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PREFACE 

The spread of HIV has been very explosive, mercilessly and remains the most deadly 

disease which has ever hit the planet, since the last three decades. The complexities 

aligned with the spread of the virus have activated this dissertation for a workable 

mathematical model and a suitable treatment interruption.  

Hence, the adopted model is momentous to the government, who is a major 

stakeholder for planning. Further, the study is essential to drug manufactures for 

implementing a workable drug and health workers for designing a suitable treatment 

option for HIV tainted individuals. 

I am highly appreciative and beholden to Professor Emile Franc Doungmo Goufo for 

patiently facilitating the fruition of the study from 2015 to 2020.  
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ABSTRACT 
 

Comparatively, HIV like most viruses is very minute, unadorned organism which cannot 

reproduce unaided. It remains the most deadly disease which has ever hit the planet 

since the last three decades. The spread of HIV has been very explosive and 

mercilessly on human population. It has tainted over 60 million people, with almost half 

of the human population suffering from AIDS related illnesses and death finally. Recent 

theoretical and computational breakthroughs in delay differential equations declare that, 

delay differential equations are proficient in yielding rich and plausible dynamics with 

reasonable parametric estimates.  

This paper seeks to unveil the niche of delay differential equation in harmonizing low 

HIV viral haul and thereby articulating the adopted model, to delve into structured 

treatment interruptions. Therefore, an ordinary differential equation is schemed  to 

consist of three components such as untainted CD4+ T-cells, tainted CD4+ T-cells (HIV) 

and CTL. A discrete time delay is ushered to the formulated model in order to account 

for vital components, such as intracellular delay and HIV latency which were missing in 

previous works, but have been advocated for future research. It was divested that when 

the reproductive number was less than unity, the disease free equilibrium of the model 

was asymptotically stable. Hence the adopted model with or without the delay 

component articulates less production of virions, as per the decline rate. Therefore 

CD4+ T-cells in the blood remains constant at  𝛿1/𝛿3, hence declining the virions level in 

the blood. As per the adopted model, the best STI practice is intimated for compliance.  

 

Key words: Cytotoxic Lymphocytes; Structured treatment interruption; Disease free 

Equilibrium: Human immunodeficiency virus; Basic reproductive number 
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CHAPTER 1 

INTRODUCTION 

 

1.0   INTRODUCTION 

The introduction of the thesis is activated by this chapter and therefore provides an 

insight to the background of the study, statement of the problem, Epidemiological trend 

of HIV in Ghana, mathematical model capable of modelling low HIV viral load, 

objectives aligned with the study, motivation of the study, significance of the study and 

finally the component of the structure of the thesis. 

 

 

1.1     BACKGROUND 

Current mathematical innovations and simulations in delay differential equation, reveals 

that delay differential equations are viable in producing rich and credible dynamics with 

acceptable parameter values. Delay differential equation works on an endless 

dimensional space which accommodates high-dimensional dynamics. The use of such 

mathematical dynamical models [1, 17] to describe a contagion such as the human 

immunodeficiency virus (HIV), became magnified when scientists discovered the 

menace and the threat HIV causes to mankind. AIDS intercepts when the contagion, 

remains untreated for a long period of time. 

 

HIV has been projected to have killed over 25 million people [10], since its first 

recognition from the year 1981 to the year 2005. Significantly, HIV statistics from1999 to 

the year 2010 reveals a major drop of 19% in new HIV infections [20, 21]. However, 

new HIV contagions still remain unacceptably high. Currently about thirty three million 

(33 million) people are still residing with HIV/AIDS [10] and are not even aware of their 

status. Out of such huge infectious rate, 2.5 million of the infected are children. African 

continent alone is indebted with about 68% of the cumulative HIV infection in the world, 

representing 22.5 million of the people tainted by the virus [19]. 
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Monitoring the spread of HIV across the world is very arduous and demanding due to 

the risk of being infected, hence key preventive measures are required to inhibit the 

propagation of the disease. Truly, controlling the disease HIV has been more arduous, 

due to the laxity of the methodology [4, 15] used in monitoring the infection and the 

spread of the disease. One of such approaches used to control HIV surveillance is 

basically by informing the public, about some of the new diagnoses of HIV and AIDS 

cases. 

  

Ironically, the contagious rate of the pandemic is irrational and uncompromising, due to 

the huge number of people inclined with the alignment and the reality of a known 

vaccine to eliminate the disease assiduously. However the lives of HIV patients have 

been prolonged through the use of antiretroviral therapy (ART), which has assisted in 

slowing down the pace for the onset of AIDS or other related AIDS sickness. However, 

countries where people have access to ART have shown a realistic decline, on HIV 

death and a pitch in life expectancy [11]. Introduction of therapy has decreased the 

mortality rate [14] and hence by 20% in 2004.  

 Therefore since 1999, the advocacy for a viable treatment interruption has imparted 

roughly on about 14.4 million life-spans [10] on people tainted with HIV/AIDS. 

Further, another means of limiting HIV transmission is marginalized, through total 

behavioral change such as absolute abstinence when not married, or faithfulness to 

one’s partner in the case of married couples. [27] 

Again, improved education and extensive access to condom use for individuals who 

cannot abstain completely from multiple partners, is essential in slumping down recent 

HIV attacks. [28] 

 

However the unmatchable pinnacle of recent HIV infections has articulated an in-depth 

analysis relating to the use of the delay differential equation, to model low HIV viral 

state. The study further investigates the viral load of an infected individual and the need 

to ascertain when a particular therapy should be modified, continued or discontinued, 

due to drug-resistive modifications (DRMs) [52]. Drug resistive viruses, resides on a 
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particular drug type and regenerates its kind unnoticed, even when therapy is still 

ongoing [102, 104]. 

 

 

1.2   STATEMENT OF THE PROBLEM 

Authentically, credible approaches to managing and mortifying the negative effects of 

any infectious disease, are aligned with a better comprehension of the nature and the 

mode of transmission of such disease. Tremendous and exciting researches are 

ongoing to unlock the treat caused by HIV/AIDS and also to stipulate a perpetual 

solution to the disease. These researches are underlined to underscore an in-depth 

comprehension of the disease at cellular level, by means of mathematical models. The 

incorporation of such mathematical models stimulates the advancement, or changes 

associated with a particular drug type and its administration [70]. HIV-1 has since been 

known to be the most hazardous virus, which after infection, focuses on the CD4+ T 

cells and ascertain access for its existence and continual replication. Per the infection of 

HIV-1 virus, the immune system is breached, resulting to lots of opportunistic diseases 

which are beyond the control and administration of the body’s immune system.  

 

The use of delay differential equation assists, by comparing the infected group of cells 

[6] with the uninfected cells, in relation to the time interval stipulated for such infection. 

Hence mathematical models, such as delay differential equations are key and vital in 

modelling the spread of HIV/AIDS, due to its associated time component. Most 

legitimate approaches have time delays embedded in them, but handfuls of researchers 

are able to model infectious diseases with time lags. However, the intricacies of time 

delays are associated with challenges ascribed to the layout of the model and the 

urgency to unlock and stabilize the unit, through dimensional analysis [125, 132].  

 

In accordance to the above, most scientists [1, 2, 6, 7, 11] have therefore developed 

SIR models to include time lags. The time lags are designated for the arduous 

parameters in the model and their associated biological meanings. In relation to the 

above [13], a delayed model has been established to explain the standard mass 
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interaction and the universal soundness of the model. Again an SIR model which 

incorporates time delay was studied [12] for an infected state, to ascertain the 

significance of time lags in an SIR model. The resulting model was stabilized through 

Hopf bifurcation and hence supported the repercussions of the delay component. 

Further studies on SIR models [11] revealed the essence of stability and the heroics of 

density parameter in accounting for low HIV viral haul.  

 

In congruence to the above problem and the need to find an amicable solution, this 

study designs an ordinary differential equation, composed of untainted CD4+ T-cells, 

tainted CD4+ T-cells and cytotoxic lymphocytes. The delay element is introduced in 

accordance to the formulated model, to enhance intracellular delay and HIV latency 

which were missing in previous works, but have been recommended for further 

research. The study further uses the stability of the developed DDE model to delve into 

structural treatment interruptions and intimates the best STI practice for compliance.  

 

  

  

1.3     EPIDEMIOLOGICAL TREND OF HIV IN GHANA 

Ghana's HIV prevalence rate has stabilised over the last five years, starting from the 

year 2014 through to the year 2020. A study conducted recently by Abigail et al (2019) 

intimated that about 334,714 people are currently tainted and residing with the virus, as 

well as 19,931 new mortality rate of infection. The study further intimates, that Greater 

Accra Region is recently on the pinnacle of infection with about 77,132 people tainted 

by the virus. Hence, per the number of tainted people, about 28,000 are currently 

adhering to ART, whilst 3,000 people have passed on. However, the country has 

recorded declines in the prevalence rate among key populations, such as the youth, 

pregnant women, children and the adult populace. Again, significant reductions have 

been realized in new contagions. 

 Again, according to Angela E.D (2015), an estimate of 235,982 people were living with 

the virus, together with 27,734 tainted children, representing 11.8 percent of the 

estimated figure.  
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Further, in 2016 [49], a national HIV Prevalence rate was conducted and revealed that 

about 13%, of the people are currently tainted with the disease, representing an 

estimate of 224,488. Out of the infected figures, 34,557 were adults and 18000 were 

children. 

 

Again, additional review was conducted in 2017 [21] and intimated that 10,074 people 

passed away due to AIDS progression and other related disease [23]. Among those 

who died, 2,248 were children between the ages of 0-14 years whilst 7,826 were adults. 

However, life expectancy and HIV progression to AIDS could be delayed when ART is 

available for treatment options.  

Notwithstanding, the national HIV Prevalence rate in 2018 also proclaimed that the 

percentage of pregnant women tainted by the virus and attending antenatal clinic were 

1.9%, which portrays a decrease of 2.1% in 2017. The regional HIV prevalence from the 

northern region up to the southern region was 19.7%. Eastern region [23] has the lion’s 

share of the menace, compared to the least infectious rate of 6.0% from the Northern 

and upper west part of the country.  

 

Finally, Abigail et al (2020) also conducted a regional HIV prevalence study to reveal 

the spread and impact of the disease on regional basis. As per the study about 334,714 

people are currently tainted and residing with the virus, with 19,931 new mortality rate of 

infection. They lamented further that, Greater Accra Region is recently on the pinnacle 

of the infection with about 77,132 people tainted by the virus. Hence, as per the number 

of tainted people, about 28,000 of them are currently adhering to the use of ART whilst 

3,000 people have passed on. It was argued that the second most tainted HIV region 

was Ashanti region, with a peak infectious rate of 75,675. The percentage regional 

statistics in descending order stands as follows: Greater Accra Region 23.04%, Ashanti 

Region 22.6%, Eastern Region 20.8%, Western Region 17.6 % Brong Ahafo Region 

17%, Upper East Region 10.2%, Volta Region 9.8%, Central Region 9.2%, Northern 

Region 6.9%, and Upper West Region 6.9%. The prevalence of HIV according to type, 

also stands as follows: HIV Type one 97.1%, HIV Type two 0.8% and combination of 

HIV Type one and two 2.1%.  
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1.4     NOTES ON MATHEMATICAL MODELLING OF HIV  

Modelling of epidemic diseases using mathematical concepts has not only broadened 

our knowledge on HIV over the last decade, but has also provided answers and clues to 

areas of the pandemic that has not been explored. It has also helped in providing a 

genuine umbrella for drug induced viral suppression, evolved from a meaningful ART 

usage. Several researchers have invented stochastic and deterministic models [8, 10], 

which have imparted positively in curbing down the viral growth of the virus and 

tremendously improved drug therapy. 

 It’s fair to acknowledge that (ODEs) have been significant in the cross examination of 

valuable cells, such as tainted and untainted cells. The study takes a look at ODE 

model which is later transformed to DDE model. Hence, the developed model is 

schemed of CD4+ T cells, tainted CD4+ T cells and Cytotoxic-T-lymphocytes (CTLs). 

Further, the extremes associated with ODE models as eluded by previous researches, 

were accounted for and modified to include intracellular delay. The inclusion of the 

delay unit explains the interval essential for a cell to navigate before the propagation of 

virions.  

Therefore per the achievement of the stipulated aim of the study, a non-continuous time 

delay(𝜏) is mooted to the formulated model, to mediate for vital components between 

the period of a contagion and the production of viral particle. Arguably, the incorporation 

of the time delay (𝜏) was first initiated by Herz et al. The necessity of this component 

was further highlighted by Nelson and Perelson. They intimated the essence of 

intracellular in viral production, when drug efficacy is fragile [124]. In addition, cytotoxic 

Lymphocytes have been extended to the parameters to account for immunological 

response. CTLs contribute immensely by attacking and killing infected cells in the blood. 

The activities of CTL are sparked by CD4+T cells through simulations, which results in 

the production of antibodies to combat the virus invasion in the blood. However CTL’S 

are known to have a protein called CD8, which are embedded on their surface. They 

are able to attach themselves to other molecules as a result of a receptor, which has the 

capacity of perceiving antigens produced by infected cells. CTL kills infected cells 

through recognition and perceiving process. The thymuses are sites of production of 

CTL cells. 
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 The process of mathematical modelling orients on the complexity and evidence of 

clinical data obtained from patients infected with the Virus; hence due to the ambitions 

of the study, limited treatment transitions data was used to validate the model. 

 

 

1.5   RESEARCH AIMS AND OBJECTIVES  

This section deals with the questions which arose in the course of the research, as well 

as the objectives of the study. 

 

 

1.5.1 RESEARCH QUESTIONS 

The study uses the application of delay differential equation, to model low HIV viral load 

in a country like Ghana. In the course of applying the model, the following questions 

resulted thereof:  

 What effects have strong CTL on low HIV viral load? 

 What effects have the delay and non – delay component on viral production? 

 What is the role of a delay model on low HIV viral load? 

 What effects has Hopf bifurcation on the stability of the model? 

 What are the impacts of the model on STI systems? 

 What challenges are associated with ODE models and the need to transform them to 

DDE? 

 

 

1.5.2    OBJECTIVES OF THE STUDY 

In pursuit of the questions arriving from the study and the need to unlock such ideas, 

the following objectives have resulted thereof: 

 

 To ascertain the effects of delay differential model on low HIV viral haul 

 To verify the impact of delay and non-delay component on viral production in the blood 

 To verify the conditions for the existence of Hopf bifurcation and the stability of the 

model   
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 To apply the adopted model to delve into structured treatment interruptions 

 To identify the challenges associated with STI and suggest the way forward 

 To address the limitations associated with ODE model 

 To transform the ordinary differential model to delay differential model. 

 To verify  the effects of the reproduction number on the production of virions  

 

 

1.6    MOTIVATION OF THE STUDY 

The introduction of effective ART to HIV patients to eradicate the contagion, has 

contributed a lot to improving the life expectancy of people diagnosed with the disease. 

Studies have revealed [9] that, the administration of antiretroviral therapy (ART) in 1996 

has approximately added 14.4 million years to people who have contracted the virus. 

However the unmatchable speed at which recent infections are diagnosed and the 

speed at which the disease is spreading has culminated an in-depth analysis to the 

spread of HIV/AID.  Hence by this study, delay differential equation is adhered to model 

low HIV viral load and the adopted model, applied to therapy interruptions. The following 

have been the epitome, or the motivation for using delay differential equation for the 

study: 

 

 To find out the impact of ordinary differential equation in modelling low HIV viral load 

 To identify the deficiencies associated with the ordinary differential equation model and 

the need to introduce the delay component 

 To find out the effect of a strong cytotoxic- lymphocytes (CTL) on a low HIV viral load  

  To verify the influence of infected CD4+TCells, the uninfected CD4+TCells and CTL 

when the reproductive number is kept constant 

 To verify the impact of delay and non-delay on viral production in the blood 

 To uphold the existence of Hopf bifurcation and the stability of the model   

 To apply the adopted model to delve into structured treatment interruptions 
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1.7     SIGNIFICANCE OF THE STUDY 

Ideally, the study will have direct influence on the following stakeholders: 

 

 A major and key stakeholder such as the government has been battling, to find a lasting 

remedy to HIV/AIDS which has direct bearing on the productivity of a country. The effect 

of HIV/AIDS is replicated in all the agencies within a country namely; health, education, 

services and so on. Therefore the outcome of this study will provide the needed 

knowledge on treatment options, required to improve life expectancy of the disease. 

Further the stability of the developed DDE model will be used to design a potential 

structured treatment interruption for future testing of the disease.  

 

 The use of medication to curtail the virus is essential to HIV tainted individuals; however 

the virus develops resistance over time to a particular drug type. Therefore, this study 

has a significant contribution to manufacturers of drugs, by exposing them to knowledge 

on modifying, continuing or discontinuing a particular drug type due to drug-resistant 

mutations. Drug manufacturers through the recommendations of the study will now have 

the luxury of manufacturing drugs, which have the potency to resist mutations from 

virus. Drugs could then be produced with at least 100% efficacy. 

 

 The results are also key to health personnel’s and other health organizations, in    

designing a potential structured treatment interruption for future testing of HIV/AIDS and 

a more virulent treatment options to infected individuals 

 

 The infected public could also benefit from a prolonged life expectancy of HIV/AIDS on 

the recommendations, relating to the design of a proper potential structured treatment 

interruption, as well as the administration of drugs which are 100% efficient  

 

 

1.8    STRUCTURE OF THE THESIS 

Provisionally, the thesis has been planned and divided into five chapters which are 

concealed in each other. The chapters are developed to provide the needed information 
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which is capable of formulating the ordinary differential model, as well as the 

transformation required for the ODE model to delay differential model. The attained 

DDE is used for modeling low HIV viral load as well as treatment options. 

  

The chapters are developed in the following order: 

Chapter 1 provides an insight into the introduction of the thesis and therefore deals with 

the background of the study, statement of the problem, Epidemiological trend of HIV in 

Ghana, the mathematical model capable of modelling low HIV Viral load, objectives of 

the study, motivation for the study, significance of the study and finally the component of 

the structure of the thesis. 

 

Chapter 2 explains the general background pertaining to HIV/AIDS, including HIV 

transmission and how it can be controlled. Further, the chapter also builds up the 

biological background of the pandemic and how to develop deterministic ODE models 

and the need to transform it to intracellular delay differential equation 

 

Chapter 3 addresses modelling in terms of in-vivo, in-vitro and in-silico analysis. Again, 

the chapter talks about the development of Pre-deterministic modelling, single target 

cell modelling and multiple target model. This is followed by doubling- time and half-life, 

as well as modelling multiple target cell model with chronic infection and intracellular 

delay 

  

Chapter 4 is interlocked with the analysis of the model with delay, well posedness and 

existence of equilibrium points. Further consideration is given to the global stability of 

equilibrium and the endemic equilibrium. Application and proof of existence of Hopf 

Bifurcation are simulated by this chapter and hence the numerical simulations of the 

results are considered for discussion. The chapter finally assesses the repercussions of 

structured treatment options and the need to adopt a suitable option based on the 

model. 
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Chapter 5 deals with the general overview of the study and the summary of findings. 

The chapter is further interlocked with the future directions to researchers and the 

conclusion of the study. 
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CHAPTER 2 

INCEPTION AND DEVELOPMENT OF HIV 

 

2.0   INTRODUCTION 

This chapter explains the general background pertaining to HIV/AIDS, including HIV 

transmission and how this can be controlled. Further, the chapter also builds up the 

biological background of this deadly disease and how to develop deterministic ODE 

model for further transformation to delay differential equation. 

 

2.1   GENERAL BACKGROUND OF HIV/AIDS  

HIV/AIDS can be referenced as early as the year 1920 when the initial infection was 

mooted through the blood samples of a man from Kinshasa, in the republic of Congo. 

Genetic analysis revealed that, the initial contact with the virus might have pranged in 

the late 1940s or 1950’s. A similar analysis also revealed the existence of HIV-2 in 

humans which is less infectious than HIV-1[16, 63]. 

 

2.1.1   TRANSMISSION OF HIV-1 

Earlier, scientist sourced that HIV-1 emanated from a peculiar blend of Chimpanzee in 

West Africa to humans. The assertion was that the Chimpanzee version of SIV was 

ushered to humans in the form of HIV-1, through blood affiliation, when those 

chimpanzees were hunted for meat (bush meat trading). Through the advancement of 

blood affiliation, the virus was propagated to Africa and the entire world at large. 

Scientist came with a generalized conclusion based on their findings that HIV-1 

emanated from Chimpanzees. Secondly blood affiliation between chimps and humans 

articulated the transfer of the virus to humans. HIV and SIV share similar 

characteristics, therefore both diseases attack the immune systems of human beings, 

monkeys and apes respectively. HIV and SIV are both a lentivirus which attacks the 

immune system of human beings, apes and monkeys respectively.  
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2.1.2      TRANSMISSION OF HIV-2 

It is remarkable to articulate that HIV-2 was transmitted to humans through SIV in sooty 

mangabey, associated in monkeys rather than chimpanzees. The initial contagion of 

HIV-2 to humans was activated by the same process, which initiated the contagion of 

HIV-1.  Interestingly HIV-1 is more dangerous and highly contagious compared to HIV-

2, however HIV-2 is commonly associated with people residing in countries such as 

West Africa, particularly in Mali, Nigeria and Sierra Leone. 

Further, it is worth noting that the two different strains of SIV from monkeys and apes, 

as discussed above merged to reproduce a third virus called SIVcpz. This third 

discovered virus was also transferred to humans through direct blood affiliation, which 

emanated from the killing and eating of the Chimpanzee. 

Genetically there exist four main types or groups of strains such as M, N, O and P, with 

slight differences in their composition. It’s worth noting that the virus replicates in 

different strains in humans, hence making it arduous to combat the disease. The virus 

has the propensity to produce different types of strains of HIV-1 in an individual. The 

main types or groups of strains are further broken down into a number of sub-groups 

[36].  Arguably 90% of HIV-1 infection is attributed to the M strain of the virus, which has 

further division of strains such as A, B, C, D, F, G, H, J and K 

(http://en.wikipedia.org/wiki/File. :HIV-1 subtype prevalence 2002.). Realistically each 

strain of the virus is basically associated to a specific geographical area. It is hoped that 

the knowledge relating to the strains and the geographical areas, will enhance planning 

of successful treatment options. It is however relevant to reverence the necessity of a 

cross-subtype contagion, which enhances the advancement of a fresh breed of virus 

[15]. The production of new breed of viruses as a result of cross contagion between viral 

strains is referenced as CRFs (circulating recombinant forms). CRF’s has pivoted the 

combat of the virus to an arduous level, due to its ability to propagate several viral 

strains which are resistive to treatment options. This explains why many treatment 

options have failed in the pass and hence the need to integrate two or more ARV’s to 

combat the disease [37]. Therefore the success to any treatment option is linked with 

the knowledge about the viral haul, as well as the type of viral strain responsible for the 

http://en.wikipedia.org/wiki/File
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contagion. Ideally as per the above assertion, it’s essential to promote suitable and 

accessible HIV testing to all the people residing in a particular locality. This implies that 

for any successful treatment option and the combat of viral mutation, individuals should 

be encouraged to ascertain their viral haul and strain as well. 

Finally as per the above discovery, it is suggested [30, 38] that HIV-1 evolved from 

primates. It is confided that the Sooty Mangabey monkey resident in sub- Saharan 

Africa, is responsible for the transmission of HIV-1. The inception of the virus is 

attributed to the trade-off between humans and monkeys, when such monkeys were 

killed and hunted for as food [30, 39]. On the other hand, Primates are host to SIV, yet 

they are able to impede the spread of the virus. This is due to its robust immunity which 

impedes the intercession of the virus as per humans which leads to AIDS [40]. The 

mechanism associated with the robustness of the immunity of primates and for that 

matter moneys, could be associated with the long term persistence of their immune 

system [30]. This special attributes of primates immune system cannot be said of 

humans, who advances to AIDS in the course of time and death finally.    

 

 

2.2      BIOLOGICAL BACKGROUND OF HIV AIDS 

Basically AIDS is an ailment portrayed by the dynamic weakening of a patient's resistive 

framework. This immunological weakness permits irresistible viruses, in the form of 

bacteria and parasites to attack the body and engender their kind rapidly. The 

occurrences of specific tumors are significant on HIV tainted patients, as a result of the 

weakened resistive framework. Therefore the contagion propagates death in the 

soonest of time. 

 

The thump against the HIV plague has brought forth logical and exceptional 

methodologies relevant to combat the disease or suppress it amicably. The zeal to 

suppress the contagion has articulated a blend of clinical research, atomic science, 

immunology and mathematical sciences to combat the disease. Essentially, the virus 

has an exceptionally high transformation rate, which enables the virus to produce 
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several strains within the shortest possible time.  This high change rate permits HIV to 

effectively develop protection from drugs and hence very arduous to stimulate an 

antidote for the disease.  The tenacity of the virus in the human body is also attributed 

to its ability to adhere to latency for a period of time, before initiating an infection. In this 

way, the advancement of medications and antibodies depends not just on information 

on the arduous life pattern of the virus, but also understanding the complicated resistive 

system of the body. Ideally so, HIV suppressing requires more than the advancement of 

medications and antibodies, but a better understanding of the virus, in order to inhibit 

the production of different strains of viruses within an individual.  

 

 

2.2.1   THE IMMUNE SYSTEM 

Essentially, the human body has the ability to initiate both vague and explicit means of 

militating against the virus, hence understanding the different segments of the human 

resistive framework is vital to the thump against HIV. Vague defence system in the body 

functions rapidly and unpredictably to eliminate organisms in the body. Some of the 

vague defence systems in the body include the following: bodily fluid, gastric juice hairs, 

and cilia in the respiratory tract etc. This vague defence system sincerely prevents the 

entry of harmful organisms into the body. 

 

The human body has been programmed to respond voluntarily to the occurrence of 

certain complex situations, such as initiation of fever and inflammation to seduce 

pathogens in the body. Noticeable among the vague defence system is the phagocytes, 

a specific kind of leukocyte (white platelet), which has the ability to circulate and destroy 

different viruses as well as residue and dust. In the event where the phagocytes are 

breached and penetrated, the leukocytes mount coordinated protections against the 

explicit intruders.  

 

Conversely, an unsuccessful attack by the Lymphocytes triggers a further back up for 

the entire process. In the process of activating a successful response to the viral attack, 
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the B cell of lymphocytes develops into counter acting agent which terminates the 

intruder. Similarly, T cells also incorporate some amount of safety by legitimately 

eliminating tainted cells. The remaining T cells functions administratively by discharging 

signals worthy of invigorating the blood to function efficiently in the defence process. 

Unfortunately HIV specially contaminates one of the administrative functions of the T 

cells, specifically the T helper cells and subverts the body’s resistive frame work 

prompting AIDS.  

 

   

2.2.2    THE CENTRAL ROLE OF HELPER T CELL 

It’s worth noting that the organization and defensive mechanism of the body’s resistive 

system are harmonized by the T helper cells. They discharge chemical information 

called (cytokines), which activates the vague resistive system of the body to proceed 

with reinforcement and support for the other cells.  Basically Helper T cells coordinate 

the entire activities of the body’s resistive system. Therefore they are termed as 

directors of the body’s resistive system. Additionally they are also known as the 

"officers" of the body’s resistive framework, because of their organizational role.  

 

They are also responsible for organizing the other cells in the blood to fight and defend 

the body whenever a virus invades (figure 2.1). In the event of an invasion by a foreign 

particle, it is the sole responsibility of the T helper cells, to call upon other cells such as 

B cells, cytotoxic T cells, and other helper T cells to wrestle against such attacking 

pathogens (figure 2.1). Figure 2.1 depicts a specialized Macrophage cell which shows, 

the B cells, Helper T cells, plasma cells, macrophage, cytokines and the cytotoxic T 

cells. 
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Fig 2.1 (Specialized Macrophage cell which ingest foreign antigens invading the host 

cell) 

As per figure 2.1 above, when the cell’s defence system is breached by the entrance of 

a virus, Macrophage cells articulate the information immediately to the T Helper cells to 

action it. Macrophage cell is a phagocytic cell, hence is able to encircle the unwanted 

bacteria, or virus, which has had entrance to the cell and destroys it completely. 
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Implanted inside the macrophage cell layer, is a particle created by the blood cells 

called human leukocyte antigen (HLA) complex. The HLA functions by assisting the 

Helper cells and antigen to be attached to it. However, Helper T cells which have 

receptors are able to link up with the antigen and get attached to the macrophage. 

When the cells are bounded together, the helper T cells multiply and advance to a clone 

of cells, equipped for perceiving a similar antigen. Again with reference to figure 2.1, the 

obtained T clone cells are known as the commanders of the cell, due to their specified 

roles. The T Clone cells function by producing chemical signals which instigate the cells 

to embattle any unwanted particle in the blood. 

 

Additionally, T cells supports the body’s defence system by invigorating cytotoxic T cells 

(TC), to eradicate cells that have been tainted by the HIV virus. Hence, there are 

antigens on the surface of the cell; which repairs the surface discarded by the tainted 

cells. The antigens are explicit to the culpable specialist, and hence link the receptors in 

the layers of the particular TC cell.  

 

Moreover, TC cell attaches itself to the MHC atom from the outside of the tainted cell. 

Hence when TC cells are is limited by the antigen outside the HLA particle, the cytotoxic 

T cell releases a substance called "perforin," which wrecks the culpable cell (figure 2.2). 

The helper T cell likewise animates the creation of antibodies and also produces clues 

which invigorate the creation of B cells. The created B cells separate into plasma cells 

and the plasma cells are platforms responsible for the creation of antibodies. The 

antibodies are used to explicitly combat pathogens flowing in the blood or lymph. 

Antibodies work by hindering the receptors that permit pathogens to be connected to 

target cells, or by making holes on microscopic organisms. The sole duty of phagocytes 

is to encircle viruses and hence eliminated them. The phagocytes promptly encircle the 

invaded microbes in the blood. They are strengthened by the presence of opsonins, 

which are produced from jointed antibodies.  

 

 Further, it also advocated that antibodies [18] could activate a course of biochemical 

responses, which destroys the membrane of any invading cell. Therefore the 
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significance of the human resistive system depends on the helper T cells. A healthy T 

cells leads to the formation of a strong immune system and a tainted T cell, destroys the 

immune system completely. Surprisingly HIV targets the T cells and renders it useless, 

resulting to a low viral haul. Therefore, the advancement of HIV contagion disintegrates 

both arms of the T cells and AIDS intercedes. 

 

 

 

Fig 2.2 (Binding of  antigens and Macrophage molecule which initiates secretion 

of lytic cells) 

 

 

2.2.3    THE STRUCTURE AND LIFE CYCLE OF HIV  

Comparatively, HIV like most viruses is very minute, unadorned organism which cannot 

reproduce unaided. It remains the most deadly disease which has ever hit the planet 

since the last three decades. The spread of HIV has been very explosive and 
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mercilessly on human population, tainting over 60 million people, with almost half of the 

human population suffering from AIDS related illnesses and death finally. Therefore a 

comprehension of the structure and life pattern of the contagion is critical in planning 

viable treatment systems. HIV is encompassed RNA infection which propagates from 

the host cell during replication.  The replicate develops phospholipid envelope which 

has peg-like structures and allows the viral RNA to code itself. The pegs comprises of 

three or four glycoproteins (gp41 stem), which are embedded with three or four 

glycoproteins (gp120). Again within the envelope is the shot molded nucleocapsid which 

is manufactured from protein and encircled by two single strands of RNA. (Fig 2.3). 

 

 

Figure 2.3 (Binding of HIV to the host cell using Gp20 of the virus to the CD4+T cells) 

 

In spite of the fact that helper T cells appear to be the principal focus for HIV, different 

cells can get tainted too. Other cells which could get tainted include monocytes and 

macrophages which can hold huge quantities of infections within and without being 

destroyed. It is ascertained that some T cells harbors comparative repositories of 
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infections, which lie latent for a long period of time. The latent viruses are rekindled 

when the pool of virus has been eradicated by therapy.  Since viruses are particles and 

only requires a host cell to become active, it takes support from one of the gp120 atoms 

in order to taint the CD4 particles on the host cell's surface.  

 

However, for the virus to attach itself to the host cell, it requires two processes to get 

itself attached to the host cell. In the initial stages it adheres to CCR5 which is a 

chemokine receptor and provides support for the virus within the initial stages of the 

contagion. The virus finally gets the second support from chemokine receptor (CXCR4) 

during the later phase of the infection. Therefore during the asymptomatic stage of the 

infection, latent virus rekindles the infection on the macrophages and taints them 

amicably. This explains why a tainted individual appears to be healthy in the 

symptomatic stage of the infection. The signal for the contamination of the virus is not 

visible and hence integrates in numbers. This unseen process eventually destroys the 

human resistive system and integrates to AIDS in the course of time.   

 

HIV has a novel life cycle and belongs to the group of retroviruses (fig. 2.4).  When HIV 

ties to a host cell, the viral envelope wires with the cell layer, and the infection's RNA 

and chemicals enter the cytoplasm of the host cell. The virus activates its infection by 

making use of its reverse transcriptase which is a single stranded RNA. The single 

stranded RNA is used as a tool to duplicate the two folded DNA of the host cell.  The 

chemical integrase in the RNA encourages the reconciliation of the viral DNA with the 

host cell’s chromosome. The virus’s DNA called Provirus is repeated alongside the 

chromosome of the host cell when the cell isolates. The coordination of provirus into the 

host DNA empowers the virus to replicate the host cell successfully. Therefore viral 

protein is created when the provirus is translated as per the successful replication of the 

virus. Viral proteins are then collected and this time, the virus utilizes the host cell's 

protein copy for the production of its kind. The virus's protease then articulates the 

manufacture of proteins by converting polypeptides to proteins and hence propagates 

the proteins into viral particles.  
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As per the above, the life cycle of the virus reaches its fruition stage; hence the virus 

inevitably buds out of the cell and starts a new contagion. Many viral particles continue 

to bud out of the tainted cell through its life span until the tainted cell is completely 

destroyed. Further, it should be noted that a tainted cell continues to be a host and a 

hide out for the virus once it has been budded by the RNA of the virus (figure 2.4). 

Figure 2.4 depicts how the virus binds with the host cell, fuses its self to the host cell's 

chromosome and propagates out of the host cell, to begin new infections. 

 

  

Figure 2.4 (Binding and budding of viral particle from a host cell) 

 

As per figure 2.4, the following are the processes which  take place in the binding and 

budding of a viral particle on a host cell: 

Stage 1: The viral RNA and reverse transcriptase proceed to the cytoplasm of the host 

cell as per the budding of the virus and the host cell. 
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Stage 2: Reverse transcriptase mediates the process of integrating the viral RNA to the 

host cell’s DNA 

Stage 3: The budding process of the Viral DNA to the host cell yields a provirus 

Stage 4: Transcription and translation process 

Stage 5: Final stage which supports the budding out of the viral particle from the host 

cell 

 

 

2.2.4    THE TRANSMISSION OF HIV 

HIV is propagated primarily via several forms, but noticeable among the forms of 

transmission include sexual contact, blood and its product and maternal transmission 

during birth. Per the above mentioned, includes homosexuals who contribute 

significantly to the spread of the virus, as they disregard all precautionary measures 

related to their safety. In addition to homosexuals, lie drug users who are extensive 

contributors to the spread of the virus. It is of value to note that some of the drugs 

utilized by drug users cannot be assimilated directly, hence the need to inject the drug 

through a needle into the body.   

 

Further, it is revealed [18, 19] that about 13% to 35% of tainted pregnant women are 

likely to pass on the disease to their infants. The transmission of the virus is articulated 

in the uterus and effected during birth. In addition, Breast milk from such tainted 

mothers also enhances the spread of the virus.   

Finally, it is worth to note that the saliva of an HIV tainted individual contains little 

amount of the virus, however is not possible for kissing to instigate the spread of the 

virus.  Again handshakes and mosquito bites do not contribute to the spread of the 

virus. 
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2.2.5     PROGRESSION OF HIV INFECTION  

Realistically HIV has a long latency stage where the virus advances to AIDS.  The 

period between the initial contamination and the inception of AIDS is between eight to 

ten years on the average. The time frame for HIV inception could be more or less 

depending on the immune system of the individual concerned. Consider the basketball 

player Magic Johnson who happens to be moderately sound, twelve years after he was 

reported of the virus. However not all tainted individuals or cases shows such a long 

time frame, whilst some tainted individuals spend less amount of years before the 

inception of AIDS. 

 

Basically the inception of AIDS or the spread at which the ailment advances is 

influenced by numerous components, such as hereditary or underlying conditions of the 

individual. A critical study of the nature of HIV by the Center for Disease Control and 

Prevention (CDC) has recognized phases for HIV contamination. The phases are based 

on the symptoms one exhibit, when tainted by the virus in the initial stages. The 

categories are A, B, and C and are vital, since it is sometimes arduous to visualize 

some of the symptoms in a tainted individual.  A look at individuals specified in category 

(A), reveals mononucleosis-like ailment such as cerebral pain, muscle hurt, sore throat, 

fever, swollen lymph nodes and headache. However a real and reliable confirmation to 

this deadly ailment is through blood test, since most of the people in this category are 

asymptomatic within the first three weeks of the contagion.  

 

However, irrespective of each stage or classification of the symptoms, the inception of 

AIDS is projected by the development of a rash. Even though the occurrence of rash 

may help separate this disease from other different contaminations, it may not be 

applicable for all HIV tainted people.  
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2.3    DEVELOPMENT OF DETERMINISTIC ODE MODELS AND TRANSFORMATION 

 
Modelling of epidemic diseases using mathematical concepts has not only broadened 

our knowledge on HIV over the last decade, but has also provided answers and clues to 

areas of the pandemic that has not been explored. It has also helped in crafting reliable 

treatment options, which has been helpful to HIV tainted individuals. Several 

researchers [27, 36] have invented stochastic and deterministic models, which have 

imparted positively to the control of the virus and slowing down the inception of AIDS. 

Again such models have broadened the knowledge based of the effects of the virus on 

therapy options [24, 25]. 

 Ideally most of the deterministic models use Ordinary Differential Equations (ODE) to 

specify variations aligned with key cells of the model, such as target cells, tainted cells 

and virus level. The use of ODE models by previous researchers has been modified due 

to recommendations to include intracellular delay [135]. The inclusion of the delay 

component explains the duration specified for a cell to become tainted and produces 

virions. The inclusion of the delay component yields DDE, which has been activated for 

the study. 

  

The rationale behind the study is to model low HIV viral haul of an infected state, using 

delay differential equation and hence use the resulting equation on therapy 

interruptions. Therefore, the developed model will be used to ascertain when a specified 

therapy [162] should be modified, continued or stopped and under what circumstances. 

Notwithstanding, the adopted model will further be adhered to structured treatment 

interruptions (STIs) and adoption for compliance. 

 

The process of mathematical modelling is the art of articulating abstract situations 

[151,152, 153], such as HIV infection rate to real and marginable situation. Therefore in 

an attempt to marginalize the reality of the developed model, an STI data is used. The 

STI data generally occurs infrequently. Finally the validly and efficacy of the developed 

model is activated fully by applying it to treatment interruptions [34] 
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2.3.1   ORDINARY DIFFERENTIAL EQUATION (ODE) 

In accordance with the development of a differential equation which is later transformed 

to a delay model, an ODE model is first formed from routine and restricted HIV data [42, 

137]. The model is defined to include CD4+ T cells, tainted CD4+ T cells and Cytotoxic-

T-lymphocytes cells (CTLs). Further, T, V and C are outlined respectively as the 

population compactness of CD4+ T cells, tainted CD4+ T cells and CTLs respectively at 

time (t). 

First we express the population parameters T, V and C as a system of ordinary 

differential equation with respect to time as shown below: 

                                                       
𝑑𝑇

𝑑𝑡
= 𝛿1 − 𝛿2𝑉𝑇 − 𝛿3𝑇  

                                                       
𝑑𝑉

𝑑𝑡
= 𝛿4𝑉𝑇 − 𝛿5𝑉 − 𝛿6𝑉𝐶  

                                                       
𝑑𝐶

𝑑𝑡
= 𝛿7𝑉 − 𝛿8𝐶                                        (2.1) 

  

 

From equation (2..1),  𝛿1 represents the output rate of CD4+ T cells, (𝛿2), represents the 

death rate of CD4+Tcells due to the contagion, (𝛿3), represents the normal death rate of 

CD4+ T cells, (𝛿4), represents the output rate of the virus, (𝛿5), represents the death 

rate of a virus, (𝛿7) represents the carbon copy of CTL, (𝛿8) represents the natural 

death of CTLs, whilst 𝛿6𝑉𝐶 represents the reduction of the infective virus. 

 

 Now consider the introduction of new parameters and new variables to equation 2.1, 

where: 

 𝑎1 = 𝛿3,     𝑎2 = 𝛿5,   𝑎3 =
𝛿1𝛿4

𝛿3𝛿5
 ,    𝑎4 =

𝛿3𝛿6𝛿7

𝛿2𝛿8
,    𝑎5 =  𝛿8      and                               

     𝑥 =
𝛿3

𝛿1
𝑇,    𝑦 =  

𝛿2

𝛿3
𝑉 ,    𝑧 =

𝛿2𝛿8

𝛿3𝛿7
                                                                   (2.2) 

The parameters 𝑎1 𝑎𝑛𝑑 𝑎4, denotes the fundamental reproductive ratio and the death 

rate of the virus respectively. Therefore writing the equations in terms of x, y, and z   

where CD4+T-cell is symbolized as  (x), tainted HIV cell symbolized as (y) and CTL,  

symbolized as (z). The equation can be written as follows: 

                                                       
𝑑𝑥

𝑑𝑡
= 𝑎1(1 − 𝑥𝑦 − 𝑥) 
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𝑑𝑦

𝑑𝑡
= 𝑎2(𝑎3𝑥𝑦 − 𝑦) − 𝑎4𝑦𝑧                          (2.3) 

                                                        
𝑑𝑧

𝑑𝑡
= 𝑎5(𝑦 − 𝑧)                                               

 

We now define three non-linear functions as follows:   

𝑓(𝑥, 𝑦, 𝑧) = 𝑎1(1 − 𝑥𝑦 − 𝑥),     𝑔(𝑥, 𝑦, 𝑧) = 𝑎2(𝑎3𝑥𝑦 − 𝑦) − 𝑎4𝑦𝑧,    ℎ(𝑥, 𝑦, 𝑧) = 𝑎2(𝑦 − 𝑧) 

                                                                                                                          (2.4) 

The three non-linear functions above are differentiated to produce equation (2.5) below:  

                           
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦, 𝑧),       

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦, 𝑧),         

𝑑𝑧

𝑑𝑡
= ℎ(𝑥, 𝑦, 𝑧)                 (2.5) 

 

We further define a point (𝑥, 𝑦, 𝑧̅ ) for equation (2.5) and initialize it as follows:  

 

 𝑓(𝑥 , 𝑦, 𝑧̅) = 0,     𝑔(𝑥,  𝑦, 𝑧̅) = 0,      ℎ(𝑥 , 𝑦, 𝑧̅) = 0                                                       (2.6) 

 

 

Proposition   2.1   

Now, if we expound the parameters 𝑎2, 𝑎3, 𝑎4 from equation 2.3, as 𝑎2, 𝑎3, 𝑎4 > 0 then, 

the following holds: 

 (i)  if 𝑎3 ≤ 1, a non-negativity steady state exist for equation (2.3), where               

(𝑥̅𝑜 , 𝑦̅𝑜, 𝑧𝑜̅) = (1,0,0)                                                                                                  (2.7)                                                        

(ii) if 𝑎3 > 1, then the non-negativity steady state for equation ( 2.3) is the same as in 

equation (2.4). Hence the steady state is expounded as 

                           (𝑥, 𝑦, 𝑧̅) = (
1

𝑍∗+1
, 𝑍∗𝑍∗)                                                                     (2.8) 

 

Where 𝑍∗ = −
1

2
(1 +

𝑎2

𝑎3
) +

1

2
√(1 +

𝑎2

𝑎4
)
2

+ 4
𝑎2 (𝑎3−1)

𝑎4
                                                    (2.9)  

 

Further we expound a point near to the constant steady state and let 𝑥 = 𝑥 + 𝑋,    

 𝑦 = 𝑦 + 𝑌        𝑎𝑛𝑑  𝑧 = 𝑍̅ + 𝑍 
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We expand the functions in terms of f, g and h and applies the Taylor Series technique 

about the point (𝑥, 𝑦, 𝑧̅). We then adheres to the linear terms only and we obtain 

 

                                

⌈
⌈
⌈
⌈
 
𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡
𝑑𝑍

𝑑𝑡 ⌉
⌉
⌉
⌉
 

= 𝐴 [
𝑋
𝑌
𝑍
]                                                                      (2.10) 

 

From equation 2.10, (A) represents the Jacobian matrix evaluated at (𝑥 , 𝑦, 𝑧̅). Hence 

matrix (A) is defined as 

  

𝐴 =  [

−𝑎1(𝑦̅ + 1) −𝑎1𝑥̅ 0
𝑎2𝑎3𝑦̅ 𝑎2(𝑎3𝑥̅ − 1) −
0 𝑎5 −𝑎5

𝑎4𝑦̅]                                                         (2.11) 

 

The stability of the developed model is further studied using eigenvalues from matrix (A) 

in equation (2.10). It was noted that the constant state of equation 2.10 is stationary, 

when no eigenvalue has positive real part. On the other hand if the entire eigenvalues 

have negative real part, then the determinant A≠ 0 

 

Proposition 2.2 

(I) Suppose  𝑎1, 𝑎2, 𝑎3  > 0, then the constant state of equation (2.10) and the 

linear system of equation (2.3) is asymptotically stable. On the other hand if 

𝑎3  < 1, then equation 2.3 is asymptotically unstable. 

(II) Further, if 𝑎1, 𝑎2, 𝑎4, 𝑎5 > 0  and   𝑎3  > 1, then the constant state of equation 

(2.10) and the linear system of equation (2.6) is asymptotically stable. 

 

 

Proof of Proposition 2.2 

We expound the characteristic equation of the Jacobian matrix (A) in equation (2.10) as:  

 

         𝑈𝑜(𝜆) =  𝜆
3 + (𝑏1 + 𝑑1)𝜆

3 + 𝑏3 + 𝑑3 = 0                                                       (2.12) 
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Where 

𝑏1 = 𝑎1(1 + 𝑦̅ ) + 𝑎2 + 𝑎5 + 𝑎4𝑧̅, 

                                           𝑏2 = 𝑎1(1 + 𝑦̅ )(𝑎2 + 𝑎5 + 𝑎4𝑧̅) + 𝑎5(𝑎2 + 𝑎4(𝑦̅ + 𝑧̅)), 

                                            𝑏3 = 𝑎1𝑎5(1 + 𝑦̅)(𝑎2 + 𝑎4(𝑦̅ + 𝑧̅ )), 

𝑑1 = −𝑎2𝑎3𝑥̅, 

                                                         𝑑2 = −𝑎2𝑎3(𝑎1 + 𝑎5)𝑥̅, 

                                                         𝑑3 = −𝑎1𝑎2𝑎3𝑎5𝑥̅                                           (2.13) 

 

Next we substitute the steady state equation of equation (2.11) into equation (2.12), and 

obtain the criterion equation given by:  

 

                                                   (𝜆 + 𝑎1) (𝜆 + 𝑎1(1 − 𝑎3))(𝜆 + 𝑎5) = 0                   (2.14) 

 

Hence the eigenvalues of the Jacobian Matrix A, can now be written as 𝜆1 = −𝑎1 < 0, 

 𝜆2 = −𝑎5 < 0.  and 𝜆3 = − 𝑎2(1 − 𝑎3). Again if  𝑎3 < 1 and  𝜆3 < 0,  then the constant 

state of equation (2.5) is asymptotically stable. Conversely, if 𝑎3 > 1 and 𝜆3 > 0, then 

equation 2.8 is unstable. 

Further, if from proposition 2.2, 𝑎3 > 1, then the constant state of equation (2.6) exist at 

𝑧∗ > 0. It follows that by the Routh – Hurwitz criterion, all the roots of the characteristics 

equation in (2.12) have negative real part if and only if 

𝑏1 + 𝑑1 > 0,    𝑏3 + 𝑑3 > 0,      (𝑏1 + 𝑑1)(𝑏2 + 𝑑2) − (𝑏3 + 𝑑3) > 0                               (2.15) 

 

Hence, we verify equation (2.1), by substituting equation (2.8) into equation (2.12) and 

obtain the equations below: 

 

𝑏1 + 𝑑1 = 𝑎2 + 𝑎5 + 𝑎1(1 + 𝑧
∗) −

𝑎2𝑎3 

1 + 𝑧∗
+ 𝑎4𝑧

∗, 

𝑏3 + 𝑑3 = 𝑎1𝑎5(1 + 𝑧
∗)(𝑎2 + 2𝑎4𝑧

∗) −
𝑎1𝑎2 𝑎3𝑎5  

1 + 𝑧∗
, 

where 
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𝛽 = −𝑎1𝑎5(1 + 𝑧
∗ )(𝑎2 + 2𝑎4𝑧

∗) +
𝑎1𝑎2 𝑎3𝑎5  

1+𝑧∗
+ ⌊𝑎2 + 𝑎5 + 𝑎1(1 + 𝑧

∗) −
𝑎2𝑎3 

1+𝑧∗
+ 𝑎4𝑧

∗⌋ ×

[𝑎5(𝑎2 + 2𝑎4𝑧
∗) −

𝑎2 𝑎3(𝑎1+𝑎5

1+𝑧∗
+ 𝑎1(𝑎2 + 𝑎5 + 𝑎4𝑧

∗ )(1 + 𝑧∗]                                      (2.16) 

 

 

Further, from equation (2.5) we write 𝑎2 and 𝑎3 as: 

                               𝑎2𝑎3 = 𝑎4(𝑧
∗)2 + 𝑎4𝑧

∗ + 𝑎2𝑧
∗ + 𝑎2                                              (2.17) 

 

Substituting equation (2.13) into equation (2.12) and simplifying all the parameters, we 

obtain 

 

𝑏1 + 𝑑1 = 𝑎1(1 + 𝑧
∗) + 𝑎5,           𝑏3 + 𝑑3 + 𝑧

∗𝑎1𝑎5(𝑎2 + 𝑎4(1 + 2𝑧
∗)) 

Whilst  

𝛽 = 𝑎1𝑎5
2(1 + 𝑧∗) + 𝑎4𝑎5

2𝑧∗ + 𝑎1
2(1 + 𝑧∗)(𝑎2𝑧

∗ + 𝑎4(𝑧
∗)2 + 𝑎5(1 + 𝑧

∗))                 (2.18) 

 

Hence, in accordance with proposition 2.2, we conclude that equation (2.12) satisfies 

the conditions of proposition 2.2 and therefore asymptotically stable. 

 

Further, from the above deductions, patients with strong CTL will have a higher stable 

state and low viral haul. This indicates that patients with low CTL will demonstrate a 

higher rate of viral infection. Conditions in proposition 2.1 are satisfied by maintaining 

the physical parameters such as  𝛿1, 𝛿3, 𝛿4, 𝛿5, 𝑎3 > 1  𝑎𝑛𝑑 𝑎3 < 1. Hence, when  𝑎3 > 1, 

intimates a successful infection by the virus. Therefore the uninfected steady state in 

equation (2.5) relinquishes its stability, whilst the tainted steady state in equation (2.7) 

becomes stable.  

 

2.4     SUMMARY 

The focus of the chapter has been on three main basic sections, such as the 

background pertaining to HIV/ AIDS, biological background of the deadly disease and 

how to develop deterministic ODE models for further transformation to intracellular 

delay differential equation. The history of HIV has been referenced as early as 1920, 
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when HIV-1 in humans, was discovered through the blood samples of a man from 

Kinshasa, in the democratic republic of Congo. Genetic analysis further revealed the 

existence of HIV-2 in humans, which is less infectious than HIV-1 

The biological background has provided an insight on how the virus evades the human 

resistive system reliably. The query still remains on how, a particular virus is able to 

produce so many strains in a tainted individual.  

 

Currently chapter three, been the next chapter is aligned with the modelling of in vivo, in 

vitro and in silico analysis. Further, the chapter is incorporated with, within host 

deterministic modelling of HIV continual and pointer to modelling of intracellular delay. 
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CHAPTER 3 

SCIENTIFIC MODELLING OF HIV  

3.0    INTRODUCTION 

Refreshingly chapter two has been a pointer to the background pertaining to HIV/ AIDS, 

biological background of the deadly disease and how to develop deterministic ODE 

models for further transformation to delay differential equation. Currently chapter three 

is aligned with the modelling of in vivo, in vitro and in silico analysis. The chapter further 

deals with, within host deterministic modelling of HIV/AIDS continual and modelling of 

intracellular delay. 

 

 

3.1.1    MODELLING IN TERMS OF IN VIVO ANALYSIS 
 
This type of analysis involves a careful study of an organism in its natural environment, 

hence application of in-vivo analysis to HIV/AIDS in the case of human, requires clinical 

trials [43, 48, 101]. A controlled group is carefully pursued and monitored and may 

sometimes be fruitful or unfruitful due to treatment interruption. This is because, a 

particular STI regime could be stopped earlier, when the trials are unsuccessful [18, 19]. 

Several approaches have been devised in monitoring or studying this menace and male 

circumcision [26, 27, 28], has been momentous in minimizing the spread of HIV. The 

use of animals such as infected SIV macaque monkey as proxy, instead of humans has 

been insightful in providing useful information to scientist about HIV advancement. This 

is because HIV belongs to a family of virus which cannot propagate on their own [14, 

48, 63], yet remains very virulent inside a host cell. A lot of viruses belong to the family 

of HIV and possess similar species characteristics. Scientists are therefore able to track 

a number of hosts in discovering HIV vaccine [29, 30]. Notwithstanding, clinical trials 

with humans are still considered as authentic, due to the slight difference between HIV 

and SIV. However, the chimeric mice have proven to be a good proxy for human, since 

it demonstrates similar cell characteristics and can be infected with HIV as well. Further, 

they are easy to produce in large quantities and have cells which resemble the complex 

human immune system, compared to using a costly infected chimpanzee as proxy [25]. 
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It is however noted that the slow infection rate of HIV requires a longer amount of time 

in obtaining results. The earliest rate of obtaining HIV results is associated with feline 

immunodeficiency virus (FIV), an ‘HIV-like sickness’ which takes 6 to 8 years before the 

tainted individual dies. This contagion is similar to HIV progression, especially when the 

progression occurs in the soonest of time [26,154,155, 156, 157]. The in-vivo approach 

of modelling HIV is credited for the development and testing of new drugs. 

 

 

3.1.2    MODELLING IN TERMS OF IN VITRO ANALYSIS 

This method of modelling, in terms of in vitro analysis has been the pointer and success 

to the recognition of HIV. It requires scientist to obtain information, or data outside the 

defined environment of the organism under consideration. This modelling revolves 

around molecular biology but unfortunately, results obtained by this type of analysis are 

less accurate due to inexact cellular conditions for organisms. [28]. 

 

 

 

3.1.3    MODELLING IN TERMS OF IN SILICO 

In the quest of discovering a vaccine for HIV by scientist [29, 30, 72], scientist have 

applied several approaches and modelling techniques, and the chief among such, is the 

in vivo and in vitro analysis. However, in-vivo and in-vitro analysis require mathematical 

simulations to integrate the pieces of information procured from such analysis or 

modelling. The use of computer simulations in such biological experiments is called in 

silico analysis. This scientific approach [39] intimates that mathematical models are 

platforms, for most computer simulations and hence fruitful through scientific 

interactions. 

 

 

3.2.   REVIEW OF PRE- DETERMINISTIC MODELLING  

 Modelling epidemic diseases using mathematical concepts has not only broadened our 

knowledge on HIV over the last decade [1, 2, 3, 4, 5, 6], but has also provided answers 
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and clues to areas of the pandemic that has not been explored. Several researchers 

have invented stochastic and deterministic models, which have imparted positively to 

the control of the virus and also tremendously on drug therapy [24, 25]. Over the years 

most scientist have resulted to the top down deterministic approach [42, 137], which has 

yielded successful results. Therefore application of mathematical concepts to epidemic 

disease has been progressive, from single-target-cell models to multi-target-cell models 

[40, 53, 54, 64, 65, 66]. 

 

Reibnegger et al. were among the early scientist who focused their discoveries on the 

immune system. According to Reibnegger et al. infected cells are progressively 

depleted in the passage of time leading to AIDS eventually. This is supported by 

Perelson et al. who initiated a categorized DDE model with various CD4+T cells. His 

compartment or population was embodied with Virgin cells, active cells and memory 

cells, which interacts with the HIV virus; hence the virus was produced by the active 

cells. Memory cells were only involved when they were triggered to beget a virus, a 

case similar to latent cells which are only activated when therapy is stopped [34, 116]. 

In congruence to the early discoveries made on the progression of HIV, Nowak et al, 

contributed to the discoveries by focusing on the dominant duplicative rate of the virus, 

as a platform for antigenic diversity and a minimum margin for the immune system to 

operate. He intimated that HIV invasion beyond the minimum margin, leads to the 

production of more viral strains. The production of viral strains is inhibited by the human 

resistive system and hence AIDS intercept [38, 39, 75, 76, 77, 78].  Therefore, Nowak’s 

model is aligned with the high replication rate of the virus and the regulation of DRM 

associated with therapy regime.  

 

Nevertheless precise computation of viral haul has changed the focus on high viral 

replication drastically and making it possible to access a person’s viral haul in the 

passage of time [101, 113, 118].  
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3.3.1    THE SINGLE-TARGET-CELL MODEL (STC) 

Refreshingly, the decay rate of a virus was precisely computed for the first time in the 

mid-1990, based on the progress made on current protease inhibitor (PI) drugs. The 

computation was made possible by administering (PI) drugs in relation to other drugs, 

which inhibited viral replication. However viral suppression by drugs could not provide a 

continual sustenance, hence Wei et al, in 1995 explained the consistent replication of 

the virus. He indicated that the replication of the virus was at maximum compared with 

previous information [50, 32]. Per Wei et al. the least computation estimate of viral 

production was 108 virions per day, based on 100% efficient drug usage [29, 100].The 

high production rate was attributed to imminent resistance to mono-therapy. However, 

after few weeks of administering the drugs [24, 25], some of the virus became mutants 

to the drugs and reduced its efficacy.  

 

Hence, Perelson et al. contributed to the viral production rate by expounding equation 

3.1 and hence developed a short term model. The model explains the rapid 

multiplication of the virus on short term basis [149, 162]. Hence the model operates on 

the assumption that pre-treatment viral levels are constant, when therapy is aligned to a 

stable system. Clinical latency was also acknowledged, whilst viral load disintegrates 

[34, 116,]. The developed STC model is composed of four key cells, aimed at describing 

the ‘rate of change’ of the viral load. The equation is expounded as: 

 

𝑑𝑇𝑝(𝑡)

𝑑𝑡
= 𝜆𝑝 − 𝛿𝑝(𝑡) − (1 − 𝜖𝑟𝑡)𝑘𝑝𝑉𝑖(𝑡)𝑇𝑝(𝑡)                                                                            

𝑑𝑇𝑝
∗(𝑡)

𝑑𝑡
= (1 − 𝜖𝑟𝑡)𝑘𝑝𝑉𝑖(𝑡)𝑇𝑝(𝑡) − 𝛿𝑇𝑝

∗  

𝑑𝑉𝑖(𝑡)

𝑑𝑡
= (1 − 𝜖𝑝)𝑁𝑇𝛿𝑇𝑃

∗(𝑡) − 𝑐𝑉𝑖(𝑡)  

𝑑𝑉𝑛𝑖(𝑡)

𝑑𝑡
= 𝜖𝑝𝑁𝑇𝛿𝑇𝑃

∗(𝑡) − 𝑐𝑉𝑛𝑖(𝑡)                                                                                               (3.1) 

 

The above equation is called the top-down deterministic model, with the following 

parameters: 𝑇𝑝  = infected virus,  𝜆𝑝 = rate of production of uninfected virus. 𝛿𝑝=rate at 

which the cells die, 𝑉𝑖= rate of change of infectious virus, 𝛿= death rate of infectious 

virus, 𝜖𝑟𝑡 = reverse transcription inhibitor, 𝑁𝑇 = virus production rate, C = rate at which 
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virus die, 𝑉𝑛𝑖 = non-infectious virus. Table 3.1 depicts some of the parameters and their 

definitions for the single target cell model. 

 

 

VARIABLE GROUPS DEFINITION 

𝑻𝒑 𝑐𝑒𝑙𝑙𝑠

𝑚𝑙
 

key target cells         

i.e.𝐶𝐷4+𝑇 cells ) 

𝑻𝒑
∗  𝑐𝑒𝑙𝑙𝑠

𝑚𝑙
 

 Key target acutely tainted 

cells 

𝑽𝒊 𝑣𝑖𝑟𝑖𝑜𝑛𝑠

𝑚𝑙
 

Amount of tainted  virus  

𝑽𝒏𝒊 𝑣𝑖𝑟𝑖𝑜𝑛𝑠

𝑚𝑙
 

Amount of Non-tainted virus 

 

TABLE 3.1: Parameters and definitions for the single target cell model   

 

 

  

3.3.2   THE MULTIPLE-TARGET-CELL MODEL (MTC) 

The foundation for a more complex model has been echoed by the above STC model in 

section 3.3.1. However, the introduction of complex parameters have influenced the 

precision of the STC model and hence switching to models which incorporates key 

parameters relevant in dealing with treatment options [78, 79]. It is noted that such 

complexity could not be dealt with by the short-term ODE models, but the multiple target 

cell model. Multiple target-cell-models are oriented from increased number of target 

cells, such as primary and secondary target cells. It further permits several viral 

production rates by acknowledging chronic infection and increased details on the 

immune system. Multiple target cell models are further aligned with modelling of non-

zero viral haul which is vital for long duration dynamics of treatment options [62, 165]. 

Two types of multiple target cell models are considered for discussion below; the 
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multiple target cell model for chronic infection (MTC-CI) and multiple-target-cell model 

for immune response (MTC-IR)  

 

 

3.3.3     MULTIPLE-TARGET-CELL MODEL FOR CHRONIC INFECTION (MTC-CI) 

It is worth to note that small residual of infected cells, ignites a re-stimulation of high 

viral replication. This is attributed to the particle nature of viruses outside a host cell and 

the tenacity to ignite an infection within a living cell [82, 165]. Hence the evolution of 

models with longer dynamics and capacity, such as the multiple targets cell model for 

chronic infection (MTC-CI). The MTC-CI model is appropriate to facilitate such complex 

behavior of the virus. [11, 39 ]. Find below the MTC-CI model for discussion; 

 

𝑑𝑇𝑝

𝑑𝑡
= 𝜆𝑝 − 𝛿𝑝𝑇𝑃 − (1 − 𝜖)𝑘𝑝𝑉𝑇𝑃  

𝑑𝑇𝑠

𝑑𝑡
= 𝜆𝑠 − 𝛿𝑠𝑇𝑠 − (1 − 𝑓𝜖)𝑘𝑠𝑉𝑇𝑠  

𝑑𝑇𝑝
∗

𝑑𝑡
= (1 − 𝛼)(1 − 𝜖)𝑘𝑝𝑉𝑇𝑃 − 𝛿𝑇𝑝

∗  

𝑑𝑇𝑠
∗

𝑑𝑡
= (1 − 𝛼)(1 − 𝑓𝜖)𝑘𝑠𝑉𝑇𝑠 − 𝛿𝑇𝑠

∗  

𝑑𝐶𝑝
∗

𝑑𝑡
= 𝛼(1 − 𝜖)𝑘𝑝𝑉𝑇𝑃 − 𝜇𝐶𝑇𝑝

∗                                                                                    (3.2) 

𝑑𝐶𝑠
∗

𝑑𝑡
= 𝛼(1 − 𝑓𝜖)𝑘𝑠𝑉𝑇𝑠 − 𝜇𝐶𝑇𝑠

∗  

𝑑𝑉

𝑑𝑡
= 𝑁𝑇𝛿(𝑇𝑝

∗ + 𝑇𝑠
∗) + 𝑁𝑐𝜇(𝐶𝑃

∗ + 𝑐𝑠
∗) − 𝑐𝑉  

Comparatively, equation (3.2) is heterogeneous to equation (3.1) and therefore 

acknowledges the incorporation of secondary target cells, (𝑇𝑝 and 𝑇𝑠) as parameters. 

Other parameters include the amount of virions produced over a period of time 

represented by (𝐶𝑝 and 𝐶𝑠). Additional variables and definitions for equation 3.2 are 

stipulated in Table 3.2 below. 
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VARIABLE GROUPS  DEFINITION 

𝑻𝑷 𝐶𝑒𝑙𝑙𝑠

𝑚𝑙
 

key target cells 

(𝐶𝐷4+𝑐𝑒𝑙𝑙𝑠) 

𝑻𝑷
∗  𝐶𝑒𝑙𝑙𝑠

𝑚𝑙
 

Key  target tainted cell 

V 𝑣𝑖𝑟𝑖𝑜𝑛𝑠

𝑚𝑙
 

Amount of  tainted 

virus  

𝑻𝒔 𝐶𝑒𝑙𝑙𝑠

𝑚𝑙
 

Underlying target cells 

e.g. macrophages 

𝑻𝑺
∗  𝐶𝑒𝑙𝑙𝑠

𝑚𝑙
 

Underlying target 

acutely tainted cells 

𝑪𝑷
∗  𝐶𝑒𝑙𝑙𝑠

𝑚𝑙
 

Target chronically 

tainted cells 

𝑪𝑺
∗  𝐶𝑒𝑙𝑙𝑠

𝑚𝑙
 

Underlying target 

chronically tainted 

cells 

 

TABLE 3.2: MTC-CI MODEL (Variables for the model and their definitions) 

 

 

3.3.4    THE MULTIPLE-TARGET-CELL MODEL FOR IMMUNE RESPONSE (MTC-IR) 

The (MTC-IR) model deals with prolonged HIV advancement and the embodiment of a 

more precise feature of the human resistive system, which supports further evaluation 

of viral reflex. MTC-IR models as described above are more detailed when embodied 

with the immune response component. Find below the model for discussion: 

 

 
𝑑𝑇𝑃

𝑑𝑡
= 𝜆𝑝 − 𝛿𝑝𝑇𝑝 − (1 − 𝜖)𝑘𝑝𝑉𝑇𝑃 

𝑑𝑇𝑠

𝑑𝑡
= 𝜆𝑠 − 𝛿𝑠𝑇𝑠 − (1 − 𝑓𝜖)𝑘𝑠𝑉𝑇𝑠  
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𝑑𝑇𝑝
∗

𝑑𝑡
= (1 − 𝜖)𝑘𝑝𝑉𝑇𝑃 − 𝛿𝑇𝑝

∗ −𝑚𝑝𝐸𝑇𝑝
∗  

𝑑𝑇𝑠
∗

𝑑𝑡
= (1 − 𝑓𝜖)𝑘𝑠𝑉𝑇𝑠 − 𝛿𝑇𝑠

∗ −𝑚𝑠𝐸𝑇𝑠
∗  

𝑑𝑉

𝑑𝑡
= 𝑁𝑇𝛿(𝑇𝑝

∗ + 𝑇𝑠
∗) − [(1 − 𝜖)𝑝𝑝𝑘𝑝𝑇𝑝 + (1 + 𝑓𝜖)𝑝𝑠𝑘𝑠𝑇𝑠]𝑉 − 𝑐𝑉  

𝑑𝐸

𝑑𝑡
= 𝜆𝐸 +

𝑏𝐸(𝑇𝑝
∗+𝑇𝑠

∗

(𝑇𝑝
∗+𝑇𝑠

∗)+𝑘𝑏
𝐸 −

𝑑𝐸(𝑇𝑝
∗+𝑇𝑠

∗

(𝑇𝑝
∗+𝑇𝑠

∗)+𝐾𝑑
𝐸 − 𝛿𝐸𝐸                                                                (3.3) 

  

The equation above is a multifold model similar to the MTC-CI model discussed above. 

It is concentrated on two types of cells, namely CD4+T cells and macrophages cells 

which are fragile to HIV infection.  However additional cells have been added to the 

model due to increase in the number of compartments involved. The operations of 

equation 3.3 are peculiar to the MTC-CI model but short of the chronic infection 

component represented by (𝐶𝑝 and 𝐶𝑠).  

 

Notwithstanding, the above model compared to the MTC-CI model is further activated 

by the removal of the following parameters: tainted cells represented by 

(𝑚𝑝𝐸𝑇𝑝
∗ 𝑎𝑛𝑑 𝑚𝑠) and effector cells (E), Additional variables for the model are defined in 

table 3.2 below. 
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Variable Units Description 

𝑻𝒑 𝑐𝑒𝑙𝑙𝑠

𝑚𝑙
 

key target cell (C𝐷4+Cells) 

𝑻𝒑
∗  𝑐𝑒𝑙𝑙𝑠

𝑚𝑙
 

key target tainted cells 

V 𝑣𝑖𝑟𝑖𝑜𝑛𝑠

𝑚𝑙
 

contagious virus 

concentration 

𝑻𝒔 𝑐𝑒𝑙𝑙𝑠

𝑚𝑙
 

Underlying target cells (eg 

macrophages) 

𝑻𝒔
∗ 𝑐𝑒𝑙𝑙𝑠

𝑚𝑙
 

 Target productively tainted 

cells 

E 𝑐𝑒𝑙𝑙𝑠

𝑚𝑙
 

Effector cells 

 

Table 3.3: MTC-IR (variables and their descriptions) 

 

 

 

3.3.5     DOUBLING-TIME AND HALF-LIFE 

The duration relevant for a specified group of virus to increase in size when treatment 

options have been discontinued is called viral doubling-time. Find below the formula 

used for calculating the viral doubling-time 

 

𝑇𝑑 = (𝑡2 − 𝑡1)
ln (2)

ln (
𝑞2
𝑞1
)
                                                                                                   (3.4) 

Where 𝑇𝑑 represents the viral doubling-time, 𝑡 1 and 𝑡2 represents the growth duration, 

stipulated by (𝑞1,𝑞2). The growth rate is exponential and is not applicable to the whole 

model for a given infection. It is however significant in the maiden stages of the 

infection, where there is limited amount of infection.  The parameter  ln(2) is the 
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duration required for the system to double in size. Hence when a cell fails to double in 

size but rather reduce in size, the process is called half-life. Half-life occurs when a 

system dissociates with respect to time as a result of therapy removal. Find below the 

equation for a half-life: 

 

𝑇1
2

= (𝑡2 − 𝑡1)
ln (2)

ln (
𝑞1
𝑞2
)
                                                                                                    (3.5) 

 

Equation (3.4) is similar to equation (3.5), the difference lays with the ratio  
𝑞2
𝑞1⁄ . The 

presence of 
𝑞2
𝑞1⁄  accounts for the duration needed for a system to decrease in size. 

Doubling-time and half-life can be calculated easily by using clinical viral load data. 

Calculations made on viral doubling time and half-life is used in determining the 

effectiveness of intracellular delay in the model. 

 

 

3.4     MODELLING MTC-CI WITH INTRACELLULAR DELAY (MTC-CI-ID) 

In an attempt to model an MTC-CI, we initiate a classical model defined as follows: 

𝑆̇ = Λ − (𝛼(𝑥) + 𝛾1 + 𝜇1)𝑆  

𝐼 = 𝛼(𝑥)𝑆 − (𝜀 +̇ 𝜉 + 𝜆 + 𝜇1)𝐼  

𝐼𝐴̇ = 𝜉𝐼 − (𝜃 + 𝜇 + 𝑋 + 𝜇1)𝐼𝐴  

𝐼𝐷̇ = 𝜖𝐼 − (𝜂 + 𝜑 + 𝜇1)𝐼𝐷  

𝐼𝑅̇ = 𝜂𝐼𝐷 + 𝜃𝐼𝐴 − (𝜐 + 𝜉 + 𝜇1)𝐼𝑅                                                                         (3.6) 

𝐼𝑇̇ = 𝜇𝐼𝐴 + 𝜐𝐼𝑅 − (𝜎 + 𝜏 + 𝜇1)𝐼𝑇  

𝑅̇ = 𝜆𝐼 + 𝜑𝐼𝐷 + 𝑋𝐼𝐴 + 𝜉𝐼𝑅 + 𝜎𝐼𝑇 − (𝜙 + 𝜇1)𝑅  

𝐷̇ = 𝜏𝐼𝑇 − 𝜇1𝐷  

𝑉̇ = 𝛾1𝑆 + 𝜙𝑅 − 𝜇1𝑉 − 𝜏𝐼𝑇  

 

Further, equation 3.6 is simplified and the equations below resulted thereof: 

 

 



42 
 

𝑠̇ = 𝑠̃(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅,𝐼𝑇 , 𝑅, 𝐷, 𝑉)  

𝐼̇ = 𝐼(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)  

𝐼𝐴̇ = 𝐼𝐴(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)  

𝐼𝐷̇ = 𝐼𝐷(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)  

𝐼𝑅̇ = 𝐼𝑅(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)                                                                         (3.7) 

𝐼𝑇̇ = 𝐼𝑇(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)  

𝑅̇ = 𝑅̃(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)  

𝐷 = 𝐷̃̇ (𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)  

𝑉̇ = 𝑉̃(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)  

 

Equating 3.6 and 3.7, we obtain the following: 

 

𝑠̃(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅,𝐼𝑇 , 𝑅, 𝐷, 𝑉) =  Λ − (𝛼(𝑥) + 𝛾1 + 𝜇1)𝑆  

 𝐼(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉) = 𝛼(𝑥)𝑆 − (𝜀 +̇ 𝜉 + 𝜆 + 𝜇1)𝐼  

𝐼𝐴(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉) = 𝜉𝐼 − (𝜃 + 𝜇 + 𝑋 + 𝜇1)𝐼𝐴  

𝐼𝐷(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉) = 𝜖𝐼 − (𝜂 + 𝜑 + 𝜇1)𝐼𝐷  

𝐼𝑅(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉) = 𝜂𝐼𝐷 + 𝜃𝐼𝐴 − (𝜐 + 𝜉 + 𝜇1)𝐼𝑅                                    (3.8) 

𝐼𝑇(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉) = 𝜇𝐼𝐴 + 𝜐𝐼𝑅 − (𝜎 + 𝜏 + 𝜇1)𝐼𝑇  

𝑅̃(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉) = 𝜆𝐼 + 𝜑𝐼𝐷 + 𝑋𝐼𝐴 + 𝜉𝐼𝑅 + 𝜎𝐼𝑇 − (𝜙 + 𝜇1)𝑅  

𝐷̇̃(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉) = 𝜏𝐼𝑇 − 𝜇1𝐷  

𝑉̃(𝑡, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉) = 𝛾1𝑆 + 𝜙𝑅 − 𝜇1𝑉 − 𝜏𝐼𝑇  

 

Next we apply the fractal- fractional integral with exponential kernel to equation 3.8 and 

obtain the following: 

𝑠(𝑡𝑝+1) = 𝑠(𝑡𝑝) + [
𝑠̃(𝑡𝑝, 𝑆

𝑝, 𝐼𝑃, 𝐼𝐴
𝑃, 𝐼𝐷

𝑃 , 𝐼𝑅
𝑃, 𝐼𝑇

𝑃, 𝑅𝑃𝐷𝑃, 𝑉𝑃)

−𝑆̃(𝑡𝑝−1, 𝑆
𝑝−1, 𝐼𝑝−1, 𝐼𝐴

𝑃−1, 𝐼𝐷
𝑃−1, 𝐼𝑅

𝑃−1, 𝐼𝑇
𝑃−1, 𝑅𝑃−1, 𝐷𝑃−1, 𝑉𝑃−1)

]    

 

+∫ 𝑆̃(𝜏
𝑡𝑝+1

𝑡𝑝

, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)𝑑𝜏 
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𝐼(𝑡𝑝+1) = 𝐼(𝑡𝑝) + [
𝐼(𝑡𝑝, 𝑆

𝑝, 𝐼𝑃, 𝐼𝐴
𝑃, 𝐼𝐷

𝑃, 𝐼𝑅
𝑃, 𝐼𝑇

𝑃, 𝑅𝑃𝐷𝑃, 𝑉𝑃)

−𝐼(𝑡𝑝−1, 𝑆
𝑝−1, 𝐼𝑝−1, 𝐼𝐴

𝑃−1, 𝐼𝐷
𝑃−1, 𝐼𝑅

𝑃−1, 𝐼𝑇
𝑃−1, 𝑅𝑃−1, 𝐷𝑃−1, 𝑉𝑃−1)

]  

 

+∫ 𝐼(𝜏
𝑡𝑝+1

𝑡𝑝

, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)𝑑𝜏 

 

𝐼𝐴(𝑡𝑝+1) = 𝐼𝐴(𝑡𝑝) + [
𝐼𝐴(𝑡𝑝, 𝑆

𝑝, 𝐼𝑃, 𝐼𝐴
𝑃, 𝐼𝐷

𝑃, 𝐼𝑅
𝑃, 𝐼𝑇

𝑃, 𝑅𝑃𝐷𝑃, 𝑉𝑃)

−𝐼𝐴(𝑡𝑝−1, 𝑆
𝑝−1, 𝐼𝑝−1, 𝐼𝐴

𝑃−1, 𝐼𝐷
𝑃−1, 𝐼𝑅

𝑃−1, 𝐼𝑇
𝑃−1, 𝑅𝑃−1, 𝐷𝑃−1, 𝑉𝑃−1)

]     

 

+∫ 𝐼𝐴(𝜏
𝑡𝑝+1

𝑡𝑝

, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)𝑑𝜏 

 

𝐼𝐷(𝑡𝑝+1) = 𝐼𝐷(𝑡𝑝) + [
𝐼𝐷(𝑡𝑝, 𝑆

𝑝, 𝐼𝑃, 𝐼𝐴
𝑃, 𝐼𝐷

𝑃, 𝐼𝑅
𝑃, 𝐼𝑇

𝑃, 𝑅𝑃𝐷𝑃, 𝑉𝑃)

−𝐼𝐷(𝑡𝑝−1, 𝑆
𝑝−1, 𝐼𝑝−1, 𝐼𝐴

𝑃−1, 𝐼𝐷
𝑃−1, 𝐼𝑅

𝑃−1, 𝐼𝑇
𝑃−1, 𝑅𝑃−1, 𝐷𝑃−1, 𝑉𝑃−1)

]    (3.9) 

 

+∫ 𝐼𝐷(𝜏
𝑡𝑝+1

𝑡𝑝

, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)𝑑𝜏 

𝐼𝑅(𝑡𝑝+1) = 𝐼𝑅(𝑡𝑝) + [
𝐼𝑅(𝑡𝑝, 𝑆

𝑝, 𝐼𝑃, 𝐼𝐴
𝑃, 𝐼𝐷

𝑃, 𝐼𝑅
𝑃, 𝐼𝑇

𝑃, 𝑅𝑃𝐷𝑃, 𝑉𝑃)

−𝐼𝑅(𝑡𝑝−1, 𝑆
𝑝−1, 𝐼𝑝−1, 𝐼𝐴

𝑃−1, 𝐼𝐷
𝑃−1, 𝐼𝑅

𝑃−1, 𝐼𝑇
𝑃−1, 𝑅𝑃−1, 𝐷𝑃−1, 𝑉𝑃−1)

]  

 

+∫ 𝐼𝑅(𝜏
𝑡𝑝+1

𝑡𝑝

, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)𝑑𝜏 

𝐼𝑇(𝑡𝑝+1) = 𝐼𝑇(𝑡𝑝) + [
𝐼𝑇(𝑡𝑝, 𝑆

𝑝, 𝐼𝑃, 𝐼𝐴
𝑃, 𝐼𝐷

𝑃, 𝐼𝑅
𝑃, 𝐼𝑇

𝑃, 𝑅𝑃𝐷𝑃, 𝑉𝑃)

−𝐼𝑇(𝑡𝑝−1, 𝑆
𝑝−1, 𝐼𝑝−1, 𝐼𝐴

𝑃−1, 𝐼𝐷
𝑃−1, 𝐼𝑅

𝑃−1, 𝐼𝑇
𝑃−1, 𝑅𝑃−1, 𝐷𝑃−1, 𝑉𝑃−1)

]          

 

+∫ 𝐼𝑇(𝜏
𝑡𝑝+1

𝑡𝑝

, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)𝑑𝜏 

𝑅(𝑡𝑝+1) = 𝑅(𝑡𝑝) + [
𝑅̃(𝑡𝑝, 𝑆

𝑝, 𝐼𝑃, 𝐼𝐴
𝑃, 𝐼𝐷

𝑃, 𝐼𝑅
𝑃, 𝐼𝑇

𝑃, 𝑅𝑃𝐷𝑃, 𝑉𝑃)

−𝑅̃(𝑡𝑝−1, 𝑆
𝑝−1, 𝐼𝑝−1, 𝐼𝐴

𝑃−1, 𝐼𝐷
𝑃−1, 𝐼𝑅

𝑃−1, 𝐼𝑇
𝑃−1, 𝑅𝑃−1, 𝐷𝑃−1, 𝑉𝑃−1)

]   
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+∫ 𝑅̃(𝜏
𝑡𝑝+1

𝑡𝑝

, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)𝑑𝜏 

 

𝐷(𝑡𝑝+1) = 𝐷(𝑡𝑝) + [
𝐷̃(𝑡𝑝, 𝑆

𝑝, 𝐼𝑃, 𝐼𝐴
𝑃, 𝐼𝐷

𝑃, 𝐼𝑅
𝑃, 𝐼𝑇

𝑃, 𝑅𝑃𝐷𝑃, 𝑉𝑃)

−𝐷̃(𝑡𝑝−1, 𝑆
𝑝−1, 𝐼𝑝−1, 𝐼𝐴

𝑃−1, 𝐼𝐷
𝑃−1, 𝐼𝑅

𝑃−1, 𝐼𝑇
𝑃−1, 𝑅𝑃−1, 𝐷𝑃−1, 𝑉𝑃−1)

]   

 

+∫ 𝐷̃(𝜏
𝑡𝑝+1

𝑡𝑝

, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)𝑑𝜏 

 

𝑉(𝑡𝑝+1) = 𝑉(𝑡𝑝) + [
𝑉̃(𝑡𝑝, 𝑆

𝑝, 𝐼𝑃, 𝐼𝐴
𝑃, 𝐼𝐷

𝑃, 𝐼𝑅
𝑃, 𝐼𝑇

𝑃, 𝑅𝑃𝐷𝑃, 𝑉𝑃)

−𝑉̃(𝑡𝑝−1, 𝑆
𝑝−1, 𝐼𝑝−1, 𝐼𝐴

𝑃−1, 𝐼𝐷
𝑃−1, 𝐼𝑅

𝑃−1, 𝐼𝑇
𝑃−1, 𝑅𝑃−1, 𝐷𝑃−1, 𝑉𝑃−1)

]   

 

+∫ 𝑉̃(𝜏
𝑡𝑝+1

𝑡𝑝

, 𝑆, 𝐼, 𝐼𝐴, 𝐼𝐷 , 𝐼𝑅 , 𝐼𝑇 , 𝑅, 𝐷, 𝑉)𝑑𝜏 

 

 Now we introduce into equation 3.9 the following; primary target cell 𝑇𝑝, contagious 

virus V, Macrophage cells 𝑇𝑠 and effector cells ∈ and differentiate the system of 

equations with respect to time (t). When the parameters were simplified, the equations 

below resulted thereof; 

 

𝑑𝑇𝑝

𝑑𝑡
= 𝜆𝑝 − 𝛿𝑝𝑇𝑃 − (1 − 𝜖)𝑘𝑝𝑉𝑇𝑃  

𝑑𝑇𝑠

𝑑𝑡
= 𝜆𝑠 − 𝛿𝑠𝑇𝑠 − (1 − 𝑓𝜖)𝑘𝑠𝑉𝑇𝑠  

𝑑𝑇𝑝
∗

𝑑𝑡
= (1 − 𝛼)(1 − 𝜖)𝑘𝑝𝑉𝑇𝑃 − 𝛿𝑇𝑝

∗  

𝑑𝑇𝑠
∗

𝑑𝑡
= (1 − 𝛼)(1 − 𝑓𝜖)𝑘𝑠𝑉𝑇𝑠 − 𝛿𝑇𝑠

∗                                                                (3.10) 

𝑑𝐶𝑝
∗

𝑑𝑡
= 𝛼(1 − 𝜖)𝑘𝑝𝑉𝑇𝑃 − 𝜇𝐶𝑇𝑝

∗                                                                                     

𝑑𝐶𝑠
∗

𝑑𝑡
= 𝛼(1 − 𝑓𝜖)𝑘𝑠𝑉𝑇𝑠 − 𝜇𝐶𝑇𝑠

∗  
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𝑑𝑉

𝑑𝑡
= 𝑁𝑇𝛿(𝑇𝑝

∗ + 𝑇𝑠
∗) + 𝑁𝑐𝜇(𝐶𝑃

∗ + 𝑐𝑠
∗) − 𝑐𝑉  

Next we consolidate into equation 3.10 the delay component, which yields the MTC-CI-

ID model as shown below: 

𝑑𝑇𝑝(𝑡)

𝑑𝑡
= 𝜆𝑝 − 𝛿𝑝𝑇𝑃(𝑡) − (1 − 𝜖)𝑘𝑝𝑉(𝑡)𝑇𝑃(𝑡)  

𝑑𝑇𝑠(𝑡)

𝑑𝑡
= 𝜆𝑠 − 𝛿𝑠𝑇𝑠(𝑡) − (1 − 𝑓𝜖)𝑘𝑠𝑉𝑇𝑠  

𝑑𝑇𝑝
∗(𝑡)

𝑑𝑡
= (1 − 𝛼)(1 − 𝜖)𝑘𝑝𝑉(𝑡 − 𝜏)𝑇𝑃(𝑡 − 𝜏)𝑒

−𝛿𝜏 − 𝛿𝑇𝑝
∗(𝑡)                                      (3.11) 

𝑑𝑇𝑠
∗

𝑑𝑡
= (1 − 𝛼)(1 − 𝑓𝜖)𝑘𝑠𝑉(𝑡 − 𝜏)𝑇𝑠(𝑡 − 𝜏)𝑒

−𝛿𝜏 − 𝛿𝑇𝑠
∗(𝑡)  

𝑑𝐶𝑝
∗(𝑡)

𝑑𝑡
= 𝛼(1 − 𝜖)𝑘𝑝𝑉(𝑡 − 𝜏)𝑇𝑃(𝑡 − 𝜏)𝑒

𝜇𝜏 − 𝜇𝐶𝑇𝑝
∗(𝑡)                                                                                

𝑑𝐶𝑠
∗(𝑡)

𝑑𝑡
= 𝛼(1 − 𝑓𝜖)𝑘𝑠𝑉(𝑡 − 𝜏)𝑇𝑠(𝑡 − 𝜏) − 𝜇𝐶𝑇𝑠

∗(𝑡)  

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑁𝑇𝛿(𝑇𝑝

∗(𝑡) + 𝑇𝑠
∗(𝑡)) + 𝑁𝑐𝜇(𝐶𝑃

∗(𝑡) + 𝑐𝑠
∗(𝑡)) − 𝑐𝑉(𝑡)  

 

From the above model, 𝑇𝑝 represents the untainted CD4+ T cells, 𝑇𝑠 the untainted 

secondary cell (macrophage), 𝑇𝑝
∗ and  𝑇𝑠

∗ respectively represents tainted CD4+T cells 

and macrophage, V denotes viral delay component, 𝑒−𝛿𝜏 represents the rate at which 

target cells die and  𝑒𝜇𝜏 represents the chronic infection rate.  
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CHAPTER 4 

MODELLING OF INTRACELLUAR DELAY AND THERAPY INTERRUPTIONS 

4.0   INTRODUCTION 

Chapter three was engaging with the modelling of in vivo, in vitro and in silico analysis. 

It further dealt with within host deterministic modelling of HIV/AIDS continual and 

modelling of intracellular delay. Chapter four is interlocked with modelling of intracellular 

delay, well posedness and existence of equilibrium points. A further consideration is 

given to the global stability of equilibrium and the endemic equilibrium. Existence and 

proof for the existence of Hopf Bifurcation are simulated by this chapter and a 

confirmation of the results by numerical simulation. The chapter finally concludes on the 

analysis of structured treatment interruptions. 

 

 

4.1      MODELLING INTRACELLULAR DELAY  

Delay differential equations (DDEs) have been valuable for innumerable years in control 

theory and recently interrelated to biological and mathematical models. Most biological 

frames [36] have time delay embedded in them, yet few scientist collaborate them due 

to the intricacies they stimulate. The principal intricacies in studying DDEs lie in their 

solitary transcendental character. 

Delay challenges invariably ushers to an immeasurable measure of prevalence. Hence, 

they are constantly unraveled using numerical methods, asymptotic solutions, 

approximations and graphical accessions. In this paper, we first formulate a system of 

DDE’S expounded as follows 

 

 

     

{
 
 

 
 

𝑑𝑥

𝑑𝑡
= 𝑎1(1 − 𝑥𝑦 − 𝑥)

  𝑑𝑦

𝑑𝑡
= 𝑎2(𝑎3𝑥1𝑦1 − 𝑦) − 𝑎4𝑦𝑧

𝑑𝑧

𝑑𝑡
= 𝑎3(𝑦 − 𝑧)

                                                                 (4.1) 
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The term 𝑎2𝑎3𝑥1𝑦1, represents the rate equation and reflects a boundless time lag 

between the infection of CD4+T-cell and the staging of new virions. Next we consider 

the well posedness and existence of equilibrium points. 

 

 

4.2   WELL POSEDNESS AND EXISTENCE OF EQUILIBRIUM POINTS 

We define equation (4.1) in terms of F, G and H as shown below; 

 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1)   

𝑑𝑦

𝑑𝑡
= 𝐺(𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1)                                                                                   (4.2) 

𝑑𝑧

𝑑𝑡
= 𝐻(𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1)  

 

Equating 4.1 and 4.2, yields 

𝐹(𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1) ≔ 𝑎1(1 − 𝑥𝑦 − 𝑥)  

𝐺(𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1) ≔ 𝑎2( 𝑎3, 𝑥1, 𝑦1 − 𝑦) − 𝑎4𝑦𝑧                                               (4.3) 

𝐻(𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1) ≔ 𝑎5(𝑦 − 𝑧)   

Further, we define a steady state for equation (4.2) in terms of  (𝑥̅, 𝑦̅ , 𝑧̅) and procure the 

equations below: 

F(𝑥̅, 𝑦̅, 𝑧̅ , 𝑥̅1, 𝑦̅1, 𝑧1̅) = 0 

G(𝑥̅, 𝑦̅, 𝑧̅ , 𝑥̅1, 𝑦̅1, 𝑧1̅) = 0                                                                                   (4.4) 

H(𝑥̅, 𝑦̅, 𝑧̅ , 𝑥̅1, 𝑦̅1, 𝑧1̅) = 0  

 

PROPOSITION 4.1 

If 𝑎2𝑎3 and 𝑧1: = 𝑇𝜏𝑧, then the steady state solution of equation (4.2) is in unison with the 

steady state solution of equation (4.4)  
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PROOF  

Consider an immutable function S(t) and its derivative  
𝑑𝑠

𝑑𝑡
 , assuming that the derivative 

of the function    
𝑑𝑠

𝑑𝑡
=

𝑑𝑠1

𝑑𝑡
  , then :  

F(𝑥̅, 𝑦̅, 𝑧̅ , 𝑥̅1, 𝑦̅1, 𝑧1̅) = 0,    G(𝑥̅, 𝑦̅, 𝑧̅ , 𝑥̅1, 𝑦̅1, 𝑧1̅) = 0   and    H(𝑥̅, 𝑦̅, 𝑧̅ , 𝑥̅1, 𝑦̅1, 𝑧1̅) = 0 , hence 

equations (4.2) and (4.4) have the same unvarying states.  

Further, by codifying a neighborhood close to the unvarying state solution, we let 

𝑥 = 𝑥̅ + 𝑋 ,      𝑦 = 𝑦̅ + 𝑌  ,   𝑧 = 𝑧̅ + 𝑍,   𝑥1 = 𝑥̅ + 𝑋1,    𝑦1 = 𝑦̅ + 𝑌1   𝑎𝑛𝑑  𝑧1 = 𝑧̅ + 𝑍1  

 

Next, we exploit the Taylor series about the point (𝑥̅, 𝑦 ̅, 𝑧̅) and withholding only the 

linear terms yields 

  
𝑑𝑋

𝑑𝑇
= −𝑎1(𝑦̅ + 1)𝑋 − 𝑎1𝑥̅𝑌, 

𝑑𝑌

𝑑𝑡
= 𝑎2𝑎3𝑦̅𝑋1 + [𝑎2(𝑎3𝑥̅𝑌1 − 𝑌) − 𝑎4𝑧̅𝑌] − 𝑎4𝑦̅𝑍       𝑎𝑛𝑑                               (4.5) 

𝑑𝑍

𝑑𝑡
= 𝑎5𝑌 − 𝑎5𝑍  

 

Further, we linearized equation 4.5 as: 

⌊
⌈
⌈
⌈
⌈
𝑑𝑋

𝑑𝑡
𝑑𝑌

𝑑𝑡
𝑑𝑍

𝑑𝑡 ⌋
⌉
⌉
⌉
⌉

= ⌊

−𝑎1(𝑦̅ + 1) −𝑎1𝑥̅ 0

𝑎2𝑎3𝑦̅𝑒
−𝜆𝑡 𝑎2(𝑎3𝑥̅𝑒

−𝜆𝑡 − 1) − 𝑎4𝑧̅ −𝑎4𝑦̅

0 𝑎5 −𝑎5

⌋ ⌊
𝑋
𝑌
𝑍
⌋                            (4.6) 

 

Next we let  𝐵 = ⌊

−𝑎1(𝑦̅ + 1) −𝑎1𝑥̅ 0

𝑎2𝑎3𝑦̅𝑒
−𝜆𝑡 𝑎2(𝑎3𝑥̅𝑒

−𝜆𝑡 − 1) − 𝑎4𝑧̅ −𝑎4𝑦̅

0 𝑎5 −𝑎5

⌋   
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Where B is the coefficient matrix of the linearized system and  𝜆 is the eigenvalue of 

matrix B. Hence the unvarying state of the delay system can be explored in terms of the 

eigenvalues of matrix B.  

 

4.3     GLOBAL STABILITY OF EQUILIBRIUM  𝐸𝑂 

In this section, we proceed by analyzing the universal stability of the disease-free 

equilibrium of the model. Hence we let (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) be an unvarying state solution of the 

following equations: 

 

 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1),   

𝑑𝑦

𝑑𝑡
= 𝐺(𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1)  and   

𝑑𝑧

𝑑𝑡
= 𝐻(𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1), then  

 

(𝑥𝑜 , 𝑦𝑜, 𝑧𝑜) is stable if  𝜖 > 0  and 𝛿 > 0 for  (𝑥, 𝑦, 𝑧) when 

 

[𝑥(𝑡𝑜) − 𝑥𝑜]
2 + [𝑦(𝑡𝑜) − 𝑦𝑜]

2 + [𝑧(𝑡𝑜) − 𝑧𝑜]
2  < 𝛿2                                               (4.7) 

 

Given that  𝑡𝑜  ∈ [𝑡1 − 𝜏, 𝑡1], 𝑡ℎ𝑒𝑛  [𝑥(𝑡) − 𝑥𝑜 ]
2 + [𝑦(𝑡) − 𝑦𝑜]

2 +  [𝑧(𝑡) − 𝑧𝑜 ]
2  <∈2  for all 

𝑡 > 𝑡1. 

On the other hand if (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) is stable and 𝛿 is chosen so that equation (4.7) is 

elucidated as [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)   → (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜)]. Then as 𝑡 →  ∞, (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) is globally 

asymptotically stable.  

 

PROPOSITION 4.2 

Suppose  𝑎1, 𝑎2, 𝑎3, 𝑎5 > 0 ∶ 

(i). then if 𝑎3 < 1, then the unvarying state of equation (4.1) of the system (4.2) is 

universally asymptotically stable for 𝜏 ≥ 0. Hence  𝐸𝑂 is stable 

(ii). If 𝑎3 > 1, then the unvarying state of equation (4.1) of the system (4.2) is globally 

unstable, hence 𝐸𝑂 is unstable 
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PROOF  

Suppose the characteristic equation of matrix B is written as  

𝑈(𝜆) = 𝜆3 +  𝑏1𝜆
2 +  𝑏2𝜆 +  𝑏3 + (𝑑1𝜆

2 + 𝑑2𝜆 + 𝑑3)𝑒
−𝜏𝜆 = 0                                    (4.8) 

Now if 𝜏 = 0 , then there is no delay in equation 4.8, hence proposition 4.2 reduces to 

proposition 4.1  

 

Conversely, when 𝜏 > 0, and we surrogate the unvarying state of equations  (4.1) and 

(4.3) and solve, we generate the characteristic equation  

(𝜆 + 𝑎1 )(𝜆 + 𝑎2 − 𝑎2𝑎3𝑒
−𝜆𝜏)(𝜆 + 𝑎5) = 0  

 

Next, by considering the unvarying state of equation 4.1, we ascertain that matrix B has 

three eigenvalues: 𝜆1 = −𝑎1 < 0, 𝜆2 = −𝑎5  < 0     and 𝜆3 in the form 

𝜆3 + 𝑎2(𝑎3𝑒
−𝜏𝜆3 − 1) = 0    

 

Therefore, to find the location of   𝜆3, we propose a function of the form 

 𝑢(𝑡) ≔ 𝑡 + 𝑎2 − 𝑎2𝑎3𝑒
−𝜆𝜏, where 𝑡 ∈ 𝑅 

By differentiating, we obtain 𝑢′(𝑡) = 1 + 𝑎2𝑎3𝜏𝑒
−𝜆𝜏, which is always positive, hence the 

limit of the original equation is written as  lim𝑡→∞ 𝑢(𝑡) = −∞ and  

lim𝑡→∞ 𝑢(𝑡) = ∞ . Therefore u(t)  has a distinctive zero revealed as 𝑢(0) = 𝑎2(1 − 𝑎3) .  

 

Hence we conclude that if 𝑎3 < 1, 𝑢(0) > 0 and 𝜆3 < 0. Then the unvarying state of 

equation (4.6) is globally asymptotically stable for 𝜏 > 0.  

 

Conversely if 𝑎3 > 1, then we conclude that the unvarying state of equation (4.1) is 

globally asymptotically unstable for 𝑎3 < 0 ,  𝜆3 > 0 and 𝜏 > 0 

 

 

4.4    THE ENDEMIC EQUILIBRIUM  

The endemic equilibrium 𝐸∗ is obtained by filtering the real and imaginary parts from the 

equation below   



51 
 

[𝑏3 + 𝑏2𝛼 + 𝑏1𝛼
2 + 𝛼3 − 𝑏1𝜔

2 − 3𝛼𝜔2 + 𝑖(𝑏2𝜔 + 2𝑏1𝛼𝜔 + 3𝛼
2𝜔 − 𝜔3) + 𝑒−𝜏𝛼[(0𝑑2𝜔 +

2𝑑1𝛼𝜔)𝑠𝑖𝑛𝜔𝜏 + (𝑑3 + 𝑑2𝛼 + 𝑑1𝛼
2 − 𝑑1𝜔

2)𝑐𝑜𝑠𝜔𝜏 + 𝑖𝑒−𝜏𝛼  

[(𝑑1𝜔
2 − 𝑑3 − 𝑑2𝛼 − 𝑑1𝛼

2)𝑠𝑖𝑛𝜔𝜏 + (𝑑2𝜔 + 2𝑑1𝜔)𝑐𝑜𝑠𝜔𝜏] = 0                                   (4.9) 

 

which yields 

𝑑2𝜔𝑠𝑖𝑛𝜔𝜏 + (𝑑3 − 𝑑1𝜔
2)𝑐𝑜𝑠𝜔𝜏 = 𝑏1𝜔

2 − 𝑏3                                                              (4.10) 

𝑑2𝜔𝑐𝑜𝑠𝜔𝜏 − (𝑑3 − 𝑑1𝜔
2)𝑠𝑖𝑛𝜔𝜏 = 𝜔3 − 𝑏2𝜔                                                               (4.11) 

 

Summing the squares of equations (4.10) and (4.11)  

𝑢(𝜔) ≔ 𝜔6 + (𝑏1
2 − 2𝑏2 − 𝑑1

2) 𝜔4 + (𝑏2
2 − 2𝑏1𝑏3 + 2𝑑1𝑑3 − 𝑑2

2)𝜔2 + 𝑏3
2 − 𝑑3

2 = 0      (4.12) 

 

We further exploit equation (4.12) by surrogating the parameters below 

𝑚 ≔ 𝜔2,    𝑝 ≔ 𝑏1
2 − 2𝑏2 − 𝑑1

2,   𝑞 ≔ 𝑏2
2 − 2𝑏1𝑏3 + 2𝑑1𝑑3 − 𝑑2

2, 𝑎𝑛𝑑  𝑟 ≔ 𝑏3
2 − 𝑑3

2   

 

Hence, the new equation reads           

𝑘(𝑚) =  𝑚3 + 𝑝𝑚2 + 𝑞𝑚 + 𝑟 = 0                                                                               (4.13) 

 

LEMMA 4.1 

Suppose 𝜏 > 0 then equation (4.13) has no positive real root, hence all the roots have 

negative real parts. 

 

PROOF  

Since equation (4.13) has no positive root, then 𝜔 is not the root of equation (4.12). 

Therefore for any real number 𝜔, the value of 𝑖𝜔 is also not the root of equation (4.12), 

hence 𝜆(𝜏𝑐 = 𝑖𝜔(𝜏𝑐) is not the root of equation (4.12). This implies that only one positive 

real root exist for equation (4.13). Hence differentiating equation 4.13 yields 

 

𝑘′(𝑚) = 3𝑚2 + 2𝑝𝑚 + 𝑞                                                                                            (4.14) 

 

Therefore the roots of equation 4.13 are: 
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𝑚𝑜 = 
−𝑝 + √𝑝2 − 3𝑞

3
    𝑎𝑛𝑑  

−𝑝 − √𝑝2 − 3𝑞

3
 

 

LEMMA 4.2 

(i). if  𝑟 < 0    then it follows that 𝑝2 − 3𝑞 > 0  has a positive root, provided 𝑝 < 0  

(ii) On the other hand if 𝑟 > 0  then 𝑝2 − 3𝑞 < 0, has no positive real roots. 

 

PROOF  

(i). Suppose condition (i) holds and 𝑟 < 0, then k(0) = 𝑟 < 0, hence lim𝑚→∞  𝑘(𝑚) = ∞. 

Exploiting the intermediate value theorem, equation (4.14) yields 𝑡𝑜 as a positive root 

and therefore 𝑘(𝑡𝑜) = 0.  

 

Conversely, if condition (ii) holds for which 𝑟 > 0  and 𝑝2 − 3𝑞 < 0, then 𝑚𝑜 is real, for 

which  𝑚𝑜  > 0. Since  𝑘(0) = 𝑟 > 0 𝑎𝑛𝑑 𝑘(𝑚𝑜) < 0, then by the intermediate value 

theorem, k has zero between the origin and 𝑚𝑜  

 

(ii). conversely, if 𝑞 >
1

3
𝑝2 then the zeros of 𝑚𝑜 𝑎𝑛𝑑 𝑚1 𝑜𝑓 𝐾

′(𝑚) are not real. 

Henceforth  𝐾′(𝑚) = 0 has no real root.  

 

Consequently, 𝑞 >
1

3
𝑝2 ≥ 0, has no real roots, given that 𝐾 is an increasing function 

where 𝐾(0) = 𝑟 ≥ 0. We conclude that the model has a unique endemic equilibrium 

which is asymptotically stable if and only if 𝑅𝑜 > 1, otherwise unstable. This unique 

endemic equilibrium occurs at  𝜏 ≥ 0 

 

  

4.5.    EXISTENCE OF HOPF BIFURCATION 

We introduce the Hopf bifurcation and therefore appraise the 3- dimensional system of 

differential equations as follows 
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𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑦, 𝑧, 𝜏)  

𝑑𝑦

𝑑𝑡
= 𝐺(𝑥, 𝑦, 𝑧, 𝜏)                                                                                                     (4.15) 

 
𝑑𝑦

𝑑𝑡
= 𝐻(𝑥, 𝑦, 𝑧, 𝜏)           

The following conditions holds if : 

(i). 𝐹(𝑥̅, 𝑦̅, 𝑧̅, 𝜏) = 𝐺(𝑥̅, 𝑦̅, 𝑧̅, 𝜏) = 𝐻(𝑥̅, 𝑦̅, 𝑧̅, 𝜏) = 0 , then  𝜏𝑐 𝑎𝑛𝑑 (𝑥̅, 𝑦̅, 𝑧̅, )   remains as a 

steady state solution for equation (4.13) 

(ii). F, G and H are analytic in terms of (𝑥, 𝑡, 𝑧), then they are within the neighborhood of  

(𝑥̅, 𝑦̅, 𝑧̅, 𝜏𝑐) 

(iii). the Jacobian matrix of equation (4.6) at (𝑥̅, 𝑦̅, 𝑧̅, 𝜏) has a pair of complex conjugate 

eigenvalues, 𝜆 𝑎𝑛𝑑 𝜆̅, then   

𝜆(𝑡) = 𝛼(𝜏) + 𝑖𝜔(𝜏) ,    𝜔(𝜏𝑐) = 𝜔𝑐 > 0, 𝛼(𝜏𝑐) = 0    𝑎𝑛𝑑 
𝑑𝛼(𝜏)

𝑑𝑟
𝐼𝜏 = 𝜏𝐶 ≠ 0               (4.16)                                           

 (iv). the remaining eigenvalues of the Jacobian matrix at (𝑥̅, 𝑦̅, 𝑧̅, 𝜏𝑐) have strictly 

negative real part. Then the system (4.9) has a family of periodic solution: ∈𝐻> 0 and 

analytic function 𝜏𝐻(𝜖) = ∑ ∞𝑇𝑖
𝐻 ∈𝑖 ,2  𝑤ℎ𝑒𝑟𝑒 0 <∈<∈𝐻. Hence, 𝑇𝐻(∈)𝑜𝑓 𝑝∈(𝑡) is analytic 

and of the form 

𝑇𝐻(∈) =
2𝜋

𝜔𝑐
(1 + ∑  2

∞
𝑇𝑖
𝐻 ∈𝑖)(0 <∈<∈𝐻)                                                                  (4.17) 

 

Next, we exploit the parameters of the analytic function to ensure the occurrence of 

Hopf bifurcation. Hence we denote the positive roots of equation (4.1) by 

𝑚𝑗 , 𝑗, 𝑤ℎ𝑒𝑟𝑒  𝑗 ∈ [0,1,2], depending on the number of positive roots in the equation. 

Therefore equation (4.9) has six positive roots such as 𝜔𝑗, 𝜆 = 𝑖𝜔 and ±√𝑚𝑗  𝑤ℎ𝑒𝑟𝑒  𝑗 =

0,1,2,. Consequently, substituting 𝜔𝑗 into equation (4.10) and (4.11) and solving for 𝜏 

produces 
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𝜏𝑗
(𝑛)

=
1

𝜔𝑗
arcsin ⌈

𝑑1𝜔𝑗
5+(𝑏1𝑑2−𝑑3−𝑑1𝑏2)𝜔𝑗

3+(𝑑3𝑏2−𝑏3𝑑2)𝜔𝑗

𝑑2
2𝜔𝑗

2+(𝑑3−𝑑1𝜔𝑗
2)2

⌉ +
2𝜋(𝑛−1

𝜔𝑗
                                 (4.18) 

Where 𝑗 = 0, 1,2 𝑎𝑛𝑑 𝑛 = 1,2, …. 

Again, when we consider 𝜏𝑐 > 0 to be a smaller value, where  𝛼(𝜏𝑐) = 0, then 

𝜏𝑐𝑇𝑗𝑐
(𝑛𝑐)

= min {𝜏𝑗
(𝜏) > 0, 0 ≤ 𝑗 ≤ 2, 𝑛 ≥ 1}                                                                 (4.19) 

Where 𝜔𝑐 = 𝜔𝑗𝑐  

 

THEOREM 4.1 

Consider the time lag 𝜏 and the critical time lag 𝜏𝑐 𝑎𝑛𝑑 𝜔𝑐 as defined in equation (4.13) 

and suppose  3𝜔𝑐
6 + 2𝑝𝜔𝑐

4 + 𝑞𝜔𝑐
2 ≠ 0 then the system of delay differential equation in 

terms of equation (4.2), portrays the Hopf bifurcation at the steady state in equation 

(4.1). 

 

PROOF  

We show that   
𝑑𝛼(𝜏 )

𝑑𝜏
𝐼𝜏 = 𝜏𝐶 ≠ 0                                                                                (4.20) 

The existence of Equation (4.14) personifies the occurrence of Hopf bifurcation. Hence 

equating the real and imaginary parts of equations (4.10) and (4.11) to zero, we obtain 

the following 

𝑒−𝜏𝛼[(𝑑2 + 2𝑑1𝛼)𝜔𝑠𝑖𝑛𝜔𝜏 + [(𝑑3 + 𝑑2𝛼 + 𝑑1(𝛼
2 − 𝜔2)] cos𝜔𝜏] =  

(𝑏1 + 3𝛼)𝜔
2 − 𝑏3 − 𝑏2𝛼 − 𝑏1𝛼

2 − 𝛼3]                                                                       (4.21) 

and 

 (𝑒−𝜏𝛼[(𝑑1𝜔
2 + 𝑑3 − 𝑑2𝛼 − 𝑑1𝛼

2)𝑠𝑖𝑛𝜔𝜏 + (𝑑2𝜔 + 2𝑑1𝛼𝜔)𝑐𝑜𝑠𝜔] = 𝜔3 − 𝑏2𝜔 − 2𝑏1𝛼𝜔 −

3𝛼2𝜔                                                                                                                         (4.22)   
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Further, we differentiate equations (4.21) and (4.22) with respect to 𝜏 and evaluate at 

𝜏 = 𝜏𝑐 where 𝛼𝜏𝑐 = 0 𝑎𝑛𝑑 𝜔(𝜏𝑐) = 𝜔𝑐  and obtains the following 

 

𝐸1
𝑑𝜔

𝑑𝜏
| 𝜏 = 𝜏𝑐 − 𝐸2

𝑑𝛼

𝑑𝜏
| 𝜏 = 𝜏𝑐 = 𝐸3𝑐𝑜𝑠𝜔𝑐𝜏𝑐 + 𝐸4𝑠𝑖𝑛𝜔𝑐𝜏𝑐                                               (4.23) 

𝐸2
𝑑𝜔

𝑑𝜏
| 𝜏 = 𝜏𝑐 − 𝐸1

𝑑𝛼

𝑑𝜏
| 𝜏 = 𝜏𝑐 = 𝐸3𝑠𝑖𝑛𝜔𝑐𝜏𝑐 + 𝐸4𝑐𝑜𝑠𝜔𝑐𝜏𝑐                                               (4.24) 

 

Where 𝐸1 ≔ 2𝑏1𝜔𝑐 + (2𝑑1𝜔𝑐 − 𝜏𝑐𝑑2𝜔𝑐)𝑐𝑜𝑠𝜔𝑐𝜏𝑐 + (𝜏𝑐𝑑3 − 𝑑2 − 𝜏𝑐𝑑1𝜔𝑐
2)𝑠𝑖𝑛𝜔𝑐𝜏𝑐 

𝐸2 ≔ 𝑏2 − 3𝜔𝑐
2 + (𝑑2 + 𝜏𝑐𝑑1𝜔𝑐

2 − 𝜏𝑐𝑑3)𝑐𝑜𝑠𝜔𝑐𝜏𝑐 +(2𝑑1𝜔𝑐 − 𝜏𝑐𝑑2𝜔𝑐)𝑠𝑖𝑛𝜔𝑐𝜔𝑐 

 𝐸3 ≔ 𝑑2𝜔𝑐
2     𝑎𝑛𝑑 𝐸4 ≔ 𝑑1𝜔𝑐

3 − 𝑑3𝜔𝑐 

 

Now by solving equations (4.23) and (4.24) together we have  

𝑑𝛼

𝑑𝜏
| 𝜏 = 𝜏𝑐 =

(𝐸1𝐸4−𝐸2𝐸4)𝑠𝑖𝑛𝜔𝑐𝜏𝑐−(𝐸1𝐸4+𝐸2𝐸3)𝑐𝑜𝑠𝜏𝑐

𝐸1
2+𝐸2

2                                                               (4.25) 

 

Next we substitute equations (4.10) and (4.11) into equations (4.23) and (4.24) and 

yields 

𝑐𝑜𝑠𝜔𝑐𝜏𝑐 =
(𝑏1𝜔𝑐

2−𝑏3)(𝑑3−𝑑1𝜔𝑐
2+𝑑2𝜔𝑐(𝜔𝑐

3−𝑏2𝜔𝑐)

𝑑2
2+(𝑑3−𝑑1𝜔𝑐

2)2
                                                                  (4.26) 

𝑠𝑖𝑛𝜔𝑐𝜏𝑐 =
𝑑2𝜔𝑐(𝑏1𝜔𝑐

2−𝑏3)−(𝑑3−𝑑1𝜔𝑐
2)(𝜔𝑐

3−𝑏2𝜔𝑐)

𝑑2
2𝜔𝑐

2+(𝑑3−𝑑1𝜔𝑐
2)2

                                                                 (4.27) 

Finally, we incorporate equations (4.26) and (4.27) into equation (4.25) and obtains  

𝑑𝛼

𝑑𝜏
| 𝜏 = 𝜏𝑐 =

3𝑤𝑐
6+2𝑝𝜔𝑐

4+𝑞𝜔𝑐
2

𝐸1
2+𝐸2

2 ≠ 0                                                                                    (4.28) 

Consequently we conclude based on equations (4.26), (4.27) and (4.28), the existence 

of Hopf bifurcation when, 𝜏 passes through the critical value 𝜏𝑐 
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4.6    PROOF FOR THE EXISTENCE OF HOPF BIFURICATION 

In this section we prove for the existence of Hopf Bifurcation by assuming that 

𝑎1, 𝑎2, 𝑎5 > 0  𝑎𝑛𝑑 𝑎3 > 1, 𝑓𝑜𝑟 𝜏𝑐 𝑎𝑛𝑑 𝜔𝑐 as defined in equation (4.14). Therefore by 

lemma 4.2 (i) if 𝑝 ≥ 0, 𝑞 ≥ 0, then we conclude that the system of delay differential 

equations proposed in equation (4.2) for the whole delay process has Hopf bifurcation. 

Consequently, the Hopf bifurcation occurs at  𝑝 ≥ 0, 𝑞 ≥ 0, when 3𝑤𝑐
6 + 2𝑝𝜔𝑐

4 + 𝑞𝜔𝑐
2 ≠

0. This is further supported by lemma 4.1 and theorem 4.1. The forward bifurcation 

analysis is portrayed by figure 4.1, where 𝜏 = 𝑞𝜔𝑐,  𝜔𝑐 = 0.024, 𝑃 = 1000, 𝑞 = 2200 ,

𝐸1 = 0.029 and 𝐸2 = 0.06. The conditions for the existence of Hopf bifurcation have 

been extrapolated by the above analysis. Hence, figure 4.1 portrays the conditions for 

the model to have a forward bifurcation under a single endemic equilibrium. 

 

Figure 4.1: Demonstration of the forward bifurcation process of the model with 𝜏 against 

𝜏𝑐: where 𝜏𝑐 = 𝑞𝜔𝑐,  𝜔𝑐 = 0.024, 𝑃 = 1000, 𝑞 = 2200 , 𝐸1 = 0.029 and 𝐸2 = 0.06. 

                                                     



57 
 

4.7     NUMERICAL SIMULATION 

The numerical simulations are engaging around the convergence of orbits of the global 

stability and the presence of Hopf bifurcation for the system (4.28). The results are 

enjoined to flaunt the effects of intracellular delay on the affirmative behavior of the 

three variables: CD4+T-cell, symbolized (x), cells tainted with HIV, symbolized (y) and 

CTL, symbolized (z). 

The numerical simulations are wielded on the variables to corroborate the theoretical 

anticipations deliberated in chapters 2, 3 and 4. The values of the parameters such 

𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, were used as seen from the above propositions and equations in 

chapter four to corroborate a pragmatic biological simulation of the results. The 

numerical results of the system of equations as per chapters 2, 3 and 4 were solved 

numerically as per the sixth order Runge –Kutta method with parametric values from 

𝑎1, 𝑎2, 𝑎3, 𝑎4 𝑎𝑛𝑑 𝑎5. 

Firstly, the model was analyzed without the delay component embedded (only ODE), 

under the following conditions: justification of the qualitative conduct of the three 

variables such as CD4+T-cell(x), HIV(y), and CTL(z) and controlling the fundamental 

reproductive rate of the virus. This was made possible through numerical simulations to 

vouch the theoretical conjecture stipulated in chapters 2, 3 and 4. When intracellular 

delay was overlooked and the fundamental reproductive number was under control, 

equation 2.2 was solved numerically as per the 6th order Runge-Kutta strategy with 

𝑎1 = 0.224 , 𝑎2 = 0.941, 𝑎3 = 0.369, 𝑎4 = 4.651, 𝑎5 = 1.311.  

Figure 4.2 (appendix A.1), portrays the numerical simulation of the quantum of CD4+T-

cells, HIV virus and CTL in the blood discretely. CD4+T-cell were consistent over time, 

whilst the quantum of CTL and the virus in the blood approaches zero. Figure 4.2d 

(appendix A.1) centers on the compactness of HIV and CTL in the blood, as they 

approaches the vanishing stretch to confirm the connection amidst the virus and the 

immune response  

Hence, the numerical outcome represented in Figure 4.2 (appendix A.1) correlates with 

the theoretical conjectures anticipated in Proposition 4.2(i) and equation 2.2. Therefore 

when 𝑎3 < 1,  a steady state was attained at (1, 0, 0). This implies that the essential 

conceptive pace of the infection was under control level hence, the decline rate of viral 
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production is higher than the production rate. Consequently, the virus could not spread 

and it’s eliminated from the blood, when CD4+T-cell become consistent at 𝛿1/𝛿3 

 

On the contrary, when the model was analyzed with the embedment of the delay 

component (DDE), under the following conditions: justification of the qualitative conduct 

of the three variables such as CD4+T-cell(x), HIV(y), and CTL (z) and controlling the 

fundamental reproductive rate of the virus, equation 4.1 was solved numerically using 

the 6th order Runge-Kutta technique were 𝑎1 = 0.224,  𝑎2 = 0.941, 𝑎3 = 0.369,  𝑎4 =

4.651,  𝑎5 = 1.311 , 𝜏 = 0.191. Figure 4.3 (appendix A.2), portrays the quantum of 

CD4+T-cells, HIV virus and CTL in the blood discretely. The quantum of CD4+T-cell 

gets consistent over time, whilst CTL and the virus in the blood approaches zero. Figure 

4.3(d), (appendix A.2) centers around the conduct of the compactness of HIV and CTL 

as they approach the vanishing point, to confirm the connection amidst the virus and the 

immune response. Therefore, the numerical outcome represented in Figure 4.3(a, b, c) 

(appendix A.2), correlates with the theoretical conjecture anticipated in Proposition 4.2(i) 

and equation 4.1. Therefore when 𝑎3 < 1,  a steady state was attained at (1, 0, 0). This 

implies that the essential conceptive pace of the infection was under control level 

hence, the decline rate of viral production is higher than the production rate. 

Consequently, the virus could not spread and its eliminated from the blood, when 

CD4+T-cell become consistent at 𝛿1/𝛿3.  

The model with delay was more advantageous over the non-delay model, because it 

was more stable at the trajectory. It supports viral peak postponement and virological 

suppression better than the non-delay (figure 4.2 and 4.3). 

 

 

Another dimension to the analysis was the removal of the delay component under the 

following conditions:  justification of the qualitative conduct of the three variables such 

as CD4+T-cell(x), HIV(y), and CTL (z) and this time, not controlling the fundamental 

reproductive rate of the virus. When intracellular delay was overlooked and the 

fundamental reproductive number was on grip, equation 2.2 was solved numerically as 
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per the 6th order Runge-Kutta strategy with now 𝑎1 = 0.1038 , 𝑎2 = 3.22, 𝑎3 = 2.64,

𝑎4 = 7.41, 𝑎5 = 4.17.  

Figure 4.4c, (appendix A.3), portrays the quantum of CTL in the blood which 

congregates at a universal point. Figure 4.4(d) (appendix A.3) centers around the 

conduct of the compactness of HIV and CTL, as they approach the vanishing stretch to 

confirm the connection amidst the virus and the immune response.  

Therefore, the numerical outcome represented in Figure 4.4(a, b, c) (appendix A.3) 

correlates with the theoretical conjectures anticipated in Proposition 4.2(ii) and equation 

2.2. Hence, a steady state was attained at (0.83, 0.46, 0.46), when 𝑎3 > 1. This 

intimates that the essential conceptive pace of the infection is not under control hence, 

the decline rate of viral production is lower than the production rate. Infection rate 

emerges and more virions are produced in the blood. 

 

Contrary to the above, the model was further analyzed with the delay component 

(DDE), under the following conditions: justification of the qualitative conduct of the three 

variables such as CD4+T-cell(x), HIV(y), and CTL (z). The fundamental reproductive 

rate of the virus was uncontrolled and equation 4.1 was solved numerically using the 6th 

order Runge-Kutta technique with 𝑎1 = 0.1038, 𝑎2 = 3.22,  𝑎3 = 2.64, 𝑎4 = 7.41,  𝑎5 =

4.17 , 𝜏 = 0.19. Figure 4.5(a, b) (appendix A.4), portrays the quantum of CTL in the 

blood which congregate at a universal point. Figure 4.5(d) (appendix A.4) centers 

around the conduct of the compactness of HIV and CTL in the blood. The levels of CTL 

and HIV in the blood approach the vanishing stretch, to confirm the connection amidst 

the virus and the immune response. 

  

Therefore, the numerical outcome represented in Figure 4.5(appendix A.4) correlates 

with the conditions of proposition 4.2 (i) and equation 4.1. Hence, when 𝑎3 > 1 𝑎𝑛𝑑 𝜏 <

𝜏𝑐, a constant steady state of (0.83, 0.46, 0.46) was attained. This intimates that the 

essential conceptive pace of the infection was not under control hence, declining the 

rate of viral production. Infection rate emerges and more virions are produced in the 

blood. The elongation of the infection leads to the inception of AID. Figure 4.5 
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4.8    STRUCTURED TREATMENT INTERRUPTION 

The quest for legit structured treatment interruptions has necessitated the essence of 

intracellular delay in STI models. Currently, the adopted STI used by many HIV 

individuals does not incorporate days-off for drug assimilation by the body. Arguably 

therapy interruptions should align across days and weeks, in order to allow for drug 

assimilation. Find below some of the STI systems embedded to validate the model. 

  

 

 

4.8.1   TWO-WEEKS-ON TWO-WEEKS-OFF STRATEGY (14/14) 

The scenario above relates to 14 days on treatment and 14 days off regime therapy, 

designed for HIV patients. However, adherence to the regime yields an auto viral control 

compared to the primitive STI system [24, 25, 128], which aligns with lengthy periods of 

therapy. In reference to Fig. 4.8, this strategy yields a momentous average viral load of 

586virions/ml and 3371virions/ml at peak level. On the contrary, a continuous therapy 

without any interruption increases the viral haul to 633virions/ml on the average. This 

implies that the shorter the period for a particular therapy, the lower the peak viral haul. 

Therefore the lower the peak viral haul, the less the augmentation of viral strains, 

responsible for drug resistance mutations (figure 4.8).  
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Figure 4.8:  Graphs of STI which shows 14 days on and 14days off: 

 

 Figure 4.8 (a), shows a therapy of 14 days on treatment and 14 days off therapy. It 

reveals an average viral haul of 8446virions/ml with zero delay and 586virions/ml for a 
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24hr delay. In addition to the average viral haul, the peak viral hauls were 

5837virions/ml and 3371virions/ml respectively.  

 

Again, figure 4.8 (b), reveals that a ceaseless therapy permits a 50% cost saving, 

because it limits the replication of target cells and allow them to uphold feasible levels. 

Hence, a ceaseless therapy has the tendency of migrating high viral haul of 

5837virions/ml, which is an epitome for the development of drug resistant mutations 

(DRMs). Therefore, with reference to the ongoing discussion, a short cycle therapy is 

recommended on the basis of controlling viral rebound.  

 

 

 

4.8.2   FIVE-DAYS-ON TWO-DAYS-OFF STRATEGY (5/2) 

The five days on and two days off STI strategy allows treatment from Monday to Friday, 

with Saturday and Sunday as weekends off treatment. This strategy, also inferred as 

weekend off strategy is vital in subduing long term viral replication [43, 61, 101]. It 

enhances a decrease in drug residual level, since its squatty intermission period allows 

for the assimilation of DRM.  Hence in curbing down monotherapy situations, the usage 

of particular drugs should be disengaged for suitable metabolism rate.  

 

In addition, the five days on and two days off regime, supports a decline of the 

maximum viral haul. It is worth to note that escalations in viral haul have been a 

headache for most scientists. Therefore knowledge about the peak viral haul is crucial 

and personifies a larger viral pool which begets mutations. Based on the 5/2 strategy a 

cost saving of 29% is marginalized, as compared to the continual therapy. In addition, 

the 5/2 strategy produces low viral haul due to limited viral rebound. Furthermore, the 

strategy is useful to places where therapy is not consistent and hence reliable to stop 

therapy for two days, than to abort the whole process due to limited drug availability. In 

accordance with the above discussions, the 5/2 strategy appears to be reasonably 

successful in producing positive results [138, 158, 163], as depicted by figure 4.9. 
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Figure 4.9:  Demonstration of 5 days on and 2 days off therapy 

 

 From figure 4.9, the 5 days on and two days off therapy induces a mean viral haul of 

331virions/ml with zero delay and 412virions/ml within 24hours.  
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4.8.3   IMPACT OF VARYING THE ON AND OFF PERIOD 

The idea of varying treatment on and off has conceited imperative due to less access to 

ARV, cost concerns and ceaseless treatment. However off-treatment should not be 

prolonged due to high viral rebound and viral mutation to drugs. 

 

This section contrasts the 5/2 system, the 20/8 system and the 26/2 system and 

suggest the way forward. The ceaseless treatment period was used as reference and 

therapy was tempered as per the three systems above (Figure 4.10). It was observed 

that tempering with therapy for a short period of time was essential due to the following 

reasons: accessibility to ARV, cost concerns and discontinuity of therapy due to ARV 

shortage. Therefore the shorter the time frames for off treatment, the better the results 

and the lesser the viral rebound [107, 109, 128]. 

 

In accordance with the ongoing analysis, it was ascertained that the 26/2 system (table 

4.1) stimulates a reliable outcome, however the system is not decisive due to its little 

cost sparing of about 7%. On the other side, the 20/8 system appears to have a lower 

viral haul than the 5/2 system. The respective average and peak viral hauls for the 20/8 

system were 352virions/ml and 751virions/ml respectively. The 5/2 system also 

articulated 437virions/ml and 756virions/ml respectively. In view of the above outcome a 

trade- off is simulated to enhance the choice and adoption of a suitable treatment 

interruption (figure 4.10). Therefore the next section enhances the selection of the 

overall regime for compliance.  
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Figure 4.10:  Correlation of the 5/2, 20/8 and 26/2 STI Regime 

 

 

The average viral haul as per the 5/2, 20/8 and 26/2 discretely were 437virions/ml, 

352virions/ml and 70virions/ml respectively. On the other hand the peak viral hauls 

stands at 756virions/ml, 751virions/ml and 138virions/ml respectively.  
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4.8.4   OVERALL STI REGIME COMPARISON 

The above examination has conceited essential in adjusting treatment on and off, 

thereby diminishing the pinnacle viral haul. The 18/3 and 24/4 systems enhances a 

minimum viral haul of 120 and 118virions/ml respectively and a peak viral haul of 285 

and 338virions/ml respectively (Table. 4.1). In accordance with the above analysis, the 

18/3 system permits a 14% decrease in the total cost of treatment whilst subduing the 

control of HIV replication. Further the 18/3 and 24/4 systems articulates an additional 

time for ARV to be cleared from the body, compared to the 12/2 system and other 

systems discussed above.  Moreover, it is worth to articulate that the accumulation of 

treatment period brings about viral escalation. Hence the 24/4 system and the 18/3 

system, adheres to both week by week and month to month cycle, whist keeping the 

viral haul at low levels. Additionally, the systems keep up key cell levels, important to 

permit the human resistive system to ward off shrewd diseases.  

Therefore, based on the above analysis the 18/3 and 24/4 systems have been 

recommended for compliance and adoption due to low viral haul production (figure 

4.11). The 18/3 system produces an average and peak virions of 120 and 285virions/ml 

respectively, whilst the 24/4 system produces 118 and 338virions/ml respectively (Table 

4.1). 
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Figure 4.11:  Comparison of the STI systems; (24/4, 21/3, 12/2) 

  

From the graph above, the 24 days on treatment and 4 days off treatment was found to 

be more reliable due to its low cost effectiveness. The 18/3 system is also supported. 
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Procedure 

(on/off days) 

Mean Viral haul 

Virions/ml 

highest Viral haul 

Virions/ml 

% Cost Saving 

5/2 437 756 29 

12/2 126 320 14 

11/3 209 623 21 

19/2 86 171 10 

18/3 120 285 14 

17/4 168 465 19 

16/5 235 751 24 

26/2 70 138 7 

25/3 92 218 11 

24/4 118 338 14 

23/5 151 507 18 

22/6 201 743 21 

21/7 558 1086 25 

30/5 114 408 14 

36/6 121 495 14 

42/7 117 610 14 

 

Table 4.1: Demonstration of treatment strategies, viral load level and corresponding 

cost 

The table shows the average viral haul, peak viral haul and cost savings, relevant for 

choosing a suitable treatment regime. 
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4.8.5    SUMMARY OF STRUCTURED TREATMENT INTERRUPTIONS 

This area has specifically dealt with the various treatment systems and the system 

which supports the adopted model for compliance. The systems have featured on the 

significance of time on- and –off therapy and how to meliorate life expectancy under HIV 

[11]. However, the 18 days on treatment and 3 days off treatment was recommended as 

a suitable tradeoff between viral concealment and cost sparing. It allows the cells of the 

body 3 days’ rest, to incorporate the assimilated drugs. Therefore the 18/3 system is 

likewise suggested for utilization, for circumstances where accessibility for treatment 

isn't predictable. 

Further, the 24/4 system of treatment is  proposed as well, due to its adherence to 

month to month cycle and  cost sparing for constrained zones.  
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CHAPTER 5 

 

CONCLUSION AND FUTURE DIRECTIONS 

 

5.0    INTRODUCTION 

This chapter is interconnected with the general overview of the study and the summary 

of findings. The chapter is further interlocked with future directions to researchers and 

the conclusion of the study. 

 

 

5.1    GENERAL OVERVIEW 

In HIV tainted people, the disease displays an extended unidentifiable stage, 

realistically around 10 years before the beginning of AIDS. During this brooding space 

which is the clinical inactivity time frame, the person seems, by all account to be 

credible and may contribute fundamentally to the propagation of the virus within a 

locality. Some clinical attributes, for example, CD4 cell count and RNA viral haul 

(viraemia), are some of the indicators which articulate clues about the buildup of the 

disease [159]. Likewise, the clinical idleness time supports the ailment to escalate 

unobtrusively.  

 

Arguably, the conception of medication was triggered by the pathogenesis of the virus, 

which embodies the strapping of the virus to gp120 protein on the CD4 cell, the 

passage of the viral RNA into the objective cell, the opposite exchange of viral RNA to 

viral DNA and the mixing of the viral DNA with the host cell. In an attempt to inhibit the 

replication of the virus, scientist has developed drugs such as AZT and Ritonavir, 

among others to combat or inhibit the spread of the virus. The drugs are meant to inhibit 

the reverse transcriptase and the protease transcriptase of the virus. The reverse and 

the protease inhibitors diminishes the creation of the virus and hence deferred the onset 

of AIDS [16, 150, 157]  

A remedy for HIV is yet to be found, however progress is being made in acquiring 

powerful vaccines for destroying the infection from the human body. For instance, as of 
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late a bone marrow transplant of an HIV tainted individual suffering from leukemia, was 

auspicious with no traits of the virus in his framework (the blood and the reservoirs were 

not tainted with the virus). Based on this successful bone marrow transplant, one could 

retort that the redress to HIV/AIDS is within reach. However this redress is not 

dependable, due to its extravagant nature and requires a lot of investment form the 

tainted individual. Again, it requires the passage of time for the tainted individual to 

advance in immunity, since a quantum of time is needed for the new stem cells to 

advance and duplicate (http://www.welt.de/english-news/article2715739/HIV-patient-

curedby-marrow transplant.html). 

Further, it worth to articulate that, with the boundless nature of the pandemic and a 

redress not in sight, it is worthwhile to rely on remedial and therapeutic mediation [29, 

30, 133, 134] 

 

Notwithstanding, in the past and even recently several researches are ongoing to 

explore the repercussions of therapy on HIV tainted people. [121,152,153,154]. Hence, 

researchers have resulted to remediation [100, 165], which has the capacity to defer the 

onset of AIDS through defective interfering virus (DIVs). DIVs meddle with the 

replication of the virus [152, 153]. Hence, it is a cancellation mutant which is 

unequipped for duplication without a host cell (CD4 cell), but reproduces when the host 

cell is contaminated with HIV. 

 

Noting that DIV relies on HIV to increase, a scientific model [39, 40] was developed to 

imbibe HIV, DIV and uninfected CD4+Tcells. A compartmental approach was used to 

confine DIV and HIV in a solitary cubicle. This was followed by an arrangement for 

normal differential conditions, including eight factors and a few parameters relating to 

DIV and HIV. Further, a more significant degree of DIV was created to consist of 

contaminated CD4+Tcells, which was used as a hindrance to the replication of the virus 

[39, 40] 

 

Notwithstanding, the aftermath of several investigations on HIV replication were 

examined [29, 30, 49, 50, 51] and the remarks was that, the virus has a tremendous 

http://www.welt.de/english-news/article2715739/HIV-patient-curedby-marrow
http://www.welt.de/english-news/article2715739/HIV-patient-curedby-marrow
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potentials in demonstrating a high impedance against HIV drugs. Further, it was 

discovered that [112] the virus has a high drug opposition and a remarkable mix of 

change in individuals, when a stochastic model was proposed to test the impact of 

protease inhibitors. Again through numerical approach [63, 100] the dynamic image of 

HIV pathogenesis was utilized, to ascertain how Ritonavir could repress strongly against 

the virus. In relation to finding a drug which could suppress HIV [100, 101], elements of 

cell contamination and viral creation after the administration of ritonavir were 

considered. Hence ordinary differential equation was used to infer a 100% inhibition by 

the drug. Therefore by utilizing the numerical model and non-direct least squares fitting 

of the viral burden of five people, the projection of the viral clearance rate, cell duration 

and viral procreation time were ascertained [137]. 

 

In addition, a discovery on the evolution of HIV, based on a universal-space model was 

accustomed. Hence HIV tainted people, experiencing a blend of treatment, with a mix of 

antiviral medications (AZT and Ritonavir), were used to restrain the reverse 

transcriptase or the protease transcriptase [83]. The model flourished on the creation of 

irresistible free and noncontagious free HIV. This was achievable through the creation 

of methodology which assesses and anticipates the quantity of untainted CD4+Tcells, 

irresistible free HIV, non-irresistible free HIV and HIV tainted CD4+Tcells.  

 

Per the achievement of Tan and Xiang, not only did they broaden Perelson et al’s model 

into a stochastic model, but additionally applied the model stochastically to HIV tainted 

individuals [143, 144]. They developed a discrete time model which was depicted by an 

arrangement of stochastic contrast conditions, inferred on the organic details of HIV 

replication.  

Nonetheless it’s worth articulating that the HIV virus has the propensity to unfold at a 

faster rate, about 1 million times faster than the human DNA. This hallmark of the virus 

is advantageous in evolving over antiviral treatments and sometimes replicating 

unnoticed.  

This high replicative ability of the virus renders drugs ineffective, hence the luxury of this 

study in using delay differential equation to model low HIV viral haul. The model is 
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further extended to explore the effects of structured treatment interruptions and 

adoption of the best STI regime for compliance.  

 

 

5.2    SUMMARY OF FINDINGS 

The aim of the paper is to unveil the niche of delay differential equation in harmonizing 

low level HIV viral haul and thereby articulating the adopted model to delve into 

structured treatment interruptions.  

 Hence, the sturdiness of the model with delay (equation 4.1) and without delay 

(equation 2.2) was assessed. Numerical simulations were used to consolidate the 

results. 

The demands for the stability of Hopf bifurcation [12] was authenticated in itemizing the 

initial conditions of the model (figure 4.1). The existence of Hopf bifurcation [12, 137] 

has been proved and hence occurs when, 𝜏 passes through the critical value 𝜏𝑐. 

 

 Firstly, the model was analyzed without the delay component embedded (only ODE), 

under the following conditions: justification of the qualitative conduct of the three 

variables such as CD4+T-cell(x), HIV(y), and CTL(z) and controlling the fundamental 

reproductive rate of the virus. This was made possible through numerical simulations to 

vouch the theoretical conjectures stipulated in chapters 2, 3 and 4. When intracellular 

delay was overlooked and the fundamental reproductive number was under control, 

equation 2.2 was solved numerically as per the 6th order Runge-Kutta strategy with 

𝑎1 = 0.224 , 𝑎2 = 0.941, 𝑎3 = 0.369, 𝑎4 = 4.651, 𝑎5 = 1.311.  

Figure 4.2 (appendix A.1), portrays the quantum of CD4+T-cells, HIV virus and CTL in 

the blood discretely. CD4+T-cell become consistent over time, whilst the quantum of 

CTL and the virus in the blood approaches zero. Figure 4.2d (appendix A.1) centers on 

the compactness of HIV and CTL in the blood, as they approaches the vanishing stretch 

to confirm the connection amidst the virus and the immune response  

Hence, the numerical outcome represented in Figure 4.2 (appendix A.1) correlates with 

the theoretical conjectures anticipated in Proposition 4.2(i) and equation 2.2. Therefore 

when 𝑎3 < 1,  a steady state was attained at (1, 0, 0). This implies that the essential 
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conceptive pace of the infection was under control level hence, the decline rate of viral 

production is higher than the production rate. Consequently, the virus could not spread 

and it’s eliminated from the blood, when CD4+T-cell become consistent at 𝛿1/𝛿3 

 

On the contrary, when the model was analyzed with the embedment of the delay 

component (DDE), under the following conditions: justification of the qualitative conduct 

of the three variables such as CD4+T-cell(x), HIV(y), and CTL (z) and controlling the 

fundamental reproductive rate of the virus, equation 4.1 was solved numerically using 

the 6th order Runge-Kutta technique were 𝑎1 = 0.224,  𝑎2 = 0.941, 𝑎3 = 0.369,  𝑎4 =

4.651,  𝑎5 = 1.311 , 𝜏 = 0.191. Figure 4.3 (appendix A.2), portrays the time series plot of 

the quantum of CD4+T-cells, HIV virus and CTL in the blood discretely. The quantum of 

CD4+Tcell gets consistent over time, whilst CTL and the virus in the blood approaches 

zero. Figure 4.3(d), (appendix A.2) centers around the conduct of the compactness of 

HIV and CTL as they approach the vanishing point, to confirm the connection amidst the 

virus and the immune response. Therefore, the numerical outcome represented in 

Figure 4.3(a, b, c) (appendix A.2), correlates with the theoretical conjecture anticipated 

in Proposition 4.2(i) and equation 4.1. Therefore when 𝑎3 < 1,  a steady state was 

attained at (1, 0, 0). This implies that the essential conceptive pace of the infection was 

under control level, hence the decline rate of viral production is higher than the 

production rate. Consequently, the virus could not spread and its eliminated from the 

blood, when CD4+T-cell become consistent at 𝛿1/𝛿3.  

The model with delay was more advantageous over the non-delay model, because it 

was more stable at the trajectory. It supports viral peak postponement and virological 

suppression better than the non-delay (figure 4.2 and 4.3). 

 

 

Another dimension to the analysis was the removal of the delay component under the 

following conditions:  justification of the qualitative conduct of the three variables such 

as CD4+T-cell(x), HIV(y), and CTL (z) and this time, not controlling the fundamental 

reproductive rate of the virus. When intracellular delay was overlooked and the 

fundamental reproductive number was on grip, equation 2.2 was solved numerically as 
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per the 6th order Runge-Kutta strategy with now 𝑎1 = 0.1038 , 𝑎2 = 3.22, 𝑎3 = 2.64,

𝑎4 = 7.41, 𝑎5 = 4.17.  

Figure 4.4c, (appendix A.3), portrays the quantum of CTL in the blood which 

congregates at a universal ‘point. Figure 4.4(d) (appendix A.3) centers around the 

conduct of the compactness of HIV and CTL, as they approach the vanishing stretch to 

confirm the connection amidst the virus and the immune response.  

Therefore, the numerical outcome represented in Figure 4.4(a, b, c) (appendix A.3) 

correlates with the theoretical conjectures anticipated in Proposition 4.2(ii) and equation 

2.2. Hence, a steady state was attained at (0.83, 0.46, 0.46), when 𝑎3 > 1. This 

intimates that the essential conceptive pace of the infection is not under control hence, 

the decline rate of viral production is lower than the production rate. Infection rate 

emerges and more virions are produced in the blood. 

 

Contrary to the above, the model was further analyzed with the delay component 

(DDE), under the following conditions: justification of the qualitative conduct of the three 

variables such as CD4+T-cell(x), HIV(y), and CTL (z). The fundamental reproductive 

rate of the virus was uncontrolled and equation 4.1 was solved numerically using the 6th 

order Runge-Kutta technique with 𝑎1 = 0.1038, 𝑎2 = 3.22,  𝑎3 = 2.64, 𝑎4 = 7.41,  𝑎5 =

4.17 , 𝜏 = 0.19. Figure 4.5(a, b) (appendix A.4), portrays the quantum of CTL in the 

blood which congregate at a universal point. Figure 4.5(d) (appendix A.4) centers 

around the conduct of the compactness of HIV and CTL in the blood. The level of CTL 

and HIV in the blood approaches the vanishing stretch, to confirm the connection amidst 

the virus and the immune response. 

  

Therefore, the numerical outcome represented in Figure 4.5(appendix A.4) correlates 

with the conditions of proposition 4.2 (ii) and equation 4.1. Hence, when 𝑎3 > 1 𝑎𝑛𝑑 𝜏 <

𝜏𝑐, a constant steady state of (0.83, 0.46, 0.46) was attained. This intimates that the 

essential conceptive pace of the infection was not under control, hence declining the 

rate of viral production. Infection rate emerges and more virions are produced in the 

blood. The elongation of the infection leads to the inception of AID (Figure 4.5) 
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In relation to the conditions imposed on the adopted model, a validation of the model is 

ascertained by relating it to potential treatment strategies for compliance. The adopted 

STI under consideration is significant due to limited ARV accessibility. It is also worth at 

asset restricted areas. Hence, such areas do not have consistent access to treatment 

and could lead to the escalation of the virus. A typical example is the restricted 

medication accessibility and sometimes shortage of TB vaccines.  

 

In lieu of the various treatment strategies considered, the 24 days on treatment and 4 

days off- treatment were found to be reliable. 24/4 system created a cost sparing of 

14%, when contrasted with the continual therapy treatment. It is essential to note that 

the 4 days off therapy, allows the body some time to assimilate the medication without 

essentially influencing viral concealment. This is highly applicable in places or locations 

were ART is constrained. Refreshingly, it is smarter to stop treatment for a short period 

of time, instead of abandoning the whole process due to shortage of medication. This 

suspension lessens the possibility of curtailing drug resistance mutation, which may 

arise as a result of expanding viral haul, coupled with constant reduction of medication. 

 

 

 

5.3    FUTURE DIRECTIONS 

The DDE model created here depends on the ODE model, which was upgraded with 

the delay component to ascertain the viral haul of an individual. The embedment of 

intracellular delay depends on the time interval relevant for the body to produce virions.  

However, the developed DDE model is authenticated through the recommended STI 

systems. The STI systems were developed based on strict ethical human data. 

Therefore, the verification of the recommended STI system is a gate way for future 

research and adoption [137].  

 

Again several works have been done in this area which includes ODE modelling, 

optimal control and open-loop control [1137,165,], besides most of these models came 
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short of the addition of intracellular component, which appears to diminish viral haul, 

hence an exciting area for further research. 

 

Notwithstanding, due to increased imposition on treatment interruptions the study 

recommends for the application of controlled techniques to enhance the adopted model. 

 

Finally, the use of optimal control with distributed delay could also be exploited due to 

increase in target cells complexities [125, 132]. 

 

 

 

5.4     CONCLUSION 

In reference to the aim of the study, the sturdiness of the model with delay (equation 

4.1) and without delay (equation 2.2) was assessed. Numerical simulations were used 

to consolidate the results. 

The demands for the stability of Hopf bifurcation were authenticated in itemizing the 

initial conditions of the model (figure 4.1). The existence of Hopf bifurcation [12,137] has 

been proved and hence occurs when, 𝜏 passes through the critical value 𝜏𝑐. 

 

The analysis of the results indicated that when the basic reproductive rate of the virus 

was under control and the delay component 𝜏 were embedded in the model to verify the 

qualitative behavior of the three variables, such CD4+Tcells (x), HIV cells (y) and CTL 

(z). It was concluded that when 𝑎3 < 1, then by proposition 4.2(i): a steady state exists 

at (1,0, 0). Therefore the pace of infection of the virus is under control and the decline 

rate of viral production is higher than the production rate at 𝛿1/𝛿3 

Conversely when 𝑎3 > 1, then as per proposition 4.2(ii) : a non-existence steady state 

occurs. Therefore the pace of the contagion is higher than the decline rate at 𝛿1/𝛿3 and 

AIDS intercepts. [1, 16] 

Adherence to the conditions imposed on proposition 4.2(i) when 𝑎3 < 1, intimates that 

the reproductive ratio of the virus is under control. This signifies a stable CD4+ T cells, 

hence adherence to therapy could delay AIDS interception. Further, by the conditions of 
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proposition 4.2(i) we have revealed an abortive attempt by the virus, due to the 

consistent increase in CD4+ T cells (figure 4,4). Hence, CTL consequently eliminates 

the virus from the body. This is made possible when CD4+ T cells converges at    𝛿1/𝛿3 

 

Again sustenance of the imposed conditions on proposition 4.2(i), is central to 

virological suppression and increased life expectancy under HIV [122, 141, 152]. 

Therefore it is imperative to ascertain the time frame, for the adaptive immune response 

of the body to emerge in regulating viral replication. This is supported when 𝑎3 < 1 .  

 

Further, from the above deductions, patients with strong CTL and CD4+T cells will have 

a higher stable state and low viral contagion. This indicates that patients with low CTL 

and CD4+T cells will demonstrate a higher rate of viral infection. 

 

Consequently when the emanation of delay from latent cells is kept extremely low, then 

the immune reaction could be kept at a significant level. However the concepts of 

suppressing viral particle from emanating to larger quantities are relevant in the 

manufacture of drugs. The administration of drugs to HIV tainted individuals are made 

effective through the STI systems, which were discussed in detailed in chapter four. 

 

Referencing the challenges associated with HIV tainted individuals seeking for 

treatment and the need to maximize the benefits accruing from treatment, requires a 

suitable STI system. This study articulates structured treatment interference as a 

potential method for accomplishing low treatment cost whilst, keeping up with fruitful 

treatment options, especially in asset restricted areas. Interestingly, past 

disappointment on the usage of the traditional treatment options, has necessitated the 

use of STI for better suppression of the infection level. [133,134] 

 

It’s imperative to insinuate that the treatment interference models recommended by this 

study requires a short period off medication, meaning that treatment should just be 

expelled for some few days to allow for drug assimilation. The short interference period 
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demonstrates how unfruitful longer-term interference systems, have been over the 

years and hence the need for future alternatives. 

 

Further, in compliance with the rigorous analysis imposed on treatment options, the 

study hereby recommends for a short period off medication. This certifies that treatment 

should be expelled for only few days to allow for drug assimilation [68]. Therefore In 

reference to the imposed interactions on STI systems, the study recommends for the 24 

days on treatment and 4 days off treatment for compliance. 18 days on treatment and 3 

days off treatment is also supported by the study. [8, 12] 

 

Finally, it is further suggested that due to increase in treatment imposition, the 

recommended STI models (24 days on treatment and 4 days off treatment: 18 days on 

treatment and 3 days off treatment) could be made more potent and viable when 

controlled theory techniques are applied for future advancement.  
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APPENDIX A.1 

 

Figure 4.2 (a, b, c, d) shows the Numerical simulation of the model without the delay 

component. 

Figure 4.2(a) shows how the quantum of CD4+T-cells approaches zero, while 4.2(b) 

and 4,2(c) shows the amount of HIV and CTL in the blood respectively Figure 4.2(d) 

shows how the virus component decreases over time as  CTL  approaches zero. 
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APPENDIX A.2 
 

 

Figure 4.3(a, b, c, d) shows the Numerical simulation of the model with the delay 

component system.  

Figure 4.3(a) shows how the quantum of CD4+T-cells approaches a constant value 

whilst 4.3(b) and 4.3(c) shows how the quantum of HIV decreases whilst CTL remains 

constant over time. 

Figure 4.3(d) shows how the virus component decreases over time as CTL in the blood 

weakens and approaches zero 
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APPENDIX A.3 

 

Figure 4.4(a, b, c, d): shows the numerical simulation of the model without the delay 

component and the reproductive number is not constant 

Figure 4.4(a), the quantum of CD4+T cells approaches a constant value: 4.4(b) and 

4.4(c) shows how HIV and CTL component in the blood fluctuates before assuming a 

common point, with time 

Figure 4.4(d) depicts an escalation of the virus as CTL level decreases drastically    
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APPENDIX A.4 
 

 
 

Figure 4.5(a, b, c, d) shows the numerical simulation of the model with delay whilst the 

reproductive number is not constant. 

Figure 4.5(a) shows how the quantum of CD4+T cells decreases over time and assume 

a constant value: Figure 4.5(b) and 4.5(c) shows fluctuations of HIV and CTL in the 

blood. The Virus has reached an uncontrollable state as CTL decreases    

Figure 4.5(d) shows an escalation of the virus component whilst CTL diminishes 

drastically for the interception of HIV.  
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APPENDIX A.5 

 

 

 

Figure 4.6 Plot for a full blown AIDS with low CD4+ cells and viral load 
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APPENDIX  A.6 

 

 

 

          Figure 4.7: A plot of CD4+ T cells against viral load 
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APPENDIX   A.7 

 

 

Patient CD4+Tcells 

(𝒎𝒎−𝟑) 

Viral load 

(𝒎𝒍 × 𝟏𝟎−𝟑) 

1 70 181 

2 110 50 

3 210 80 

4 162 112 

5 257 76 

6 300 163 

7 373 171 

8 95 117 

9 215 90 

10 152 42 

11 107 113 

12 36 223 

13 32 19 

14 91 82 

15 342 173 

 

 

Table 4.2: HIV viral load of patients using the log value system of measurement 
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APPENDIX A.8 

 

Variable Category % Frequency 

Outcome of patients Completed 180(70.3%) 

 Lost follow up 76(26.9%) 

   

Gender Female 108(60%) 

 Male 77(40%) 

   

Age ≤ 25 8(4%) 

 26-31 20(11%) 

 32-37 52(29%) 

 38-43 4(27%) 

 44-49 28(16% 

 ≥ 50 24(13) 

 

Table 4.3 Percentage viral load level after ARV administration 
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