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Abstract: Let x and y be two distinct vertices in a connected graph G. The x, y-

location of a vertex w is the ordered pair of distances from w to x and y, that is,

the ordered pair (d(x,w), d(y, w)). A set of vertices W in G is x, y-located if any two
vertices in W have distinct x, y-locations. A set W of vertices in G is 2-located if it

is x, y-located, for some distinct vertices x and y. The 2-dimension of G is the order

of a largest set that is 2-located in G. Note that this notion is related to the metric
dimension of a graph, but not identical to it. We study in depth the trees T that have

a 2-locating set, that is, have 2-dimension equal to the order of T . Using these results,
we have a nice characterization of the 2-dimension of arbitrary trees.
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1. Introduction

The metric dimension of a connected graph has been the focus of research since the

middle of the 1970’s. In 1975 Slater [4] introduced his ideas of locating sets and

location number of a graph. A year later, Harary and Melter [2] introduced the same
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ideas with a different terminology. In their terminology Slater’s locating set was a

resolving set, and Slater’s location number was the metric dimension of a graph. The

terminology of Harary and Melter has become the standard in the literature. In our

view the terminology of location, introduced by Slater, is more apt for our problems,

so we will basically follow his terminology, with a few exceptions. In [3] two new

resolvability parameters are introduced. For this paper we only need some specific

notions. We give the basics, for details see the next section.

Let G = (V,E) be a connected graph, and let S = {s1, s2, . . . , sk} be an ordered set

of vertices in G. The set S can distinguish two vertices v and w, if there exists a

vertex si in S such that d(si, v) 6= d(si, w). A set W is S-located (or resolved by S)

if any two vertices in W can be distinguished by S. The order of a smallest set that

can locate/resolve all vertices of G is the location number/metric dimension of G. In

[3] a slightly different perspective is chosen. There the order k of the locating set is

fixed, and we search for a largest set W in G that can be located by a set of order k.

In [3] this parameter is called the k-dimension of G. This new parameter opens up a

whole new set of questions and problems.

Our focus in this paper is to determine, in a structural way, the 2-dimension of a tree.

In Section 3, we determine the structure of trees that have location number 2. We

use these results to determine the structure of all maximal sets in arbitrary trees that

are 2-located, see Section 4. Thus we obtain a structural result on the 2-dimension

of a tree.

In his seminal paper “Leaves of trees” [4], Peter Slater already obtained an algorithmic

result how to find the location number/metric dimension of a tree. But these results

do not yet provide insight in the structural aspects. The aim of this Note is to fill

this gap in the case of location number 2 for trees.

2. Setting the stage

Let G = (V,E) be a connected, simple graph without loops, with vertex set V and

edge set E. The order of G is the number |V |. Let u and v be two vertices in V . The

degree degG(u) of u is the number of neighbors of u. The distance dG(u, v) between

u and v is the length of a shortest u, v-path. When no confusion arises, we will delete

the subscript G in degG and dG.

Let T = (V,E) be a tree, and let w be a vertex in T and v a neighbor of w. The

subtree of T consisting of w and all vertices of T that can be reached via a path along

v is called the branch at w along v, and is denoted Twv. Clearly, there are as many

as deg(w) branches at w. As usual, a leaf of T is a vertex of degree 1 in T

A sensor s is a vertex that can measure distances in G. So s ‘knows’ d(s, v), for any

vertex v in G. Let S = {s1, s2, . . . , sk} be an ordered set of sensors. The S-location

of a vertex v of G is the vector (d(s1, v), d(s2, v), . . . , d(sk, v)). In general, vertices

might have the same S-location. Take for instance the complete graph Kn, and a

sequence of sensors S with k < n − 1. Then the n − k vertices that are not in S all

have the all-1 vector of length k as S-location. A vertex outside S has no 0’s in its
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S-vector. Note that the vertices in S all have different S-locations, since the S-vector

of a vertex si in S has a 0 in the i-th position, and nowhere else.

We want to put sensors on G so that the ordered set of sensors S can determine the

location of each vertex v in G in the following sense. For any two vertices u and v, their

S-location is different. So each vertex in G is uniquely determined by its distances to

the sensors in S. Such a set S is called a locating set. It is called a resolving set of

G in the terminology of Harary and Melter [2]. Because the language of location, as

introduced by Slater [4], in our view is much more apt for the problem, we will use

the location terminology. If S is a locating set of order k, then we will call S also a

k-locating set. Note that V is always a locating set for G, and V − u is a locating

set, for any vertex u of G. So one of the main problems is to determine minimal and

minimum locating sets. The size of a minimum locating set is the location number

`(G) of G. In the Harary-Melter terminology this is the metric dimension dim(G) of

G.

The only graphs that have a 1-locating set are the paths, and in this case each of the

end points of the path forms a 1-locating set. So the location number of a graph G is

1 if and only if G is a path, see [1]. Take any subpath of a path that contains an end

point. Then the vertices of this subpath also form a locating set. So the path Pn of

order n has locating sets of orders 1 through n− 1.

A locating set S for a connected graph G has the property that each vertex has

a unique S-location. Using a slightly different perspective, one may also ask the

following question. Given a subset S of the vertex set V of a connected graph G, one

searches for a subset W of V such that all vertices in W have distinct S-vectors. We

say that S locates W , and W is called an S-located set. If W = V , then S is a locating

set for G. Otherwise, one would like to know the order of a maximum S-located set

in G. From this perspective the next step is: if the order of such a set is small, can

we find another set S′ with |S′| = |S|, such that S′ can locate a larger set than S.

This perspective leads to the following definition, which was introduced in [3]. Note

that, in this definition, we follow the Harary-Melter terminology of dimension, where

dim(G) is the metric dimension (location number) of G.

Definition 1. Let G be a connected graph, and let k be a positive integer. The k-th
dimension dimk(G) of G is the maximum order of a set W ⊆ V such that there exists a set
of order k that locates W .

In [3] the parameter dimk(G) is called the k-th upper dimension within the broader

context that is studied there. In Section 3, we study trees with location number 2.

We continue in Section 4 with studying the second dimension dim2(T ) of an arbitrary

tree T .
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3. Trees with a 2-locating set

In this section we study trees that have a minimum locating set of order 2, which we

usually write as S = {x, y}, with x = s1 and y = s2. We call such a set a 2-locating

set. Note that such a tree with location number 2 might have several 2-locating sets.

So there is the question whether there are trees that have a unique 2-locating set, see

Proposition 1.

Before we turn to the trees with location number 2, we consider the paths. A path of

order n is denoted by Pn. The vertices of degree 1 in a path are called the end points

of the path. All other vertices on the path are internal vertices of the path. In [1] it

is shown that the paths are precisely the graphs with location number 1, where each

of the end points of the path forms a 1-locating set. But a path of positive length

also has 2-locating sets. For instance, the two end points form a 2-locating set, but

any two adjacent vertices form a 2-locating set as well.

Let T = (V,E) be a tree with location number 2. We fix a 2-locating set S = {x, y}
of T . Let Q be the path between x and y. We call Q the spine of T with respect to S,

and the internal vertices of Q the spinal vertices of T . By convention Q will always

be a path going from left to right, x being the left most vertex and y being the right

most vertex of Q. We set q = d(x, y), i.e. q is the length of Q.

Claim 1. 1 ≤ deg(x) ≤ 2 and 1 ≤ deg(y) ≤ 2.

Proof. Clearly, x has a neighbor on Q. Suppose to the contrary that x has two

other neighbors v and w. Then we have d(x, v) = d(x,w) = 1 and d(y, v) = d(y, w) =

d(y, x) + 1 = q + 1. So v and w have the same S-location. This is impossible.

Similarly, we have 1 ≤ deg(y) ≤ 2.

If x has a second neighbor besides the one on Q, then we can extend Q beyond x

to the left. Similarly, if deg(y) = 2, then we can extend Q to the right. Let P be a

maximal path in T containing Q. Then P consists of Q plus possibly vertices to the

left of x and to the right of y. Let zx be the left most vertex of P and zy be the right

most vertex of P , so that P is the path between zx and zy. Then zx and zy are leaves

of T . We denote by Px the subpath of P between zx and x, and by Py the subpath

of P between y and zy. Note that Px might be of length 0, that is, zx = x. Similarly,

Py might be of length 0, in which case zy = y.

Claim 2. Any vertex on Px or Py has degree at most 2.

Proof. Let Px have length at least 2, for otherwise nothing has to be proved. Let w

be any internal vertex of Px. Then w has two neighbors u and v on Px, with, say, u

between w and x, and v farther from x than w. Suppose that w has another neighbor

a besides u and v. Then we have d(a, x) = d(v, x), and d(a, y) = d(v, y), which is

forbidden.
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This claim has an immediate but important consequence, which we state in the next

claim.

Claim 3. There is a unique maximal path P containing the spine Q.

Claim 4. d(x, y) ≥ 2.

Proof. Assume that x and y are adjacent. Then, by Claims 1 and 2, we have T = P ,

so T is just a path. But a path has location number 1, contradicting the fact that T

has location number 2.

This implies that T has at least one spinal vertex, that is, an internal vertex of Q.

Claim 5. Let w be a spinal vertex. Then 2 ≤ deg(w) ≤ 3.

Proof. Since w, being a spinal vertex, is an internal vertex of Q, it has two neighbors

on Q. If w has two other neighbors outside Q, then these have the same S-location.

So w has at most one neighbor outside Q.

Claim 6. At least one spinal vertex has degree 3.

Proof. If no spinal vertex has degree 3, then T is the path P , so that it has location

number 1. Contradiction.

Claim 7. Let w be a spinal vertex of degree 3, and let v be the neighbor of w outside Q.
Then the branch Twv is a path.

Proof. Let u be any vertex of the branch Twv distinct from w. We need to prove

that u has degree 1 or 2. Assume that deg(u) ≥ 3, and let r and t be two distinct

neighbors of u different from the one on the path between w and u. Then r and t

have the same S-location. Impossible.

What we have proved so far is that a tree with a 2-locating set, that does not have

location number 1, has maximum degree 3, and all vertices of degree 3 are internal

vertices of a path. Moreover, a 2-locating set consists of two vertices x and y such

that all vertices of degree 3 are internal vertices of the path Q between x and y.

The converse is true as well.

Claim 8. Let T = (V,E) be a tree with maximum degree 3 such that all vertices of degree
3 are internal vertices of a path R in T . Let P be a maximal path containing R. Take a
vertex x of P on one side of the vertices of degree 3 and a vertex y of P on the other side of
the vertices of degree 3. Then S = {x, y} is a 2-locating set.
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Proof. We may assume that P goes from left to right, and that x is left from y. Let

Q = x → x1 → x2 → . . . → xk−1 → y be the path between x and y. Then Q is a

subpath of P and contains all vertices of degree 3 in T as internal vertices. Take two

vertices u and v. If both are on P , then, clearly, they have different S-locations. So,

we may assume that v is not on P . Let v be on the path Qi branching off at xi from

Q. Write p = d(xi, v). Then the S-location of v is (i + p, k − i + p).

First we observe that any other vertex on Q or Qi has a different S-location. For,

take any such vertex w, then it has a different distance to x and/or to y than v.

Now consider u. Assume that u has the same S-location as v. If u is on P , then it must

be on P −Q. If u is on the left from x, say at distance j from x, then d(y, u) = k+ j.

Since u and v have the same S-location, we have j = i + p and k + j = k − i + p.

This implies that k + i + p = k − i + p, which is impossible, since i > 0. Similarly, if

u is on the right from y, say at distance r from y, then d(x, u) = k + r. Since u and v

have the same S-location, we have k + r = i + p and r = k − i + p. This implies that

i− k + p = k − i + p, which is impossible, since 0 < i < k. Hence u is not on P .

So let u be on a path Qj branching off from Q at xj , with xj 6= xi, and write

q = d(u, xj). Then the S-location of u is (j + q, k− j + q). Without loss of generality,

we may assume that 0 < j < i. For u to have the same S-location as v, we need that

i + p = j + q and k− i + p = k− j + q. This gives 0 < i− j = q− p = p− q, which is

impossible.

Thus we may conclude that any two distinct vertices have different S-locations.

A simple corollary of this last claim is that, given any 2-locating set S = {x, y} with

the paths Px and Py as defined above, any vertex sx on Px together with any vertex

sy on Py forms a 2-locating set S′ = {sx, sy}.
All these claims together yield a proof of the following theorem.

Theorem 1. Let T be a tree. Then the location number of T is 2 if and only if the
maximum degree of T is 3 and all vertices of degree 3 lie on a path.

In Figures 1 and 2 we exhibit two trees with a 2-locating set S = {x, y}. The first

one has diameter 7, so an odd diameter, the second one has diameter 8, so an even

diameter. Both have the property that, among the trees with a 2-locating set with

diameter 7, respectively 8, they are of maximum order. This follows from Theorem 2

below.

We can construct such trees for any odd, and any even diameter D. We call such a

tree a pipe-organ of diameter D. Let Q be a path between the vertices x and y, with

Q = x → x1 → x2 → . . . → xk → yk → yk−1 → . . . → y1 → y in case the diameter

is odd, viz. 2k + 1, and Q = x → x1 → x2 → . . . → xk → z → yk → yk−1 → . . . →
y1 → y in case the diameter is even, viz. 2k + 2. At xi as well as yi we append a

path of length i, for i = 1, 2, . . . , k, and in the case of even diameter, we also append

a path of length k + 1 at z. For k = 3, this construction yields precisely the pipe

organs in Figures 1 and 2.
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Figure 1. An odd pipe organ
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Figure 2. An even pipe organ

The order of a pipe organ of diameter D is easily computed. If D = 2` + 1 is odd,

then it is (` + 1)(` + 2). And if D = 2` is even, then the order if (` + 1)2.

We will show that the pipe-organ of diameter D is precisely the tree of maximum

order with diameter D and location number 2. For our purposes we introduce the

following terminology. A D-tree is a tree of maximum order among the trees with a

2-locating set and diameter D.

Claim 9. Let T be a tree of diameter D, with a 2-locating set S = {x, y}. If x is not a
leaf of T , then T is not a D-tree.
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Proof. Note that, due to Claim 1, we have deg(x) = 2. Due to Claim 2, the path

Px has length at least 1. Let Q be the spinal path between x and y, and let z be

the neighbor of x on Px. Due to Claim 8, the set {z, y} is also a 2-locating set. Now

adding a new vertex w adjacent to x creates a tree T ′ with one more vertex than T ,

which still has diameter D and a 2-locating set {z, y}. So T is not a D-tree.

Claim 10. Let T be a D-tree with 2-locating set S = {x, y}. Then x and y are leaves of
T .

Proof. This follows immediately from the previous claim.

Claim 11. Let T be a D-tree with 2-locating set S = {x, y}, and let Q be the spinal path
between x and y. Then all internal vertices of Q have degree 3.

Proof. Assume to the contrary that p is an internal vertex of Q of degree 2. If we

add a new vertex w adjacent to p, this new tree T ′ still has {x, y} as 2-locating set,

and the diameter still remains D. This contradicts the fact that T is a D-tree.

Theorem 2. Let T be a tree of order n with a 2-locating set. Then T is a D-tree if and
only if T is a pipe organ of diameter D.

Proof. First let T be a D-tree, and let {x, y} be a 2-locating set in T . By Claim 10,

x and y are leaves of T . Let Q be the path between x and y. By Claim 11, all internal

vertices of Q have degree 3. Due to Theorem 1, no other vertex can have degree 3.

Next we prove that Q has length D. Suppose to the contrary that Q is of length less

than D. If x were not the end point of a longest path, then we could add a new vertex

x′ adjacent to x without changing the diameter, while the resulting tree would still

have the 2-locating set S = {x, y}. For, the S-location of x′ would be (1, k + 1), and

the only other vertex at distance 1 from x would be the neighbor of x on Q, which

has S-location (1, k − 1).

So x is the end point of a longest path Rx. Let tx be the other end point of Rx.

Since Q is not a longest path, tx is different from y. Let Rx and Q share the subpath

between x and a vertex wx of degree 3 on Q. Since Rx is a longest path, we have

d(wx, x) ≥ d(wx, y). Similarly, there is a longest path Ry of length D that has y as

one end point, and ty as the other end point, with ty 6= x. Let Ry and Q share the

path between wy and y. Then we have d(wy, x) ≥ d(wy, y). Hence wy cannot be to

the right of wx on Q. So wy must be either equal to wx or to the left of wx on Q.

Suppose that wy is to the left of wx on Q. We depict this situation in Figure 3. Since

Ry is a longest path and Q is not, we have d(ty, wy) > d(x,wy). Similarly, we have

d(tx, wx) > d(y, wx). So the path between tx and ty is longer than the longest paths

Rx and Ry, which is impossible. Hence it follows that wx = wy = w and tx = ty = t.

Thus we have the situation as in Figure 4.
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Figure 3. The case tx 6= ty
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Figure 4. The case t = tx = ty

Now the path Rx between t and x is a longest path, and the path Ry between t and

y is a longest path, but the path Q between x and y is not a longest path. These

facts imply that d(w, x) = d(w, y) < d(t, w). Since Q is the spinal path, the vertices

of degree 3 all lie on Q, and all internal vertices of the path between t and w are of

degree 2. Let the path between x and w be x → x1 → x2 → . . . → xk → w, and

that between t and w be t → t1 → t2 → . . . → t` → w. Then we have ` > k. Since

x1, x2, . . . , xk are internal vertices of Q, they might be of degree 3. If xi has degree 3,
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then there is a path Pi pending at xi. The length of this path cannot exceed d(xi, x),

for otherwise we would have a path that is longer than Rx. Now we move Pi from xi

to ti, by which we mean that we delete all vertices of Pi except xi and add a new path

of the same length as Pi at vertex ti. We apply this construction for i = 1, 2, . . . , k.

It is clear that we do not create a longer longest path. Moreover, now all vertices of

degree 3 lie on the path Ry, and thus {t, y} is a 2-locating set. Now tk+1 is a vertex

of degree 2 on the spinal path with respect to the 2-locating set {t, y}. Hence we can

add a new vertex adjacent to tk+1, thus creating a larger tree of diameter D with a

2-locating set. This contradicts the fact that T is a D-tree.

So Q has length D. This puts bounds on the lengths of the paths that branch off

from internal vertices of Q. For T to be a tree of diameter D of maximum order, each

of these branches should have the maximum length possible. So T is indeed a pipe

organ. The order of T is (` + 1)(` + 2) in case of an odd diameter D = 2` + 1, and it

is (` + 1)2 in case of an even diameter D = 2`.

Conversely, let T be a pipe organ of diameter D, as in Figure 1 or 2. Clearly, T has a

2-locating set. In case D = 2`+ 1, the order of T is (`+ 1)(`+ 2). In case D = 2`, the

order of T is (` + 1)2. According to the first part of the proof, the order of T equals

the order of a D-tree. So T is a tree of maximum order among the trees of diameter

D with location number 2. Therefore T is a D-tree.

The pipe organs are the trees of maximum order with a given diameter and a 2-

locating set. But this does not mean that any tree with diameter D and a 2-locating

set is a subtree of a pipe organ. A simple examples suffices to show this. Take a path

on five vertices v1 → v2 → v3 → v4 → v5. Add a pendant vertex at v2 and v4, and

add a long pendant path of length k at v3. Then the diameter is k+ 2, and the spinal

vertices are v2, v3, v4. Clearly, this is not a subtree of a pipe organ as soon as k > 2.

Above we asked the question: is there a tree T with a unique 2-locating set? The

answer is no, unless T = K2. In a way, we are cheating here, because K2 is a path

and thus has location number 1. But it also has a 2-locating set.

Proposition 1. A tree T has a unique 2-locating set if and only if T = K2.

Proof. Recall that K2 is a path, and so has location number 1, but the two vertices

still form a 2-locating set, which is, of course, the unique 2-locating set.

Conversely, let T be a tree with at least 3 vertices. Assume that {x, y} is the unique

2-locating set in T . Let Q be the path between x and y. If, say, x is not a leaf, then

it has a neighbor z not on Q. But then {z, y} is also a 2-locating set. So both x and

y are leaves. Hence, T not being K2, they cannot be adjacent. Let w be the neighbor

of x. Note that w is on Q. If w has degree 2, then {w, y} is also a 2-locating set. If w

has degree 3, then let t be the neighbor of w not on Q. Now the path between t and

y contains all vertices of degree 3 in T , so also {t, y} is a 2-locating set, by Theorem

1.
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The pipe organ of diameter at least 3 has exactly four 2-locating sets. It turns out

that there are no trees with exactly two 2-locating sets, and there are precisely two

trees with three 2-locating sets.

Proposition 2. Let T be a tree with a 2-locating set, with T 6= K2. Then T has at least
three 2-locating sets. T has precisely three 2-locating sets if and only if T = P3 or T = K1,3.

Proof. Since T has a 2-locating set, T has either location number 1 or location

number 2. First let T have location number 1, so that T is a path Pn. Then we have

n ≥ 3. The two end points of T form a 2-locating set, and any two adjacent vertices

form such a set. Hence T has at least n 2-locating sets. If n = 3, then T has no other

2-locating sets, so T has precisely three 2-locating sets. Otherwise, T has at least four

2-locating sets.

Next let T have location number 2. Then T has maximum degree 3, and all vertices

of degree 3 lie on a path. Let R be the smallest path containing all vertices of degree

3. Now there are at least three spinal paths, that is, paths containing R and with end

points being vertices of degree 1 or 2 in T . The two end points of a spinal path form

a 2-locating set. So we have at least three 2-locating sets. If T = K1,3, then there are

precisely three 2-locating sets, viz. the three pairs of leaves.

Let T be a tree of maximum degree 3 that is not K1,3. If T has only one vertex

of degree 3, then clearly T has a spinal path P of length at least 3. If T has more

than one vertex of degree 3, then again T has a spinal path P of length at least 3.

Let x and y be the end points of P , and let x1 be the neighbor of x on P and y1
the neighbor of y on P . Since P has length at least 3, we have x1 6= y1. Now, if x1

has a neighbor x′ outside P , then both x and x′ are candidates for a 2-locating set.

Otherwise x and x1 are both candidates for a 2-locating set. Similarly, we find two

candidates y and y′, or y and y1 on the side of y with respect to P for a 2-locating

set. Thus we find at least four 2-locating sets. This shows that K1,3 is the only tree

of maximum degree 3 with exactly three 2-locating sets.

Of course there are many more questions to be answered concerning the number of

2-locating sets. For example, given the order of T , what is the maximum number of

2-locating sets that is possible? For now, we leave such questions as open problems.

The next step is to study the second dimension of arbitrary trees. This we will do in

the next section.

4. The 2-dimension of a tree

Recall that the 2-dimension dim2(G) of a graph G is the maximum number of vertices

that can be located (resolved) by a set of order 2, that is, by a pair of vertices. In

this section we study the 2-dimension of trees.

An experience that most people share is that after a while some of the teeth of a

comb break off. But the resulting object is still called a comb. This is the reason for
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the choice of the following terminology. A comb is a tree of maximum degree 3 such

that all vertices of degree 3 lie on a path. The smallest path containing all vertices

of degree 3 is the spine of the comb. Any path between vertices of degree at most 2

containing the spine will be called a spinal path. The two end points of any spinal

path form a 2-locating set for the comb. It follows from the results in the previous

section that the combs are precisely the trees T with dim2(T ) = n, with n the order

of the tree.

Let us now get to the 2-dimension of an arbitrary tree. First we want to determine

what kinds of sets in a tree are located by two sensors. We call a set W (x, y)-located

by a pair of distinct vertices x and y if there are no two vertices u and v in W with

d(u, x) = d(v, x) and d(u, y) = d(v, y), that is, the two sensors x and y are able to

distinguish between any two vertices in W . As usual, we call an (x, y)-located set W

maximal if adding any vertex to W results in a set that is not (x, y)-located, and we

call such a set maximum if it is an (x, y)-located set of maximum order.

Theorem 3. Let T be a tree, and let x and y be two distinct vertices of T . Then any
maximal (x, y)-located set is a maximum (x, y)-located set.

Proof. Take two distinct vertices x and y, and let P be the path between x and y

in T . If we delete all the edges of P , then the resulting graph consists of components

being subtrees of T , each of which contains a unique vertex of P . Let Tw be the

component containing w, for each w on P . We can view Tw as a rooted tree with

root w. Let kw be the length of a longest path in Tw with w as one of its end points.

Denote by Ni(w) the set of vertices in Tw at distance i from w. Let a and b be two

distinct vertices in Ni(w). Then we have d(a, x) = d(a,w)+d(w, x) = i+d(w, x), and

d(a, y) = d(a,w) + d(w, y) = i + d(w, y). Similarly, we have d(b, x) = i + d(w, x) and

d(b, y) = i+ d(w, y). So a and b cannot be both in an (x, y)-located set. Obviously, a

vertex a in Ni(w) and a vertex y in Nj(w), with i 6= j have different {x, y}-location.

So let R be a subset of the vertices of Tw. Then R is (x, y)-located if and only if

0 ≤ |Ni(w) ∩R| ≤ 1, for 0 ≤ i ≤ kw.

If a is a vertex in Tw and b is a vertex in Tw′ , with w 6= w′, then a and b cannot

have the same {x, y}-location. This implies that a set W is a maximal (x, y)-located

set if and only if |Ni(w) ∩W | = 1, for 0 ≤ i ≤ kw, for any w on P . So a maximal

(x, y)-located set is also a maximum (x, y)-located set.

Corollary 1. For any two vertices x and y in a tree T , there exists a maximum (x, y)-
located set which induces a comb in T .

Proof. In the proof of Theorem 3, we can take a path in Tw starting in w of maximum

length, for any w on P . This produces a comb, the vertex set of which is a maximum

(x, y)-located set.
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Theorem 4. Let T be a tree. Then the 2-dimension of T is the maximum order of comb
in T .

Proof. Take two distinct vertices x and y in T . By Corollary 1, we can find a

comb, the vertex set of which is a maximum (x, y)-located set. If we maximize this

over all pairs (x, y), then we get a maximum 2-located set, the order of which is the

2-dimension of T . So the 2-dimension of T is at most the maximum order of a comb.

On the other hand, let Q be a comb of maximum order in T . Take two vertices x

and y of Q such that the vertices of degree 3 in Q all lie on the path between x and

y. We have seen in the previous section that the vertex set of Q is (x, y)-located, so

the 2-dimension of T is at least the order of Q. Hence the 2-dimension of T is exactly

the order of a maximum comb in T .

5. Concluding remarks and open problems

Our aim in this paper is to initiate the study of the k-dimension of a graph, by

providing complete and structural results in the case of the 2-dimension of a tree.

To accomplish this, we obtained a structural characterization of trees with location

number/metric dimension 2. Along the way, we came across questions and problems

that we have left open so far. For instance, there is the question of the number of

2-locating sets in a tree. We gave some very first answers for this question.

Another intriguing question is the following: how to determine the 2-dimension of an

arbitrary connected graph G. And what can we say about the structure of maximum

2-located sets? A simple example shows already that the situation is quite different

from that in the tree case. Take the complete graph Kn with n ≥ 3. Any maximum

2-located set is a triangle. So it is 2-connected. The trees show that a maximum

2-located set need not be connected, but we can always find a connected one. Is this

also true for arbitrary connected graphs?

Finally, what can be said if we go to the next level, and ask about the 3-dimension

of a tree?
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