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Abstract

Introduction:We investigated how components of immunity relate to biomarkers of

Alzheimer’s disease (AD) in plasma and explored the influence of AD genetic risk fac-

tors in the population-based Rotterdam Study.

Methods: In 7397 persons, we calculated the granulocyte-to-lymphocyte ratio (GLR),

platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII). In

3615 of these persons, plasma amyloid-beta (Aβ)42 and Aβ40 were measured. Next,

we constructed an overall genetic risk score (GRS) based on genome-wide significant

variants, both including and excluding APOE ε4.
Results: All innate immunity phenotypes were related to higher Aβ, most strongly

with a doubling in GLR leading to a 1.9% higher Aβ42 (95% confidence interval [95%

CI] 0.4 to 3.3%) and 3.2% higher Aβ40 (95% CI 2.0 to 4.3%). Higher AD GRS including

APOE ε4was associated with higher immunity markers.

Discussion: Higher levels of immunity markers were associated with higher Aβ in

plasma. Participants with a higher genetic predisposition to AD had higher immunity

markers, where these effects weremainly driven by APOE ε4.
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1 INTRODUCTION

Alzheimer’s disease (AD) is characterized pathologically by accumula-

tion of amyloid beta (Aβ) as amyloid plaques and phosphorylated tau

as neurofibrillary tangles.1 This accumulation gave rise to the amyloid

hypothesis, posing that Aβ activates a cascade of pathologic changes.2

As anextension to the amyloid hypothesis, the antimicrobial protection

model was recently proposed suggesting that Aβ oligomerization is not

intrinsically pathological, but emerges as an innate immune response.3

Genetic variants identified through genome-wide association studies
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(GWAS) support this role for immunity.4 It has also been found that

higher activation of the innate immune system and lower activation

of the adaptive immune system leads to higher dementia risk.5 Yet,

the link between immunity and AD-related brain pathology is largely

unknown.

In the early 1990s, apolipoprotein E (apoE) was found to be a com-

ponent of amyloid plaques.6,7 However, how apoE’s function as a lipid-

carrier is in itself related toAD, either in relation to Aβ or other factors,
is not entirely clear. Lipids serve more than pure nutritional purposes;

they also play essential roles in immune regulation.8 Innate immunity in
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turn affects Aβ and tau pathology buildup. Insoluble tau isolated from

postmortem AD brain is shown to be taken up by microglia in vitro

and in vivo.9 This taking in of tau may participate in tau spreading by

microglia subsequently releasing some form of tau.10

To study further how AD relates to the immune response, we may

use serum levels of various blood cellswhich reflect a systemic immune

response11 and relate them with biomarkers of AD pathology and

progression. Serum levels of granulocytes and platelets are known

biomarkers of the innate immunity, whereas lymphocyte levels may

yield information on the adaptive immunity.12 Combining these mea-

surements into ratios is thought to reflect the relative balance between

innate and adaptive immunity even better, obtaining the granulocyte-

to-lymphocyte ratio (GLR), platelet-to-lymphocyte ratio (PLR), and sys-

temic immune-inflammation index (SII) as phenotypical markers of

immunity.13 Whereas for the diagnosis of AD, biomarkers are grouped

into those of β amyloid deposition, pathologic tau, and neurodegenera-

tion (ATN) according to the recent classification by Jack et al.,14 yield-

ingplasmaAβ, total tau, andneurofilament light chain (NfL) as biomark-

ers of AD-related brain pathology, respectively.

In an earlier study investigating the role of various biological path-

ways based on a genetic risk score, we found an important role for

the immune response pathway in early AD pathology.15 Relating phe-

notypical immunity and AD-related markers to each other and addi-

tionally to genetic predisposition to AD may help to understand the

role of immunity biomarkers in AD pathology and their relation with

AD genetic risk, and ultimately identify therapeutic strategies target-

ing upstream events of altered immune response in amyloidosis and

neurodegeneration.We previously found that higher levels of theGLR,

PLR, and SII over time reflect higher innate immunity and increased

dementia risk.5 Since we also previously found that low Aβ42 and high
NfL plasma levels were associated with risk of AD,16 we hypothesized

that higher innate immunity affects the serum levels of Aβ42 to be

lower and NfL to be higher. We tested this hypothesis by investigating

whether serum GLR, PLR, and SII were associated with Aβ, total tau,
and NfL and how genetic predisposition to AD affected thesemarkers.

2 METHODS

2.1 Study population

The present study is embeddedwithin theRotterdamStudy, a prospec-

tive population-based cohort study inRotterdam, theNetherlands. The

Rotterdam Study started in 1989 with 7983 persons (response rate:

78%) aged ≥55 years and residing in the district of Ommoord, a sub-

urb of Rotterdam. This first subcohort (RS-I) was extended with a sec-

ond subcohort (RS-II) in 2000, consisting of 3011 persons (response

rate: 67%), and with a third subcohort (RS-III) in 2006, composed of

3932 persons aged ≥45 years (response rate: 65%). The design of the

Rotterdam Study has been described in detail previously.17 In brief,

participants were examined at study entry and follow-up visits every

3 to 5 years. They were interviewed at home by a trained research

nurse, followed by two visits at the research facility for additional

RESEARCH INCONTEXT

1. Systematic review: Alzheimer’s disease (AD) is character-

ized pathologically by accumulation of amyloid plaques

and tau tangles. Genetic variants identified through

genome-wide association studies suggest a role for immu-

nity. However, the link between immunity and biomark-

ers of neurodegeneration is largely unknown.We investi-

gated how biomarkers of immunity relate to established

AD biomarkers, amyloid beta (Aβ), total tau, and neurofil-
ament light chain (NfL), in plasma. We also explored the

influence of genetic risk factors of AD in these associa-

tions.

2. Interpretation: In this study, we found that higher lev-

els of serum innate immunity markers were associated

with lower Aβ42/40 ratio, lower total tau and higher NfL

in serum. A higher genetic predisposition to AD was sig-

nificantly associated with higher serum immunity mark-

ers and with lower Aβ42 and Aβ42/40 ratio, where these

genetic effectsweremainly drivenby theAPOE ε4variant.
3. Future directions: Knowledge of the potential pro-

inflammatory role of APOE ε4 should encourage future

studies to find ways to scale down innate immune

responses in APOE ε4 carriers to limit AD-related brain

pathology to prevent AD.

interviewing and laboratory assessments. The Rotterdam Study has

been approved by the Medical Ethics Committee of the ErasmusMed-

ical Center and by the board of the Netherlands Ministry of Health,

Welfare, and Sports. Written informed consent was obtained from all

participants.

Laboratory tests for granulocytes, platelets, and lymphocytes were

introduced from 2002 onwards, corresponding with the following

assessment rounds in the Rotterdam Study (baseline for this study):

fourth round of RS-I (RS-I-4), second round of RS-II (RS-II-2), and

first round of RS-III (RS-III-1). Plasma biomarkers of AD-related brain

pathology were only assessed in RS-I-4 and RS-II-2. Blood was drawn

from 11,496 participants for genotyping. Of these participants, 7413

underwent granulocyte, platelet, and lymphocyte assessments, while

3627participants underwent plasmaAβ, total tau, andNfL assessment.

WeexcludedparticipantswithmissingAPOEgenotypeandparticipants

with incomplete assessments of serum markers, leaving 7397 partici-

pants for analysis with complete blood assessment for immunitymark-

ers and 3615 participants with complete plasma Aβ, total tau, and NfL
assessment (Figure 1).

2.2 Genotyping

DNA genotyping was performed at the internal genotyping facility of

the Erasmus Medical Center, Rotterdam. All samples were genotyped
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F IGURE 1 Flow diagram

with the 550, 550, duo or 610 K Illumina arrays. Genotyping qual-

ity control criteria include call rate <95%, Hardy-Weinberg equilib-

rium of P < 1.0 × 10−6, and minor allele frequency <1%. Moreover,

study samples with excess autosomal heterozygosity, call rate<97.5%,

ethnic outliers, and duplicate or family relationships were excluded

during quality control analysis. Genetic variants were imputed from

the Haplotype Reference Consortium reference panel (version 1.0),18

using the Michigan imputation server.19 The server uses SHAPEIT2

(v2.r790)20 to phase the genotype data and performs imputation with

Minimac 3 software.21 For this study, we used genetic variants that

had imputation quality (R2)>0.5. APOE genotype was determined sep-

arately by PCR on coded DNA samples in the baseline cohort and

with a bi-allelic Tacqman assay in the extensions of the Rotterdam

Study.22

2.3 Assessment of blood cell counts and their
derived ratios

Full blood countmeasurements were performed using the COULTER®

Ac⋅T diff2™ Hematology Analyzer (Beckman Coulter, San Diego, Cal-

ifornia, USA) directly after the blood sample was drawn. Laboratory

measurements included absolute granulocyte, platelet, and lympho-

cyte counts in 109/L. The GLR and PLR were calculated as the ratio

of granulocyte count to lymphocyte count, and as the ratio of platelet

count to lymphocyte count, respectively. The SIIwas defined as platelet

count times the GLR.13 We use the GLR as a proxy measure for the

commonly used neutrophil-to-lymphocyte ratio, as granulocytes are

themost abundant subtype of neutrophils.

2.4 Assessment of plasma Aβ, total tau, and NfL

Blood was sampled in EDTA-treated containers and centrifuged. Sub-

sequently plasma was aliquoted and frozen at −800C according

to standard procedures. Measurements were done in two separate

batches. The first batch included in total 2000 samples, obtained from

a random selection of 1000 participants from sub-cohort RS-I-4 and

1000 from RS-II-2. The second batch included in total 3094 samples

from the remaining participants.

All measurements were performed at Quanterix (Lexington, MA,

USA) on a single molecule array (Simoa) HD-1 analyzer platform.23

Samples were tested in duplicate. Two quality control (QC) samples

were run on each plate for each analyte. NfL was measured with the

NF-light advantage kit.24 The Simoa Human Neurology 3-Plex A assay

(N3PA) was used for measuring the concentration of total tau, Aβ42,
and Aβ40. When duplicates or single measurements were missing (the

majority of missing samples were due to system failures [n= 279], and

few because of insufficient volume [n = 47]) or in the case the con-

centration coefficient of variation (CV) exceeded 20% (14 to 87 sam-

ples) or control sampleswereout of range (none), participant datawere

excluded from the analyses.16

2.5 Genetic risk scores

We computed genetic risk scores by selecting late-onset AD-

associated single-nucleotide polymorphisms (SNPs) reaching genome-

wide significance (P < 5.0 × 10−8). Among common variants, we

considered only variants identified by the International Genomics of
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Alzheimer’s Project (IGAP) meta-analyses.4 In addition, we included

four rare variants which can be classified under immune response

based on their functional role,25,26 leading to a total of 28 independent

genome-wide significant AD-associated variants. A weighted genetic

risk score was constructed using the effect sizes (log of odds ratio) of

the genome-wide significant variants from the IGAP meta-analysis as

weights and their respective allele dosages from imputed genotype

data of our study cohorts. A genetic risk score was constructed as the

sum of the products of SNP dosages and their corresponding weights.

We constructed genetic risk scores in three ways: (1) combining all

28 selected variants, (2) excluding the APOE ε4 variant to identify the

joint independent effect of all other genome-wide significant SNPs,

and (3) clustering the variants into the immune response pathway. We

classified AD-associated SNPs into immune system pathways based

on information on current investigations and reviews.4,27–29 Of the 28

SNPs, 9 could be clustered into the immune response pathway-based

genetic risk score (Table S1). All genetic risk scores were standardized

to allow direct comparison of results.

2.6 Covariates

Potential confounding factors were chosen on the basis of previous

literature.13,30 All covariates were measured at the same rounds as

the assessments of AD-related brain pathology and immunity mark-

ers. Smoking habits were categorized as current versus former and

never smoking. Body mass index (BMI) was calculated as weight in

kilograms per height in meters squared. Blood pressure was mea-

sured twice at the right brachial artery with the participant in sit-

ting position, from which the mean was used. Diabetes mellitus was

defined as use of antidiabetic medication, fasting serum glucose level

≥7.1 mmol/L (≥127.9 mg/dL), or random non-fasting serum glucose

level≥11.1mmol/L (≥200.0mg/dL).31 Additional information from the

serum sampleswas collected on high sensitivity C-reactive protein (hs-

CRP) and creatinine in a subsample (N= 1342).

2.7 Statistical analysis

As the GLR, PLR, and SII had skewed distributions, analysis was based

on the natural logarithmic (Ln) transformation of their values. For the

same reason, all plasma biomarkers of AD-related brain pathology,

exceptAβ40whichhad anormal distribution,were Ln transformed.We

first determined the association between the GLR, PLR, and SII with

plasma biomarkers of AD-related brain pathology using linear regres-

sion. For this analysis, we conducted two different transformations.

First, becausewe transformed both exposure and outcome (logYi= α+
βlogXi+ ε),we reportedmeandifferences in percentageswith95%con-

fidence intervals (CIs) obtained by exponentiating Ln(2) times the esti-

mated coefficients from the linear regression model to facilitate inter-

pretationof results; thesemeandifferences correspond to thepercent-

age change in plasma Aβ, total tau, or NfL for a doubling of the GLR,

PLR, and SII. For this analysis, Aβ40 was also Ln transformed. Second,

we standardized all blood markers to allow direct comparison of the

results. We adjusted all models for age, sex, and study cohort (model

I). In addition, the following covariates were added to a second model

(model II): smoking, diabetes, BMI, systolic bloodpressure, andAPOE ε4
carriership. Since plasma Aβ, total tau, and NfL were measured in two

batches, we additionally corrected for batch effects inmodels.We per-

formed additional adjustment for platelet count when analyzing GLR

in model II. We assessed effect measure modification by APOE geno-

type by stratifying for participants having the ε2/ε2 or ε2/ε3, ε3/ε3, and
ε3/ε4 or ε4/ε4 genotype.We formally tested interaction betweenAPOE

genotype and ratios of blood cell counts on the multiplicative scale by

adding interaction terms to model II. In addition, we assessed effect

measuremodification by activity of the innate immune systemby strat-

ifying for median granulocyte count (as a pure innate immunity marker

rather than studying the effect of the balance between innate and

adaptive immunity) when assessing the associations between genetic

risk scores and plasma biomarkers of AD-related brain pathology as

outcome. We formally tested interaction between genetic risk scores

and granulocyte counts on the multiplicative scale by adding interac-

tion terms to the model. As a sensitivity analysis, we also adjusted

for creatinine and hs-CRP in a subsample of participants in which

these markers were measured. Because hs-CRP is also an important

inflammatory biomarker, we also assessed the association between

Ln(hs-CRP) as exposure and the standardized plasma biomarkers of

AD-related brain pathology as outcome using linear regression. We

adjustedallmodels for age, sex, cohort, smoking, diabetes, BMI, systolic

blood pressure, APOE ε4 carriership, batch effects, platelet count, and

creatinine.

We then determined associations between all three genetic risk

scores per standard deviation (SD) increase as exposure with the

standardized immunity markers (Ln[GLR], Ln[PLR] and Ln[SII]) and

with the standardized plasma biomarkers of AD-related brain pathol-

ogy (Ln[Aβ42, Aβ40], Ln[Aβ42/40 ratio], Ln[total tau] and Ln[NfL]) as

separate outcomes, using linear regression. These analyses were all

adjusted for age, sex, and study cohort.

Furthermore, we investigated the association between APOE-allele

carriership as exposure with serum markers of immunity and plasma

biomarkers of AD-related brain pathology as outcomes. For this analy-

sis, we defined APOE-allele carriership as either carrying ε2 (ε2/ε2 or

ε2/ε3 genotype), being homozygous for ε3 (ε3/ε3 genotype) or carry-

ing ε4 (ε3/ε4 or ε4/ε4 genotype). People with the ε2/ε4 genotype were

excluded from the analyses and ε3 homozygosity was considered the

reference group. Analyseswere adjusted for age, sex, and study cohort.

We calculated mean levels of hs-CRP and creatinine levels within the

different APOE genotypes.

Missing covariate data (maximum 0.7%) were imputed using 5-fold

Multiple Imputation by Chained Equations based on determinant,

outcome, and included covariates. All analyses were performed using

RStudio version 1.0.153 (R version 3.6.1, RStudio, Inc., Boston, MA).

We corrected for multiple testing using Bonferroni adjustment for all

analyses using the total population (ie, not stratified or no subgroup

analyses): for the associations between serum markers of immunity

and plasma biomarkers of AD-related brain pathology, results are
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TABLE 1 Characteristics of study population

Characteristic

Sample with serummarkers of immunity

(N= 7397)

Samplewith plasma biomarkers of

AD-related brain pathology (N= 3615)

Women 4208 (56.9%) 2059 (56.8%)

Age (years) 66.1± 10.4 71.9± 7.3

Study cohort

Cohort 1 2656 (35.9%) 2159 (59.7%)

Cohort 2 1704 (23.0%) 1456 (40.3%)

Cohort 3 3037 (41.1%) –

Current smokers 1427 (19.4%) 536 (14.9%)

Diabetes mellitus type 2 433 (5.9%) 214 (5.9%)

Bodymass index (kg/m2) 27.6± 4.3 27.6± 4.1

Systolic blood pressure (mmHg) 142.8± 21.9 149.2± 21.0

APOE genotype

ε2/ε2 46 (0.6%) 31 (0.9%)

ε2/ε3 952 (12.9%) 490 (13.6%)

ε2/ε4 202 (2.7%) 103 (2.8%)

ε3/ε3 4293 (58.0%) 2119 (58.6%)

ε3/ε4 1741 (23.5%) 810 (22.4%)

ε4/ε4 163 (2.2%) 62 (1.7%)

Granulocyte count,× 103/μL 4.0± 1.4 4.0± 1.3

Platelet count,× 103/μL 268.2± 67.2 256.4± 64.4

Lymphocyte count,× 103/μL 2.3± 1.2 2.2± 1.3

Granulocyte-to-lymphocyte ratio 1.9± 0.9 2.0± 0.9

Platelet-to-lymphocyte ratio 128.2± 47.3 130.0± 49.8

Systemic immune-inflammation index 517.3± 280.1 522.0± 290.9

Amyloid-beta 42 (pg/mL) – 10.6± 3.0

Amyloid-beta 40 (pg/mL) – 265.6± 54.6

Amyloid-beta 42/40 ratio – 0.04± 0.009

Total tau (pg/mL) – 2.6± 2.5

Neurofilament light chain (pg/mL) – 15.7± 11.6

N= number of participants included in study. Data presented asmean (standard deviation) for continuous variables and number (percentages) for categorical

variables. Data here are unimputed. Number of missing values for the immunity cohort: 39 (0.5%) for smoking, 19 (0.3%) for diabetes, 20 (0.3%) for BMI, 37

(0.5%) for systolic blood pressure, 0 for APOE carriership. Number of missing values for the sample undergoing serum AD measurements are: 25 (0.7%) for

smoking, 8 (0.2%) for diabetes, 0 for BMI, 12 (0.3%) for systolic blood pressure and 0 for APOE genotype.

considered statistically significant if the P-value is below

.05/(6×5) = .002; for the associations of genetic risk scores reflecting

AD including and excluding APOE ε4 and immune response with

plasma biomarkers of AD-related brain pathology and serum markers

of immunity, results were considered statistically significant if the

P-value is below .05/(9×5) = .001; and for the associations of APOE

genotypes with plasma biomarkers of AD-related brain pathology

and serum markers of immunity, results are considered statistically

significant if the P-value is below .05/16 = .003. For these analyses, a

suggestive association was considered at the level of alpha = 0.05. All

other analyses were considered statistically significant at the level of

alpha= 0.05.

3 RESULTS

Characteristics of study participants are displayed in Table 1. Themean

age of participants with serum markers of innate immunity was 66.1

(±10.4) years of which 4208 (57%) were women, and the mean age

of the sample undergoing serum AD marker measurements was 71.9

(±7.3) years of which 2059 (57%) were women.

We found that a doubling of SII was associated with a 1.2% higher

serum Aβ42, albeit not statistically significant (95% confidence inter-

val [95%CI]−0.005% to 2.3%, P= .051) and a 1.8% higher serumAβ40
(95%CI 0.9 to 2.7%, P=< .001). Estimates were even higher for a dou-

bling of GLR, leading to a 1.9% higher serumAβ42 (95%CI 0.4 to 3.3%,
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TABLE 2 Associations between serummarkers of immunity and plasma biomarkers of AD-related brain pathology

Percentage change in Aβ, total tau or NFL, 95%CIPer doubling in

serummarkers

of immunity Aβ42 P Aβ40 P Aβ42/40 ratio P Tau P NFL P

Model I

GLRa 1.6 (0.2; 3.1) 0.025 3.2 (2.1; 4.3) <0.001 −1.5 (−2.6;−0.4) 0.008 0.1 (−1.8; 2.0) <0.001 4.9 (2.5; 7.2) <.001

PLR −0.7 (-2.2; 0.8) 0.351 −0.2 (−1.4; 0.9) 0.688 −0.5 (−1.6; 0.7) <0.001 −4.4 (−6.3;−2.5) <0.001 2.9 (0.5; 5.3) .018

SII 1.0 (−0.1; 2.2) 0.078 1.8 (0.9; 2.7) <0.001 −0.8 (−1.7; 0.1) 0.093 −0.4 (−1.9; 1.1) 0.590 3.3 (1.5; 5.2) <.001

Model II

GLRa 1.9 (0.4; 3.3) 0.010 3.2 (2.0; 4.3) <0.001 −1.2 (−2.3;−0.1) 0.028 −0.1 (−1.9; 1.8) 0.927 4.7 (2.5; 7.1) <.001

PLR −0.8 (−2.2; 0.7) 0.314 −0.2 (−1.3; 1.0) 0.790 −0.6 (−1.8; 0.6) 0.309 −3.6 (−5.5;−1.7) <0.001 1.5 (−0.8; 3.9) .205

SII 1.2 (0.00; 2.3) 0.051 1.8 (0.9; 2.7) <0.001 −0.6 (−1.5; 0.3) 0.190 −0.5 (−2.0; 1.0) 0.539 2.9 (1.1; 4.8) .002

Model I adjusted for age, sex, study cohort, and batch effects. Model II adjusted for age, sex, study cohort, smoking, diabetes, BMI, platelets, systolic blood

pressure,APOE ε4, andbatcheffects. TheGLR,PLR, andSII reflect thebalancebetween innateandadaptive immunity,withhighermarkers indicatingan imbal-

ance towards higher innate immunity. Abbreviations: Aβ40, amyloid-beta 40; Aβ42, amyloid-beta 42; Aβ42/40 ratio, amyloid-beta 42-to-40 ratio; CI, confi-

dence interval; GLR, granulocyte-to-lymphocyte ratio; Ln, natural logarithmic transformation; NFL, neurofilament light chain; PLR, platelet-to-lymphocyte

ratio; SII, systemic immune-inflammation index; Tau, total tau.
aAdditional adjustment for platelet count. Results are considered statistically significant if the P-value is below .05/(6×5)= .002.

F IGURE 2 Associations between serummarkers of immunity and plasma biomarkers of AD-related brain pathology. Model adjusted for age,
sex, study cohort, smoking, diabetes, BMI, platelets, systolic blood pressure, APOE ε4, and batch effects. Additional adjustment for platelet count
when analyzing Ln(GLR). All phenotypical markers were Ln(transformed) except for Aβ40. The GLR, PLR, and SII reflect the balance between
innate and adaptive immunity, with higher markers indicating an imbalance towards higher innate immunity. Abbreviations: Aβ40, amyloid-beta
40; Aβ42, amyloid-beta 42; Aβ42/40 ratio, amyloid-beta 42-to-40 ratio; CI, confidence interval; ε2/ε2 or ε2/ε3, apolipoprotein Eε2/ε2 genotype;
ε3/ε3, apolipoprotein Eε3/ε3 genotype; ε3/ε4 or ε4/ε4, apolipoprotein Eε3/ε4 or ε4/ε4 genotype; GLR, granulocyte-to-lymphocyte ratio; Ln, natural
logarithmic transformation; NFL, neurofilament light chain; PLR, platelet-to-lymphocyte ratio; SD, standard deviation; SII, systemic
immune-inflammation index

P= .010) and 3.2% higher serumAβ40 (95%CI 2.0 to 4.3%, P=< .001).

The Aβ42/40 ratio was lower with a doubling in GLR only (−1.2%,

95% CI −2.3 to −0.1%, P = .028). Only a doubling in PLR was signifi-

cantly associatedwith lower total tau (−3.6%, 95%CI−5.5% to−1.7%,

P=< .001). NfL was higher with all innate immunity phenotypes, most

strongly with a doubling in GLR (4.7%, 95% CI 2.5 to 7.1%, P = < .001)

(Table 2 and Table S2). Stratification did not reveal statistically signif-

icant differences across strata of APOE carriership, with the effects in

the APOE ε3/ε4 or ε4/ε4 stratum being only non-significantly stronger

than in the other strata, especially for NfL (Figure 2 and Table S2). In

addition, the associations between all genetic risk scores with lower

Aβ42/40 ratio became lower in participants with granulocyte counts

higher than the median (mean difference = −0.18 [95% CI −0.23 to

−0.13, P = < .001] for the overall AD genetic risk score, mean differ-

ence = −0.06 [95% CI −0.11 to −0.02, P = .007] for the overall AD

genetic risk score excluding APOE, and mean difference = −0.05 [95%

CI −0.10 to−0.004,P= .035] for the immune response pathway-based

genetic risk score), yet the interaction remained non-significant (Table

S3). When additionally adjusting for hs-CRP and creatinine (in a sub-

sample, N = 1341), the associations between GLR and SII with higher
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F IGURE 3 Associations of genetic risk scores reflecting AD including and excluding APOE ε4 and immune response with plasma biomarkers of
AD-related brain pathology and serummarkers of immunity. Model adjusted for age, sex, and study cohort. GRS are per SD increase. All
phenotypical markers were Ln(transformed) except for Aβ40. Gray dotted circle indicates the null with associations becoming increasingly
negative towards the center of the circle. Orange indicates the plasma biomarkers of AD-related brain pathologywhile blue indicates the immunity
phenotypes. The GLR, PLR, and SII reflect the balance between innate and adaptive immunity, with higher markers indicating an imbalance
towards higher innate immunity. Abbreviations: AD, Alzheimer’s disease; Aβ40, amyloid-beta 40; Aβ42, amyloid-beta 42; Aβ42/40, amyloid-beta
42-to-40 ratio; GLR, granulocyte-to-lymphocyte ratio; GRS, genetic risk score; Ln, natural logarithmic transformation; NFL, neurofilament light
chain; PLR, platelet-to-lymphocyte ratio; SII, systemic immune-inflammation index

F IGURE 4 Associations of APOE genotypes with plasma biomarkers of AD-related brain pathology and serummarkers of immunity. Adjusted
for age, sex, and study cohort. All phenotypical markers were Ln(transformed) except for Aβ40. The GLR, PLR, and SII reflect the balance between
innate and adaptive immunity, with higher markers indicating an imbalance towards higher innate immunity. Abbreviations: AD, Alzheimer’s
disease; APOE, apolipoprotein E; Aβ40, amyloid-beta 40; Aβ42, amyloid-beta 42; Aβ42/40, amyloid-beta 42-to-40 ratio; CI, confidence interval;
ε2/ε2 or ε2/ε3, apolipoprotein Eε2/ε2 genotype; ε3/ε3, apolipoprotein Eε3/ε3 genotype; ε3/ε4 or ε4/ε4, apolipoprotein Eε3/ε4 or ε4/ε4 genotype;
GLR, granulocyte-to-lymphocyte ratio; GRS, genetic risk score; Ln, natural log transformation; NFL, neurofilament light chain; SD, standard
deviation; SII, systemic immune inflammation index

Aβ42 and NfL disappeared, the associations between immunity mark-

ers with higher Aβ40 were borderline significant, and the associations

with lower Aβ42/40 ratio and lower total tau persisted (Table S4).

Higher hs-CRP was significantly associated with a higher Aβ40 and

higher total tau (Table S5).

Furthermore, we found that a standard deviation (SD) increase in

theoverall ADgenetic risk score includingAPOE ε4was associatedwith
higher GLR (mean difference in Ln[GLR] [SD]= 0.024, 95% CI 0.002 to

0.046, P = .032) and significantly with lower Aβ42 and Aβ42/40 ratio

(mean difference in Aβ42 [SD] = −0.129, 95% CI −0.162 to −0.095,

P=< .001, and Ln[Aβ42/40] [SD]=−0.157, 95%CI−0.190 to−0.124,

P=< .001, respectively). These associations weremainly driven by the

APOE ε4variant (Figure3). Thegenetic risk score reflecting the immune

response showed a suggestive association with lower Aβ42/40 ratio

(mean difference = −0.038, 95% CI −0.070 to −0.006, P = .020), but

not with the serum markers of innate immunity (Figure 3 and Table

S6). We found that APOE ε2 carriers displayed lower serummarkers of

innate immunity levels compared to ε3/ε3, while these markers were
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elevated in APOE ε4 (Figure 4 and Table S7). Mean levels of hs-CRP

and creatinine levels within the different APOE genotypes are shown

in Table S8.

4 DISCUSSION

In this study, we found associations between higher levels of GLR, PLR,

and SII reflecting higher innate immunity, with higher Aβ42 and 40,

lower Aβ42/40 ratio, lower total tau, and higherNfL in plasma. InAPOE

ε4 carriers, these associations were even stronger. The overall genetic

risk score including APOE ε4 was associated with higher GLR and SII

and with lower Aβ42 and Aβ42/40 ratio. These effects were mainly

driven by the APOE ε4 variant. The genetic risk score reflecting the

immune response was associated with a lower Aβ42/40 ratio, but not

with the serum immunity markers. Furthermore, we found that APOE

ε2 carriers displayed lower serum markers of innate immunity com-

pared to APOE ε3/ε3, while these markers were elevated in APOE ε4
carriers.

Interestingly, we found that higher innate immunity was associated

with higher serum Aβ42, but with even higher Aβ40. The 40-residue

peptide represents the most abundant Aβ isoform in the brain,32 while

the 42-residue shows a significant increase with certain forms of AD.

Our findings are concordant with the notion that Aβ functions as an

antimicrobial peptide (AMP), because the physiochemical and biolog-

ical properties previously reported for Aβ are similar to those of AMPs.

In addition, experiments have shown that Aβ is active against at least
eight common and clinically relevant microorganisms.33 Activity was

isoform-specific for six organisms with Aβ42 showing greater potency

compared to Aβ40.33 Taking all evidence together, we propose that

APOE ε4 carriers display stronger innate immune responses, and thus

produce more/excess Aβ in response to pathogens. Of the two iso-

forms, Aβ42 will aggregate in the brain (possibly due to its larger size)

while Aβ40 will not aggregate (or to a lesser extent) and as a conse-

quence will be higher in the serum. Further study is needed to confirm

this hypothesis.

Furthermore, we found that both higher serum markers of innate

immunity and the genetic risk score reflecting the immune response

associate with the lower serum Aβ42/40 ratio. APOE ε4 carriership,

which is the major genetic risk factor for AD, also displays a lower

serum Aβ42/40 ratio as well as lower Aβ42. In line with this, a meta-

analysis of prospective cohort studies has shown that lower serum

Aβ40, and even lower Aβ42 and consequently lower Aβ42/40 ratio,

lead to higherAD risk.34 Previous reports of associations of lowplasma

Aβ42/40 ratio with increased amyloid brain uptake, as measured by

Pittsburgh compound B (PiB) positron emission tomography (PET)

scan, support the notion that lower plasma Aβ reflects the aggrega-

tion of Aβ in the brain.35–38 In this context, our finding that APOE ε4
carriers have higher activity of innate immunity compared to ε3/ε3,
while we see the opposite in APOE ε2 carriers suggests that APOE ε4
might have an overactive innate immune response. Our results sup-

port experimental studies showing the capacity of APOE to modulate

inflammation. Indeed, in healthy humans challenged with intravenous

lipopolysacharide (LPS) infusion, ε4 carriers demonstrated significantly

higher elevation of body temperature and plasma tumor necrosis fac-

tor levels than ε4 non-carriers.39 In this same study, when whole blood

isolates from human subjects were stimulated ex-vivo with Toll-like

receptor ligands, increased production of awide panel of cytokines and

chemokines was observed in blood from ε4+ donors compared with

ε4−donors. A higher immune response associated with the ε4 allele is

also observed in human APOE-targeted replacement mice and in cul-

tured microglia and/or macrophages upon LPS stimulation.39–41 How

APOE achieves this is not yet well understood.8 Evidence shows that

lipid rafts play an essential role in immune activation by serving as plat-

forms for signaling complexes.42 APOE ε4 is reported to be less effec-

tive than APOE ε3 in inducing cholesterol efflux from macrophages,43

which leads to cholesterol accumulation on cell membranes.39,43 This

mechanism has been proposed to explain the higher immune reactivity

associatedwith APOE ε4,8 but additional studies are needed to explore
this or other potential mechanisms further.

In addition to the role of immune response pathways in Aβ, our data
show that higher innate immunity is related to lower plasma total tau.

Others assessed the effect of microglial activation on tau pathogene-

sis, where they found that microglial activation is shown to precede

tau pathology in a tauopathy mouse model (Yoshiyama et al. 2007)

and administering an immunosuppressant drug FK506 from an early

age drastically reduces tau pathology.44 According to previous studies,

higher plasma tau is associated with AD dementia,16,45 although cor-

relations were weak45 and non-linear (J-shape),16 making the role of

immunity in tau elusive. Future studies are warranted with the same

crudemarkers of the immune system in relation to phospho tau.

The associations between immunity markers with higher Aβ42 and

NfL disappeared when additionally adjusting for hs-CRP and creati-

nine. There could be two explanations: (1) This analysis was performed

within a subsample of the total population, impeding comparison of the

results in the total population and decreasing the power of the analy-

sis, or (2)We found that higher hs-CRPwas also associatedwith higher

NfL, albeit not statistically significant, suggesting that hs-CRP could be

acting as amediator.

Our result that the immune GRS was not related to the immu-

nity biomarker levels is surprising, especially since several immune

genes are key players for innate immunity, including TREM2.46 TREM2

overexpression is thought to enhance microglial phagocytotic capac-

ity, but transcription analyses show mixed microglial activation pat-

terns with suppression of certain disease-associated microglia (DAM)

genes, but further activation patterns of other DAM genes,47 making

the role of TREM2 in AD unclear. Further studies are needed to iden-

tify the precise gene signatures of microglia that mediate pathology-

and neurodegeneration-associated sterile inflammation.

Our study has several limitations. First, ours is a cross-sectional

study, limitingour ability todrawcausal inferences. Longitudinal cohort

studies are required to confirm our findings. Second, we were limited

to studying crude markers of the immune system in this population-

based setting. These types of measures have been associated with

other outcomes such as those related to cancer, pancreatitis, andmany

other responses.48 These ratios could be proxies for different systemic



FANI ET AL. 9

inflammatory responses that affect the mobilization of bone marrow-

derived cells and the egress of leukocytes into tissue.49 It could also

be related to immunosenescence and this might explain the associa-

tionwith NfL because it also increases with age.50 Third, wewere simi-

larly limited to crudemarkers of AD-related brain pathology which are

not diagnostic of AD, especially since the ATN-classification includes

AD biomarkers as measured by PET, structural MRI or CSF and we

do not have phospho tau measured. However, plasma and CSF levels

of these biomarkers are strongly correlated.51–53 Also NfL is a global

biomarker and not specific for AD. Fourth, we were unable to catego-

rize the age groups into early and late onset AD, due to the low num-

ber of early onset AD patients within our population-based cohort. It

would be helpful to categorize the biomarkers according to early and

late onset AD in future studies, because Aβ has a better correlation in
early onset AD. Early onset ADdiffers from late onset ADnot onlywith

respect to genetic predisposition and pathology but also in relation

to the clinical outcome and the natural course. Only 11% of early AD

patients have familialmutationswithAPP,PSEN1 andPSEN2. For exam-

ple, patients with early AD have a greater burden in the precuneus and

parietal lobes and to a lesser extent in the frontal lobes.54 Fifth, we did

not offer replication data. We hope that our study provides a stimu-

lus for other cohort studies to replicate our findings. Lastly, our study

contains predominantly Caucasians, which limits its external generaliz-

ability. Further study in other ethnicities is needed to identify potential

ethnic differences.

In summary, in this population-based study we showed that higher

innate immunity, as reflected by higher levels of serum GLR, PLR,

and SII, were associated with higher plasma Aβ42, 40, and NfL, and

with lower Aβ42/40 and total tau. Furthermore, APOE ε2 carriers dis-

played lower serum markers of innate immunity levels compared to

ε3/ε3, while thesemarkerswere elevated inAPOE ε4. Knowledge of the
potential pro-inflammatory role of APOE ε4 should encourage future

studies to find ways to scale down innate immune responses in APOE

ε4 carriers to limit AD-related brain pathology in order to prevent AD.
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