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Abstract
In an earthquake event, the combination of a strong mainshock and damaging after-
shocks is often the cause of severe structural damages and/or high death tolls. The
objective of this paper is to provide estimation for the probability of such extreme
events where the mainshock and the largest aftershocks exceed certain thresholds.
Two approaches are illustrated and compared – a parametric approach based on pre-
viously observed stochastic laws in earthquake data, and a non-parametric approach
based on bivariate extreme value theory. We analyze the earthquake data from the
North Anatolian Fault Zone (NAFZ) in Turkey during 1965–2018 and show that the
two approaches provide unifying results.
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1 Introduction

In a seismically active area, a strong earthquake, namely the mainshock, is often
followed by subsequent damaging earthquakes, known as the aftershocks. These
aftershocks may occur in numerous quantity and with magnitudes equivalent to
powerful earthquakes on their own. For instance, in the 1999 İzmit earthquake, a
magnitude 7.6 mainshock triggered hundreds of aftershocks with magnitudes greater
than or equal to 4 in the first six days, cf. Polat et al. (2002). In the 2008 Sichuan
earthquake, a mainshock of magnitude 8.0 induced a series of aftershocks with mag-
nitudes up to 6.0. The results are severe structural damage and loss of life, especially
when the area has already been weakened by the mainshock. The İzmit earthquake
killed over 17,000 people and left half a million homeless (Marza 1999). The Sichuan
earthquake caused over 69,000 deaths and damages of over 150 billion US dollars
(Cui et al. 2011).

The goal of this paper is to provide a statistical analysis for the joint event of
an extreme mainshock and extreme aftershocks. Throughout the paper, we denote
the magnitude of a mainshock with X and that of the largest aftershock with Y . We
estimate via two approaches the probability of

P(X > x, Y > y), (1)

for large values of x and y. The first approach uses a parametric model based on a
series of well-known stochastic laws that describe the empirical relationships of the
aftershocks and the mainshock, which we briefly review in Section 3.1. In the second
approach, we apply bivariate extreme value theory to estimate the joint tail. Both
methods are applied to extreme earthquake events in the North Anatolian Fault Zone
(NAFZ) in Turkey, the region where the 1999 İzmit earthquake occurred.

The remainder of the paper is structured as follows. In Section 2, we present
the earthquake data in NAFZ and describe the relevant data processing. Section 3
provides the parametric and non-parametric estimation procedures for the joint main-
/after-shock distribution. The detailed data analysis and results are presented in
Section 4. We conclude in Section 5 with some discussions. The processed data and
codes of implementation in this paper can be found at the author’s website.1

2 Data description

We use the North Anatolian Fault Zone (NAFZ) as an area of investigation due
to its long and extensive historical record of large earthquakes (Ambraseys 1970;
Ambraseys and Finkel 1987). Extending from eastern Turkey to Greece, the 1,500-
kilometer-long rip sustained several cycle-like sequences of large-magnitude (M >

7) earthquakes over the past centuries (Stein et al. 1997), several resulting in high

1https://sites.google.com/view/pwan

https://sites.google.com/view/pwan
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Fig. 1 Shocks and labelled mainshocks in the NAFZ during 1965–2018

death tolls and severe economic losses. The most recent activities include the İzmit
(Mw 7.6) and Düzce (Mw 7.1) earthquakes of 1999 (Parsons et al. 2000; Reilinger
et al. 2000).2

We obtain data from the Presidential of Earthquake Department database of the
Turkish Disaster and Emergency Management Authority (https://deprem.afad.gov.
tr/?lang=en) and consider all earthquake records between 1965–2018 with mag-
nitudes 4 or higher in the area of latitudes 36.00◦N − 42.00◦N and longitudes
26.00◦E − 40.00◦E. The left panel of Fig. 1 shows the time series of all earthquakes
from 1965 onward.

We now label earthquake events by identifying the mainshocks and their corre-
sponding aftershocks. Being interested in extreme events, we only consider earth-
quake events with significant mainshocks such that X ≥ 5. We use the window
algorithm proposed in Gardner and Knopoff (1974) as follows. For each shock with
magnitude X ≥ 5, we scan the window within distance L(X) and time T (X). If a
larger shock exists, we move on to that shock and perform the same scan. If not, then
the shock is labelled as the mainshock and all shocks within the specified window
are pronounced as its aftershocks. Table 1 provides the values for L(X) and T (X).
For example, for an earthquake of magnitude 6.0, any shock following T = 510 days
and within L = 54 km radius, with a magnitude less than 6, is considered to be its
aftershock.

The right panel of Fig. 1 shows the labelled mainshocks in the time series.
The algorithm identifies n = 180 earthquake events with mainshocks X ≥ 5
among which 129 have aftershocks with magnitude greater than 4. Note that a
few large earthquakes in the early years are not labelled as mainshocks, instead
they are identified as aftershocks of mainshocks before the year 1965 from earlier
data.

2Regarding the earthquake scale in our data: Before 1977, all earthquakes were recorded in the body-
wave magnitude scale (mb) or the surface-wave magnitude scale (Ms), depending on the depth of the
earthquake. Following the development of the moment magnitude scale (Mw) by Kanamori (1977) and
Hanks and Kanamori (1979), earthquakes with magnitude larger than 5.0 are recorded in the Mw scale
whereas smaller earthquakes were still generally measure in the mb or the Ms scale. From 2012 on, all
earthquakes are recorded in the Mw scale.

https://deprem.afad.gov.tr/?lang=en
https://deprem.afad.gov.tr/?lang=en
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Table 1 Window specification
L(X), T (X) for aftershock
labelling from Gardner and
Knopoff (1974)

X L T

(km) (days)

5.0–5.4 40 155

5.5–5.9 47 290

6.0–6.4 54 510

6.5–6.9 61 790

7.0–7.4 70 915

7.5–7.9 81 960

8.0–8.4 94 985

3 Methodology

3.1 Parametric approach

It is agreed in the literature that the distribution of aftershocks in space, time and
magnitude can be characterized by stochastic laws, see Utsu (1970), Utsu (1971),
and Utsu (1972) for a summary with detailed empirical studies. In this section, we
propose a simple parametric model for the joint magnitudes of the mainshock and
the largest aftershock based on the expert knowledge from these studies.

We assume that each earthquake event consists of a mainshock and a sequence
of aftershocks. The following pieces of empirical evidence for mainshocks and
aftershocks are noted in prior literature.

1. Each earthquake event can be considered as independent from each other.
Therefore the magnitudes of mainshocks can be modelled as independent real-
izations from a random variable X. By the Gutenberg-Richter’s law (Gutenberg
and Richter 1944), X can be modelled by an exponential distribution with
distribution and density functions

P(X > x) = e−αx, fX(x) = αe−αx . (2)

2. For an earthquake event, let g(t) be the frequency of aftershocks at time t per
time unit. Then from the modified Omori’s law (Utsu 1970), regardless of the
mainshock magnitude, g(t) follows

g(t) = K

(t + c)p
,

where K, c, p are constants.
3. For each earthquake event, the magnitude of the aftershocks follows also

Gutenberg-Richter’s law (Utsu 1972) such that the number of aftershocks N(m)

with magnitude greater or equal to m follows

N(m) ∝ 10−bm, (3)

where b is some constant.
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4. The magnitude difference between a mainshock and its largest aftershock is
approximately constant, independent of the mainshock magnitude and typically
between 1.1 and 1.2. This is known as the Båth’s law ( Båth 1965).

Based on the above empirical rules, we adopt the framework in Utsu (1970) and for
each earthquake event with mainshock magnitude m0, model the intensity rate of
aftershocks with magnitude m or greater as proportional to

10a+b(m0−m)

(t + c)p
, (4)

where a, b, c, p are constants. This modelling is widely used in ensuing literature,
cf. Reasenberg and Jones (1989), and is the basis of the ETAS (epidemic-type after-
shock sequence) simulation model, cf. Ogata (1988). As for the occurrences of the
aftershocks, it is common to model them using a Poisson point process. Since by
definition of our data, the aftershocks must have magnitude m ≤ m0, we define the
intensity rate of aftershocks with magnitude m or greater to be

λ(t, m) = 10a+b(m0−m) − 10a

(t + c)p
, (5)

such that aftershocks with magnitude m ≥ m0 have intensity rate 0.

3.1.1 The model

Given any earthquake event, let X be the magnitude of its mainshock and Y be the
magnitude of the largest aftershock. We assume that the aftershocks sequence follows
a non-homogeneous Poisson process with intensity function (5). Let Nm denote the
number of aftershocks with magnitude m or greater. Then Nm follows a Poisson
distribution with mean

E[Nm|X = m0] =
∞∑

t=1

λ(t, m) := C(eβ(m0−m) − 1), m ≤ m0,

where β = b ln 10 and C = 1
β

10a
∑∞

t=1
1

(t+c)p
.

In order to investigate in the distribution of the largest aftershock, we are interested
in the event {Y < m}, which is equivalent to {Nm = 0}. Hence, for m ≤ m0,

P(Y < m|X = m0) = P(Nm = 0|X = m0) = exp
{
−C

(
eβ(m0−m) − 1

)}
.

Let Z := X − Y , then Z has distribution function

P(Z < z|X = m0) = 1 − exp
{−C

(
eβz − 1

)} =: FZ(z), z ≥ 0. (6)

If we model the earthquake magnitudes on a continuous scale and hence Z as a con-
tinuous variable, this suggests that Z follows a Gompertz distribution with parameter
set (C, β), that is, −Z follows a Gumbel distribution conditioned to be negative. By
definition, Z < m0, since the largest aftershock cannot be of non-positive magni-
tude. However, if we impose the convention that {Z ≥ m0} represents the event that
no aftershock occurs, then we can model Z as independent of X. Note that when m0
is large the probability of {Z > m0} is negligible.
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Combining (2) and (6) yields the joint model for (X, Y ) given by

P(X > x, Y > y) = P(X > x, Z < X − y) =
∫ ∞

x

fX(u)

∫ u−y

0
fZ(z)dzdu, (7)

where fX(x) is as defined in Eq. 2 and fZ(z) is the density function of Z from Eq. 6.
Given data, the parameters (α, β, C) can be estimated through maximum likelihood.

Note that by modelling the magnitude difference between the mainshock and the
largest aftershock to be an independent variable, this model is in agreement with the
empirically observed Båth’s Law as mentioned above. It is also in line with the results
in Vere-Jones et al. (2006) which were derived from a simple model where aftershock
magnitudes are assumed to be independent and identical.

3.2 Bivariate extreme value approach

In this subsection, we describe an alternative nonparametric approach to estimate (1),
the tail probability of interest, based on multivariate extreme value theory.

Multivariate extreme statistics has been exhibited to be a powerful tool for infer-
ence on multidimensional risk factors. Depending on the context, different types of
multivariate extreme events have been studied in the extreme value literature. In the
application to the offshore structure safety, de Haan and de Ronde (1998) and Coles
and Tawn (1994) both estimated the probability of an event defined by {aX+Y > v},
where a and v are problem-specified constants. For monitoring airline performance,
Einmahl et al. (2009) studied the estimation of P(X > s or Y > t) where s and t

are both large and subjected to the constraint that P(X > s) = cP(Y > t) for a
positive c. For environmental data, Cai et al. (2013) showed a case study on estimat-
ing P(X > s, Y > t) for stationary sequences of X and Y using approaches based
on conditional extreme value theory (Heffernan and Tawn 2004) and hidden regular
variation (Ledford and Tawn 1996; Resnick 2002). A recent work closely related to
our study is Cooley et al. (2019), which presented a method for isolines of equal joint
exceedance probability, that is the level curves we showed in Section 4.3.

We assume that the joint distribution of (X, Y ) is in the max domain of a bivari-
ate extreme distribution introduced in de Haan and Resnick (1977). This is a most
common condition in multivariate tail analysis and includes distributions with vari-
ous types of copulas. Let F1 and F2 denote the marginal distribution functions of X

and Y , respectively. The assumption implies that (cf. Corollary 6.1.4 in de Haan and
Ferreira (2006)) for any (x, y) ∈ [0, ∞]2 \ (∞, ∞), the following limit exists:

lim
t→0

1

t
P(1 − F1(X) < tx, 1 − F2(Y ) < ty) =: R(x, y). (8)

The function R characterizes the extremal dependence between X and Y and it can
be expressed via other extremal dependence measures. For instance, it is linked to
the stable tail dependence function L and the Pickands function A:

R(x, y) = x + y − L(x, y) = (x + y)

(
1 − A

(
y

x + y

))
. (9)
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For a general review on the multivariate extreme value theory, see for example
Chapter 6 in de Haan and Ferreira (2006) and Chapter 8 in Beirlant et al. (2004).

The limit relation in Eq. 8 guarantees the regularity in the right tail of the copula
of (X, Y ), which enables us to do the bivariate extrapolation to the range far beyond
the historical observations. Let s and t be sufficiently large and denote that p1 =
1 − F1(s) and p2 = 1 − F2(t). Then, we have

P(X > s, Y > t) = P(1 − F1(X) < p1, 1 − F2(y) < p2)

= p2 · 1

p2
P

(
1 − F1(X) < p2 · p1

p2
, 1 − F2(y) < p2

)

≈ p2R

(
p1

p2
, 1

)
. (10)

In this paper, we assume that R(1, 1) > 0, that is, X and Y are asymptotic dependent.
For estimating the bivariate tail probability for an asymptotic independence pair, one
can consult (Draisma et al. 2004) and (Cooley et al. 2019).

From Eq. 10, the problem transforms to estimate p1, p2 and R(x, 1). Due to the
relation in Eq. 9, the various methods of estimating L or A can be applied to esti-
mate R(x, 1); for instance see Capéraà et al. (1997), Einmahl et al. (2008), Bücher
et al. (2011), Fougères et al. (2015), and Beirlant et al. (2016) among many others.
Because of the particular features of earthquake data – that they have been rounded
to the first decimal and censored below – we use a basic non-parametric estimator
of R(x, 1), which requires minimal assumptions on the data and is the basis of other
more advanced estimation approaches. Let n be the sample size and k = k(n) be a
sequence of integers such that k→∞ and k/n→0 as n→∞. Let RX

i and RY
i denote

the ranks of Xi and Yi in their respective samples. The estimator of R(x, 1) is given
by

R̂(x, 1) = 1

k

n∑

i=1

I (RX
i > n + 1/2 − kx, RY

i > n + 1/2 − k). (11)

The asymptotic normality of R̂ is studied in Huang (1992); see also Drees and Huang
(1998).

As for estimating p1 and p2, we fit exponential distributions to both mar-
gins, which is a typical choice for modeling earthquake magnitude justified by the
Gutenberg–Richter law (Gutenberg and Richter 1944). A natural alternative is to
apply univariate extreme value theory to estimate these tail probabilities. Many stud-
ies have been devoted to study the tail distribution or the endpoint of earthquake
magnitude; see for instance (Kijko 2004) and (Beirlant et al. 2018). However, due
to the small sample size and the rounding issue, we choose to fit parametric mar-
gins. Let p̂i denote the estimator of pi , for i = 1, 2. Then, the final estimator of
pst := P(X > s, Y > t) is given by

p̂st := p̂2R̂

(
p̂1

p̂2
, 1

)
. (12)
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Fig. 2 Time series of mainshocks (left) and largest aftershocks (right)

4 Results

In Section 2 we extract from the NAFZ dataset time series of mainshocks magnitude
(xi) where xi ≥ 5. For the time series of the corresponding largest aftershock, we
only observe the values that are above 4, that is, we observe

(
yi1{yi≥4}

)
. The two time

series are plotted in Fig. 2 and their joint scattered plot can be seen by the black dots
in Fig. 4.

4.1 Parametric approach

In this subsection, we describe the results from the parametric model. The mainshock
sequence (xi) is fitted with an exponential distribution truncated at 4.95 – we take
into consideration the continuity correction. Since all observations are discrete by
0.1 increment, from now on whenever we show the fit of a distribution or calculate
the goodness-of-fit p-value, we jitter all observations by uniform noises between
(−.05, .05). The fit is shown on the left panel of Fig. 3 and the Kolmogorov-Smirnov
p-value is 0.83, indicating a good fit.

Next we fit a Gompertz distribution to the difference xi − yi by maximizing the
following censored likelihood:

L(β, C|xi, yi) =
∏

yi≥4

fZ(xi − yi; β, C)
∏

yi<4

(1 − FZ(xi − 4; β, C)),
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Fig. 3 The histogram and fitted curve of: i) mainshocks with exponential distribution (left); ii) differences
between mainshocks and largest aftershocks with Gompertz distribution (right)
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where FZ is as defined in Eq. 6 and fZ is the corresponding density. To assess
the goodness-of-fit, we first approximate the complete set of maximum aftershock
sequence by ỹi as follows . When yi ≥ 4, set ỹi := yi . When yi < 4, simulate zi

from F conditional on zi ≥ xi −4 and set ỹi := xi −zi . The histogram of jittered ỹi is
shown on the right panel of Fig. 3 with the fitted density. The Kolmogorov-Smirnov
p-value is 0.95.

The scatterplot of the jittered (xi, ỹi) is plotted in Fig. 4, with the red point indi-
cating the simulation for the censored observations. As we can see, the simulation
is in agreement with the pattern of the observed pairs. We also note that the Båth’s
law ( Båth 1965) – the empirical evidence that the magnitude difference between the
mainshock and the largest aftershock is constant between 1.1 and 1.2 – can be well-
justified by the fitted model. The fitted mean of Y −X is 1.1. The dotted line in Fig. 4
corresponds to x = y + 1.1.

In Table 2, we display the fitted parameter values for (α, β, C) and their 95% con-
fidence interval approximated through parametric bootstraps. Note the β is referred
to as the b-value of aftershocks in seismology and measures the relative likelihood of
large shocks to small shocks. This value generally centers around 1 but varies with
regions and tectonic settings (Reasenberg and Jones 1989).

Table 2 Fitted values of
parameters (α, β, C) and their
95% confidence interval
approximated through
parametric bootstraps

estimate 95% C.I.

α 2.22 (1.95,2.58)

β 1.11 (0.72,1.53)

C 0.34 (0.18,0.68)
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4.2 Extreme value approach

For the extreme value analysis approach, we use the same estimate for the marginal
distribution of X as in the parametric approach. As for the marginal distribution of Y ,
we assume that (Y − μ|Y > μ) ∼ Exp(λ). For a chosen μ, we obtain the maximum
likelihood estimator λ̂. Then, for t > μ, the estimator of P(Y > t) is given by

p̂2 =
∫ ∞

t

λ̂ exp{−λ̂(y − μ)}dy · 1

n

n∑

i=1

I (Yi > μ).

For this data set, we choose μ = 4.55 and obtain λ̂ = 2.2. The fitted density is shown
in Fig. 5 with the Kolmogorov-Smirnov p-value 0.11.

When estimating R(x, 1), we note that there are ties in the data as they are rounded
to one decimal place. For this, we randomly assign ranks to the tied observations.
The data on aftershock magnitude includes only observations that are larger than or
equal to 4. In other words, the missing values of Y are all below 4. Let n1 denotes
the number of observed values of Y . The ranks of all the missing values are all less
than n − n1, therefore the corresponding indicator functions in Eq. 11 equal to zero
as far as we choose k < n1. In this way, the missing values don’t effect the estimator
in Eq. 11. Note that in our data set, n = 180 and n1 = 129.

The left panel of Fig. 6 shows the estimates of R(x, 1) for three different val-
ues of x and k ∈ [10, 100]. Also note that R(1, 1) is a commonly used quantity
to distinguish asymptotic dependence (R(1, 1) > 0) and asymptotic independence
(R(1, 1) = 0). Roughly, asymptotic dependence says that the extremes of X and
Y tend to occur simultaneously while joint extremes rarely occur under asymptotic
independence. This plot clearly suggests tail dependence between X and Y because
the estimates of R(1, 1) are clearly above zero. Based on these three curves, we
choose k = 40 because the estimates indicated with three curves are all rather stable
for k round and slightly larger than 40.

With the choice of k = 40, we obtain the non-parametric estimate of R(x, 1)

for x ∈ [0.02, 5] plotted in the black curve in right panel of Fig. 6. The wiggly
behaviour of this estimator motivates us to consider a smoothing method. We adopt
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Fig. 5 The histogram of the largest aftershocks and fitted exponential density
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the smoothing method introduced in Kiriliouk et al. (2018), which makes use of the
beta copula. This smoothed estimator, denoted as R̂b(x, 1), respects the pointwise
upper bounds of the function, that is R(x, 1) ≤ max(x, 1) and it does not require
smoothing parameter such as bandwidth. The resulted estimates are represented by
the red curve in right panel of Fig. 6. The two estimators are coherent with each other.
R̂b(x, 1) is only used in obtaining the level curves in Fig. 7.

4.3 Results and comparison

We are ready to estimate probabilities for the joint tail of (X, Y ). First, we estimate
the tail probability3 defined in Eq. 10 for the ten largest earthquakes (mainshocks)
in the NAFZ since 1965. As shown in the fifth and sixth column of Table 3, the
estimates by two approaches are surprisingly close to each other, which supports the
reasonability of the results. We emphasize that the two approaches only share one
common assumption, that is, the marginal distribution of X. The distribution of Y

and the dependence between X and Y are modelled separately.
Next we obtain the level curves of (X, Y ) for the tail probability sequence

(10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6),

as shown in Fig. 7. The points (x, y) on each curve represents such that P(X >

x, Y > y) = p for the given probability level. Albeit based on different theories,
the two approaches provide coinciding prediction results. The two dot lines in Fig. 7
correspond to x = y and x = y + 1.1. The horizontal shape of the curves between
these two lines indicates that the results respect the Båth’s law. This is particularly

3We remark that as our data set consists of only mainshocks with magnitude (X ≥ 5), the probability in
this section has to be interpreted as a conditional probability that given a significant mainshock X ≥ 5
occurs.
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remarkable for the non-parametric approach, which does not impose any dependence
structure for (X, Y ).

The surprisingly close results by two different approaches might be explained by
the following two points. First, the derived parametric model is a good fit for this
earthquake data set (that is why it gives very similar result to the non-parametric
method). Second, the parametric model of (X, Y ) defined in Eq. 7 implies that X

and Y are asymptotic dependence because Y = X − Z, where Z has a lighter
tail than X. The parametric model falls in the framework of our non-parametric
approach.

Table 3 Tail probability estimation for the ten largest earthquakes in the NAFZ since 1965

largest parametric non-parametric

date mainshock aftershock probability probability location

1 1999-08-17 7.6 5.8 0.00265 0.00257 İzmit

2 1970-03-28 7.2 5.6 0.00618 0.00580 Gediz

3 1999-11-12 7.1 5.2 0.00815 0.00805 Düzce

4 1967-07-22 6.8 5.4 0.01413 0.01356 Mudurnu

5 1992-03-13 6.6 5.9 0.01429 0.01464 Erzincan

6 2002-02-03 6.5 5.8 0.01785 0.01827 Afyon

7 1969-03-28 6.5 4.9 0.02927 0.02745 Alaşehir

8 1968-09-03 6.5 4.6 0.03092 0.03051 Bartin

9 1995-10-01 6.4 5.0 0.03437 0.03296 Dinar

10 2017-07-20 6.3 5.1 0.03938 0.03747 Mugla
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4.4 Uncertainty quantification via a simulation study

We carry out a small simulation study to investigate if the extreme value approach
does give a coherent result for data generated from the parametric model, and to
quantify the uncertainties of the level curves obtained by the extreme value approach
for this type of data sets. We simulate data from the model in Eq. 7 with parameters
(α, β, C) = (2.22, 1.11, 0.34), which are the parameter estimates based on our real
data set, and we consider the same censoring for Y . Let (Xi, Ỹi) be a pair of random
observations from Eq. 7, i = 1, . . . , n. Then Yi = Ỹi , if Ỹi ≥ 4; Yi is otherwise set
to a missing value.

We first consider n = 200, a sample size similar to that of our real data set.
The tuning parameters are chose the same as in Section 4.2: μ = 4.55 and k =
40. The upper left panel in Fig. 8 shows estimated level curves for p = 10−3 and
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Fig. 8 Level curves for p = 10−3 (pink) and p = 10−5 (light blue): the left panel uses the estimator
given in Eq. 12 with estimated marginal exceedance probabilities and right panel uses the estimator given
in Eq. 13 with true values of p1 and p2. Sample size n = 200 (upper panels) and n = 2000 (lower panels)
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p = 10−5 based on 100 random samples. The theoretical level curves indicated
by the black lines do lie in the center of the estimated level curves, however the
spread of the level curves are large. The level curves are estimated using Eq. 12. The
uncertainty consists of two parts: the marginal distributions estimations namely p̂1
and p̂2, and the estimation of extremal dependence, R̂(x, 1). We further consider a
pseudo estimator of pst by using the true value of p1 and p2:

p̃st := p2R̂

(
p1

p2
, 1

)
. (13)

The uncertainty of the estimated level curve based on p̃st is largely reduced, as shown
in the upper right panel of Fig. 8.

Further, we increase the sample size to 2000. For this sample size, we choose
μ = 5 and k = 50. The resulting level curves are displayed in the lower panels of
Fig. 8. As the sample size increases, the uncertainty for the estimated level curve
decreases, especially for the case with estimated marginal distribution.

Note that the level curves stay below the line y = x because by definition, with
probability one, X > Y , that is, there is zero probability mass for the event (X < Y)).
In theory, the true level curve, from left to right, starts from the point (yp, yp) and
ends at (xp, 0) 4, where yp and xp are such that P(Y > yp) = P(X > xp) = p.
Therefore, the starting and end positions of a level curve depend only on the marginal
distributions of X and Y . However, the shape of the level curves depends on the
extremal dependence of X and Y . This explains why using the true marginal distri-
bution leads to a much smaller spread of level curves, compared to the ones with
estimated margins.

5 Discussion

In this paper we consider estimating the tail probability of an extreme earthquake
event where the mainshock magnitude X and the largest aftershock magnitude Y

both exceed certain thresholds. We approach the problems from two directions. On
one hand, based on the well-known stochastic rules for aftershocks, we propose a
joint parametric model for (X, Y ), estimate the model using (censored) maximum
likelihood, and from the model, calculate the desired probabilities. On the other hand,
we use non-parametric methods from bivariate extreme value analysis to extrapolate
tail probabilities. We illustrates both methods using the earthquake data in the North
Anatolian Fault Zone (NAFZ) in Turkey from 1965 to 2018. The two approaches
produce surprisingly agreeing results.

This is an exploratory effort in applying multivariate extreme value analysis to
seismology problems and much extension is possible. For example, the occurrences
of the earthquake events can be modelled in time and return level of extreme events
can be estimated. Further information, such as distance between shocks and other

4The plotted level curves stop earlier at (xp, ỹp), due to the fact that ¶(X > xp, Y ≤ ỹp) is much smaller
than p.
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geological covariates, can be incorporated into the analysis to provide more accurate
or customized results.

This paper serves as a confirmation that simple techniques from multivariate
extreme value analysis, though with little expert knowledge behind the data, is able
to provide useful information in the analysis of extreme events.
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