, A and Z
Let tmax be the maximum time to execute the most computationally intensive task on the
devices in UED
// UED availability prediction
for UEDp ∈ UED do

Compute Rp(tmax) using semi-Markov Process (SMP)
if Rp(tmax) ≤ γ then

Remove UEDp from UED
end

end
// Minimum service time scheduling
for Ti ∈ T do

for UEDp ∈ UED do
STexp(Ti)p = GetExpectedServiceT ime(i, p) ;

end

ST min
exp [i] = min

�
STexp(Ti)p

�
;

p

UEDsel[i] = argmin
�
STexp(Ti)p

�
;

p

end
// Reduction in bandwidth overhead
Let K = [k1, k2, ...kR] be a group of tasks which require the same input data
for every K do

ued1 = UEDsel[k1] ;
for j = 2, ..., R do

uedj = UEDsel[kj];

if uedj �
= ued1 then

= ST min
STmin [kj];exp

ST1 = GetExpectedServiceT ime(kj , ued1);
ST1−STminif ≤ β thenSTmin

UEDsel[kj] = ued1;

end

end
end

end
// Online readjustment
for Ti ∈ T do

p = UEDsel[i] ;
Schedule task Ti on UEDp and compute the actual service time STactual(Ti)p

= ST minSTexp(Ti)p exp [i];��STexp(Ti)p−STactual(Ti)p

��
if > δ thenSTactual (Ti)p

P erformGradientDescent
�
i, p, STexp(Ti)p,

STactual(Ti)p

�
;

end
end

29

each task. If the difference between estimated and actual service times for a task

is greater than an error threshold (δ), then the orchestrator updates A as described

(Section 5.6). For Q total number of UEDs and N tasks in each application instance,

the time complexity of our orchestration scheme is O(NQ). Hence, our scheme can

easily scale up without significant overheads.

5.6 Online Readjustment

Online readjustment of the pth row of matrix A is needed when there is a large

difference (greater than δ) between the expected and the actual service time of a task

Ti on UEDp. This difference arises if there is an inaccuracy in the N incremental

service time pairs < m, c > corresponding to Ti in the pth row of A. Following are

the main reasons for the inaccuracy:

Imperfect information: As described in Section 5.3, most of the < m, c > pairs in

the row added for a UED are computed using SVD and PQ reconstruction and may

not be completely accurate.

Online variation: Even if all the < m, c > pairs are correctly profiled initially,

the true values may change over time if the owner of the UED starts using a larger

portion of the device’s compute capability for his/her personal applications. This will

result in a change in the pairwise incremental service time plots, thereby changing

the < m, c > values.

Algorithm 2: P erformGradientDescent(i, p, STexp, STactual)

1 Input: i, p, STexp, STactual

2 M = [< mij >p] ;
3 C = [< mij >p] ; j ∈ 1, 2, ..., N

// M and C extracted from pth row of A
4 X = T askCountUEDp = Z[p, :] = [Zpj]; j ∈ 1, 2, ..., N

// pth row of Z
Mnew, Cnew

5 = GradientDescent(M, C, X, STactual, STexp);
6 Update A with Mnew and Cnew;

30

Therefore, we need to make online adjustments to the matrix A. For this, we use

gradient descent as described in Algorithm 2. For a task Ti scheduled on UEDp, if

the difference between the expected and the actual service time exceeds δ, gradient

descent is performed to minimize the error between the expected and actual service

time and obtain the new values of < m, c > for task Ti on UEDp.

5.7 Unmanaged Edge Device Exit

A UED may leave the system if there is a sudden unexpected crash or if the owner

of the UED exits the system. Not much can be done in the case of an unexpected

crash. However, in the other case, we perform an additional step for a graceful exit

which can save us from re-profiling the UED if it re-joins the system in the future.

When the owner of the UEDp wants to exit the system, the information corresponding

to the UED stored in the pth row of the A matrix is saved by the system. The row can

then be removed from A in the orchestrator. Later, if the UED rejoins the system, its

profiling information can be loaded to the orchestrator during the entry phase which

significantly reduces the time needed to profile the UED on the system.

46

8. RELATED WORK

In this section we contrast our work with the other efforts in the field of task scheduling

in heterogeneous edge computing systems.

Low latency edge scheduling: Petrel [13] and LAVEA [14] propose orchestration

schemes aimed at minimizing the service time in a multi-edge collaborative environ

ment. We have shown that I-BOT outperforms these schemes in terms of the service

time and bandwidth overhead in a heterogeneous unmanaged edge computing setting.

MSGA [15] jointly studies the task and network flow scheduling and uses a multi

stage greedy algorithm to minimize the completion time of the application. In [17],

a gateway-based edge computing service model has been proposed to reduce the la

tency of data transmission and the network bandwidth. Low latency task scheduling

schemes for edge have also been proposed in [38–40]. However, all of these works

are in the context of managed edge and do not consider the unique challenges intro

duced by unmanaged edge, such as the lack of monitoring information, heterogeneity,

and unexpected entry-exits. One exception to this is CoGTA [41], which considers

scheduling of delay-sensitive social sensing tasks on a heterogeneous unmanaged edge.

However, its main focus is on devices that are not trusted and therefore it formulates a

game-theoretic technique to perform the task allocation. Its performance in a benign

setting like ours is likely to be sub-optimal.

Availability and Interference based edge scheduling: There have been a few

efforts that take into account the availability and interference while devising strategies

for task scheduling on the edge. An overhead-optimizing task scheduling strategy has

been proposed in [18] for ad-hoc based edge computing nodes formed by a group

of mobile devices. [19] proposes a score based edge service scheduling algorithm that

evaluates network, compute, and reliability capabilities of edge nodes. However, these

works rely on sharing monitoring information which can be a huge overhead in highly

47

dynamic environments. Also, the time and energy consumption models are theoretical

and have not been tested on real systems. INDICES [42] proposes a performance-

aware scheme for migrating services from cloud to edge while taking into account

the interference caused by co-located applications. However, this is geared towards

service migration and not task scheduling. Also, it does not consider the impact of

online variations in the availability and compute capabilities of edge devices.

Energy efficient edge scheduling: A lot of existing works [43–46] utilize dynamic

voltage-frequency scaling (DVFS), which is an attractive method for reducing energy

consumption in heterogeneous computing systems. ESTS [47] deals with the prob

lem of scheduling a group of tasks, optimizing both the schedule length and energy

consumption. They formulate the problem as a joint linear programming problem

and propose a heuristic algorithm to solve it. In [48], a computational offloading

framework has been proposed which minimizes the total energy consumption and

execution latency by coupling task allocation decisions and frequency scaling. The

paper [16] also performs joint optimization of energy and latency through a rigorously

formulated and solved mixed integer nonlinear problem (MINLP) for computation of

floading and resource allocation. However, the execution models used in these works

do not consider the impact of online heterogeneties in the computation capacity or

the effect of interference.

Volunteer or opportunistic computing: In a completely different context, under

the moniker “volunteer computing”, a slew of works designed solutions to utilize

under-utilized compute nodes (such as, on a university campus) or mobile devices to

run large-scale parallel applications. An example of the former is HTCondor [49] and

an example of the latter is Femtocloud [50]. Our design borrows some features from

Femtocloud (identifying devices with spare capacity and some stability); however,

Femtocloud did not have to deal with the majority of the challenges that we solve here

(great heterogeneity from a compute, network, and application standpoint, unknown

tasks, runtime variations due to interference).

49

REFERENCES

[1]	 eukhost, “New statistics: Show the advance of cloud computing,”
https://www.eukhost.com/blog/webhosting/new-statistics-show-the-advance
of-cloud-computing/, 2020, accessed: 2020-06-28.

[2] M. Satyanarayanan, “The emergence of edge computing,”	 Computer, vol. 50,
no. 1, pp. 30–39, Jan 2017.

[3] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment for per
formance evaluation of edge computing systems,” in 2017 Second International
Conference on Fog and Mobile Edge Computing (FMEC), May 2017, pp. 39–44.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp.
14–23, Oct. 2009. [Online]. Available: http://dx.doi.org/10.1109/MPRV.2009.82

[5] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets: bringing the
cloud to the mobile user,” in 3rd ACM Workshop on Mobile Cloud Comput
ing and Services, Proceedings. Ghent University, Department of Information
technology, 2012, pp. 29–35.

[6] M. Aazam and E. Huh, “Fog computing micro datacenter based dynamic re
source estimation and pricing model for iot,” in 2015 IEEE 29th International
Conference on Advanced Information Networking and Applications, 2015, pp.
687–694.

[7] A.	 Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, p. 68–73, Dec. 2009. [Online]. Available:
https://doi-org.ezproxy.lib.purdue.edu/10.1145/1496091.1496103

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role
in the internet of things,” in Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, ser. MCC ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 13–16. [Online]. Available:
https://doi-org.ezproxy.lib.purdue.edu/10.1145/2342509.2342513

[9] M. Aazam and E. Huh, “Fog computing and smart gateway based communication
for cloud of things,” in 2014 International Conference on Future Internet of
Things and Cloud, 2014, pp. 464–470.

[10] “Amazon:	 Lambda@edge,” https://aws.amazon.com/lambda/edge/, 2020, ac
cessed: 2020-06-28.

[11] “Cisco: Establishing the edge,” https://www.cisco.com/c/en/us/solutions/service
provider/edge-computing/establishing-the-edge.html, 2020, accessed: 2020-06
28.

https://www.cisco.com/c/en/us/solutions/service
https://aws.amazon.com/lambda/edge
https://doi-org.ezproxy.lib.purdue.edu/10.1145/2342509.2342513
https://doi-org.ezproxy.lib.purdue.edu/10.1145/1496091.1496103
http://dx.doi.org/10.1109/MPRV.2009.82
https://www.eukhost.com/blog/webhosting/new-statistics-show-the-advance

50

[12]	 “Google: Edge network,” https://peering.google.com/#/, 2020, accessed: 2020
06-28.

[13] L. Lin, P.	 Li, J. Xiong, and M. Lin, “Distributed and application-aware task
scheduling in edge-clouds,” in 2018 14th International Conference on Mobile
Ad-Hoc and Sensor Networks (MSN), 2018, pp. 165–170.

[14] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-aware
video analytics on edge computing platform,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, ser. SEC ’17. New York,
NY, USA: Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3132211.3134459

[15] Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving low la
tency in collaborative edge computing,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 3512–3524, 2019.

[16] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and B. Hu,
“Energy-latency tradeoff for energy-aware offloading in mobile edge computing
networks,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2633–2645, 2017.

[17] C.-W. Tseng,	 F.-H. Tseng, Y.-T. Yang, C.-C. Liu, and L.-D. Chou, “Task
scheduling for edge computing with agile vnfs on-demand service model toward
5g and beyond,” Wireless Communications and Mobile Computing, vol. 2018, p.
7802797, Jul 2018. [Online]. Available: https://doi.org/10.1155/2018/7802797

[18] L. Tianze, W. Muqing, Z. Min, and L. Wenxing, “An overhead-optimizing task
scheduling strategy for ad-hoc based mobile edge computing,” IEEE Access,
vol. 5, pp. 5609–5622, 2017.

[19] A. Aral, I. Brandic, R.	 B. Uriarte, R. De Nicola, and V. Scoca, “Addressing
application latency requirements through edge scheduling,” Journal of Grid
Computing, vol. 17, no. 4, pp. 677–698, Dec 2019. [Online]. Available:
https://doi.org/10.1007/s10723-019-09493-z

[20] A. J. Page and T. J. Naughton, “Dynamic task scheduling using genetic algo
rithms for heterogeneous distributed computing,” in 19th IEEE International
Parallel and Distributed Processing Symposium, 2005, pp. 8 pp.–.

[21] J. Xu, B. Palanisamy, H. Ludwig, and Q. Wang, “Zenith: Utility-aware resource
allocation for edge computing,” in 2017 IEEE International Conference on Edge
Computing (EDGE), 2017, pp. 47–54.

[22] R. D. Schlichting and F. B. Schneider,	 “Fail-stop processors: An approach
to designing fault-tolerant computing systems,” ACM Trans. Comput. Syst.,
vol. 1, no. 3, p. 222–238, Aug. 1983. [Online]. Available: https://doi
org.ezproxy.lib.purdue.edu/10.1145/357369.357371

[23] F. B. Schneider and Lidong Zhou, “Implementing trustworthy services using
replicated state machines,” IEEE Security & Privacy, vol. 3, no. 5, pp. 34–43,
2005.

https://doi
https://doi.org/10.1007/s10723-019-09493-z
https://doi.org/10.1155/2018/7802797
https://doi.org/10.1145/3132211.3134459
http:https://peering.google.com

51

[24] R. Xu, J. Koo, R. Kumar, P. Bai, S. Mitra, S. Misailovic, and
S. Bagchi, “Videochef: Efficient approximation for streaming video processing
pipelines,” in 2018 USENIX Annual Technical Conference (USENIX ATC
18). Boston, MA: USENIX Association, 2018, pp. 43–56. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/xu-ran

[25] R. N. Calheiros, R. Ranjan, C. A. F. D. Rose, and R. Buyya, “Cloudsim:	 A
novel framework for modeling and simulation of cloud computing infrastructures
and services,” CoRR, vol. abs/0903.2525, 2009.

[26] M. T. Diallo, F. Fieau, and J. Hennequin, “Impacts of video quality of experience
on user engagement in a live event,” in 2014 IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), July 2014, pp. 1–7.

[27]	 “Aws iot greengrass,” https://aws.amazon.com/greengrass/.

[28]	 “Aws iot greengrass usage,” https://discovery.hgdata.com/product/aws-iot
greengrass.

[29] P.	 Wood, H. Zhang, M. Siddiqui, and S. Bagchi, “Dependability in
edge computing,” CoRR, vol. abs/1710.11222, 2017. [Online]. Available:
http://arxiv.org/abs/1710.11222

[30] L. Fridman, D. E. Brown, M. Glazer, W. Angell, S. Dodd, B. Jenik, J. Terwilliger,
A. Patsekin, J. Kindelsberger, L. Ding, S. Seaman, A. Mehler, A. Sipperley,
A. Pettinato, B. D. Seppelt, L. Angell, B. Mehler, and B. Reimer, “Mit ad
vanced vehicle technology study: Large-scale naturalistic driving study of driver
behavior and interaction with automation,” IEEE Access, vol. 7, pp. 102 021–
102 038, 2019.

[31] C.	 Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” in Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 77–88. [Online]. Available: https://doi
org.ezproxy.lib.purdue.edu/10.1145/2451116.2451125

[32] Xiaojuan Ren, Seyong Lee, R. Eigenmann, and S. Bagchi, “Resource availability
prediction in fine-grained cycle sharing systems,” in 2006 15th IEEE Interna
tional Conference on High Performance Distributed Computing, 2006, pp. 93–
104.

[33] M.	 Mitzenmacher, “The power of two choices in randomized load balancing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 10, pp.
1094–1104, 2001.

[34] R. Sakellariou and H. Zhao, “A hybrid heuristic for dag scheduling on heteroge
neous systems,” in 18th International Parallel and Distributed Processing Sym
posium. IEEE, 2004, p. 111.

[35] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra,
“Dague: A generic distributed dag engine for high performance computing,”
Parallel Computing, vol. 38, no. 1-2, pp. 37–51, 2012.

https://doi
http://arxiv.org/abs/1710.11222
https://discovery.hgdata.com/product/aws-iot
https://aws.amazon.com/greengrass
https://www.usenix.org/conference/atc18/presentation/xu-ran

52

[36] S. Khare, H. Sun, J. Gascon-Samson, K. Zhang, A. Gokhale, Y. Barve, A. Bhat
tacharjee, and X. Koutsoukos, “Linearize, predict and place: minimizing the
makespan for edge-based stream processing of directed acyclic graphs,” in Pro
ceedings of the 4th ACM/IEEE Symposium on Edge Computing, 2019, pp. 1–14.

[37] B. Falsafi and T. F. Wenisch, “A primer on hardware prefetching,”	 Synthesis
Lectures on Computer Architecture, vol. 9, no. 1, pp. 1–67, 2014.

[38] S.	 Wang, Y. Li, S. Pang, Q. Lu, S. Wang, and J. Zhao, “A task
scheduling strategy in edge-cloud collaborative scenario based on deadline,”
Scientific Programming, vol. 2020, p. 3967847, Mar 2020. [Online]. Available:
https://doi.org/10.1155/2020/3967847

[39] J. Han and D. Wang, “Edge scheduling algorithms in parallel and distributed
systems,” in 2006 International Conference on Parallel Processing (ICPP’06),
2006, pp. 147–154.

[40] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard to share:
Joint service placement and request scheduling in edge clouds with sharable
and non-sharable resources,” in 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), 2018, pp. 365–375.

[41] D. Zhang, Y. Ma, C. Zheng, Y. Zhang, X. S. Hu, and D. Wang, “Cooperative
competitive task allocation in edge computing for delay-sensitive social sensing,”
in 2018 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2018, pp.
243–259.

[42] S. Shekhar, A. D. Chhokra, A. Bhattacharjee, G. Aupy, and A. Gokhale, “In-
dices: Exploiting edge resources for performance-aware cloud-hosted services,” in
2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC),
2017, pp. 75–80.

[43] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto, “Survey
of energy-cognizant scheduling techniques,” IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 7, pp. 1447–1464, 2013.

[44] D.	 Li and J. Wu, “Energy-aware scheduling for frame-based tasks on hetero
geneous multiprocessor platforms,” in 2012 41st International Conference on
Parallel Processing, 2012, pp. 430–439.

[45] N.	 B. Rizvandi, J. Taheri, and A. Y. Zomaya, “Some obser
vations on optimal frequency selection in dvfs-based energy con
sumption minimization,” Journal of Parallel and Distributed Comput
ing, vol. 71, no. 8, pp. 1154 – 1164, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731511000165

[46] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi, “Emprical study on
reducing energy of parallel programs using slack reclamation by dvfs in a power-
scalable high performance cluster,” in 2006 IEEE International Conference on
Cluster Computing, 2006, pp. 1–10.

[47] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling on het
erogeneous computing systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 11, pp. 2867–2876, 2014.

http://www.sciencedirect.com/science/article/pii/S0743731511000165
https://doi.org/10.1155/2020/3967847

53

[48] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile edge
computing: Task allocation and computational frequency scaling,” IEEE Trans
actions on Communications, vol. 65, no. 8, pp. 3571–3584, 2017.

[49] D. H. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne, “A worldwide
flock of condors: Load sharing among workstation clusters,” Future Generation
Computer Systems, vol. 12, no. 1, pp. 53–65, 1996.

[50] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds:	 Lever
aging mobile devices to provide cloud service at the edge,” in 2015 IEEE 8th
international conference on cloud computing. IEEE, 2015, pp. 9–16.

-

54

A. APPENDIX

A.1 Theoretical Analysis

We present the theoretical analysis of our solution under the following simplifying

assumptions. First, we assume that the UEDs are homogeneous and a task of type k

has exponentially distributed processing rate µk for k = [1 : N], where 1 �N λ/µk <Q k=1

1. We further assume that tasks of type 1 to N are dispatched to the chosen UED’s

queue in order. Queue state for UEDq, q = [1 : Q], is then defined by

φn = {(0)} ∪ {(t1, t2, . . . , tn)|n ≥ 1},

where ti is the type of the ith task in the (type independent) FIFO order (t1 is

the type of a task being served) and (0) represents the empty system. Under these

assumptions, queue length determines the expected service time. Specifically, the

expected service time for all tasks in UED is a monotonically increasing function of

the UED queue length.

The evolution of the system over φn is an irreducible Markov chain. Using the

Lyapunov theorem, it can be verified that the Markov chain is positive recurrent, and

thereby has a unique stationary distribution. Let π(t1, t2, . . . , ti) denote the station

ary distribution of UEDq, i.e., the probability that the queue state is (t1, t2, . . . , ti)

at UEDq. Here, the index q is ignored because the stationary distributions are iden

tical across UEDs. We have
�

i iπ(t1, t2, . . . , ti) =
�

i iπ(φi) =
�

i iπi < c, where a

constant c > 0.

Consider the queue evolution of one UED in the system. At steady state, each

queue forms an independent Markov chain, as described in the following lemma:

55

Lemma 2 Under our proposed solution, the transition rates qi,j (π) given distribution

π for j = i is given by

⎧
µI i if j = i − 1,lN−i+1

N

1−(Q−1)

⎪⎪⎪⎨ i
l=0
−1 πlqi,j (π) = i if j = i + N , i < τπ,1+(Q−1) l=0 πl⎪⎪⎪

0, otherwise,⎩

1where τπ = min{j : �j−1 ≥ } and πl denotes the stationary distribution ofl=0 πl Q−1

UED queue, i.e., the probability that the queue size is l at a UED.

Proof The transition rates will be determined by our solution used to dispatch tasks

to UEDs. We will derive the transition rates for our strategy. First, the down-crossing

transition rate from state i to state i − 1 is

qi,i−1 = µt1

= µI i lN −i+1
N

because the processing time of a task of type t1 is exponentially distributed with

mean µt1 and the type of a task being served is uniquely determined by queue length

i as 1
N
i lN − i + 1 due to our dispatch strategy.

Second, the up-crossing transition rate from state i to state j for j > i is

qi,j = λ
�

P(η) · P(j|η, i),
η

where η is a (Q − 1) vector that denotes the queue lengths of the other Q − 1 UEDs;

thus,
Q−1

P(η) =
Q

πηq

q=1

and P(j|η, i) is the probability that a UED’s queue length becomes j when the UED

is in state i and the states of the other Q − 1 UEDs are η.

•

56

Assume ties are broken uniformly at random. If
�Q−1 1ηq ≤i−1 ≥ 1, then q=1

⎧
1 if j = i,⎨

P(j|η, i) =
0 if j =� i⎩

because the tasks will be dispatched to UEDs, original queue lengths of which are

smaller than i. On the other hand, if
�Q−1 < 1, then the UED with queue q=1 1ηq ≤i−1

length i will receive N tasks, and P(j|η, i) = 1 for j = i + N .

WLOS, we assume UEDQ has queue size i. Given any j ≥ 0, we define Tj =
�Q−1

q=1 1ηq =j , which is the number of UEDs with queue length j excluding UEDQ. Tj

is then the sum of Q − 1 i.i.d. Bernoulli r.v.’s with mean πj ; thus, E Tj = (Q − 1)πj .

Now, the probability that UEDQ receives N tasks is given by

�
1 −

�i−1 Tj

�+

E
1 +

�i

j=0

Tj

,
j=0

which, at steady state, can be approximated by

�
1 − (Q − 1)

�i
j
−
=0
1 πj

�+

1 + (Q − 1)
�i

j=0 πj

because Tj converges to (Q − 1)πj in distribution and the term inside the expectation

is bounded and continuous in terms of Tj . This concludes the proof.

According to Lemma 2, the queue length dynamic of a single UED can be represented

by the Markov chain in Figure A.1. Intuitively, τπ indicates the queue length so that

the probability that a UED with queue size i(≥ τπ) receives N tasks is 0. Based on

Lemma 2, we can calculate the stationary distribution of the queue length of a single

UED numerically by finding π̂ that satisfies the global balance equation.

57

0 𝜏π 𝜏π+1 N+1N.
𝜇! 𝜇"

1 𝜏π-1
𝜇" l⌧⇡

N

m
N � ⌧⇡ + 1

<latexit sha1_base64="a0Fbqywv0BOh8MHDMSstlEPoh7U=">AAACQXicbVDLSgMxFM34rPVVdekmWARBLDNS8LEquHElCrYWmlIy6Z02mHmQ3BHKML/mxj9w596NC0XcujHTduHrQMjhnHPJzfETJQ267pMzMzs3v7BYWiovr6yurVc2NlsmTrWApohVrNs+N6BkBE2UqKCdaOChr+DGvz0r/Js70EbG0TWOEuiGfBDJQAqOVupV2kxBgEwJkCpjgeYiY8jTXsb8WPXNKLQXZYnM8+wiz5mWgyEyXaTpBT2g/2fpPvV6lapbc8egf4k3JVUyxWWv8sj6sUhDiFAobkzHcxPsZlyjFAryMksNJFzc8gF0LI14CKabjRvI6a5V+jSItT0R0rH6fSLjoSkWtMmQ49D89grxP6+TYnDczWSUpAiRmDwUpIpiTIs6aV9qEKhGlnChpd2ViiG3NaItvWxL8H5/+S9pHda8eu3kql5tnE7rKJFtskP2iEeOSIOck0vSJILck2fySt6cB+fFeXc+JtEZZzqzRX7A+fwCf/ux3w==</latexit>

⇠
⌧⇡ � 1

N

⇡
N � ⌧⇡ + 2

<latexit sha1_base64="i/aLY1PeYn20mOPw6Jkao95+dyE=">AAACQ3icbVDLSgMxFM34tr6qLt0EiyBIy0wRfKwEN65EwWqxKSWT3mlDMw+SO0IZ5t/c+APu/AE3LhRxK5ipXfjogZDDOeeSm+MnShp03Sdnanpmdm5+YbG0tLyyulZe37g2caoFNESsYt30uQElI2igRAXNRAMPfQU3/uC08G/uQBsZR1c4TKAd8l4kAyk4WqlTvmUKAmRKgFQZCzQXGUOedjLmx6prhqG9KEtkXvXy7DzPmZa9PjJd5Ok5rdLJabpH651yxa25I9D/xBuTChnjolN+ZN1YpCFEKBQ3puW5CbYzrlEKBXmJpQYSLga8By1LIx6CaWejDnK6Y5UuDWJtT4R0pP6cyHhoigVtMuTYN3+9QpzktVIMDtuZjJIUIRLfDwWpohjTolDalRoEqqElXGhpd6Wiz22RaGsv2RK8v1/+T67rNW+/dnS5Xzk5HtexQLbINtklHjkgJ+SMXJAGEeSePJNX8uY8OC/Ou/PxHZ1yxjOb5Beczy+NtbJS</latexit>

⇠
⌧⇡ + 1

N

⇡
N � ⌧⇡

<latexit sha1_base64="dsiEeT7MLzKwSORq51Nz381Hx9Y=">AAACP3icbVA9SwNBEN3zM8avqKXNYhAEMdxJwI8qYGMlCiYK2RD2NnPJ4t4Hu3NCOO6f2fgX7GxtLBSxtXMvSaHRgWUf771hZp6fKGnQdZ+dmdm5+YXF0lJ5eWV1bb2ysdkycaoFNEWsYn3rcwNKRtBEiQpuEw089BXc+HdnhX5zD9rIOLrGYQKdkPcjGUjB0VLdSospCJApAVJlLNBcZAx52s2YH6ueGYb2oyyR+b6XZxd5zrTsD5Dpwk8v6AH9392tVN2aOyr6F3gTUCWTuuxWnlgvFmkIEQrFjWl7boKdjGuUQkFeZqmBhIs73oe2hREPwXSy0f053bVMjwaxti9COmJ/dmQ8NMVy1hlyHJhprSD/09opBsedTEZJihCJ8aAgVRRjWoRJe1KDQDW0gAst7a5UDLgNEW3kZRuCN33yX9A6rHn12slVvdo4ncRRIttkh+wRjxyRBjknl6RJBHkgL+SNvDuPzqvz4XyOrTPOpGeL/Crn6xt+o7GL</latexit>

1

1 + (Q � 1)⇡0

<latexit sha1_base64="o+VjRVac80SN2+Gm+Ho8yGYFYMg=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLUBFLRgo+VgU3LluwD2hCmEwn7dDJJMxMhBKy8VfcuFDErZ/hzr9x+lho64ELh3Pu5d57goQzpR3n2yqsrK6tbxQ3S1vbO7t79v5BW8WpJLRFYh7LboAV5UzQlmaa024iKY4CTjvB6G7idx6pVCwWD3qcUC/CA8FCRrA2km8fuaHEJEN5hs4rzQt0Bt2E+U7u22Wn6kwBlwmakzKYo+HbX24/JmlEhSYcK9VDTqK9DEvNCKd5yU0VTTAZ4QHtGSpwRJWXTR/I4alR+jCMpSmh4VT9PZHhSKlxFJjOCOuhWvQm4n9eL9XhtZcxkaSaCjJbFKYc6hhO0oB9JinRfGwIJpKZWyEZYpOINpmVTAho8eVl0r6solr1plkr12/ncRTBMTgBFYDAFaiDe9AALUBADp7BK3iznqwX6936mLUWrPnMIfgD6/MHUFyU7g==</latexit>

1 � (Q � 1)⇡0

1 + (Q � 1)(⇡0 + ⇡1)

<latexit sha1_base64="j7/6v9Kf4WOG/OBCGhjHIbv989E=">AAACE3icbVDLSgMxFM3UV62vqks3wSK0lpaJFHysCm5ctmAf0BmGTJppQzMPkoxQhv6DG3/FjQtF3Lpx59+YTmehrQcSzj3nXpJ73IgzqUzz28itrW9sbuW3Czu7e/sHxcOjrgxjQWiHhDwUfRdLyllAO4opTvuRoNh3Oe25k9u533ugQrIwuFfTiNo+HgXMYwQrLTnFc8sTmCSoVm7XUMWKmGPOElRNK1hO6+r8RpWZUyyZdTMFXCUoIyWQoeUUv6xhSGKfBopwLOUAmZGyEywUI5zOClYsaYTJBI/oQNMA+1TaSbrTDJ5pZQi9UOgTKJiqvycS7Es59V3d6WM1lsveXPzPG8TKu7ITFkSxogFZPOTFHKoQzgOCQyYoUXyqCSaC6b9CMsY6JKVjLOgQ0PLKq6R7UUeN+nW7UWreZHHkwQk4BWWAwCVogjvQAh1AwCN4Bq/gzXgyXox342PRmjOymWPwB8bnD6UGmt4=</latexit>

1 � (Q � 1)
P⌧⇡�2

l=0 ⇡l

1 + (Q � 1)
P⌧⇡�1

l=0 ⇡l

<latexit sha1_base64="HwlIB+LXjJhej8xrPB0MXoKHXzQ=">AAACXHicjVFbS8MwGE3r1F2cTgVffAkOYSIb7Rh4AWHgi48buAustaRpOsPSC0kqjNI/6dte/CuabhN088EPwnc45zvky4kbMyqkYSw0faewu7dfLJUrB9XDo9rxyVBECcdkgCMW8bGLBGE0JANJJSPjmBMUuIyM3Nljro/eCBc0Cp/lPCZ2gKYh9SlGUlFOTVg+Rzg1YRM2+k3zCloiCZyUPRjZS2pJlDip5UbME/NANWjFNGu2s7w7LFO26//bzG+bU6sbLWNZcBuYa1AH6+o5tXfLi3ASkFBihoSYmEYs7RRxSTEjWdlKBIkRnqEpmSgYooAIO12Gk8FLxXjQj7g6oYRL9qcjRYHI11STAZKvYlPLyb+0SSL9WzulYZxIEuLVRX7CoIxgnjT0KCdYsrkCCHOqdoX4Fam0pfqPsgrB3HzyNhi2W2anddfv1Lv36ziK4BxcgAYwwQ3ogifQAwOAwQJ8akWtpH3oBb2iV1ejurb2nIJfpZ99Ae2Gs8o=</latexit>

Fig. A.1.: The Markov chain representing the system

Lemma 3 The expected service time TQ(λ, µ1, · · · , µN) of an application instance

that is dispatched to Q UEDs is given by

N−1∑

r=0

∞∑

i=1

bi− 1

N
c

N∑

l=1

1

µl
+ 1d i

N
eN−i+1−r≥1

N−r∑

m=d i
N
eN−i+1−r

1

µm
+

1d i
N
eN−i+1−r<1

d i
N
eN−i+1−r+N∑

m=N−r

1

µm

 ·

(
∞∑

j=i−1

πj

)Q

−
(
∞∑

j=i

πj

)Q

 .

Proof Task of typeN becomes the ith task in the queue with probability
(∑∞

j=i−1 πj(t)
)Q

−
(∑∞

j=i πj(t)
)Q

. Thus, the expected time a task spends in the system under our

dispatch solution is

∞∑

i=1

bi− 1

N
c

N∑

l=1

1

µl
+

N∑

m=d i
N
eN−i+1

1

µm

 ·

(
∞∑

j=i−1

πj

)Q

−
(
∞∑

j=i

πj

)Q

 .

For other type N − r of a task, the cyclic structure in queue should be taken into

account and there by changes an expression for the summation
∑N

m=d i
N
eN−i+1

1
µm

,

which leads to the desired result.

	Motivations and Challenges in Unmanaged Edge Computing
	Untitled

