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Abstract 

There is widespread evidence that the volatility of stock 

returns displays an asymmetric response to good and bad news. 

This paper considers the impact of asymmetry on time varying 

hedges for financial futures. An asymmetric model which allows 

forecasts of cash and futures return volatility to respond 

differently to positive and negative return innovations gives 

superior in-sample hedging performance. However, the simpler 

symmetric model is not inferior in a hold-out sample. A method 

for evaluating the models in a modern risk management 

framework is presented, highlighting the importance of allowing 

optimal hedge ratios to be both time-varying and asymmetric.  

 



 4 

1. Introduction 

Over the past two decades, increases in the availability and usage of 

derivative securities has allowed agents who face price risk the opportunity to 

reduce their exposure. Although there are many techniques available for 

reducing and managing risk, the simplest and perhaps the most widely used, is 

hedging with futures contracts. A hedge is achieved by taking opposite 

positions in spot and futures markets simultaneously, so that any loss 

sustained from an adverse price movement in one market should to some 

degree be offset by a favourable price movement in the other. The ratio of the 

number of units of the futures asset that are purchased relative to the number 

of units of the spot asset is known as the hedge ratio. 

Since risk in this context is usually measured as the volatility of 

portfolio returns, an intuitively plausible strategy might be to choose that 

hedge ratio which minimises the variance of the returns of a portfolio 

containing the spot and futures position; this is known as the optimal hedge 

ratio. There has been much empirical research into the calculation of optimal 

hedge ratios (see, for example, Cecchetti et al., 1988; Myers and Thompson, 

1989; Baillie and Myers, 1991; Kroner and Sultan, 1991; Lien and Luo, 1993; 

Lin et al., 1994; Strong and Dickinson, 1994; Park and Switzer, 1995). 

The general consensus is that the use of multivariate generalised 

autoregressive conditionally heteroscedastic (MGARCH) models yields 

superior performances evidenced by lower portfolio volatilities, than either 

time-invariant or rolling ordinary least squares (OLS) hedges. Cecchetti et al 

(1988), Myers and Thompson (1989) and Baillie and Myers (1991), for 

example, argue that commodity prices are characterised by time-varying 
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covariance matrices. As news about spot and futures prices arrives to the 

market, the conditional covariance matrix, and hence the optimal hedging 

ratio, becomes time-varying. Baillie and Myers (1991) and Kroner and Sultan 

(1993), inter alia, employ MGARCH models to capture time-variation in the 

covariance matrix and the resulting hedge ratio.  

On the other hand, there is also evidence that the benefits of a time 

varying hedge are substantially diminished as the duration of the hedge is 

increased (e.g Lin et al., 1994). Moreover, there is evidence that the use of 

volatility forecasts implied by options prices can further improve hedging 

effectiveness (Strong and Dickinson, 1994). 

This paper has three main aims. Firstly, we link the concept of the 

optimal hedge with the notion of the News Impact Surface of Kroner and Ng 

(1998). The hedging surface of the OLS model is independent of news 

arriving to the market and therefore could be sub-optimal. Secondly, we 

extend the models of Cecchetti et al (1988), Myers and Thompson (1989) and 

Baillie and Myers (1991) to allow for time variation and asymmetry across the 

entire variance covariance matrix of returns. This means that the hedge ratio 

will be sensitive to the size and sign of the change in prices resulting from 

information arrival. Thirdly, we adapt the methods used by Hsieh (1993) to 

show how the effectiveness of hedges can be evaluated by the calculation of 

minimum capital risk requirements (MCRRs). Such a procedure allows the 

hedging performance of the various models to be assessed using a relevant 

economic loss function as well as on pure statistical grounds. 

 The paper is laid out in six sections. Section two presents the 

theoretical framework for deriving the hedge ratios, while section three 
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describes the data. Section four presents the empirical evidence on the 

performance of each hedging model, while the fifth section outlines the 

bootstrap methodology used to calculate the MCRR for each of the portfolios. 

Section six concludes. 

 

2. The Derivation of Optimal Hedge Ratios 

Let tC  and tF  represent the logarithms of the stock index and stock 

index futures prices respectively. The actual return on a spot position held 

from time tt     to1 is 1 ttt CCC  similarly, the actual return on a futures 

position is 1 ttt FFF . However, at time 1t , the expected return, 

)(1 tt RE  , of the portfolio comprising one unit of the stock index and  units of 

the futures contract may be written as 

Et-1(Rt) = Et-1 (Ct)- t-1Et-1 (Ft)     (1) 

where t-1 is the hedge ratio determined at time t-1, for employment in period 

t.
1
 The  variance of the portfolio may be written as 

CFtttFttCtp hhhh 1,

2

1,, 2         (2) 

where tph , , tFh ,  and tCh ,  represent the conditional variances of the portfolio 

and the spot and futures positions respectively and tCFh , represents the 

conditional covariance between the spot and futures position. If the agent has 

the two moment utility function 

tptttptt hREhREU ,1,1 )(),(        (3) 

then the utility maximising agent with degree of risk aversion  seeks to solve 

    )2(

),(max

,1,

2

1,11

,1

tCFttFttCttttt

tptt

hhhFECE

hREU









  
 (4) 
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Solving (4) with respect to  under the assumption that tF  is a martingale 

process such that   0)( 11111   ttttttt FFFFEFE  yields *

1t , the 

optimal number of futures contracts in the investor’s portfolio 

tF

tCF

t
h

h

,

,*

1         (5) 

If the conditional variance-covariance matrix is time-invariant (and if tC  and 

tF  are not cointegrated) then an estimate of *, the constant optimal hedge 

ratio, may be obtained from the estimated slope coefficient b in the regression 

ttt uFbaC         (6) 

The OLS estimate of b = hCF / hF is also valid for the multiperiod hedge in the 

case where the investors utility function is time separable.  

However, it has been shown by numerous studies (see section 1 above) 

that the data do not support the assumption that the variance-covariance matrix 

of returns is constant over time. Therefore we follow recent literature by 

employing a bivariate GARCH model which allows the conditional variances 

and covariances used as inputs to the hedge ratio to be time-varying.  

In the absence of transactions costs, market microstructure effects or 

other impediments to their free operation, the efficient markets hypothesis and 

the absence of arbitrage opportunities implies that the spot and corresponding 

futures markets react contemporaneously and identically to new information. 

There has been some debate in the literature as to whether this implies that the 

two markets must be cointegrated. Ghosh (1993), for example, suggests that 

market efficiency should imply that cash and futures are cointegrated, while 

Baillie and Myers (1991) suggest that, as a consequence of possible non-

stationarity of the risk free proxy employed in the cost of carry model, this 
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need not be the case. We do not wish to enter into this debate from a 

theoretical viewpoint, but suffice to say that in all ensuing analysis, we allow 

for, but do not impose, a [-1 1] cointegrating vector for the two series. The 

conditional mean equations of the model employed in this paper are a bivariate 

Vector Error Correction Mechanism (VECM), which may be written as 
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 (7) 

Under the assumption ),0(~| ttt H , where t represents the 

innovation vector in (6) and defining ht as vech(Ht), where vech(.) denotes the  

vector-half operator that stacks the lower triangular elements of an NN   

matrix into an 1)2/)1(( NN  vector, the bivariate VECM(p) GARCH(1,1) 

vech model may be written 

where 

Restricting the matrices A1 and B1 to be diagonal gives the model 

proposed by Bollerslev, Engle and Wooldridge (1988) where each element of 

the conditional variance-covariance matrix hij,t depends on past values of itself 

and past values of '

11  tt  . There are 21 parameters in the conditional 

vec H h

h

h

h

C A vec B ht t

C t

CF t

F t

t t t( ) ( ' )

,

,

,

 

















    0 1 1 1 1 1           (8) 























































333231

232221

131211

1

333231

232221

131211

1

22

12

11

0 ;;

bbb

bbb

bbb

B

aaa

aaa

aaa

A

c

c

c

C  



 9 

variance-covariance structure of the bivariate GARCH(1,1) vech model (8) to 

be estimated, subject to the requirement that Ht be positive definite for all 

values of t  in the sample. The difficulty of checking, let alone imposing such 

a restriction led Engle and Kroner (1995) to propose the BEKK 

parameterisation  

*

111

*'

11

*

11

'

11

*'

11

*

0

*'

0 BHBAACCH tttt        (9) 

The BEKK parameterisation requires estimation of only 11 parameters in the 

conditional variance-covariance structure and guarantees Ht positive definite. 

It is important to note that the BEKK and vec models imply that only the 

magnitude of past return innovations is important in determining current 

conditional variances and covariances. This assumption of symmetric time-

varying variance-covariance matrices must be considered tenuous given the 

existing body of evidence documenting the asymmetric response of equity 

volatility to positive and negative innovations of equal magnitude (see Engle 

and Ng, 1993, Glosten, Jagannathan and Runkle, 1993, and Kroner and Ng, 

1998, inter alia). 

Defining  0,min, ttj    , for j=futures, cash, the BEKK model in (9) 

may be extended to allow for asymmetric responses as 
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 where 
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The symmetric BEKK model (9) is given as a special case of (10) for m,n=0, 

for all values of m and n. 

 

3. Data Description 

The data employed in this study comprises 3580 daily observations on 

the FTSE 100 stock index and stock index futures
2
 contract spanning the 

period 1 January 1985 - 9 April 1999. Days corresponding to UK public 

holidays are removed from the series to avoid the incorporation of spurious 

zero returns.  

The FTSE 100 comprises the 100 UK companies quoted on the 

London Stock Exchange with the largest market capitalisation, accounting for 

73.2% of the market value of the FTSE All Share Index as at 29 December 

1995 (Sutcliffe 1997). FTSE 100 futures contracts are quoted in the same units 

as the underlying index, except that the decimal is rounded to the nearest 0.5
3
. 

The price of a futures contract (contract size) is the quoted number (measured 

in index points) multiplied by the contract multiplier, which is £25 for the 

contract. There are four delivery months: March, June, September and 

December. Trading takes place in the three nearest delivery months although 

volume in the ‘far’ contract is very small. Each contract is therefore traded for 

nine months.  FTSE100 futures contracts are cash-settled as opposed to 

physical delivery of the underlying. All contracts are marked to market on the 

last trading day, which is the third Friday in the delivery month, at which point 
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all positions are deemed closed. For the FTSE100 futures contract, the 

settlement price on the last trading day is calculated as an average of minute-

by-minute observations between 10:10AM and 10:30AM rounded to the 

nearest 0.5.  

Summary statistics for the data are displayed in panel A of table 1. 

Using Dickey Fuller (1979) unit root tests, it is not possible to reject the null 

hypothesis of non-stationarity for the cash and futures price series. This non-

stationarity of the price series is consistent with weak-form efficiency of the 

cash and futures markets. The return series are calculated as )/(100 1 tt CC  

and )/(100 1 tt FF , respectively. The returns are skewed to the left, 

leptokurtic and stationary. These features are entirely in accordance with 

expectations and results presented elsewhere. In the absence of a long run 

relationship between tt FC  and , optimal inference based upon asymptotic 

theory requires the use of returns rather than price data in calculation of 

estimation of dynamic hedge ratios. 

Results for both Engle-Granger (1987) and Johansen (1988) tests for 

cointegration are displayed in table 1.The Engle-Granger results of panel B 

clearly demonstrate that the null of non-stationarity in the residuals of the 

cointegrating regression is strongly rejected, for the test both with and without 

a constant term. Moreover the estimated slope coefficient is very close to unity 

whether the spot or futures price is the dependent variable. Similarly, the 

Johansen test statistics, for both the trace and the max forms, reject the null of 

no cointegrating vector, but do not reject the null of one cointegrating vector. 

A restriction of the cointegrating relationship between the series to be [1 -1] 

was marginally rejected at the 5% level. However, after normalising the 
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estimated cointegration vector on Ct, the estimated coefficient on Ft was -

1.006 suggesting that this rejection may not be economically important. On 

close examination of the short run components of the VECM it appears that 

the futures prices are weakly exogenous. A likelihood ratio test supports this 

restriction. Thus while the cointegrating equilibrium is defined by both cash 

and futures prices, equilibrium is restored through the cash markets. A test of 

the joint hypothesis that futures prices are weakly exogenous and that the 

parameters of the cointegration vector are [1,-1] was not rejected at the 5% 

level of significance. Baillie and Myers (1991) argue that a perfect 1:1 

association does not exist in a commodity futures hedge due to the cost of 

carry, although this does not preclude some other cointegrating relationship 

from existing. On balance, the data appear to be cointegrated with a [1,-1] 

cointegrating vector.  

 

4. Hedging Model Estimates, Tests and Performance 

Given the evidence of a long-run or cointegrating relationship between 

tt FC  and  the conditional mean equations are parameterised as a VECM rather 

than a VAR to avoid loss of long run information. 

The parameter estimates and associated residual diagnostics for the 

multivariate asymmetric GARCH model are presented in table 2. Again, the 

factor loading associated with the futures prices is positive indicating that the 

return to equilibrium is achieved via the cash markets. A high degree of 

persistence is variance in indicated in both markets. The persistence is 

measured by 22

iiii    for i=1,2. The statistical significance of the elements of 
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the *

11D  matrix indicates the presence of asymmetries in the variance-

covariance matrix.   

Kroner and Ng (1998) analyse the asymmetric properties of time-

varying covariance matrix models, identifying three possible forms of 

asymmetric behaviour. Firstly, the covariance matrix displays own variance 

asymmetry if  tFtC hh ,, , the conditional variance of  tt FC , is affected by the 

sign of the innovation in  tt FC . Secondly, the covariance matrix displays 

cross variance asymmetry if the conditional variance of  tt FC  is affected by 

the sign of the innovation in  tt CF . Finally if the covariance of returns tCFh , is 

sensitive to the sign of the innovation in return for either tt FC or   then the 

model is said to display covariance asymmetry.  

The residual diagnostics indicate that the model was able to capture all 

of the dependence on past values in both the conditional mean and conditional 

variances for both the spot and futures equations. The coefficients of skewness 

and excess kurtosis are much reduced relative to their values on the raw data, 

again indicating a reasonable fit of the model to the two series. The robust 

likelihood ratio tests suggested by Kroner and Ng (1998) to detect such 

asymmetry in MGARCH models indicate that the asymmetric model provides 

a superior data characterisation to the symmetric MGARCH(1,1). The final 

row of table 2 tests the restriction of the asymmetric model to be symmetric; 

that is, a restriction that good and bad news affect the volatility of the spot and 

futures markets equally. This restriction is clearly rejected, suggesting that the 

pursuit of an asymmetric model is important and may yield superior hedging 
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performance relative to a model which ignores this feature which is manifest 

in the data. 

The price innovations, F,tt-ttCtt ε-FFCC   1,1  and   , represent 

changes in information available to the market (ceteris paribus). Kroner and 

Ng (1998) treat such innovations as a collective measure of news arriving to 

market j between the close of trade on period t-1 and the close of trade on 

period t. They define the relationship between innovations in return and the 

conditional variance-covariance structure as the news impact surface, a 

multivariate form of the news impact curve of Engle and Ng (1993). Figures 1 

to 3 display the variance and covariance news impact surfaces from the 

estimates displayed in Table 2. Following Engle and Ng (1993) and Kroner 

and Ng (1998) each surface is evaluated in the region  5,5, tj  for j= 

futures, cash. There are relatively few extreme outliers in the data, which 

suggests that some caution should be exercised in interpreting the news impact 

surfaces for larger values of tj , .  Despite this caveat, the asymmetry in 

variance and covariance is clear from each figure. 

The returns and variances for the various hedging strategies are 

presented in table 3. The simplest approach, presented in the second column, 

is that of no hedge at all. In this case, the portfolio simply comprises a long 

position in the cash market. Such an approach is able to achieve significant 

positive returns in sample, but with a large variability of portfolio returns. 

Although none of the alternative strategies generate returns that are 

significantly different from zero, either in sample or out of sample, it is clear 

from columns 3-5 of table 3 that any hedge generates significantly less return 

variability than none at all. 
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The naïve or cointegrating hedge, which takes one short futures 

contract for every spot unit, but does not allow the hedge to time-vary, 

generates a reduction in variance of the order of 80% in sample and nearly 

90% out of sample relative to the unhedged position. Allowing the hedge ratio 

to be time-varying and determined from a symmetric multivariate GARCH 

model leads to a further reduction as a proportion of the unhedged variance of 

5% and 2% on the in- and hold-out samples respectively. Allowing for an 

asymmetric response of the conditional variance to positive and negative 

shocks yields a very modest reduction in variance (a further 0.5% of the initial 

value) in sample, and virtually no change out of sample.   

Figure 4 graphs the time varying hedge ratio from the symmetric and 

asymmetric MGARCH models. The optimal hedge ratio is never greater than 

0.9586 futures contracts per index contract, with an average value of 0.8177 

futures contracts sold per long index contract. The variance of the estimated 

optimal hedge ratio is 0.0019. Moreover the optimal hedge ratio series 

obtained through the estimation of the asymmetric GARCH model appears 

stationary. An ADF test (see, for example, Fuller, 1976) of the null hypothesis 

*

1t ~I(1) was strongly rejected by the data (ADF=-5.7215, 5% Critical value 

= -2.8630). The time varying hedge requires the sale (purchase) of fewer 

futures contracts per long (short) index contract.
4
  

The optimal hedge ratio *

1t  may be linked to the arrival of news to 

the market using (5) and the relevant futures price and covariance news impact 

surfaces. Evaluating *

1t in the range  5,5, tj  for j=futures, cash as 

before gives us the response of the optimal hedge to news. Note that the 

surface is drawn under the assumption that the portfolio is long the stock index 
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and the optimal hedge ratio is written in terms of the number of futures 

contracts to sell. A negative optimal hedge ratio thus implies the purchase of 

futures contracts. Figure 5 graphs the response of *

1t  to news.  

It is worth noting that *

1t  responds far more dramatically to bad news 

about the cash market index than to news about the future price. Negative 

innovations in the cash price cause the optimal hedge ratio to increase in 

magnitude towards 1. Large positive innovations in the cash price suggest a 

negative hedge ratio. This might appear counter intuitive, however the surface 

is drawn holding past information constant. The implication of the asymmetry 

is that the hedge has very low value in bull market situations. In contrast, the 

cointegrating hedge implies that the hedging surface is a plane at *

1t =  =1. 

One possible interpretation of the better performance of the dynamic strategies 

over the naive hedge is that the dynamic hedge uses short run information, 

while the cointegrating hedge is driven by long run considerations. The 

performance evaluation in table 3 is in terms of one-day-ahead hedges. In the 

next section we use a new criterion to judge hedging over various horizons, 

including the one-day horizon. 

 

5. Evaluating Hedging Effectiveness by Calculating Minimum Capital 

Risk Requirements 

Ensuring that banks hold sufficient capital to meet possible future 

losses has been a topic of great import for regulators and risk managers in 

recent years. A very popular approach involves the calculation of the 

institution’s value at risk (VaR) inherent in its trading book positions. VaR is 

an estimation of the probability of likely losses which might occur from 
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changes in market prices from a particular securities position, and the 

minimum capital risk requirement (MCRR) is defined as the minimum amount 

of capital required to absorb all but a pre-specified percentage of these 

possible losses. We address an approach to the calculation of MCRRs which is 

similar in spirit to the approach adopted in many Internal Risk Management 

Models (IRMM), proposed by Hsieh (1993).
5 

Capital risk requirements are estimated for 1 day, 10 day, 30 day, 3 

month and 6 month investment horizons by simulating the conditional 

densities of price changes, using Efron’s (1982) bootstrapping methodology 

based upon the multivariate GARCH(1,1) model presented in equations (7) 

and (9), both with and without asymmetries, for comparison. The simulated 

errors are generated by drawing randomly, with replacement, from the 

standardised residuals and hence a path of future Yt ‘s can be generated, 

using the estimates of , , , C0, A11, and B11 from the sample and multi-step 

ahead forecasts of Ht.  

A securities firm wishing to calculate the VaR of a portfolio containing 

the cash and futures assets
7
 would have to simulate the price of the assets 

when it initially opened the position.  To calculate the appropriate capital risk 

requirement, it would then have to estimate the maximum loss that the 

position might experience over the proposed holding period.
6
  For example, by 

tracking the daily value of a long cash and short futures position and recording 

its lowest value over the sample period, the firm can report its maximum loss 

for this particular simulated path of cash and futures prices. Repeating this 

procedure for 20,000 simulated paths generates an empirical distribution of the 

maximum loss. This maximum loss (Q) is given by: 
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Q = (x0 - x1)    (12) 

Where 0x  is the initial value of the portfolio and x1 is the lowest simulated 

value of the portfolio (for a long futures position) or the highest simulated 

value (for a short futures position) over the holding period. We can express the 

maximum loss as a proportion of the initial value of the portfolio as follows: 
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 Quantile from a standard normal distribution, m  is the 

Mean of 


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
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Ln

 

 and Sd is the Standard deviation of 










0

1

x

x
Ln .  Cross-

multiplying and taking the exponential, 

x x Exponential Sd m1 0    [( ) ]     (15) 

therefore 

Q x Exponential Sd m     0 1{ [( ) ]}

    

(16) 
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In this paper, we compare the MCRRs generated by the portfolios 

constructed using the hedge ratios derived from the models described above. 

The asymmetric multivariate GARCH model appears well specified and able 

to capture the salient features of the data. Given this, we now determine what 

would be an appropriate amount of capital to cover the cash and futures 

portfolio derived from the hedge ratio as implied by the model. In particular, 

we consider whether this portfolio minimises the need for capital, given that 

all such capital is tied up in an unproductive and unprofitable fashion.  

The estimated minimum capital risk requirements are presented in 

tables 4 and 5 for each of the models, ignoring and allowing for asymmetries, 

respectively, and are given in units of index points
8
. Panel A of Tables 4 and 5 

present the MCRR for a short hedge (long cash, short futures). While Panel B 

of the tables presents the results for a long hedge (long futures, short cash). 

The most important feature of the results is that any type of hedge, even a 

naïve hedge, is better than a naked exposure. Moreover, at short investment 

horizons, there are large gains to be made by allowing the hedge to vary over 

time. For example, the short hedge portfolio MCRR is 22.2 index points for a 

naïve hedge, but only 11.8 for a Multivariate GARCH hedge. The long hedge 

positions seem to be more risky overall over our out of sample period, 

generating higher values at risk than the corresponding short hedges.  

The gain from the use of an asymmetric model, as opposed to a 

constrained symmetric model, which does not allow good and bad news to 

effect returns differently, is large at short time horizons. For example, for the 

symmetric time-varying short hedge, the portfolio MCRR is 11.8, while 

modelling the asymmetries reduces this to 2.0. However, the benefit of these 
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more complex asymmetric and time-varying hedges, and moreover, the 

benefits of hedging per se, are considerably reduced as the time horizon is 

extended beyond one month. For example, the MCRR for a long hedge 

calculated using asymmetric MGARCH is less than 10% of that using no 

hedge at the one day horizon, but rises to more than 25% over a 6 month 

hedging period. This result is in agreement with the findings of Lin et al. 

(1994). 

 

6.  Conclusions 

This paper sought to advance the extant literature in this field by 

considering the impact of asymmetries on the hedging of stock index positions 

using financial futures contracts
9
. We found that asymmetric models, which 

allow positive and negative price innovations to affect volatility forecasts 

differently, yielded improvements in forecast accuracy in sample, but not out 

of sample, when evaluated using the traditional variance of realised returns 

metric.  

The paper also demonstrated how such hedging methodologies could 

be evaluated in a modern risk management context, using a technique based 

on the estimation of value at risk. Our primary finding was that allowing for 

asymmetries led to considerably reduced portfolio risk at the shortest 

forecasting horizons, and modest benefits when the duration of the hedge was 

increased. 

Our results have at least two important implications for those financial 

market transactors who wish to reduce their exposure to risk using futures 

contracts, and for further research in this area. First, hedge ratios which are 
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determined taking into account asymmetries in volatility are expected, in 

general, to be more effective than those which do not. Second, since recent 

changes in legislation in Europe have allowed market risk to be determined 

using value at risk technologies under the second EC Capital Adequacy 

Directive (CAD II), it is surely desirable for hedgers to measure the risk 

inherent in their hedged portfolios in a similar fashion. Such procedures are 

already now in widespread use in Europe as well as the US. The value at risk 

approach is (or soon will be) used to assess the risk of the books of securities 

firms as a whole. The use of traditional methods for assessing hedging 

effectiveness, such as portfolio return variances, could be incompatible with, 

and give very different results to, those based on value at risk methods.   
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Footnotes 

*  
This paper was written while the second author was on study leave at the 

ISMA Centre, Department of Economics, The University of Reading. The 

development of this paper benefited from comments by the anonymous 

referees and discussions with Salih Neftci, Simon Burke and Peter Summers. 

The responsibility for any errors or omissions lies solely with the authors.  

1
 Note that we are not requiring at this stage that the hedge ratio, t-1, be time-

varying, but rather that it is determined using information to time t-1. 

2
 Since these contracts expire 4 times per year - March, June, September and 

December - to obtain a continuous time series we use the closest to maturity 

contract unless the next closest has greater volume, in which case we switch to 

this contract. 

3
 The reason for this is that the minimum price movement (known as tick) for 

the futures contract is  £12.50 i.e. a change of 0.5 in the index. 

4
 Although, of course, a time-varying hedge may result in considerably 

increased transactions costs in the likely event that such a hedge requires daily 

adjustments of the futures position. We therefore cannot state categorically 

that the time-varying hedge would be cheaper. 

5
 See also Brooks et al. (2000) for a more detailed description of this 

methodology and issues in its implementation.  
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6
 See Dimson and Marsh (1997) for a discussion of a number of potential 

issues which a financial institution may face when calculating appropriate 

levels of capital for multiple positions during periods of stress. 

7
 The current BIS rules state that the MCRR should be the higher of the: (i) 

average MCRR over the previous 60 days or (ii) the previous trading days’ 

MCRR. 

8
 See section 3 above. Although Hsieh (1993) and Brooks et al. (2000) 

measure MCRRs as a proportion of the initial value of the position, this is not 

sensible in our case since by definition an appropriately hedged portfolio will 

have a zero value. 

9
 Although the methodology could, of course, be equally applied to hedging a 

position in any financial asset using futures contracts. 
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Table 1: Summary Statistics and Cointegration Tests 

Panel A: Summary Statistics for the data 

  ADF()  ADF 

Ft  -1.7028  1.9982 

Ct  -1.0082  2.2269 

Series Mean Variance Skewness Excess 

Kurtosis 

ΔFt 0.0392 1.1424 -1.6081 25.3160 

ΔCt 0.0389 0.8286 -1.6602 25.6852 
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Panel B: Engle Granger Cointegration Tests 

Ft as dependent variable 

0 1 ADF() ADF 

-0.0327 

(0.0039) 

1.0031 

(0.0005) 

-8.3846 -8.3859 

Ct as dependent variable 

0 1 ADF() ADF 

0.0386 

(0.0039) 

0.9961 

(0.0005) 

-8.4026 -8.4039 

Panel C: Johansen Cointegration Tests 

 M T  

r = 0 91.75 92.58  

r = 1 0.83 0.83  

Likelihood Ratio Tests 

H0: ’=[-1,1] H0: =[1,0] H0:’=[-1,1] | =[1,0] 

5.51 

[0.06] 

4.4800 

[0.0300] 

0.06900 

[0.4000] 
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Table 2: Estimates of the Multivariate Asymmetric GARCH Model 

Conditional Mean Equations 
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Table 2 Continued: 

Estimates of the Multivariate Asymmetric GARCH Model 

Residual Diagnostics 

 Mean Variance Skewness Excess 

Kurtosis 

Q(10) Q
2
(10) 

tF ,  -0.0023 1.0790 -0.9077 

[0.0000] 

12.7237 

[0.0000] 

13.3361 

[0.2055] 

2.1991 

[0.9946] 

tC ,  -0.0079 1.0438 0.4578 

[0.0000] 

5.9459 

[0.0000] 

12.0461 

[0.2820] 

7.6730 

[0.6607] 

Notes: Standard errors displayed as (.). Marginal significance levels displayed 

as [.]. Q(10) and Q
2
(10) are are Ljung_Box tests for tenth order serial 

correlation in 2

,, and tjtj zz respectively for j = F,C. 
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Table 2 Continued: Estimates of the Multivariate Asymmetric GARCH 

Model  

Conditional Variance-Covariance Structure 
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H0:ij=0 for i,j=1,2 30.7106 
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Table 3: Portfolio Returns 

In Sample 

 Unhedged 

 = 0 

Naïve Hedge 

 = -1 

(C.I. HEDGE) 

Symmetric 

Time Varying 

Hedge

tF

tFC

t
h

h

,

,
  

Asymmetric 

Time Varying 

Hedge

tF

tFC

t
h

h

,

,
  

Return 0.0389 

{2.3713} 

-0.0003 

{-0.0351} 

0.0061 

{0.9562} 

0.0060 

{0.9580} 

Variance  0.8286 0.1718 0.1240 0.1211 

Out of Sample 

 Unhedged 

 = 0 

Naïve Hedge 

 = -1 

(C.I. HEDGE) 

Symmetric 

Time Varying 

Hedge

tF

tFC

t
h

h

,

,
  

Asymmetric 

Time Varying 

Hedge

tF

tFC

t
h

h

,

,
  

Return 0.0819 

{1.4958} 

-0.0004 

{0.0216} 

0.0120 

{0.7761} 

0.0140 

{0.9083} 

Variance 1.4972 0.1696 0.1186 0.1188 

Notes: t-Ratios displayed as {.} 
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Table 4: MCRR Estimates - Symmetric Hedging Models 

Panel A: Long Cash and Short Futures 

Days Unhedged Naïve Hedge Time-Varying 

Hedge 

1 

 

27.851 22.175 11.763 

10 

 

211.210 99.819 96.308 

20 

 

234.215 197.217 124.214 

30 

 

358.872 238.632 167.297 

60 

 

411.058 425.661 245.312 

90 

 

513.368 499.756 293.263 

180 

 

651.402 569.952 378.451 
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Table 4: MCRR Estimates - Symmetric Hedging Models 

Panel B: Short Cash and Long Futures 

Days Unhedged Naïve Hedge Time-Varying 

Hedge 

1 

 

49.525 25.783 16.294 

10 

 

260.847 147.355 84.773 

20 

 

385.323 217.493 176.856 

30 

 

414.618 258.481 216.965 

60 

 

667.067 320.512 290.489 

90 

 

943.051 567.666 348.487 

180 

 

1290.627 761.248 537.951 
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Table 5: MCRR Estimates - Asymmetric Hedging Models 

Panel A: Long Cash and Short Futures 

Days Unhedged Naïve Hedge Time-Varying 

Hedge 

1 

 

20.792 2.356 2.003 

10 

 

196.812 83.475 74.268 

20 

 

237.567 182.852 96.776 

30 

 

370.988 228.123 155.325 

60 

 

416.221 416.632 229.875 

90 

 

529.219 484.566 292.852 

180 

 

746.852 549.633 354.685 
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Table 5: MCRR Estimates - Asymmetric Hedging Models 

Panel B: Short Cash and Long Futures 

Days Unhedged Naïve Hedge Time-Varying 

Hedge 

1 

 

46.852 8.511 3.321 

10 

 

228.562 120.256 83.523 

20 

 

415.785 176.118 105.963 

30 

 

507.952 213.963 153.523 

60 

 

717.633 315.784 221.541 

90 

 

1004.159 644.935 273.965 

180 

 

1462.774 743.226 381.522 
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Figure 1: News Impact Surface for Futures Market Volatility 
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Figure 2: News Impact Surface for Cash Market Volatility 
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Figure 3: Covariance News Impact Surface 
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Figure 4: The optimal dynamic hedge ratio, 
*

1t  

Symmetric BEKK

Asymmetric BEKK

Time Varying Hedge Ratios

500 1000 1500 2000 2500 3000
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 



 42 

 

Figure 5: Hedging Surface: The response of 
*

t  to News 

 


