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Abstract 

This paper investigates the frequency of extreme events for three LIFFE futures contracts for 

the calculation of minimum capital risk requirements (MCRRs). We propose a semi-

parametric approach where the tails are modelled by the Generalized Pareto Distribution and 

smaller risks are captured by the empirical distribution function. We compare the capital 

requirements form this approach with those calculated from the unconditional density and 

from a conditional density - a GARCH(1,1) model. Our primary finding is that both in-sample 

and for a hold-out sample, our extreme value approach yields superior results than either of 

the other two models which do not explicitly model the tails of the return distribution. Since 

the use of these internal models will be permitted under the EC-CAD II, they could be widely 

adopted in the near future for determining capital adequacies. Hence, close scrutiny of 

competing models is required to avoid a potentially costly misallocation capital resources 

while at the same time ensuring the safety of the financial system. 
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1.  Introduction 

From a regulatory perspective, the notion that financial institutions should hold risk-adjusted 

capital as a buffer against potential losses was given international credibility
2
 in the BIS Basle 

Accord of 1988 (see Basle Committee on Banking Supervision, 1988), now widely agreed to 

be a landmark document in the regulation of financial institutions.  While the original Accord 

focused upon credit risk, regulators have since worked on the treatment of market risk. The 

calculation of a financial institution’s Value at Risk (VaR) is rapidly becoming the 

standardized approach to the determination of appropriate levels of bank capital. In the EU 

under the Capital Adequacy Directive II3 for example, the use of internal risk management 

models (IRMM), of which J.P. Morgan RiskMetrics
TM

 (1996) is the most widely known, is 

now permitted as long as the institutions can demonstrate that the model, and the operational 

procedures relating to the model, are “sound”.  The IRMMs are used to identify the amount of 

capital required for each (netted) securities position to cover all but a small proportion of 

potential losses (typically 5.00%).  The sum of these positions is the firm’s value at risk 

relating to its trading exposures. 

 

The standard value at risk methodology4 assumes that the underlying return generating 

distribution for the security in question is normally distributed, with moments which can be 

estimated using past data and do not vary over time.  The assumption that the underlying 

return generating process is normal and stationary over time leads to an under-estimation of 

both the number and size of extreme events. It is commonly accepted that asset return 

distributions are fat-tailed.  Neftci (1998) argues that it is possible and indeed very likely that 

extreme events are “structurally” different from the return generating process that operates 

                                                           
2 Although regulators in the USA and in particular the UK had been operating a risk related system of capital 

regulation before this date. 
3
 See Basle Committee on Banking Supervision (1995). 
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during less extreme market conditions.  Under such circumstances - where liquidity in markets 

dries up and where routine hedging relationships break down, or become more expensive to 

execute - the underlying statistical assumption of normality becomes entirely inappropriate.  

We can think of three such events in the recent past: the “Asian crisis” in September 1997, the 

“Russian debt crisis” of August 1998, and the “Brazilian crisis” of January 1999.  While these 

crises were not unrelated, each of them was to some degree associated with abnormal trading 

conditions. For example, after the Russian debt crisis, it was reported that liquidity in the 

corporate bond market had “dried up” against the background of a “flight to quality” where 

market participants paid premium prices for US Treasuries and UK gilts.  

 

In this paper we calculate Minimum Capital Risk Requirements (MCRRs) for three of the 

London International Financial Futures Exchange’s (LIFFE) most popular derivatives 

contracts. We use an unconditional model, a GARCH(1,1) model and a combination of a 

Generalized Pareto Distribution and the empirical distribution of the returns. Our main finding 

is that both back-tests and out-of-sample tests of the calculated MCRRs show that the 

proportion of exceedences produced by the extreme value approach, which concentrates on the 

tails, are considerably closer to the nominal probability of violations than competing 

approaches which fit a single model for the whole distribution.  The rest of this paper is 

organized as follows: in Section 2 we present the data sets; in Section 3 we present the 

extreme value theory; in Section 4 we consider alternative models of conditional volatility; we 

outline our basic methodology for calculating MCRRs in Section 5; in Section 6 we present 

our results; and we conclude the paper in Section 7 with suggestions for future research. 

 

 

                                                                                                                                                                                      
4
 For a critical appraisal see Danielsson and DeVries (1997), or Neftci 1998. 
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2. Data   

In this study we calculate MCRRs for three LIFFE futures contracts - the FTSE-100 Index 

Futures Contract, the Long Gilt Futures Contract and the Short Sterling Interest Rate Futures 

Contract - based upon their daily settlement prices
5
.  The Long Gilt contract trades a notional 

10-15 year gilt with a yield to maturity of 7%. The Short Sterling contract is based on a 3-

month time deposit with a face value of £500,000. Thus the buyer of such a contract is 

allocated this amount as a time deposit in an eligible bank on the delivery date, although ut 

may instead be cash settled at the option of the buyer. Note therefore that the “Long” and 

“Short” terminology used in the contract titles therefore refers to the contract maturities and 

not to a long or short position. The data was collected from Datastream International, and 

spans the period 24/05/1991 to 16/09/1996. Sample observations corresponding to UK public 

holidays (i.e., when LIFFE was closed) were deleted from the data set to avoid the 

incorporation of spurious zero returns, leaving 1344 observations, or trading days in the 

sample.  In the empirical work below, we use the daily log return of the original price series. 

 

It is evident from Table 1 that all three returns series show strong evidence of skewness – the 

FTSE-100 and Short Sterling contract returns are skewed to the right while the returns on the 

Long Gilt contract are skewed to the left. They are also highly leptokurtic (i.e. fat-tailed). In 

particular, the Short Sterling series has a coefficient of excess kurtosis of nearly 200. The 

Jarque-Bera test statistic consequently rejects normality for all three derivative return series. 

The extreme fat-tailed nature of the three series provides a strong motivation for the 

estimation methodologies employed in this paper that focus on the tails.  

[insert table 1 here] 

                                                           
5
 Because these contracts expire 4 times per year - March, June, September and December - to obtain a 

continuous time series we use the closest to maturity contract unless the next closest has greater volume, in which 

case we switch to this contract. 
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3. Extreme Value Theory   

Assuming that n21 x,,x,x   are the realized returns of some data generating process X
6
 

observed on days n,,2,1  , then let nY  denote the highest daily returns (the maximum)
7
 found 

below a certain level of x . In practice, the distribution of the “parent variable” )X(  is not 

accurately known, therefore the exact distribution of the extremes is also unknown. Thus, 

most studies focus upon the asymptotic behaviour of the extremes. Extreme value theory is the 

study of the limiting distribution of the order statistic nY , 

    yFxYP Y

w

nnn      [1] 

 

where, n  is the location parameter and n  (assumed to be positive) is the location 

parameter. w  stands for weak convergence and  yFY  is one of the three asymptotic 

distributions as defined below. If the above equation holds, then it can be said that the 

distribution function of n21 x,,x,x   belongs to the domain of attraction of  yFY . The three 

distributions, given below, have been justified as the limiting stable distributions of extreme 

value theory. 

 

The Gumbel distribution (type 1): 

   y

Y eexpyF    for y    [2] 

 

The Fréchet distribution (type 2): 

 
   









0k0yforyexp

0yfor0
yF

kY     [3] 

                                                           
6
 X  represents the log price changes. 

7
 The example given concentrates on the maximum values only. However, an application to minimum values 

would follow a comparable derivation. 
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The Weibull distribution (type 3): 

 
    












0yfor0

0k0yforyexp
yF

k

Y    [4] 

 

The shape parameter k  reflects the weight of the tail in the distribution of the parent variable 

X . The lower is k , the fatter is the distribution of X . It also gives the number of finite 

moments of the distributions, for example, when k  is greater than unity the mean of the 

distribution exists, whereas when it is greater than two the variance is finite and so on. 

However, k  as well as n  and n  (known as the “normalizing coefficients”) may be different 

for minima and maxima (see Longin, (1996)).  

  

The tail of the distribution of XF  is either declining exponentially (type 1) or by a power (type 

2) or is finite (type 3). According to Gnedenko (1943): the Gumbel distribution can be the 

limit of bounded and unbounded distributions; only distributions unbounded (to the right) can 

have a Fréchet distribution as the limit; and only distributions with a finite right end point can 

have the Weibull distribution as its limit.  

 

The above three distributions can be grouped together by a generalized formula (see 

Jenkinson, 1955): 

    















0ifyfor

0ifyfor
y.1expyF

1

1
1

Y






    [5] 

 

The tail index,  , is related to the shape parameter k  by k1 . Thus, the tail index 

determines the type of distribution. 0  corresponds to a Gumbel distribution whereas 0  
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corresponds to a Fréchet distribution and 0  to a Weibull distribution. However, it should 

be noted that for small values of  , i.e., large values of k , the Fréchet and Weibull 

distributions are very close to the Gumbel distribution. 

 

Other fat-tailed distributions, for example, the Student-t and the Pareto distributions among 

others can be linked to the three extreme value distributions above. Gnedenko (1943) has 

given necessary and sufficient conditions for a particular distribution to belong to one of the 

three distributions whereby these conditions can be employed in specific cases to derive the 

type of asymptotic distribution of extremes. As such, the normal distribution can be seen to 

lead to the Gumbel distribution; the Student-t obeys the Fréchet distribution with a shape 

parameter k  equal to its degrees of freedom; the stable Paretian law, introduced by 

Mandelbrot (1963), leads to the Fréchet distribution with a shape parameter k  equal to its 

characteristic exponent. 

 

The distribution adopted in this paper is the generalized Pareto distribution given by the 

following equation: 

 
k1

y
k11k,;yG 











      [6] 

where, k  is arbitrary, with the range of y  being  y0  if 0k   and ky0   if 0k  . 

This equation is elaborated below and its interpretation as a limiting distribution is similar to 

that which motivates equation [5], and thus the idea behind the generalized Pareto distribution 

is fairly similar to that of the extreme value distributions, collected together in the generalized 

formula of [5]. Thus the generalized Pareto distribution is employed in this paper forr its 

intuitive appeal and since it effectively encompasses the three limiting distributions of 

extreme value theory as special cases. 
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Let  txF   denote the unknown distribution function of the incremental changes in the log of 

financial futures prices, the asymptotic theory of extremes is used in approximating the tail 

areas of  txF  . This approach follows Pickands (1975), Smith (1987), Davison and Smith 

(1990), Embrechts et al. (1997) and Neftci (1998). 

 

Closely following Smith (1987) and Neftci (1998), we derive the Generalized Pareto 

Distribution below. Let U and L represent the two thresholds of the tails, with U representing 

the ‘Upper’ threshold and L representing the ‘Lower’ one, such that 0Uxt   and 

0Dxt   lie in the two tails of the distribution  txF  . The example derived below is for 

the upper tail only, however, the replication for the lower tail is similar. The following 

probability distribution of the random variable tx  can be defined as: 

   UFUxP t        [7] 

where, 0xU  , and        1xxP 0t  , i.e., tx  is bounded by 0x . 

 

Now assuming that te , with Ret , is the exceedance of the threshold U at time t, then 

   ttt eUFeUxP        [8] 

where, Uxe0 0t  . 

 tU eF  is given by 

 
   

 UF1

UFeUF
eF t

tU



       [9] 

with  tU eF  representing the conditional distribution of  Uxt   given that Uxt  . 
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Following Pickands (1975),  tU eF  can be approximated by the generalized Pareto 

distribution  k,;eG u

t   with 

 























0,0ke1

0,0k
ke

11
k,;eG

ue

u

k1

u

t

u

t

u
t 






             [10] 

where k  is arbitrary, with the range of te  being  te0  if 0k   and ke0 u

t   if 

0k  . The case of 0k   is interpreted as the limit 0k  , i.e. the exponential distribution 

with mean u . 

 

Pickands showed that the above equation arises as a limiting distribution for excesses over 

thresholds if and only if the parent distribution is in the domain of attraction of one of the 

extreme value distributions. The motivation for the equation is the ‘threshold stability’ 

property, i.e., if te  is generalized Pareto and 0U  , then the conditional distribution of 

Uet   (given Uet  ) is also generalized Pareto. Another property is as follows: if n  (the 

number of exceedances) has a Poisson distribution and, conditioning on n , n1 e,,e   are iid 

generalized Pareto random variables, then  n1 e,,emax   also has a generalized extreme 

value distribution (see Davison and Smith, 1990, pp. 395).   

 

Going back to Equations [9] and [10], the distance between  k,;eG u

t   and  tU eF  will 

converge to zero as 0xU  , i.e. the further we go into the tails: 

    0k,;eGeFsuplim u

ttU
xe0xU

0t
0




              [11]  
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However, further conditions for  tU eF  must be satisfied for the above equation to hold, see 

Pickands (1975) for more details. Moreover, the (.)G  is expected to be a ‘good’ 

approximation of the (.)FU  as long as the threshold level is high enough. However, an 

important question would be: ‘how high to fix this threshold?’ This topic is elaborated in the 

final part of this section. 

 

The parameters to be estimated from the generalized Pareto distribution are u  and k . 

Methods for estimating the generalized Pareto distribution parameters have been reviewed by 

Hosking and Wallis (1987). Whereas maximum likelihood estimators exist in large samples 

provided that 1k  , they are asymptotically normal and efficient when  21k   (Smith, 

1985). Using the same approach as Neftci (1998), the parameters u  and k  are obtained by 

maximizing the log likelihood function of  k,;eG u

t  . 

 

Assuming that U is high enough so that the generalized Pareto distribution  k,;eG u

t   with 

0k   is a good approximation for the probability  tU eF , then:   

 
k1

u

t

tt

i

i

ke
11exP

















               [12] 

The above equation holds for 0k  . In the case that 0k  , the condition ke u

t   must be 

satisfied for the density to be well defined.   

 

Following the expression [12], the density function of tx  can be approximated at an 

arbitrary observation point 
it

e , by the density  teG : 



 10 

    1

t

u

k1

u

t

u

u

t ke
ke

k,;eG














 
 




             [13] 

 

Finally, by using the density of  k,;eG u

t   at each observation point, 
it

e , the following log 

likelihood function is obtained 

    














































n

1i
u

t1

u

tuu ii
ke

1lnk
ke

1lnlnn,k


             [14] 

 

where, n  is the number of exceedances in a sample of N  observations. In this case, the 

sample of extremes ( n ) is obtained by first estimating the standard deviation of the whole 

sample of the returns and secondly, by selecting all positive and negative increments greater 

than 1.645 times the standard deviation of the sample in absolute terms to represent the 

extremes ( n ). 

 

The results for the estimation of n ,   (the normalizing coefficient) and k  (the coefficient 

determining the fatness of the tail) are given in Table 2(i).  

[table 2 here] 

The number of extremes ( n ) for the upper tail is higher than those of the lower tail, except for 

the Long Gilt contract whereby the number of extremes is 44 in the lower tail compared to 29 

in the upper tail. As expected, u  is positive for all three contracts, highest for the FTSE-100 

index contract, followed by the Long Gilt and then the Short Sterling contracts. The result is 

quite similar for the lower tail: L  is positive for all the contracts, highest for the FTSE-100 

index contract, followed by the Short Sterling and then the Long Gilt contracts. Whereas the 

parameter k  is positive in the lower tail for all three contracts (the highest being for the Long 
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Gilt contract, followed by the Short Sterling and FTSE-100 Index contracts), it is negative for 

the FTSE-100 Index and Long Gilt contracts in the upper tail.  

 

The next step is to estimate the threshold, T , since it is important to know where the tail starts 

for the calculation of the MCRRs. Following the definition of U and L, 

 L,UmaxT                 [15] 

 

Using the approximation given in expression [9], 

   

 
 

i

i

t

t
eG

UF1

UFeUF





              [16] 

the following term is obtained by cross-multiplying: 

          UFeGeGUF1eUF1
iii ttt              [17] 

 UF  is unknown but since it is the unconditional probability that an observation will exceed 

the level U , a possible estimate is obtained by using the sample frequency, i.e., 

 
N

n
UF̂                  [18] 

Following Neftci (1998), the estimate of the tail probability is  

      
it

eUF1 

k̂1

u

t

ˆ

ek̂
1

N

n
i

















             [19] 

  

where, u̂ and k̂  are the maximum likelihood estimates of u  and k  respectively. Denoting 

this tail probability estimate by  : 

k̂1

uˆ

Tk̂
1

N

n
















                [20] 

Thus, rearranging [20] we obtain the threshold:  
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






















k̂

n

N
1

k̂

ˆ
T

                [21] 

 

Again the result for T  (for both the upper and lower tails) is presented in Table 2(ii), with   

is set at 0.01 in this paper. For the upper tail, the threshold (i.e. the start of the tail) is set at 

0.017 for the FTSE-100 Index contract, at 0.010 for the Long Gilt contract and at 0.003 for the 

Short Sterling contract. Thus, the threshold is further in the tail for the FTSE-100 Index, 

followed by the Long Gilt and the Short Sterling contracts. The same result is obtained for the 

lower tail, with the threshold being 0.018 for the FTSE-100 Index contract, 0.010 for the Long 

Gilt contract and 0.002 for the Short Sterling contract. The threshold is higher in the lower tail 

for the FTSE-100 Index contract compared to the upper tail. On the other hand, the threshold 

is higher in the upper tail for the Short Sterling contract compared with its lower tail.  

 

4. GARCH modelling  

In order to provide a benchmark for the evaluation of the results from the extreme value 

estimation we also calculate MCRRs using a GARCH model. The simple GARCH (1,1) 

model is given below: 

ttx    

1t

2

1tt hh                  [22] 

where, x Log P Pt t t ( / )1 ,  t t th 1 2/ , t  N(0,1).   

Following Brooks et al., (2000), the “best” model of conditional volatility from a large set of 

candidate models was shown to be the GARCH(1,1) model for all three contracts. 
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For the purposes of comparison, the probability of an extreme as predicted by the simple 

GARCH(1,1) model, Extreme Value model and the empirical distribution is estimated. Table 

3 shows the probability of the five highest and lowest returns of the three financial futures 

contracts as predicted by the extreme value procedure, the GARCH(1,1) model together with 

the values that are predicted by the original empirical distribution function8.  

[table 3 here] 

For the GARCH(1,1) model, the conditional volatility is predicted and the probability of an 

outcome equal to or more extreme than the observed return (conditional on the predicted 

volatility for each observation) is recorded. In the case of the extreme value procedure, returns 

are estimated by bootstrapping from the Pareto distribution and the interior of the empirical 

distribution for common observations. This estimation technique is elaborated in the following 

section. 

 

As noted, the probability as predicted by the extreme value procedure, and the values that are 

predicted by the empirical distribution are very similar. On the other hand, it can be seen that 

the GARCH(1,1) model performs poorly in modelling the tail events compared with the 

extreme value approach. 

 

5. A methodology for estimating MCRRs  

Capital risk requirements are estimated for 1 day, 1 week, 1 month and 3 month investment 

horizons by simulating the conditional densities of price changes, using Efron’s (1982) 

bootstrapping methodology. For the Generalized Pareto Distribution model, simulation is 

carried out by bootstrapping from both the fitted tails and the empirical distribution function.   

 

                                                           
8
 The distribution function of the log price changes of the contracts. 
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For the GARCH model, since the standardized residuals (  /  /t th 1

1 2 ) from these models are iid 

(according to the BDS test - see Brooks et al., 2000) the t are drawn randomly, with 

replacement, from the standardized residuals and a path of future xt’s can be generated, using 

the estimates of , ,  and  from the sample and multi-step ahead forecasts of th .   

 

In the case of the Generalized Pareto Distribution, the path for future prices is simulated as 

follows: (1) draw tx  from the empirical distribution with replacement, (2) if )L(Txt  , then 

draw from the generalized Pareto distribution fitted to the lower tail, (3) however, if 

)U(Txt  , then draw from the generalized Pareto distribution fitted to the upper tail, (4) on 

the other hand, if tx  falls in the middle of the empirical distribution, i.e. )U(Tx)L(T t  , 

then tx  is retained. The number of draws of tx  is equal to the length of the investment 

horizon. This procedure can be considered as a type of structured Monte Carlo study, where 

we pay particular attention to the extreme returns in the tails of the distribution. It will be these 

extreme returns which most strongly influence the value of the MCRR, and hence most 

influence the likelihood of financial distress.  

 

In practice a securities firm undertaking this procedure would have to simulate the price of the 

contract when it initially opened the position. To calculate the appropriate capital risk 

requirement, it would then have to estimate the maximum loss that the position might 

experience over the proposed holding period9.  For example, by tracking the daily value of a 

long futures position and recording its lowest value over the sample period, the firm can report 

its maximum loss per contract for this particular simulated path of futures prices. Repeating 

                                                           
9
 The current BIS rules state that the MCRR should be the higher of the (i) average MCRR over the previous 60 

days or (ii) the previous trading days’ MCRR.  At the time of writing, it is not clear how CAD II will require the 

exact calculation to be made. 
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this procedure for 20,000 simulated paths generates an empirical distribution of the maximum 

loss.  This maximum loss (Q) is given by: 

ContractsxxQ  )( 10               [23] 

where 0x  is the price at which the contract is initially bought or sold; and x1 is the lowest 

simulated price (for a long position) or the highest simulated price (for a short position) over 

the holding period.  Assuming (without loss of generality) that the number of contracts held is 

1, we can write the following: 













0

1

0

1
x

x

x

Q
                [24] 

In this case, since 0x  is a constant, the distribution of Q  will depend on the distribution of 1x .  

Hsieh (1993) assumed that prices are lognormally distributed, i.e.  that the log of the ratios of 

the prices, 










0

1

x

x
Ln , are normally distributed.  However, in this paper, we do not impose this 

restriction, but instead 










0

1

x

x
Ln

 

is transformed into a standard normal distribution by 

matching the moments of 










0

1

x

x
Ln ’s distribution to one of a set of possible distributions 

known as the Johnson (1949) distribution.  Matching moments to the family of Johnson 

distributions (Normal, Lognormal, Bounded and Unbounded) requires a specification of the 

transformation from the 










0

1

x

x
Ln  distribution to a distribution that has a standard normal 

distribution.  In this case, matching moments means finding a distribution, whose first four 

moments are known, i.e. one that has the same mean, standard deviation, skewness and 

kurtosis as the 










0

1

x

x
Ln  distribution. 
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For all the samples of the three contracts, the 










0

1

x

x
Ln  distributions were found to match the 

Unbounded distribution.  Therefore, the estimated 5
th

 quantile of the 










0

1

x

x
Ln ’s distribution is 

based on the following transformation: 

 
cd

b

a

x

x
Ln

t








 










 645.1
sinh

,10

1              [25] 

a, b, c and d are parameters whose values are determined by the 










0

1

x

x
Ln ’s first 4 moments.   

From expression 7, it can be seen that the distribution of 
0x

Q
 will depend on the distribution of 

0

1

x

x
.  Hence, the first step is to find the 5

th
 Quantile of 











0

1

x

x
Ln : 














Sd

m
x

x
Ln

0

1

                   [26] 

where   is the 5
th

 Quantile from the Johnson Distribution, m  is the Mean of  










0

1

x

x
Ln

 

 and 

Sd is the Standard Deviation of 










0

1

x

x
Ln .  Cross-multiplying and taking the exponential, 

  mSdlExponentia
x

x
 

0

1              [27] 

therefore 

  mSdlExponentia
x

Q
 1

0

                     [28] 
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We also use the unconditional density to calculate MCRRs so that we can make a direct 

comparison between this and the two other approaches since this much simpler approach 

ignores both the non-linear dependence in the conditional volatility (which would be captured 

by the GARCH formulation) and the fat tails of the returns series (which would be accounted 

for using the extreme value approach). To use the unconditional density, the xt’s are drawn 

randomly, with replacement, from the in-sample returns. 

 

Confidence intervals for the MCRRs are estimated using the jackknife-after-bootstrap 

methodology (Efron & Tibshirani, 1993).  These confidence intervals are estimated to give an 

idea of the likely sampling variation in the MCRR point estimates and help determine whether 

the differences in the MCRRs for the conditional and unconditional models are significantly 

different.   

 

Assuming that, 

%)5(0

1

x

x
Ln 










 N(m*,Sd*) then, the confidence interval for the Ln

x

x
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0 5%)
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The jackknife-after-bootstrap provides a method of estimating the variance of the 5
th

 quantile 

of ln(x1/x0) using only information in the 20,000 bootstrap samples. 

 

To verify the accuracy of this methodology, we compared the actual daily profits and losses of 

the three futures contracts with their daily MCRR forecasts.  In this case, instead of expression 

(6) we will work with the following: 

ContractsxxQ tt   )( 1                       [29] 

where tx  is the price of the contract at time t and 1tx  is the simulated price at time t+1.  This 

will give us a time series of daily MCRR forecasts.   Our measure of model performance is a 

count of the number of times the MCRR “underpredicts” realized losses over the sample 

period. This procedure is effectively a back-test of the model’s adequacy over the in-sample 

estimation period. 

 

However, for a fuller evaluation of the results we need to perform an out-of-sample test of the 

MCRRs based upon the three models, to determine whether the models are likely to be useful 

in the practical situation where we are determining the capital requirement to cover a period in 

the future when the parameters of the models are estimated using past data.  We therefore 

calculated MCRRs for a 1 day investment horizon for each contract and for both short and 

long positions on day t and then checked to see whether this MCRR had been exceeded by 

price movements in day t+1.  We rolled this process forward, recalculating the MCRRs etc., 

for 500 days, i.e. using the sample period 17
th

 September 1996 to 12
th

August 1998. Out-of-

sample tests are not commonly applied in this literature, but are an essential part of the model 

evaluation process, since it is likely that back-tests will over-state the success of all models, 

since the data used to assess the adequacy of the MCRR calculations, has also been used to 
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determine the parameters of the models. Moreover, back-tests are likely to be biased towards 

profligate models which fit to sample-specific features of the data, but are unable to generalize 

in a genuine out-of-sample forecasting environment. 

 

 

6. The MCRRs  

The MCRRs for the three contracts based upon the unconditional density, the GARCH(1,1) 

and EVT models are presented in Table 4.   

[table 4 here] 

Close inspection of the results reveals that the MCRRs are always higher for short compared 

with long futures positions, particularly as the investment horizon is increased.  This is 

because the distribution of log-price changes is not symmetric: there is a larger probability of a 

price rise in all three futures contracts than a price fall over the sample period (i.e., the mean 

returns in Table 1 are all positive), indicating that there is a greater probability that a loss will 

be sustained on a short relative to a long position.  For example, the MCRR for a long Short 

Sterling position, calculated using the GARCH(1,1) model and held for three months is 

3.627%, but is 5.798% for a short position.   

 

The MCRRs based upon the GARCH(1,1) model are always higher than for the unconditional 

density method of calculation.  This result highlights the excess volatility persistence implied 

in the GARCH(1,1) model (see Hsieh, 1993, for a discussion of this issue).  A higher degree 

of persistence implies that a large innovation in contract returns (of either sign) causes 

volatility to remain high for a relatively long period, and therefore the amount of capital 

required to cover this protracted period of higher implied volatility is also higher.  The effect 

of this volatility persistence is considerable – with MCRRs increasing by a factor of two or 
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three in most cases, compared with those generated from the unconditional density.  For 

example, the MCRR GARCH(1,1) estimate for a Short Sterling contract position is 3.627% 

for a three month investment horizon, whereas the comparable figure for the unconditional 

density is 1.643%. For the extreme value theory approach, the MCRRs tend to be smaller than 

the GARCH(1,1) model but greater than the Unconditional Density for the FTSE-100 Index 

and the Short Sterling contracts, however those for the Long Gilt are smaller than both the 

conditional and unconditional volatility models. Moreover, capital requirements are highest 

for the contract which is most volatile, i.e. the FTSE-100 stock index futures contract, while 

the Short Sterling contract is least volatile of the three and therefore requires less of a capital 

charge.  This holds true for all three alternative methods of estimation.  

 

Approximate 95% confidence intervals for the MCRRs calculated from the unconditional 

density, the GARCH model and the EVT approach are presented in Table 5.   

[table 5 here] 

The most important feature of these results is the “tightness” of the intervals around the 

MCRR point estimates.  For example, the 95% confidence interval around the MCRR point 

estimates of 12.028% for a Long Gilt contract position of three months is 11.787% to 

12.509%.  Also, in the cases of all three contracts the confidence intervals for the conditional 

GARCH and unconditional density models as well as the extreme value theory approach never 

overlap.  This indicates that there is a highly statistically significant difference between the 

MCRRs generated using the conditional GARCH, the EVT and unconditional density. 

  

Table 6 presents the proportion of times that the MCRR is violated during the estimation 

sample.  

[table 6 here] 
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The back-testing results show that the realized percentages of MCRR violations (for both long 

and short positions) are in general lower than the nominal 5% coverage. The same holds true 

for the other two models. Thus, although all the models give rather different sets of MCRRs, 

the out-of-sample tests show that they are all adequate for the estimation of minimum capital 

requirements, i.e., the realized percentages of MCRR violations is 5% or less than 5% (with 

the exception of the EVT model for a long position in the FTSE contract, which is 5.1%). 

However, if the proportion of exceedences is considerably less than 5%, this implies that the 

capital charge has been set too high and thus bank capital is tied up in an unnecessary and 

unprofitable way. In this regard, the extreme value model yields the best results overall, since 

the proportion of exceedences is much closer to the nominal 5% level while for the others the 

number of exceedences is too few.  In general, the extreme value-generated MCRRs have a 

proportion of violations which is up to a percentage point higher than those from the 

unconditional and GARCH models. The most noticeable improvement is for a long position in 

the Short Sterling contract, where EVT gives 4.9% of exceedences, compared with 4.46 and 

4.24 for the unconditional and GARCH models respectively. 

 

The out-of-sample testing results, shown in table 7, are also highly supportive to the extreme 

value approach compared with its competitors.  

[table 7 here] 

For example, considering a long position in the Long Gilt contract, the proportion of 

violations is 2.8% for the unconditional density, and 3.4% for the GARCH model, while it is 

4.4% for the MCRR generated using extreme value theory. The superior performance of the 

extreme value approach indicates that a securities firm who adopted this methodology, could 

cut is capital requirement by up to one third while still retaining a number of violations which 

is within acceptable limits. 
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6. Conclusions 

Under CAD II European banks and investment firms will be able to calculate appropriate 

levels of capital for their trading books using IRMMs10.  It is expected that these models will 

be in widespread usage, particularly in London, soon after the necessary legislation has been 

passed.  Given this development in the international regulatory environment, in this paper we 

investigated certain aspects of this technology by calculating MCRRs for three of the most 

popular derivatives contracts currently trading on LIFFE.   

 

Our results demonstrate the usefulness of the extreme value approach in providing a superior 

fit to the data and giving improved back-testing and out-of-sample results.  Further research in 

this area might consider the application of such techniques to other data series or the 

consideration of alternative fat-tailed distributions. Since the use of these internal models will 

be permitted under the EC-CAD II, they could be widely adopted in the near future for 

determining capital adequacies. Hence, close scrutiny of competing models is required to 

avoid wastage of capital resources whilst at the same time ensuring the safety of the financial 

system. 

                                                           
10

 This proposal is due to be adopted by the EU’s Council of Ministers and the European Parliament under the co-

decision procedure. 



 23 

References 

Basle Committee on Banking Supervision, 1995, April, An Internal Model-Based Approach to 

Market Risk Capital Requirements 

 

Basle Committee on Banking Supervision, 1988, July, International Convergence of Capital 

Measurement and Capital Standards 

 

Brooks, C., A.D. Clare and G. Persand, 2000, A Word of Caution on Calculating Market-

based Minimum Capital Risk Requirements, Journal of Banking and Finance 14(10), 1557-

1574 

 

Brock, W., W.Dechert,  J.Scheinkman and B.  LeBaron, 1996, A Test for Independence based 

on the Correlation Dimension, Econometric Reviews 15, pp 197-235.     

 

Clifford Chance, 1998, CADII moves forward, Newsletter: European Financial Markets, 

London. 

 

Danielsson, J. and C.G. De Vries, 1997, Value-at-Risk and Extreme Returns, LSE Working 

Paper Presented at the Issues of Empirical Finance (Financial Market Group), Nov 1997.   

 

Davison, A.C. and R.L Smith, 1990, Models for Exceedances of High Thresholds, The 

Journal of Royal Statistical Society 52(3), pp. 393-442. 

 

Efron, B., 1982, The Jackknife, the Bootstrap, and Other Resampling Plans, Philadelphia, PA: 

Society for Industrial and Applied Mathematics. 

 

Efron, B., and R.Tibshirani, 1993, An Introduction to the Bootstrap, Chapman Hall. 

 

Gnedenko, B.V., 1943, Sur la distribution limite du terme maximum d’une série aléatoire, 

Annals of Mathematics 44, pp 423-453. 

 

Gumbel, E.J., 1958, Statistics of Extremes. Columbia University Press, New York. 

 

Hsieh, D.A., 1993, Implications of Nonlinear Dynamics for Financial Risk Management, 

Journal of Financial and Quantitative Analysis 28, pp 41-64. 

 

Jenkinson, A.F., 1955, The Frequency Distribution of the Annual Maximum (or Minimum) 

Values of Meteorological Elements, Quarterly Journal of the Royal Meteorology Society 87, 

pp 145-158. 

 

Johnson, N.L., 1949, Systems of Frequency Curves Generated by Methods of Translations, 

Biometrika, pp149-175. 

 

J.P. Morgan, 1996, Riskmetrics Technical Document 4th Edition. 

 

Longin, F.M., 1996, The Asymptotic Distribution of Extreme Stock Market Returns, Journal 

of Business 69 (3), pp 383-408. 

 



 24 

Mandelbrot, B., 1963, The Variation of Certain Speculative Prices, Journal of Business 36, pp 

394-419. 

 

Neftci, S.N., 1998, Value-at-Risk Calculations, Extreme Events and Tail Estimation, Mimeo, 

Graduate School and University Centre of CUNY. 

 

Pickands, 1975, Statistical Inference Using Extreme Order Statistics, Annals of Statistics Vol 

3, No1, pp 119-131. 

 

Smith, R.L., 1985, Maximum Likelihood Estimation in a Class of Nonregular Cases. 

Biometrika 72, pp 67-92. 

 

 

Appendix: Tabulated Results 
 

 

Table 1 

Summary Statistics of Derivative Returns 
 

Futures Contracts FTSE-100 Long Gilt Short Sterling 

Mean 0.00034 0.00013 0.00004 
Variance 8.283E-005 2.654E-005 1.680E-006 
Skewness 0.29556* -0.09153* 8.55407* 
Kurtosis 2.73215* 3.43428* 199.165* 

Normality Test  Statistic† 484.2252* 639.9767* 2223267* 

Notes: * represents significance at the 5% level (2 tailed-test); † Bera and Jarque test 

 

 

 

 

Table 2 

 

No. of Extremes, Parameters of the Generalized Pareto Distribution  

& the Threshold Level: 

Upper Tail 
 

 FTSE-100 Index Long Gilt Short Sterling 

n 28 29 19 

a 0.02246 0.01243 0.00667 

k -0.02521 -0.12329 0.15124 

Threshold (U) 0.01664 0.01003 0.00325 
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Lower Tail 

 FTSE-100 Index Long Gilt Short Sterling 

n 19 44 15 

a 0.05232 0.01324 0.01773 

k 0.03680 0.86250 0.54101 

Threshold (L) 0.01800 0.00983 0.00189 

 

 

Table 3 

Probability of an Extreme as predicted by the simple GARCH(1,1) model, Extreme 

Value Model and the Empirical Distribution.  

FTSE-100 Index contract 

Returns Probabilities 

 GARCH(1,1) EVT Empirical 

-0.04569 0.00000 0.00070 0.00074 

-0.03862 0.00000 0.00075 0.00074 

-0.02795 0.00052 0.00165 0.00149 

-0.02568 0.00075 0.00170 0.00149 

-0.02449 0.00105 0.00220 0.00223 

    

0.053872 0.00000 0.00070 0.00074 

0.049636 0.00000 0.00150 0.00149 

0.038794 0.00000 0.00166 0.00149 

0.035462 0.00020 0.00170 0.00149 

0.028351 0.00036 0.00229 0.00223 

Long Gilt contract 

Returns Probabilities 

 GARCH(1,1) EVT Empirical 

-0.02284 0.00000 0.00077 0.00074 

-0.02123 0.00030 0.00075 0.00074 

-0.01941 0.00045 0.00180 0.00149 

-0.01873 0.00090 0.00187 0.00149 

-0.01860 0.00105 0.00222 0.00149 

    

0.036544 0.00000 0.00079 0.00074 

0.019327 0.00015 0.00085 0.00074 

0.018795 0.00035 0.00095 0.00074 

0.017054 0.00060 0.00157 0.00149 

0.016885 0.00086 0.00239 0.00223 

Short Sterling contract 

Returns Probabilities 

 GARCH(1,1) EVT Empirical 

-0.00901 0.00000 0.00065 0.00074 

-0.00809 0.00000 0.00065 0.00074 
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-0.00715 0.00003 0.00155 0.00149 

-0.00660 0.00005 0.00160 0.00149 

-0.00562 0.00025 0.00322 0.00149 

    

0.029236 0.00000 0.00085 0.00074 

0.008044 0.00001 0.00090 0.00074 

0.007369 0.00006 0.00156 0.00149 

0.006933 0.00021 0.00170 0.00149 

0.006821 0.00040 0.00249 0.00149 
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Table 4 

Capital Requirement for 95% Coverage Probability as a Percentage of the Initial Value for unconditional density and 

based on GARCH(1,1) model, and the extreme value theory approach 

 

Horizon Long Positions Short Positions 

 Uncond. GARCH(1,1) EVT Uncond. GARCH(1,1) EVT 

                         FTSE-100 Index   

3 months 12.775 25.498 20.391 21.102 32.540 30.820 

1 month 7.954 10.417 13.369 10.782 14.567 19.763 

1 week 3.272 6.031 5.600 3.845 7.905 5.998 

1 day 1.392 4.275 2.340 1.419 5.570 3.161 

                              Long Gilt   

3 months 7.906 12.028 4.954 10.906 14.070 5.489 

1 month 4.855 7.305 3.672 5.623 9.833 4.010 

1 week 2.007 4.653 2.506 2.090 5.378 3.005 

1 day 0.849 2.932 1.152 0.898 3.276 1.413 

                          Short Sterling   

3 months 1.643 3.627 2.810 3.061 5.798 4.320 

1 month 0.986 2.377 2.001 1.237 4.008 3.010 

1 week 0.348 1.423 1.555 0.382 2.799 2.004 

1 day 0.127 0.903 0.753 0.130 1.437 0.975 
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Table 5 

Approximate 95% Central Confidence Intervals for the MCRRs given in Table 4. 

Horizon Long Positions Short Positions 

 Uncond. GARCH(1,1) EVT Uncond. GARCH(1,1) EVT 

                         FTSE-100 Index   

3 months [12.516, 13.105] [24.988, 26.517] [19.575, 20.799] [20.822, 21.442] [31.889, 33.842] [29.587, 31.436] 

1 month [7.815, 8.124] [10.209, 10.834] [12.834, 13.636] [10.581,11.003] [14.276, 15.149] [18.972, 20.158] 

1 week [3.181, 3.393] [5.910, 6.272] [5.376, 5.712] [3.759, 3.921] [7.747, 8.221] [5.758, 6.118] 

1 day [1.388, 1.403] [2.486, 2.638] [2.246, 2.387] [1.408, 1.431] [2.941, 3.121] [3.035, 3.224] 

                              Long Gilt   

3 months [7.714, 8.145] [11.787, 12.509] [4.756, 5.053] [10.666, 11.197] [13.789, 14.633] [5.269, 5.599] 

1 month [4.764, 4.967] [7.159, 7.597] [3.525, 3.745] [5.556, 5.804] [9.636, 10.226] [3.850, 4.090] 

1 week [1.992, 2.049] [4.560, 4.839] [2.406, 2.556] [2.059, 2.141] [5.270, 5.593] [2.885, 3.065] 

1 day [0.837, 0.866] [1.942, 2.061] [1.106, 1.175] [0.879, 0.932] [2.838, 3.012] [1.356, 1.441] 

                          Short Sterling   

3 months [1.552, 1.781] [3.554, 3.772] [2.698, 2.866] [3.034, 3.102] [5.682, 6.030] [4.147, 4.406] 

1 month [0.959, 1.017] [2.329, 2.472] [1.921, 2.041] [1.219, 1.265] [3.928, 4.168] [2.890, 3.070] 

1 week [0.333, 0.367] [0.825, 0.876] [1.493, 1.586] [0.365, 0.404] [1.134, 1.203] [1.924, 2.044] 

1 day [0.118, 0.139] [0.308, 0.327] [0.722, 0.768] [0.119, 0.145] [0.413, 0.438] [0.936, 0.995] 
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Table 6 

Backtests: Realized Percentages of MCRR Violations 

Contract Long Position Short Position 

Panel A: Unconditional Density  

FTSE-100 4.464% 4.390% 

Long Gilt 4.464% 3.423% 

Short Sterling 4.241% 3.720% 

Panel B: GARCH (1,1) 

FTSE-100 4.241% 3.943% 

Long Gilt 4.018% 3.348% 

Short Sterling 4.092% 3.274% 

Panel C: EVT 

FTSE-100 5.134% 4.539% 

Long Gilt 4.985% 4.539% 

Short Sterling 4.911% 4.092% 

Note: the nominal probability of MCRR violations was set at 5% (see text for more details). 

 

 

 

Table 7 

Out-of-Sample tests: Realized Percentages of MCRR Violations 

Contract Long Position Short Position 

Panel A: Unconditional Density  

FTSE-100 4.400% 3.800% 

Long Gilt 2.800% 2.200% 

Short Sterling 1.200% 0.200% 

Panel B: GARCH (1,1) 

FTSE-100 5.200% 4.400% 

Long Gilt 3.400% 2.200% 

Short Sterling 1.000% 0.200% 

Panel C: EVT 

FTSE-100 4.800% 4.600% 

Long Gilt 4.400% 3.200% 

Short Sterling 1.400% 0.400% 

Note: the nominal probability of MCRR violations was set at 5% (see text for more details). 

 

 

 


