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Abstract 

Using UK equity index data, this paper considers the impact of news 

on time varying measures of beta, the usual measure of undiversifiable risk. 

The empirical model implies that beta depends on news about the market and 

news about the sector. The asymmetric response of beta to news about the 

market is consistent across all sectors considered. Recent research is divided as 

to whether abnormalities in equity returns arise from changes in expected 

returns in an efficient market or over-reactions to new information. The 

evidence suggests that such abnormalities may be due to changes in expected 

returns caused by time-variation and asymmetry in beta.  
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1. Introduction 

 There is widespread evidence that the volatility of equity returns is higher in bull 

markets than in bear markets. One potential explanation for such asymmetry in variance is 

the so-called 'leverage effect' of Black (1976) and Christie (1982). As equity values fall, the 

weight attached to debt in a firm’s capital structure rises, ceteris paribus. This induces equity 

holders, who bear the residual risk of the firm, to perceive the stream of future income 

accruing to their portfolios as being relatively more risky.   

 An alternative view is provided by the 'volatility-feedback' hypothesis. Assuming 

constant dividends, if expected returns increase when stock return volatility increases, then 

stock prices should fall when volatility rises. Pagan and Schwert (1990), Nelson (1991), 

Campbell and Hentschel (1992), Engle and Ng (1993), Glosten, Jagannathan and Runkle 

(1993), and Henry (1998), inter alia, provide evidence of asymmetry in equity return 

volatility using univariate GARCH models. Kroner and Ng (1995), Braun, Nelson and 

Sunnier (1995), Henry and Sharma (1999), Engle and Cho (1999), and Brooks and Henry 

(2000) inter alia use multivariate GARCH models to capture time-variation and asymmetry 

in the variance-covariance structure of asset returns.  

 Such time-variation and asymmetry in volatility may be used to explain a time-

varying and asymmetric beta. A risk averse investor will trade off higher levels of expected 

return for higher levels of risk. If the risk premium is increasing in volatility, and if beta is an 

adequate measure of the sensitivity to risk, then time-variation and asymmetry in the 

variance-covariance structure of returns may lead to time-variation and asymmetry in beta. 

 Recent research by Braun, Nelson and Sunnier (1995), hereafter BNS, explores time 

variation and asymmetry in beta using a bivariate EGARCH model. Engle and Cho (1999), 

hereafter EC, extend the BNS paper in two main directions. First, EC consider the differing 

roles of market- and asset-specific shocks. This is important since a series of negative returns 

caused by market or asset-specific shocks may lead to an increase in beta. Second, EC use 

daily data on individual firms, rather than the aggregated data used by BNS.  
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 Our approach differs from that of both BNS and EC. In particular we use a linear as 

opposed to an exponential multivariate GARCH model to distinguish between the roles of 

idiosyncratic and market shocks in determining potential asymmetry in beta. The exponential 

GARCH approach of BNS does not readily admit negative covariance estimates although 

such inverse relationships may be present in the data. Moreover, the EGARCH form appears 

to overstate the response of the conditional variance to a negative shock - see Engle and Ng 

(1993), and Henry (1998), inter alia. Our approach allows for a (potentially negative) time 

varying and asymmetric covariance between the risky asset and market portfolio, while 

guaranteeing a positive definite variance-covariance matrix. Moreover, we define the 

Conditional Beta Surface, an extension of the News Impact Surface concept of Ng and 

Kroner (1995). Using this approach it is possible to produce a graphical representation of the 

impact of idiosyncratic and market-wide shocks upon estimates of beta. We also employ 

indicator dummy regressions to identify sources of the observed asymmetry in the estimated 

beta series. The models are applied in the context of the estimation of beta for six UK sector 

return indices. 

 The remainder of the paper develops as follows. Section 2 outlines the strategy 

employed for modelling the time-variation and asymmetry in beta, while section 3 describes 

the data and presents the empirical results. The statistical properties of the estimated beta 

series are reported in section 4. The final section of the paper provides a summary and some 

concluding comments. 

 

  

2. Modelling Time Variation and Asymmetry in Beta 

The static Capital Asset Pricing Model (CAPM) predicts that the expected return to 

investing in a risky asset or portfolio, E( tSR , ), should equal, fr , the risk free rate of return, 

plus a risk premium. The risk premium is determined by a price of risk, the expected return 
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on the market portfolio in excess of fr , and a quantity of risk, known as the ‘beta’ of asset S, 

S . The static CAPM may be written as 

  [ ( ) ]S f M f SE R r E R r          (1) 

where M and S denote the market and sector respectively, 
 

 

,M S

S

M

Cov R R

Var R
  , and 

   ,  and M S MCov R R Var R are the covariance between the sector and market portfolio 

returns and the variance of the market returns, respectively1.  

Estimates of S  may be obtained from OLS estimates of the slope coefficient in 

, 0 1 ,S t M t tR b b R u           (2) 

It has long been recognised that the volatility of asset returns is clustered. Thus the 

assumption of constant variance (let alone covariance) underlying the estimation of (2) must 

be regarded as tenuous.  

Let Et-1(.) represent the expectations operator conditional on information available at 

time t-1. The conditional formulation of the Capital Asset Pricing Model (CAPM) predicts 

that the expected return to investing in a risky asset or portfolio, Et-1(RS,t), should equal the 

risk free rate of return plus a risk premium. The risk premium is determined by a price of risk, 

Et-1(RM,t)-rf, and a quantity of risk, the beta of asset S, ,S t . This may be written as 
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where    , , , ,cov / varS t t S t M t t M tR R R  , and  , ,covt S t M tR R  and  ,vart M tR are the 

conditional covariance between the asset and market portfolio returns and the conditional 

variance of the market returns respectively.  Note that (3) assumes investors maximise utility 

period by period and is written in terms of the conditional moments, reflecting market 

                                                 

1
 The CAPM can be written as    ,i f S ME R r COV R R  , where  is the market price per unit risk. 
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participants’ use of information available up to time 1t  in making investment decisions for 

time t . Unlike the static CAPM, (3) does not require constant S  or constant risk premia.  

The model presented by Merton (1973, 1980) predicts a positive relationship 

between the market risk premium and the variance of the market portfolio. Bollerslev, Engle 

and Wooldridge (1988), Braun, Nelson and Sunier (1995) and Engle and Cho (1999), inter 

alia, report evidence of time variation in ,S t  based upon the GARCH class of models. 

Attanasio (1991), Engel, Frankel, Froot and Rodrigues (1995) and González-Rivera (1996) 

present tests of the conditional CAPM allowing for predictability of the second moment of 

asset returns.  González-Rivera (1996) presents a testable version of the conditional CAPM 

written as 

),(cov)( ,,,1 tMtStftSt RRrRE      (4) 

where )(var/])([ ,, tMtftM RrRE   represents the aggregate coefficient of relative risk 

aversion and is assumed constant over time. 

The focus of this paper is on the time series behaviour of ,S t  and in particular 

whether there is evidence of asymmetry in this measure of risk. Braun, Nelson and Sunnier 

(1995) and Engle and Cho (1999) use the bivariate EGARCH approach specifying the 

conditional mean equations as 

, , ,

, , , , ,

M t M t M t

S t S t M t S t S t

R h z

R R h z



 
      (5) 

where ,  and M t S,tR R  represent the demeaned returns to the market and sector respectively, 

S,ttM zz  and , are contemporaneously uncorrelated i.i.d. processes with zero mean and unit 

variance and ,  and M t S,th h  are the conditional variances of ,  and M t S,tR R , respectively. The 

measure of undiversifiable risk associated with industry sector S, S, is defined as: 
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where [.]1tE  denotes the expectation at time t-1. The model is completed by the equations 

defining the time series behaviour of S,ttStM hh  and , ,,  
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  (7) 

where  1,1,1, )(   tititii zEzzg  for i = M, S. 

As noted by Braun et al. (1995), the bivariate EGARCH (7) implies some strong 

assumptions. First, the model does not allow for feedback, as would be the case if 

S,ttStM hh  and )ln(),ln( ,, followed a VARMA process. Second, the model assumes a linear 

autoregressive process for S,t . Third, although the model allows for leverage effects, it does 

so in an ad-hoc fashion.  

In contrast to Braun, Nelson and Sunnier (1995), and Engle and Cho (1999), our 

approach allows for feedback between the conditional means and variances of tMR ,  and 

tSR , . Furthermore, we make no formal assumptions as to the time series process underlying 

S,t . We assume a VARMA process for the returns and model the time variation in the 

variance-covariance matrix using a linear as opposed to an exponential GARCH model. The 

multivariate GARCH approach allows the researcher to examine the effects of shocks to the 

entire variance-covariance matrix. Thus the effect of a shock to tMR ,  on the covariance 

between tMR ,  and tSR , may be inferred directly from the parameter estimates. Moreover, the 

conditional variance-covariance matrix may be parameterised to be time varying and 

asymmetric. Given the role of covariances in asset pricing and financial risk management, 

correct specification of the variance-covariance structure is of paramount importance. For 

example, the conditional covariance may be used in the calculation of prices for options 

involving more than one underlying asset (such as rainbow options), and is vital to the 
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calculation of minimum capital risk requirements, see Brooks, Henry and Persand (2002). 

Both variance and covariance estimates may be used in the calculation of the measure of 

undiversifiable risk from the Capital Asset Pricing Model. It follows that if the variance 

and/or covariance terms are time-varying (and asymmetric), the CAPM  is also likely to be 

time-varying (and asymmetric). 

The conditional mean equations of the model are specified in our study as a Vector 

Autoregressive Moving Average (VARMA) with conditional variance and covariance terms, 

which may be written as:  

 
1 1
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where vech is the column stacking operator of a lower triangular matrix. 

If 1tt  (0,Ht), where
, ,

, ,

M t MS t

t

MS t S t

H H
H

H H

 
  
 

 and t represents the innovation 

vector in (8), the bivariate VARMA(m,n) GARCH(1,1) model may be written as (9), the 

BEKK parameterisation proposed by Engle and Kroner (1995)  

*' * *' * *' ' *

0 0 11 1 11 11 1 1 11t t t tH C C A H A B B         (9) 

The BEKK parameterisation requires estimation of only 11 parameters in the conditional 

variance-covariance structure and guarantees tH  positive definite. It is important to note that 

the BEKK model implies that only the magnitude of past return innovations is important in 

determining current conditional variances and covariances. This assumption of symmetric 

time-varying variance-covariance matrices must be considered tenuous given the existing 

body of evidence documenting the asymmetric response of equity volatility to positive and 

negative innovations of equal magnitude (see Engle and Ng, 1993, Glosten, Jagannathan and 

Runkle, 1993, Kroner and Ng, 1996, and Brooks, Henry and Persand, 2002, inter alia).  
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Defining  , ,min ,0i t i t   for i =M,S, the BEKK model in (9) may be extended to 

allow for asymmetric responses as 

*' * *' * *' ' * *' ' *

0 0 11 1 11 11 1 1 11 11 1 1 11t t t t t tH C C A H A B B D D            (10) 

with the following definitions of the coefficient matrices: 

* * * *

* *11 12 11 12

0 11* * *

22 21 22

* * * *

* *11 12 11 12

11 11* * * *

21 22 21 22
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b b d d
B D

b b d d
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t

S t






 
  
 

  (11) 

The symmetric BEKK model (9) is given as a special case of (10) where all the elements of 

*

11D  equal zero. Given estimates of ,MS tH , the conditional covariance between the return to 

the market portfolio, ,M tR , and the return to the individual sector, ,S tR , and the variance of 

return to the market portfolio, ,M tH , it is possible to calculate a time varying estimate of S , 

the measure of undiversifiable risk associated with industry sector S as: 

,

,

,

.
MS t

S t

M t

H

H
              (12) 

Previous studies by Ballie and Myers (1991), Kroner and Sultan (1991), and Brooks, Henry 

and Persand (2002) have considered the time series properties of ,S t  constructed in this 

fashion in the context of dynamic hedging using futures contracts. Attanasio (1991), Engel et 

al (1995), and González-Rivera (1996), inter alia, test the CAPM but do not discuss the time 

series properties of the estimated ,S t  series. 

Kroner and Ng (1996) analyse the asymmetric properties of time-varying covariance 

matrix models, identifying three possible forms of asymmetric behaviour. First, the 

covariance matrix displays own variance asymmetry if  , ,M t S th h , the conditional variance 

of  , ,M t S tR R , is affected by the sign of the innovation in  , ,M t S tR R . Second, the 

covariance matrix displays cross variance asymmetry if the conditional variance of 
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 , ,M t S tR R  is affected by the sign of the innovation in  , ,S t M tR R . Finally, if the covariance 

of returns ,MS tH is sensitive to the sign of the innovation in return for either portfolio, the 

model is said to display covariance asymmetry.  

The innovation in the log of the prices from time t-1 to time t, denoted, 

, , 1 ,log( ) log( )i t i t i tP P   , i = M, S, represents changes in information available to the 

market (ceteris paribus). Kroner and Ng (1996) treat such innovations as collective measures 

of news arriving to market i between the close of trade on period t-1 and the close of trade on 

period t. Kroner and Ng (1996) define the relationship between innovations in returns and the 

conditional variance-covariance structure as the news impact surface, a multivariate form of 

the news impact curve of Engle and Ng (1993). 

 

3. Data Descriptions and Empirical Results 

Weekly UK equity index data for the period 01/01/1965 to 01/12/1999 was obtained 

from Datastream International. The FT-All Shares index was used as a proxy for the market 

portfolio. The paper reports results for six sector return indices, namely Basic Industries 

(BASICUK), Total Financials (TOTLFUK), Healthcare, (HLTHCUK), Publishing 

(PUBLSUK), Retail (RTAILUK) and Real Estate, (RLESTUK)2. In all cases the data were in 

accumulation index form and were transformed into continuously compounded returns for 

each sector in the standard fashion. Summary statistics for the data are presented in Table 1. 

As one might anticipate, the data display evidence of extreme non-normality. In only one 

case, Healthcare, is the degree of skewness not statistically significant. In all cases, the data 

display strong evidence of excess kurtosis. Columns 1 and 2 of Figure 1 display the index and 

returns data respectively. Visual inspection of the graph of the returns data suggests that there 

is strong volatility clustering. A Ljung-Box test on the squared return data suggests that there 

                                                 

2
 The results for the remaining sectors are qualitatively unchanged from those reported here, and are available on 

request from the authors. 
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is strong evidence of Autoregressive Conditional Heteroscedasticity (ARCH) in the data. The 

final column of Table 1 displays static estimates of undiversifiable risk obtained from OLS 

estimation of (2). The range of estimates runs from 0.930 for Health Care to 1.079 for 

Retailing.  

The Akaike and Schwarz information criteria were used to determine the lag order of 

the VARMA model (8). In all cases, the restricted VARMA(2,1) given as (13) was deemed 

optimal: 

 
2

1 1
1

( ) ( )
, , ,
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, , ,
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1, 1, 1, ,1,
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2, 2, 2, ,1,
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   (13) 

Maximum likelihood techniques were used to obtain estimates of parameters for equations 

(10) and (13) assuming Student’s-t distributions with unknown degrees of freedom for the 

errors. The parameter estimates for the conditional mean and variance equations are 

displayed in Tables 2a, 2b and the upper panel of Table 2c.  

Shocks to volatility appear highly persistent. Estimates of the main diagonal elements 

of 
*

11A are, in general, close to unity. There is strong evidence of own variance, cross variance 

and covariance asymmetry in the data. This is highlighted by the significance of the 

parameters in the 
*

11D  matrix. The insignificance of the off-diagonal elements in the 
*

11B  

matrix suggests that the majority of important volatility spillovers from the market to the 

sector are associated with negative realisations of ,M tR . Taken together, the evidence 

suggests that news about the individual portfolios (market or sector) impacts only upon that 

individual portfolio volatility. However, bad news about the market portfolio spills over into 

the individual sector portfolios without evidence of feedback from sector to market.  
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The upper panel of Table 2c displays the estimates of the  matrix. The conditional 

CAPM suggests a positive relationship between the market risk premium and the variance of 

the market portfolio. This condition is not supported by the data for the Basic Industries and 

Total Financials Sectors with 1,
ˆ 0M   and significant. Similarly for Total Financials, Retail 

and Real Estate 1,
ˆ 0SM   and significant. As 1,

ˆ
SM can be interpreted as an estimate of the 

coefficient of risk aversion these estimates are not consistent with existing estimates in the 

literature, see Hansen and Singleton (1983) inter alia. While the focus of this paper is not on 

testing the conditional CAPM, these results are suggestive of the theory being incompatible 

with the data. 

With the exception of the health sector, the models all pass the usual Ljung-Box test 

for serial correlation in the standardised and squared standardised residuals displayed in 

Table 2c.  

Figures 2-7 display the variance and covariance news impact surfaces for the 

estimates of the Multivariate GARCH model displayed in Table 2. Following Engle and Ng 

(1993) and Ng and Kroner (1996), each surface is evaluated in the region  , 5,5i t    for i 

= M, S, holding information at time t-1 and before constant. There are relatively few extreme 

outliers in the data, which suggests that some caution should be exercised in interpreting the 

news impact surfaces for large absolute values of ,i t . Despite this caveat, the asymmetry in 

variance and covariance is clear from each Figure. The sign and magnitude of idiosyncratic 

and market shocks have clearly differing impacts on elements of tH . The first panel of each 

Figure shows the effect of idiosyncratic and market-wide shocks on subsequent market 

volatility. It is evident that for the basic industries, healthcare and publishing sectors, positive 

idiosyncratic shocks have virtually no effect on next period market volatility, while negative 

shocks have moderate impacts. On the other hand, in the cases of the financial and real estate 

sectors, idiosyncratic shocks have a much stronger role to play. In the cases of the basic 

industries, retail and healthcare sectors, a market-wide shock has a bigger impact on 
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subsequent sector volatility than an idiosyncratic shock of the same size. The third panels of 

Figures 2 to 7 show the effects of idiosyncratic and market-wide shocks on future conditional 

covariance between market and sector returns. For the basic industries, financial, healthcare 

and retail sectors, it appears to be the sector-specific shocks that drive the covariances, with 

negative shocks having considerably larger effects than positive shocks of the same 

magnitude. 

Holding information at time t-1 and before constant, and evaluating ,S t  as before 

yields the response of the measure of undiversifiable risk to news. The fourth panels of 

Figures 2-7 graph the response of ,S t  to news using the estimates displayed in Table 2. 

Again, the asymmetry in response to market and idiosyncratic shocks is clear. For example, 

visual inspection of the fourth panel of Figure 2 suggests the differing response of ,S t  to 

idiosyncratic and market-wide shocks. The basic industries beta appears to respond largely to 

idiosyncratic shocks. On the other hand, Figure 3 suggests that the total financials beta 

responds far more to market-wide shocks. In the course of daily business, providing liquidity 

and capital, the financial sector becomes exposed to risk across all sectors of the economy; 

thus it is intuitively appealing that the beta for the financial sector appears to respond 

strongly to news about the market. Such visual analysis, while intuitively appealing, is 

obviously ad-hoc and subjective, therefore the paper now moves to a more formal statistical 

analysis of the sources of the observed asymmetry.  

 

4. Properties of the ,
ˆ

S t  series 

By construction, the model allows S, the measure of undiversifiable risk associated 

with industry sector S to respond asymmetrically to news about the market portfolio and/or 

news about sector S. Brooks, Henry and Persand (2002) argue that the dependence of beta on 

news is important in the context of dynamic hedging, particularly in the presence of 

asymmetries. The third column of Figure 1 plots the estimated ,
ˆ

S t . The time variation of the 
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measure of undiversifiable risk across each sector is evident. Table 3 presents descriptive 

statistics for the ,
ˆ

S t  series. The most volatile of the ,
ˆ

S t series is associated with the real 

estate sector. Here the ,
ˆ

S t ranges from a minimum of 0.44 to a maximum of 1.48. In terms of 

the average value of ,
ˆ

S t , retailing appears to be the riskiest sector, with a ,
ˆ

S t =1.11, 

indicating that retailing has higher risk than the market portfolio which has , 1M t    t by 

definition. The averages of the ,
ˆ

S t  series compare closely with the static estimates presented 

in Table 1. On the basis of a sequence of augmented Dickey-Fuller unit root tests, the ,
ˆ

S t  

series appear stationary.  

What factors underlay the observed asymmetry in ,
ˆ

S t ? EC argue that shocks to the 

market and idiosyncratic shocks determine asymmetric effects in ,
ˆ

S t . This logic underlies 

the News Impact Surface that we propose for ,
ˆ

S t  depicted in Figures 2 to 6. To identify 

negative returns to the market, let ,M tI  represent an indicator variable, which takes the value 

of unity when ,M tR , the return to the market portfolio, is negative and zero otherwise. 

Similarly, in order to identify the magnitude of negative market returns, let 

, , ,M t M t M tR I R   . Similar variables may be defined to identify negative return innovations 

and the corresponding magnitudes for each individual sector.  

Consider the OLS regression 

, 1 2 , 3 , 4 , 5 , 6 , ,
ˆ

7S t M t M t S t S t S t M t tI R I R C C u                   (14) 

where , , ,S t M t S tC I R  , and , , ,M t S t M tC I R   represent dummy variables designed to 

capture the sector return when the market return is negative ( ,S tC ) and the market return 

when the sector return is negative ( ,M tC ).  



 13 

 The results from estimation of (14) are displayed in Table 4. Periods of negative 

returns to the market only significantly affect ,
ˆ

S t  for the health sector, leading to a fall in 

the value of the measure of undiversifiable risk. However, large negative innovations to the 

market portfolio uniformly lead to a significant increase in ,
ˆ

S t  across all sectors considered. 

There is no pattern of correlation between a negative return to the sector and changes in 

,
ˆ

S t with the sign and significance of 5 being apparently random across sectors. Similarly, 

,S tC  and ,M tC  do not appear to significantly affect estimates of systematic risk. 

 On the basis of the static estimates of S, the healthcare sector appears least risky. 

Using the mean of ,
ˆ

S t as a measure of the relative riskiness of the sectors also suggests that 

the Healthcare sector is the least risky. However such a ranking clearly ignores relative 

uncertainty about the estimates of ,
ˆ

S t .  

Figure 8 displays the empirical cumulative density functions (CDF) for the six 

estimated ,
ˆ

S t series. Following González-Rivera (1996), we compare the market risk of the 

six sectors using the concepts of stochastic dominance. Here the least risky sector will 

dominate. Let  XF  and  YG  be the CDF of  for sectors X and Y, respectively. If 

 XF    YG   for all  then X dominates Y in the first order sense. The CDFs are 

constructed from the 1, 10, 25, 50, 75, 90, 95 and 99 percentiles. In this context, there is no 

first order dominance as the CDFs all cut each other. That is, there is no clear least risky 

sector on the first order basis. Second order dominance requires that 

     0X YF G d


  


  for all . In this context there are 15 possible pairs of series, 

so graphical representation is not useful. Using second order dominance, no clear ordering is 

obtained. It is therefore not possible to identify a clearly least risky sector using a pair wise 

approach. Further investigation of this issue is beyond the scope of the current paper. 
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5. Summary and Conclusions 

Recent research provides conflicting evidence as to whether abnormalities in equity 

returns are a result of changes in expected returns in an efficient market or an over-reaction to 

new information in a market that is inefficient. De Bondt and Thaler (1985), Chopra, 

Lakonishok and Ritter (1992), and Jegadeesh and Titman (1993) inter alia, conclude that the 

return to a portfolio formed by buying stocks which have suffered capital losses (losers) in 

the past, and selling stocks which have experienced capital gains (winners) in the past, has a 

higher average return that predicted by the CAPM. All three studies conclude that such over-

reaction is inconsistent with efficiency, since such contrarian strategies should not 

consistently earn excess returns.  

On the other hand, Chan (1988), and Ball and Kothari (1989) argue that the time 

variation in expected return due to time-variation in beta explains the success of the ‘losers’ 

portfolio. The studies find that there exists predictive asymmetry in the response of the 

conditional beta to large positive and negative innovations. Braun, Nelson and Sunier (1995) 

find weak evidence of asymmetry in beta, but conclude that it is not sufficient to explain the 

over-reaction to information, or mean reversion in stock prices. Engle and Cho (1999) argue 

that this lack of evidence of asymmetry in beta is due to stock price aggregation, and lack of 

cross-sectional variation in the monthly data used by Braun, Nelson and Sunier (1995). Engle 

and Cho (1999) suggest that the use of daily data on individual stocks makes the detection of 

asymmetry an easier task. 

This paper employs weekly data on industry sectors from the UK equity market to 

examine the impact of news on time-varying measures of beta. The use of weekly data on 

sectors of the market should overcome the potential price aggregation problems associated 

with lower frequency data, and maintain sufficient cross-sectional variation to detect time 

variation and asymmetry in beta.   

Treating logarithmic price innovations as a collective measure of news arriving to the 

market between time t –1 and time t, the results suggest that time-variation in beta depends 
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on two sources of news - news about the market and news about the sector. However, the 

asymmetric response of beta to news appears related only to large negative innovations to the 

market. Bad news about each individual sector does not appear to significantly affect the 

measure of undiversifiable risk. The asymmetric effect in beta is consistent across all sectors 

considered.  

Given the magnitude of the asymmetry identified in beta, the evidence in this paper 

suggests that abnormalities such as mean reversion in stock prices may occur as a result of 

changes in expected return caused by time-variation and asymmetry in beta, rather than as a 

by-product of market inefficiency.  

There is some evidence that the healthcare industry is the least risky of the sectors 

considered. However this evidence is at best indicative and does not take into account the 

higher moments of the empirical distribution of the estimated measures of market risk. 

Taking uncertainty about ,
ˆ

S t  into account it is not possible to order the sectors in terms of 

exposure to market risk. Further research on this subject is clearly a matter of interest.  
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Tables and Figures 

 

Table 1: Summary statistics for the returns data 

Series Mean Variance Skew E.K. 1 Q(5) Q
2
(5)  

FTALL 0.280 6.288 -0.323 

[0.000] 

9.082 

[0.000] 

0.071 56.67 

[0.000] 

231.036 

[0.000] 

1.00 

BASIC 0.226 7.690 -0.517 

[0.000] 

7.975 

[0.000] 

0.079 44.447 

[0.000] 

55.825 

[0.000] 

0.976 

(0.012) 

TOTLF 0.303 7.260 0.007 

[0.900] 

6.941 

[0.000] 

0.111 56.668 

[0.000] 

342.389 

[0.000] 

0.978 

(0.010) 

HLTH 0.280 10.842 -0.061 

[0.290] 

5.459 

[0.000] 

0.016 21.715 

[0.001] 

155.245 

[0.000] 

0.930 

(0.022) 

PUBLS 0.245 9.883 -0.650 

[0.000] 

10.531 

[0.000] 

0.107 48.013 

[0.000] 

107.912 

[0.000] 

1.040 

(0.016) 

RTAIL 0.256 11.129 0.168 

[0.000] 

3.737 

[0.000] 

0.002 6.009 

[0.305] 

122.797 

[0.000] 

1.079 

(0.018) 

RLEST 0.249 11.908 -0.159 

[0.000] 

6.579 

[0.000] 

0.097 33.713 

[0.000] 

391.338 

[0.000] 

1.032 

(0.021) 

Notes to Table 1: Marginal significance levels displayed as [.], standard errors displayed as 

(.). Skew measures the standardised third moment of the distribution and reports the marginal 

significance of a test for zero skewness. E.K. reports the excess kurtosis of the return 

distribution and the associated marginal significance level for the test of zero excess kurtosis. 

The first order autocorrelation coefficient is 1. Q(5) and Q
2
(5) are Ljung-Box tests for fifth 

order serial correlation in the returns and the squared returns, respectively. Both tests are 

distributed as 
2
(5) under the null.  is the OLS estimate of the measure of undiversifiable 

risk. 
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Table 2a: Conditional Mean Estimates 

 BASIC TOTLF HLTH PUBLS RTAIL RLEST 

)(M  0.336 

(0.043) 

0.288 

(0.053) 

0.157 

(0.041) 

0.207 

(0.0350) 

0.099 

(0.034) 

0.258 

(0.038) 

)(

,1

M

M  -0.171 

(0.017) 

-0.033 

(0.011) 

0.199 

(0.028) 

-0.086 

(0.018) 

0.171 

(0.012) 

-0.103 

(0.019) 

)(

,2

M

M  0.130 

(0.011) 

0.055 

(0.010) 

0.038 

(0.015) 

0.114 

(0.015) 

0.145 

(0.012) 

0.087 

(0.013) 

)(

,1

M

S  0.051 

(0.009) 

0.042 

(0.011) 

0.002 

(0.012) 

0.047 

(0.021) 

0.036 

(0.009) 

0.018 

(0.011) 

)(

,2

M

S  -0.003 

(0.011) 

0.062 

(0.008) 

0.062 

(0.011) 

0.005 

(0.011) 

-0.024 

(0.009) 

0.026 

(0.010) 

)(

,1

M

M  0.153 

(0.016) 

0.008 

(0.012) 

-0.019 

(0.024) 

0.061 

(0.021) 

-0.202 

(0.012) 

0.117 

(0.020) 

)(S  0.150 

(0.013) 

0.363 

(0.068) 

0.134 

(0.068) 

0.242 

(0.038) 

0.222 

(0.057) 

0.160 

(0.045) 

)(

,1

S

M  -0.023 

(0.013) 

0.005 

(0.012) 

0.117 

(0.021) 

0.053 

(0.030) 

-0.021 

(0.021) 

0.003 

(0.018) 

)(

,2

S

M  0.113 

(0.018) 

0.032 

(0.011) 

0.090 

(0.020) 

0.216 

(0.017) 

0.156 

(0.020) 

0.040 

(0.018) 

)(

,1

S

S  0.147 

(0.019) 

-0.011 

(0.010) 

-0.097 

(0.015) 

0.056 

(0.016) 

-0.057 

(0.013) 

0.094 

(0.012) 

)(

,2

S

S  0.002 

(0.012) 

0.080 

(0.010) 

0.008 

(0.015) 

-0.048 

(0.013) 

-0.071 

(0.013) 

0.009 

(0.012) 

)(

,1

S

S  -0.089 

(0.021) 

0.062 

(0.011) 

0.053 

(0.014) 

-0.016 

(0.021) 

0.031 

(0.013) 

-0.003 

(0.013) 

Notes to Table 2a: Standard errors displayed as (.) 
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Table 2b: Conditional Variance Estimates 

 BASIC TOTLF HLTH PUBLS RTAIL RLEST 

c11 0.404 

(0.060) 

0.167 

(0.055) 

0.479 

(0.062) 

0.610 

(0.060) 

0.346 

(0.034) 

0.506 

(0.080) 

c12 0.399 

(0.069) 

0.298 

(0.052) 

0.118 

(0.070) 

-0.140 

(0.124) 

0.154 

(0.048) 

0.396 

(0.048) 

c22 0.180 

(0.030) 

0.127 

(0.038) 

0.409 

(0.111) 

0.261 

(0.144) 

0.082 

(0.054) 

0.261 

(0.051) 

a11 0.948 

(0.016) 

0.986 

(0.011) 

0.902 

(0.022) 

0.707 

(0.042) 

0.907 

(0.011) 

0.915 

(0.027) 

a12 -0.009 

(0.021) 

0.013 

(0.013) 

-0.053 

(0.033) 

-0.115 

(0.048) 

-0.064 

(0.015) 

-0.065 

(0.027) 

a21 -0.008 

(0.011) 

-0.025 

(0.011) 

0.032 

(0.016) 

0.201 

(0.034) 

0.036 

(0.006) 

0.015 

(0.017) 

a22 0.954 

(0.016) 

0.940 

(0.013) 

0.972 

(0.022) 

1.026 

(0.039) 

1.016 

(0.008) 

0.973 

(0.016) 

b11 0.218 

(0.050) 

0.286 

(0.042) 

0.146 

(0.043) 

-0.027 

(0.055) 

0.237 

(0.041) 

0.238 

(0.041) 

b12 -0.283 

(0.059) 

0.152 

(0.047) 

0.103 

(0.054) 

0.308 

(0.068) 

0.085 

(0.054) 

0.099 

(0.048) 

b21 0.013 

(0.046) 

-0.071 

(0.038) 

0.015 

(0.029) 

0.094 

(0.039) 

-0.027 

(0.027) 

-0.044 

(0.030) 

b22 0.212 

(0.052) 

0.094 

(0.049) 

0.207 

(0.049) 

-0.046 

(0.051) 

0.080 

(0.035) 

0.178 

(0.034) 

d11 0.356 

(0.087) 

-0.085 

(0.081) 

0.398 

(0.065) 

0.456 

(0.072) 

0.465 

(0.059) 

0.057 

(0.095) 

d12 0.359 

(0.092) 

-0.226 

(0.085) 

0.326 

(0.104) 

0.215 

(0.089) 

0.353 

(0.063) 

-0.075 

(0.109) 

d21 -0.059 

(0.096) 

0.264 

(0.061) 

-0.054 

(0.059) 

0.063 

(0.061) 

-0.236 

(0.038) 

0.192 

(0.055) 

d22 -0.051 

(0.104) 

0.418 

(0.073) 

-0.075 

(0.102) 

0.110 

(0.071) 

-0.082 

(0.049) 

0.324 

(0.071) 

Notes to Table 2b: Standard errors displayed as (.) 
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Table 2c: GARCH-M Coefficient Estimates and Residual Diagnostics 

 BASIC TOTLF HLTH PUBLS RTAIL RLEST 

1,S  -0.004 

(0.004) 

0.030 

(0.006) 

-0.023 

(0.009) 

-0.084 

(0.025) 

-0.028 

(0.009) 

0.011 

(0.007) 

1,SM  0.013 

(0.004) 

-0.020 

(0.012) 

0.005 

(0.008) 

0.011 

(0.005) 

-0.023 

(0.006) 

-0.008 

(0.005) 

1,M  -0.011 

(0.006) 

-0.011 

(0.008) 

0.0180 

(0.003) 

0.057 

(0.018) 

0.040 

(0.004) 

0.009 

(0.003) 

2,S  0.022 

(0.004) 

-0.033 

(0.012) 

0.003 

(0.012) 

0.020 

(0.011) 

-0.005 

(0.013) 

-0.028 

(0.008) 

2,SM  -0.008 

(0.005) 

0.012 

(0.005) 

0.003 

(0.010) 

0.017 

(0.010) 

0.062 

(0.007) 

0.055 

(0.007) 

2,M  -0.007 

(0.004) 

0.010 

(0.006) 

0.012 

(0.006) 

-0.028 

(0.013) 

0.032 

(0.007) 

-0.005 

(0.005) 

 9.254 

(0.554) 

9.162 

(0.583) 

8.086 

(0.4282) 

8.345 

(0.626) 

8.514 

(0.573) 

8.751 

(0.227) 

Log L -4747.75 -4536.92 -5887.25 -5396.13 -5580.52 -5718.42 

Q(5)
M

 10.365 

[0.066] 

11.961 

[0.035] 

13.832 

[0.017] 

10.423 

[0.064] 

12.070 

[0.034] 

10.417 

[0.064] 

Q
2
(5)

M
 0.904 

[0.970] 

0.846 

[0.974] 

1.140 

[0.951] 

1.209 

[0.944] 

1.740 

[0.884] 

0.492 

[0.992] 

Q(5)
S
 7.370 

[0.195] 

10.241 

[0.069] 

9.491 

[0.091] 

3.310 

[0.652] 

2.956 

[0.707] 

7.459 

[0.189] 

Q
2
(5)

S
 0.935 

[0.967] 

2.754 

[0.738] 

10.584 

[0.060] 

1.042 

[0.959] 

4.916 

[0.426] 

10.267 

[0.068] 

Notes to Table 2c: Standard errors displayed as (.). Marginal significance levels 

displayed as [.]. represents the degrees of freedom parameter estimated from the 

students-t density. Q(5)
i
 and Q

2
(5)

i
 represent Ljung Box tests  for serial dependence 

in the standardised residuals and their corresponding squares for i=Market, Sector 
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Table 3: Descriptive Statistics for tS ,̂  

 BASIC TOTLF HLTH PUBLS RTAIL RLEST 

Mean 0.988 0.965 0.881 0.972 1.108 0.906 

Variance 0.010 0.015 0.029 0.008 0.023 0.037 

Skew -0.081 

[0.000] 

0.446 

[0.000] 

1.210 

[0.000] 

0.1704 

[0.003] 

-0.207 

[0.000] 

0.375 

[0.000] 

E.K. 2.516 

[0.000] 

-0.120 

[0.297] 

4.571 

[0.000] 

1.561 

[0.000] 

-0.394 

[0.001] 

-0.185 

[0.109] 

Min 0.516 0.642 0.527 0.564 0.630 0.440 

Max 1.320 1.322 1.924 1.512 1.480 1.484 

ADF -5.045 -4.759 -6.506 -7.828 -5.377 -6.366 

Notes to Table 3: Marginal significance levels displayed as [.]. Skew measures the 

standardised third moment of the distribution and reports the marginal significance 

of a test for zero skewness. E.K. reports the excess kurtosis of the distribution and 

the associated marginal significance level for the test of zero excess kurtosis. ADF is 

an Augmented Dickey-Fuller (1981) test for a unit root in tS ,̂ , the 5% critical value 

for the ADF test is –2.8636.  
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Table 4: Sources of Asymmetry in tS ,̂  

 BASIC TOTLF HLTH PUBLS RTAIL RLEST 

1 0.993* 

(0.003) 

0.959* 

(0.004) 

0.900* 

(0.006) 

0.983* 

(0.003) 

1.237* 

(0.005) 

0.909* 

(0.006) 

2 0.008 

(0.007) 

0.004 

(0.009) 

-0.040* 

(0.011) 

-0.007 

(0.006) 

0.002 

(0.010) 

-0.011 

(0.012) 

3 0.056* 

(0.007) 

0.052* 

(0.012) 

0.019* 

(0.008) 

0.040* 

(0.005) 

0.051* 

(0.009) 

0.027* 

(0.009) 

4 -0.001 

(0.007) 

-0.009 

(0.009) 

-0.039* 

(0.011) 

-0.015* 

(0.006) 

-0.007 

(0.011) 

-0.065* 

(0.011) 

5 0.023* 

(0.007) 

-0.032* 

(0.010) 

-0.019* 

(0.005) 

-0.001 

(0.005) 

-0.009 

(0.006) 

-0.035* 

(0.006) 

6 -0.036* 

(0.006) 

-0.012 

(0.012) 

-0.014 

(0.008) 

-0.022 

(0.005) 

-0.027* 

(0.009) 

-0.016* 

(0.008) 

7 -0.039* 

(0.007) 

-0.017 

(0.010) 

-0.004 

(0.005) 

-0.020* 

(0.004) 

-0.022* 

(0.006) 

-0.014* 

(0.006) 

LM 135.120 

[0.000] 

141.991 

[0.000] 

88.279 

[0.000] 

173.451 

[0.000] 

78.217 

[0.000] 

285.049 

[0.000] 

Notes to Table 4: Marginal significance levels displayed as [.]. Standard errors 

displayed as (.). * denotes significance at the 5% level.  
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 Figure 1: Sector index, sector return and estimated sector beta 
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Figure 2: News Impact Surfaces for Basic Industries  
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Figure 3: News Impact Surfaces for Total Financial 
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Figure 4: News Impact Surfaces for Healthcare 
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Figure 5: News Impact Surfaces for Publishing 
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 Figure 6: News Impact Surfaces for Retail 
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Figure 7: News Impact Surfaces for Real Estate 
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Figure 8: Cumulative distribution functions for the Sector ,
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