
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Joseph Wharton Scholars Wharton Undergraduate Research

5-2020

Analyzing Methods for Aggregate-Disaggregate Data Fusion Analyzing Methods for Aggregate-Disaggregate Data Fusion

Vinay Kasat

Follow this and additional works at: https://repository.upenn.edu/joseph_wharton_scholars

 Part of the Business Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/joseph_wharton_scholars/93
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/359025915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/joseph_wharton_scholars
https://repository.upenn.edu/wharton_undergraduate
https://repository.upenn.edu/joseph_wharton_scholars?utm_source=repository.upenn.edu%2Fjoseph_wharton_scholars%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=repository.upenn.edu%2Fjoseph_wharton_scholars%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/joseph_wharton_scholars/93
mailto:repository@pobox.upenn.edu

Analyzing Methods for Aggregate-Disaggregate Data Fusion Analyzing Methods for Aggregate-Disaggregate Data Fusion

Abstract Abstract
This thesis examines methods for aggregate-disaggregate data fusion. In the presence of both accurate,
aggregate-level data which often lacks granularity, and disaggregate but potentially biased individual-level
data, marketers and statisticians alike struggle in determining the appropriate weight to assign to each
piece of information. Through simulation, this paper tests the effectiveness of the use of a multivariate
normal approximation to aggregate-level data. An alternative algorithm to impute the missing data,
subject to aggregate characteristics, and then estimate parameters is posed and evaluated against the
initial method. The paper finds that the multivariate normal approximation not only outperforms the
proposed algorithm but also quite accurately estimates model parameters.

Keywords Keywords
data

Disciplines Disciplines
Business

1

Analyzing Methods for Aggregate-Disaggregate Data Fusion

By

Vinay Kasat

An Undergraduate Thesis submitted in partial fulfillment of the requirements for the

JOSEPH WHARTON SCHOLARS

Faculty Advisor:

Peter S. Fader

Frances and Pei-Yuan Chia Professor, Marketing

 THE WHARTON SCHOOL, UNIVERSITY OF PENNSYLVANIA

MAY 2020

2

1 Abstract

This thesis examines methods for aggregate-disaggregate data fusion. In the presence of both

accurate, aggregate-level data which often lacks granularity, and disaggregate but potentially

biased individual-level data, marketers and statisticians alike struggle in determining the

appropriate weight to assign to each piece of information. Through simulation, this paper tests

the effectiveness of the use of a multivariate normal approximation to aggregate-level data. An

alternative algorithm to impute the missing data, subject to aggregate characteristics, and then

estimate parameters is posed and evaluated against the initial method. The paper finds that the

multivariate normal approximation not only outperforms the proposed algorithm but also quite

accurately estimates model parameters.

3

Table of Contents

1 Abstract ... 2

2 Introduction ... 4

3 Literature Review .. 5

4 Methodology ... 7

4.1 The Data Paradigm ... 7

4.2 Measure of Fit ... 8

4.3 Procedural Outline .. 8

5 Data Fusion: The Multivariate Normal Approximation .. 9

5.1 The Multivariate Normal Approximation ... 9

5.2 Data Fusion vs. Disaggregate Models ... 10

5.3 Marginal Benefits to Increased Disaggregate Sample Size .. 14

6 Data Fusion: The Modified EM Algorithm .. 17

6.1 Developing The Algorithm ... 17

6.2 Performance of the Algorithm .. 20

6.3 Discussion ... 24

7 References ... 25

8 Appendix ... 27

8.1 Code .. 27

4

2 Introduction

This thesis examines methods for aggregate-disaggregate data fusion. Traditionally, access to

consumer behavior data has been limited to either small, non-representative samples of

disaggregate data, or aggregate summary statistics which lack granularity. However, both access

to and affordability of data have increased drastically in recent years. Determining how best to

fuse aggregate and disaggregate sources of data poses a challenge to marketers and statisticians

alike.

Section 3 of this paper reviews the literature surrounding data fusion. Section 4 details both an

existing and a proposed method for tackling the data fusion problem and explains how the two

will be evaluated. Sections 5 and 6 explore the existing and proposed methods respectively and

discuss extensions.

5

3 Literature Review

Modeling and understanding consumer behavior are important tasks for marketers, statisticians,

and researchers. Traditionally, research in consumer behavior has had one of two focuses: 1)

using aggregate data to estimate information about individuals or cohorts of individuals, or 2)

using a sample of disaggregate, individual-level data to make inferences about a population

(Chen and Yang 2007). The former approach benefits from the widespread and often publicly

available nature of aggregate level data but suffers from a lack of granularity (McCarthy and

Oblander 2020). The latter approach provides such granularity but faces problems with both data

availability and representativeness.

The difficulty in incorporating aggregate data into models fit on disaggregate data has been

explored before. Two main classifications of approaches have been explored in prior literature:

non-likelihood-based approaches and likelihood-based approaches (Chen and Yang 2007). Non-

likelihood-based approaches often suffer from arbitrary definitions of how well a model

conforms to the given aggregate data. Many methods for fitting models to aggregate data have

been explored before, including minimizing discrepancy between observed and predicted values

(Boyd and Mellman 1980; Cardell and Dunbar 1980) or using constrained optimization

techniques with somewhat arbitrarily defined functions (Berry 1994). The fact that these

methods may be arbitrary is not to say they perform poorly, but rather that they lack favorable

statistical properties which can be derived from likelihood-based approaches.

The alternative approach, specifying a likelihood function of the aggregate data, has also been

explored in prior research (Bodapati and Gupta 2004). However, these approaches often result in

functions which are not easily manageable or computationally tractable. Thus, much of the

research taking this or a similar approach relies on simulation and imputation of data (Bodapati

and Gupta 2004; Feit, Wang, Bradlow, and Fader 2013). However, these approaches can also be

time consuming or costly. Issues in these approaches often stem from the difficulty in forcing

imputed data to behave in accordance with the observed aggregate data.

Incorporating disaggregate data from samples of the population into models fit on aggregate data

also poses several problems. Most notably, dealing with selection bias and the potential non-

representability of disaggregate data result in difficulties for those studying consumer behavior.

6

The problems explored above demonstrate the need for methods to fuse aggregate and

disaggregate data. Availability of data has increased drastically over the past several years. As a

result, research has turned to the use of aggregate and disaggregate data to augment each other.

However, where these approaches succeed within their respective disciplines or data paradigms,

they lack generalizability or other desirable characteristics, as noted by McCarthy and Oblander

(2020). The problem of aggregate-disaggregate data fusion is important and serves as the basis

for this analysis.

7

4 Methodology

4.1 The Data Paradigm

This paper explores methods for aggregate-disaggregate data fusion and evaluates their

effectiveness. The specific data paradigm I examine has individual level data given by:

𝑌𝑖~𝐷𝜽, 1 ≤ 𝑖 ≤ 𝑁

where 𝐷 is some underlying distribution or model which generates the data and 𝜽 is a vector of

parameters. Each 𝑌𝑖 is taken to be independent and identically distributed. However, only a

subset of this data is observable, along with an aggregate function over the entire data. Thus, the

observable data is:

𝑌𝑖~𝐷𝜽, 1 ≤ 𝑖 ≤ 𝑘 and 𝑓(𝒀)

where 𝒀 is a vector of the population data and 𝑓 is some function of this data. In this paper, 𝑓 is

taken to be a function computing the average of the data, meaning the observable data is a

disaggregate sample of size 𝑘 and the population mean. Given these two pieces of information,

one can equivalently compute the mean over just the aggregated data, meaning the observable

data can be expressed as:

𝑌𝑖~𝐷𝜽, 1 ≤ 𝑖 ≤ 𝑘 and 𝜇𝑎𝑔𝑔 =
∑ 𝑌𝑖

𝑁
𝑖=𝑘+1

𝑁 − 𝑘
⁄

To ensure the robustness of the presented results against different model formulations, this paper

explores two distributions for 𝐷𝜽: the Gamma distribution and a Normal Mixture Model. The

density of each is given respectively by:

𝑔(𝑦) =
𝛽𝛼

Γ(𝛼)
∗ 𝑦𝛼−1 ∗ 𝑒−𝛽𝑦 , 𝛼 > 0, 𝛽 > 0

𝑔(𝑦) = 𝑝
1

√(2𝜋)𝜎1

𝑒
−(𝑦−𝜇1)2

2𝜎1
2⁄

+ (1 − 𝑝)
1

√(2𝜋)𝜎2

𝑒
−(𝑦−𝜇2)2

2𝜎2
2⁄
, 𝜎1 > 0, 𝜎2 > 0, 0 ≤ 𝑝 ≤ 1

Computation, simulation, and optimization were done in R. Care was given to robustly checking

optimization to ensure optimality.

8

4.2 Measure of Fit

To measure the accuracy of parameter estimation techniques, this paper uses the Kullback-

Leibler divergence (KL Divergence), also called the relative entropy. KL Divergence measures

how one probability distribution differs from a reference distribution. For continuous

distributions, it is defined as:

𝐾𝐿(𝑔1(𝑦)||𝑔2(𝑦)) = ∫ 𝑔1(𝑦) ∗ log (
𝑔1(𝑦)

𝑔2(𝑦)
)𝑑𝑦

𝑆

where 𝑆 is the support of the densities. The KL divergence between two Gamma distributions is

well documented and has a closed form solution. Between two Normal Mixture Models, the KL

divergence is difficult to directly compute; however, there are a variety of methods to obtain very

precise approximations. This paper approximates the statistic by approximating each Normal

Mixture Model density as a discrete distribution with small bucket width and computing the

integral above as a sum. Given the small interval size used, as well as the well-behaved nature of

the Normal Mixture Model1, this approximation likely results in negligible error.

4.3 Procedural Outline

The following sections will investigate two methods for aggregate-disaggregate data fusion:

approximation of the distribution of the aggregate data using a multivariate normal distribution,

and a proposed modification to the Expectation Maximization algorithm. Section 5 explores the

multivariate normal approximation and its performance. Section 6 derives and evaluates the

modified Expectation Maximization algorithm for aggregate-disaggregate data fusion.

1 The tails of the distribution converge rapidly to 0 and the distribution is smooth

9

5 Data Fusion: The Multivariate Normal Approximation

5.1 The Multivariate Normal Approximation

This section examines the multivariate normal approximation for aggregated data proposed by

McCarthy and Oblander (2020). Presented with the full disaggregated data, the log-likelihood is:

𝐿(𝛉|𝒚) = ∑ 𝑙𝑜𝑔(𝑃(𝑌𝑖 = 𝑦𝑖|𝛉))

𝑁

𝑖=1

However, when confronted with the data paradigm as detailed above, the likelihood is instead:

𝐿(𝛉|𝒚) = ∑ 𝑙𝑜𝑔(𝑃(𝑌𝑖 = 𝑦𝑖|𝛉))

𝑘

𝑖=1

+ log (𝑃(∑ 𝑌𝑖
𝑁
𝑖=𝑘+1 = (𝑁 − 𝑘) ∗ 𝜇𝑎𝑔𝑔|𝜽))

= ∑ 𝑙𝑜𝑔(𝑃(𝑌𝑖 = 𝑦𝑖|𝛉))

𝑘

𝑖=1

+ log (𝑃 (
∑ 𝑌𝑖

𝑁
𝑖=𝑘+1

(𝑁 − 𝑘)
⁄ = 𝜇𝑎𝑔𝑔|𝜽))

Computing the second term requires a high-dimensional convolution and is not computationally

tractable. However, under the conditions of the central limit theorem, the second term

asymptotically converges to a multivariate normal distribution. Furthermore, given the

assumption of independence, the distribution of the average asymptotically converges to a

normal distribution with a mean parameter equal to the mean under the model parameters, and a

variance equal to the variance under the model parameters divided by 𝑁 − 𝑘. Thus, the log-

likelihood can be approximated by:

∑ 𝑙𝑜𝑔(𝑃(𝑌𝑖 = 𝑦𝑖|𝛉))

𝑘

𝑖=1

+ log (
1

√2𝜋𝜎𝜽

∗ 𝑒

−(𝜇𝜽−𝜇𝑎𝑔𝑔)
2

2𝜎𝜽
2⁄
)

where 𝜇𝜃 = 𝐸𝜃[𝑌𝑖], 𝜎𝜃
2 =

𝑉𝑎𝑟𝜃[𝑌𝑖]

(𝑁−𝑘)
. Maximizing over this function, dubbed the proxy likelihood,

yields consistent estimators of the unknown parameters. Under the first model used to generate

data, the Gamma distribution with parameters 𝛼 and 𝛽, these parameters for the normal

approximation are:

10

𝜇𝜃 =
𝛼

𝛽
, 𝜎𝜃

2 =
𝛼

𝛽2 ∗ (𝑁 − 𝑘)

Under the Normal Mixture Model, the parameters for the normal approximation are:

𝜇𝜃 = 𝑝 ∗ 𝜇1 + (1 − 𝑝) ∗ 𝜇2, 𝜎𝜃
2 =

𝑝 ∗ 𝜎1
2 + (1 − 𝑝) ∗ 𝜎2

2 + 𝑝 ∗ (1 − 𝑝) ∗ (𝜇1 − 𝜇2)2

𝑁 − 𝑘

Given this methodology, several questions can be posed. This paper investigates two: 1) what, if

any, is the improvement in model fit achieved by the incorporation of the multivariate normal

approximation to the aggregate data, and 2) how much disaggregate data is necessary in addition

to the aggregate data, to obtain a sufficiently good fit? The following sections explore these

questions.

5.2 Data Fusion vs. Disaggregate Models

First tested is the improvement in model fit achieved by incorporating the multivariate normal

approximation to the aggregate data. To do this, for a fixed sub-sample of size 𝑘 taken from the

entire data, the maximum likelihood parameters using just the disaggregate data are computed.

Using the data fusion approach outlined above, a second set of parameters is obtained by

maximizing over the proxy likelihood function, considering both the disaggregate data and the

mean of the remaining data. These computations yield two sets of parameters, 𝜽𝑴𝑳𝑬
𝒌 and 𝜽𝑴𝑷𝑳

𝒌

respectively. These parameters are compared to the maximum likelihood parameters obtained

using the entire data, 𝜽𝑴𝑳𝑬
𝑵 2. The maximum likelihood parameters using the entire data represent

the maximum possible information that can be derived from the observed data3, and thus

comparing the closeness of 𝜽𝑴𝑳𝑬
𝒌 and 𝜽𝑴𝑷𝑳

𝒌 with 𝜽𝑴𝑳𝑬
𝑵 , the improvement in model fit achieved

through the use of maximum proxy likelihood is determined.

2 Note, given this approach to data fusion, 𝜽𝑴𝑳𝑬

𝑵 = 𝜽𝑴𝑷𝑳
𝑵 . This conceptually makes sense, as when one

can observe the entire data, any aggregation will result in information loss and thus an inferior model fit.

3 This is not necessarily true, but for the purposes of model evaluation it will not be a restrictive or

limiting assumption. It is similar to the Strong Likelihood Principle

11

The goodness of the computed parameters, relative to the optimal ones, is measured by

computing KL divergences4. The relevant statistics are then 𝐾𝐿(𝑔(𝑦|𝜽𝑴𝑳𝑬
𝒌)||𝑔(𝑦|𝜽𝑴𝑳𝑬

𝑵)) and

𝐾𝐿(𝑔(𝑦|𝜽𝑴𝑷𝑳
𝒌)||𝑔(𝑦|𝜽𝑴𝑳𝑬

𝑵)). As 𝑘 → 𝑁, both statistics approach 0. The formulas for computing

each under the two focal models are detailed above in Section 4.

To test this, 𝑁 = 500 draws from a Gamma distribution with parameters 𝛼 = 1, 𝛽 = 1 are

simulated. For each 2 ≤ 𝑘 ≤ 𝑁, 𝜽𝑴𝑳𝑬
𝒌 and 𝜽𝑴𝑷𝑳

𝒌 are computed by maximizing over their

respective likelihood functions, and the two KL divergences from the estimates to the maximum

likelihood estimates on the full data are compared. This process was repeated for the Normal

Mixture, with parameters 𝜇1 = −2, 𝜎1
2 = 1, 𝜇2 = 4, 𝜎2

2 = 2, 𝑝 = .8. The results are below:

Figure 1: MPL vs MLE

4 It is incorrect to directly compare the likelihood under maximum likelihood estimation to the likelihood

under maximum proxy likelihood. Both approaches are computed on different ‘scales’, so direct

comparisons have little meaning. Thus, a different measure of similarity must be used to compare

distributions.

12

The set of graphs on top refer to the Gamma distribution and the graphs on the bottom refer to

the Normal Mixture Model. For smaller values of 𝑘, maximum proxy likelihood clearly

outperforms maximum likelihood on solely the aggregate data. However, as expected, the

difference in KL divergence decreases as 𝑘 approaches 𝑁.

To more robustly demonstrate this result, this procedure is repeated with 𝑁 = 10,000 for both

models, examining the difference in KL divergence when 𝑘 = 100, 𝑘 = 1,000, or 1% and 10%

of the data is disaggregated. This simulation is repeated 100 times. The results are depicted

below.

Figure 2: MPL vs MLE for k=100, 1000 Under Gamma

13

Figure 3: MPL vs MLE for k=100, 1000 Under Normal Mixture

Figures 2 and 3 clearly show that in most cases, the model fit under data fusion performs better

than the model fit using the disaggregate data alone. While in the case of the Gamma, the

distributions of KL Divergence overlap, for the more complicated Normal Mixture Model

specification, maximum proxy likelihood far outperforms maximum likelihood estimation. For

each sample, both 𝐾𝐿(𝑔(𝑦|𝜽𝑴𝑳𝑬
𝒌)||𝑔(𝑦|𝜽𝑴𝑳𝑬

𝑵)) and 𝐾𝐿(𝑔(𝑦|𝜽𝑴𝑷𝑳
𝒌)||𝑔(𝑦|𝜽𝑴𝑳𝑬

𝑵)) were

computed, displayed in the histograms on the left, as well as 𝐾𝐿(𝑔(𝑦|𝜽𝑴𝑳𝑬
𝒌)| |𝑔(𝑦|𝜽𝑴𝑳𝑬

𝑵)) −

𝐾𝐿(𝑔(𝑦|𝜽𝑴𝑷𝑳
𝒌)||𝑔(𝑦|𝜽𝑴𝑳𝑬

𝑵)), displayed in the histograms on the right.

Based on the data collected, a paired t-test was performed to determine if the model fit using data

fusion was better than the model fit using just the disaggregate data. The results of the tests are

summarized in the table below:

14

Model
Disaggregate

Sample Size
Method

Mean of KL

Divergence (𝜇𝐾𝐿)

Variance of KL

Divergence (𝜎𝐾𝐿
2)

T-statistic for

𝜇𝐾𝐿
𝑀𝑃𝐿 ≤ 𝜇𝐾𝐿

𝑀𝐿𝐸

p-value

(𝛼 = .05)

Gamma

Distribution

100
MPL .00464 3.692e-05

6.57 1.19e-09
MLE .00956 9.291e-05

1,000
MPL 4.473e-04 4.232e-07

8.660 4.530e-14
MLE 8.728e-04 7.619e-07

Normal

Mixture

Model

100
MPL .02252 3.97e-04

86.94 0.00
MLE .2305 2.83e-04

1,000
MPL .00187 2.11e-06

251.62 0.00
MLE .2274 8.18e-05

Figure 4: Results from MPL vs MLE

These simulations depict that there is a clear improvement in model fit achieved by the

incorporation of the multivariate normal approximation to the aggregate data under the tested

model specifications. To ensure robustness, these simulations were replicated on data generated

with different parameters, with similarly strong results. The next section investigates how much

disaggregate data is necessary in addition to the aggregate data, to obtain a sufficiently good fit.

5.3 Marginal Benefits to Increased Disaggregate Sample Size

While it is evident that regardless of the parameter estimation method chosen, an increased

sample size will yield a more accurate fit, it is not clear how meaningful these incremental

expected improvements in fit are. To test this, this paper investigates whether

𝐾𝐿(𝑔(𝑦|𝜽𝑴𝑷𝑳
𝒌)||𝑔(𝑦|𝜽)) > 𝐾𝐿(𝑔(𝑦|𝜽𝑴𝑷𝑳

𝒌⋆
)||𝑔(𝑦|𝜽)), where 𝜽 represents the true model

parameters and 𝑘⋆ > 𝑘. This test compares parameters fit over two different disaggregate sample

sizes with the true underlying parameters of the model used. Furthermore, the change in

parameter estimates under data fusion via maximum proxy likelihood behave as the disaggregate

sample size increases is estimated.

To test this, 𝑁 = 10,000 draws from a Gamma distribution with parameters 𝛼 = .1, 𝛽 = .1 are

simulated. For 𝑘 = 100, 𝑘 = 1,000, 𝑘 = 10,000, 𝜽𝑴𝑷𝑳
𝒌 is computed, along with the KL

divergence from these estimates to the actual model parameters. This process was repeated for

the Normal Mixture Model, with parameters 𝜇1 = 0, 𝜎1
2 = 1, 𝜇2 = 10, 𝜎2

2 = 5, 𝑝 = .4. The entire

procedure was repeated 100 times. As would be expected, the model performance, as measured

by KL divergence from the parameter estimates to the true parameters, does significantly

15

improve as sample size increases. Paired t-tests confirm this result. However, this result is to be

expected5 based on the prior investigation. Therefore, this paper turns to investigate whether the

differing parameter estimates have meaningful implications for the model fits we obtain.

To test this, a modified version of a posterior predictive check is used. Rather than compare

simulated data from MPL parameter estimates with the actual underlying data, functions of the

parameter estimates with functions of the true parameters are compared. The most meaningful

and interesting of these tests occurs when comparing the variance implied by the estimated

parameters to the variance implied by the actual parameters6. The results from this test are

depicted below.

Figure 5: Variance Under MPL Estimates vs True Variance

The top three histograms refer to the Gamma, whereas those on the bottom refer to the Normal

Mixture. They display, for a given disaggregate sample size 𝑘, the variance that the estimated

model parameters imply, against the theoretical true variance, depicted by a red line.

5 And is also somewhat uninteresting

6 Comparing the mean under the parameter estimates to the mean under the true parameters does not

make conceptual sense, as MPL indirectly fits the mean of the entire data.

16

As the histograms depict, even at small disaggregate sample sizes, the MPL estimates imply

quite similar model variances, with no clear biases. The ‘p-values’ implied by this test, the

proportion of test statistics over the parameter estimates which exceed the theoretical test

statistic, were equally good across all values of 𝑘. A parametric bootstrap procedure was also

performed, by comparing both the parameter estimates and functions of these parameters for a

given 𝑘 to their counterparts for a different value 𝑘⋆. These tests found no significant differences

between the parameter estimates at the three chosen levels of 𝑘. This is with the exception of

comparing parameter estimates under the Normal Mixture Model when 𝑘 = 100 to when 𝑘 =

𝑁 = 10,000, where the latter was found to have a significantly smaller spread of implied

variances.

These results are quite positive, demonstrating that in some cases, just one percent of the full

data, in addition to an aggregate summary statistic, can be enough to obtain a strong model fit.

The next section develops and examines an alternative proposed method for data fusion.

17

6 Data Fusion: The Modified EM Algorithm

6.1 Developing The Algorithm

The difficulty in computing a likelihood over the aggregate data stems from the computation of a

high-dimensional convolution. While when using simple distributions, convolutions often result

in known distributions, with more complicated models, high dimensional convolutions have no

closed form and are not computationally tractable. As this problem scales to larger datasets,

estimating these convolutions can be both timely and inaccurate. Several methods have been

explored to tackle this or similar problems. This paper aims to develop an efficient method for

imputing data from a distribution that conform to aggregate constraints, similarly to in Feit et al.

(2013) and Dong and Taylor (1995).

Ideally, one would be able to directly compute the log-likelihood of the entire data, given by:

𝐿(𝛉|𝒚) = ∑ 𝑙𝑜𝑔(𝑃(𝑌𝑖 = 𝑦𝑖|𝛉))

𝑁

𝑖=1

As explained in section 4, in the data paradigm under consideration this reduces to:

𝐿(𝛉|𝒚) = ∑ 𝑙𝑜𝑔(𝑃(𝑌𝑖 = 𝑦𝑖|𝛉))

𝑘

𝑖=1

+ log (𝑃 (
∑ 𝑌𝑖

𝑁
𝑖=𝑘+1

(𝑁 − 𝑘)
⁄ = 𝜇𝑎𝑔𝑔|𝜽))

However, while the observations 𝑌𝑖 , 𝑖 > 𝑘 cannot be directly observed, they can be simulated. By

imputing this missing data, one could then estimate the log-likelihood as:

𝐿(𝛉|𝒚) = ∑ 𝑙𝑜𝑔(𝑃(𝑌𝑖 = 𝑦𝑖|𝛉))

𝑘

𝑖=1

+ ∑ 𝑙𝑜𝑔 (𝑃(𝑌̂𝑖 = 𝑦𝑖|𝛉))

𝑁

𝑖=𝑘+1

where 𝑌̂𝑖 are simulated data.

The simulation of the ‘missing’ data poses several additional problems. Primarily, this data must

be simulated under the restriction that they sum to a fixed value, (𝑁 − 𝑘) ∗ 𝜇𝑎𝑔𝑔. This alone can

be done easily. However, the simulated data under this constraint are very unlikely to be

representative of the underlying distribution, as their simulation was done without regard to the

underlying distribution of the data. Likewise, simulating data from the underlying distribution

18

can be done easily. However, there is no guarantee this simulated data will sum to the correct

value. Thus, the combination of the linear restriction and the underlying distribution together

make simulation difficult. In fact, to properly simulate from the underlying distribution, while

ensuring the values sum to a fixed constant, one needs to compute the distribution of the sum of

these variables. This brings the conversation back to the issue of computing a high-dimensional

convolution.

A method for simulating the data should be evaluated on several criteria: whether it sums to the

fixed constant, how representative it is of the underlying distribution, and how long it takes to

simulate. The first of these criteria can easily be evaluated. The second can be evaluated by

computing the maximum likelihood parameters on 𝑌 = {𝑌𝑖, 1 ≤ 𝑖 ≤ 𝑘} ∪ {𝑌𝑖̂, 𝑘 + 1 ≤ 𝑖 ≤ 𝑁}

and comparing them to the true parameters used to generate the underlying distribution, via the

KL divergence. The final criteria can be analyzed based on asymptotic runtime; ideally, this

simulation should run in 𝑂(𝑁) time.

With these criteria in mind, the following algorithm is proposed:

 ModifiedEMAlgorithm ← function (𝑦1:𝑘 , 𝜇𝑎𝑔𝑔, 𝑁, 𝑘)

𝜃𝑐𝑢𝑟 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝜃{𝑀𝐿𝐸(𝑦1:𝑘)} //initial parameters computed through MLE on disaggregate data
𝑦̂𝑘+1:𝑁 ← 𝜇𝑎𝑔𝑔

repeat j times {
 //expectation step
 for pairs (𝑦1 , 𝑦2) in 𝑦̂𝑘+1:𝑁 { //generate pairs of imputed datapoints without replacement
 𝑡𝑜𝑡𝑎𝑙 ← 𝑦1 + 𝑦2
 (𝑦1, 𝑦2) ← Convolution ((𝑦1, 𝑦2), 𝑡𝑜𝑡𝑎𝑙, 𝜃𝑐𝑢𝑟) //Simulate new values for the two
 imputed datapoints under the current parameters, subject to their sum not
 changing

}
 //maximization step

𝜃𝑐𝑢𝑟 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝜃{𝑀𝐿𝐸(𝑦1:𝑘 ∪ 𝑦̂𝑘+1:𝑁)} //perform MLE on union of disaggregate and
simulated aggregate data to obtain new parameters

}
return (𝜃𝑐𝑢𝑟)

There are several features of this algorithm worth discussing. The algorithm’s ultimate goal is to

return parameters which are consistent with the observed disaggregate and aggregate data. It

initializes the parameter estimates to the maximum likelihood estimates over just the

disaggregate data. It additionally imputes all the initial ‘missing’ data as 𝜇𝑎𝑔𝑔. This initial

imputation ensures the data sums to the correct value. Next, it repeats for a fixed number of

19

iterations a modified version of the Expectation Maximization (EM) algorithm7. The expectation

step conceptually serves to update the imputed data values 𝑦̂𝑘+1:𝑁 to be consistent with the

current parameters, while ensuring they keep the same sum. Doing this generally would require a

high-dimensional convolution, as discussed before. Alternatively, however, one could repeatedly

select small subsets of the data and sample those, while ensuring they have the same sum as

initially. This would ensure that the total sum stayed constant, while only requiring a lower-

dimensional convolution. Therefore, this algorithm simulates a 𝑁 − 𝑘 dimensional convolution

through repeated two-dimensional convolutions. This comes at the tradeoff of slower

convergence, as the value of any given imputed value is highly correlated with its value in the

previous iteration8. However, by sampling different pairs of the imputed data values every time,

the algorithm can still converge relatively quickly.

The degree of randomness presented by resampling from the convolution, along with the issue of

autocorrelation, mean that the algorithm will constantly be jumping about the parameter

estimates, rather than converging to them. Therefore, this paper uses a modification of the

algorithm derived above; rather than take the final set of parameters, it chooses the set of

parameters with the highest associated log-likelihood from each of the 𝑗 iterations. The log-

likelihood for each set of parameters is computed in the expectation step. An initial burn-in

period is discarded to allow the algorithm to first reach stable values.

Therefore, this algorithm allows for the estimation of parameters which are consistent with the

sum. However, it still must be evaluated on the basis of fit and runtime. Fit will be evaluated in

the next section. Runtime is trivially 𝑂(𝑁 ∗ 𝑗), where 𝑗 is the number of iterations of the

algorithm. An important question for further study would be the degree to which 𝑗 depends on 𝑁,

if at all.

7 In some sense the algorithm is more like Gibbs sampling than EM, as Gibbs sampling is a randomized

algorithm whereas EM is deterministic. Nonetheless, EM is often used when there are unobservable latent

variables, which is why this algorithm is dubbed a modified version of EM.

8 This is because, in the i-th iteration, an imputed data value 𝑦1̂ will be summed with another imputed

value to compute 𝑡𝑜𝑡𝑎𝑙. While these two values are resampled, their sum must remain constant from step

to step, to ensure the global sum is constant. This slows the rate of convergence.

20

Before implementing the algorithm, the distribution of two-fold convolutions under each model

assumption must be computed. Regardless of model assumption, however, low-dimensional

convolutions are very easy to compute or simulate. More precisely, the model needs to sample

values 𝑌1 and 𝑌2 from an underlying distribution, subject to their sum remaining constant. This is

equivalent to sampling a new value 𝑦̂1 for 𝑌1, and setting 𝑌2 = 𝑡𝑜𝑡𝑎𝑙 − 𝑦̂1 , where 𝑡𝑜𝑡𝑎𝑙 was the

initial sum. Under the Gamma distribution, this evaluates to:

𝑃𝜃(𝑌1 = 𝑦̂1|𝑌1 + 𝑌2 = 𝑡𝑜𝑡𝑎𝑙) =
(𝑃𝜃(𝑌1 = 𝑦̂1) ∗ 𝑃𝜃(𝑌2 = 𝑡𝑜𝑡𝑎𝑙 − 𝑦̂1))

𝑃𝜃(𝑌1 + 𝑌2 = 𝑡𝑜𝑡𝑎𝑙)⁄ =

𝛽𝛼

Γ(𝛼)
𝑦1̂

𝛼−1𝑒−𝛽𝑦1̂ ∗
𝛽𝛼

Γ(𝛼)
(𝑡𝑜𝑡𝑎𝑙 − 𝑦1̂)𝛼−1𝑒−𝛽(𝑡𝑜𝑡𝑎𝑙−𝑦1)̂

𝛽2𝛼

Γ(2𝛼)
𝑡𝑜𝑡𝑎𝑙2𝛼−1𝑒−𝛽∗𝑡𝑜𝑡𝑎𝑙

=
Γ(2𝛼) (

𝑦̂1

𝑡𝑜𝑡𝑎𝑙
)

𝛼−1

(1 −
𝑦̂1

𝑡𝑜𝑡𝑎𝑙
)

𝛼−1

Γ(𝛼)2 ∗ 𝑡𝑜𝑡𝑎𝑙

However, this is simply proportional to a Beta distribution, with both parameters equal to 𝛼.

Thus, to sample new values 𝑌1 and 𝑌2 from a Gamma distribution with parameters 𝛼 and 𝛽,

subject to their sum being equal to 𝑡𝑜𝑡𝑎𝑙, a value can be sampled from a Beta distribution with

both parameters 𝛼, and this value can be multiplied by 𝑡𝑜𝑡𝑎𝑙 to yield 𝑦̂1. Then, it is easy to

compute 𝑦̂2 = 𝑡𝑜𝑡𝑎𝑙 − 𝑦̂1, generating both sampled values9.

For the Normal Mixture Model, a similar procedure can be followed, although there is no

solution in terms of known density functions for the distribution. Similarly to the KL Divergence

computations, these convolutions are approximated by approximating the mixture model with a

discrete analog. As discussed, any error induced by this step is close to negligible.

6.2 Performance of the Algorithm

To evaluate the performance of this algorithm, 𝑁 = 1,000 data points were simulated from a

Gamma distribution with parameters 𝛼 = .5, 𝛽 = .1. Only 𝑘 = 100 of the data points were given

to the algorithm as disaggregate data; the rest were presented in an aggregate fashion. The

9 This procedure relied on the fact that the sum of two Gamma distributions with parameters 𝛼 and 𝛽 is a

Gamma distribution with parameters 2𝛼 and 𝛽. Of course, given that this is known, it is natural to wonder

why one would not directly sample from a 𝑁 − 𝑘-fold convolution of Gammas. This paper does not use

this fact as its goal is to evaluate the performance of the modified EM algorithm.

21

algorithm was run 𝑗 = 100 iterations and a burn-in period of 20 observations were discarded.

Figure 6 below depicts the produced chain of parameters with and without the burn-in.

Figure 6: Chain of Parameters for Gamma Distribution

It is clear the algorithm performs well, quickly converging to the correct range of values for both

parameters. However, it tends to overestimate both 𝛼 and 𝛽 slightly. Given the shape of the

Gamma distribution implied by 𝛼, however, the algorithm performs quite well.

Figure 7 displays the likelihood and KL divergence at each iteration, first with then without the

burn-in period.

22

Figure 7: KL Divergence and Log-Likelihood for Gamma Distribution

As can be seen by the above plots, the minimum KL divergence of the algorithm parameters onto

the true parameters is achieved close to the highest values of log-likelihood. Therefore, the

modification of taking the set of parameters associated with the highest log-likelihood is likely

beneficial.10

The procedure above was repeated under the Normal Mixture Model, with parameters 𝜇1 =

0, 𝜎1
2 = 1, 𝜇2 = 4, 𝜎2

2 = .1, 𝑝 = .9. The algorithm was run with 𝑗 = 250 iterations. The results of

the algorithm, post a burn-in period of 50 iterations, are depicted below:

10 In practice, one would never be able to identify the true model parameters, and thus the KL divergence

of the estimates onto these parameters. Because of this, given the goal of estimating these parameters as

closely as possible, or achieving a KL divergence of 0, it is reassuring to know that the approximation of

log-likelihood by the modified EM algorithm closely tracks KL divergence.

23

Figure 8: Chain of Parameters for Normal Mixture Model

The parameters are all relatively close to their true values once the algorithm converges. Figure 9

below depicts the KL Divergence and log-likelihoods:

Figure 9: KL Divergence and Log-Likelihood for Normal Mixture Model

Under these plots, the relationship between log-likelihood and KL divergence is no longer so

clear. Plotting the two against each other reveals no apparent trend, and the correlation between

the two is modestly positive (.08). This suggests that perhaps choosing parameters with the

minimum log-likelihood may not be the best criteria in more complicated model settings. The

above simulations were repeated 100 times and very similar chains and results were obtained for

24

each. However, when comparing the results under the modified EM algorithm with the MVN

approximation explored in Section 5, the MVN approximation outperformed in each trial. A

paired T-test confirmed these results to be significant, with a p-value of 0.

Using these simulations, under the Normal Mixture Model, a modified posterior predictive check

was done to compare the variance under the estimated parameters to the true model variance.

The algorithm systematically overpredicts the true variance, as depicted in Figure 10.

Figure 10: Variance From Estimated Parameters vs. True Variance

6.3 Discussion

Ultimately, while the proposed modified EM algorithm performed well in parameter estimation,

it failed when compared to the MVN approximation approach to data fusion. In addition, it

displayed systematic biases in its estimation of variance. The MPL approach to data fusion was

found to be quite strong, relative to maximum likelihood estimation over the disaggregate data.

There are several important avenues for further study. With respect to the modified EM

algorithm, sampling from a two-fold convolution likely induced significant error and slowed the

rate of convergence drastically. While higher-dimensional convolutions may not be possible to

evaluate, replacing this with a three or four-fold convolution may significantly decrease error.

Furthermore, the algorithm could be extended to incorporate potential non-representativeness of

the disaggregate sample.

25

7 References

Berry, Steven (1994), “Estimating Discrete-Choice Models of Product Differentiation,” RAND

Journal of Economics, 25 (2), 242–62.

Bodapati, Anand V. , and Gupta, Sachin (2004), “The Recoverability of Segmentation Structure

from Store-Level Aggregate Data,” Journal of Marketing Research, 41 (August), 351–64.

Boyd, J. Hayden and Robert E. Mellman (1980), “The Effect of Fuel Economy Standards on the

U.S. Automotive Market: An Hedonic Demand Analysis,” Transportation Research, 14A, 367–

78.

Cardell, N. Scott and Frederick C. Dunbar (1980), “Measuring the Societal Impacts of

Automobile Downsizing,” Transportation Research, 14A, 423–34

Chen Y, Yang S (2007) Estimating disaggregate models using aggregate data through

augmentation of individual choice. Journal of Marketing Research 44(4):613{621.

Dong, K. K., & Taylor, J. M. G. (1995). The restricted EM algorithm for maximum likelihood

estimation under linear restrictions on the parameters. Journal of the American Statistical

Association, 90, 707–716.

Durrieu, J.L.; Thiran, J.P.; Kelly, F. Lower and upper bounds for approximation of the Kullback-

Leibler divergence between Gaussian Mixture Models. In Proceedings of the IEEE International

Conference on

Feit EM, Wang P, Bradlow ET, Fader PS (2013) Fusing aggregate and disaggregate data with an

application to multiplatform media consumption. Journal of Marketing Research 50(3):348{364.

Gupta, Sachin , Chintagunta, Pradeep , Kaul, Anil , and Wittink, Dick (1996), “Do Household

Scanner Data Provide Representative Inferences from Brand Choices: A Comparison with Store

Data,” Journal of Marketing Research, 33 (November), 383–98.

McCarthy, Daniel and Oblander, Elliot Shin, Scalable Data Fusion with Selection Correction: An

Application to Customer Base Analysis (March 16, 2020). Columbia Business School Research

Paper, Forthcoming.

26

Zenor, Michael J. , and Srivastava, Rajendra (1993), “Inferring Market Structure with Aggregate

Data: A Latent Segment Logit Approach,” Journal of Marketing Research, 30 (August), 369–79.

27

8 Appendix

8.1 Code

rm(list = ls())

Gamma #####
Generate Data ###

alpha_true = 1

beta_true = 1
n <- 500

data <- rgamma(n, alpha_true, beta_true)

Compute LL ###

compute_ll_fused <- function(parameters, k) {

 alpha_hat <- parameters[1]
 beta_hat <- parameters[2]

 if (k > 0 && k < n) {

 ll_disaggregate <-
 sum(dgamma(data[1:k], alpha_hat, beta_hat, log = TRUE))

 average <- mean(data[(k + 1):n])

 mean_theoretical <- alpha_hat / beta_hat
 var_theoretical <-

 (alpha_hat / beta_hat ^ 2) / (n - (k + 1) + 1)

 ll_aggregate <-
 dnorm(average, mean_theoretical, sqrt(var_theoretical), log = TRUE)

 ll_total <- ll_disaggregate + ll_aggregate

 return(ll_total)
 }

 if (k == n) {

 return(sum(dgamma(data[1:k], alpha_hat, beta_hat, log = TRUE)))
 }

 if (k == 0) {

 average <- mean(data[(k + 1):n])
 mean_theoretical <- alpha_hat / beta_hat

 var_theoretical <-

 (alpha_hat / beta_hat ^ 2) / (n - (k + 1) + 1)

 return(dnorm(average, mean_theoretical, sqrt(var_theoretical), log = TRUE))

 }
}

compute_ll_disaggregate <- function(parameters, k) {
 alpha_hat <- parameters[1]

 beta_hat <- parameters[2]

 ll_total <- sum(dgamma(data[1:k], alpha_hat, beta_hat, log = TRUE))
 if(alpha_hat <=0 || beta_hat<=0) {

 return(-1000000000)

 }
 if(!is.finite(ll_total)) {

 View(data[1:k])

 }
 return(ll_total)

}

KL.gamma <- function(scale1_inv, shape1, scale2_inv, shape2) {

 scale1 <- 1 / scale1_inv

 scale2 <- 1 / scale2_inv
 (shape1 - 1) * digamma(shape1) - log(scale1) - shape1 - lgamma(shape1) +

 lgamma(shape2) + shape2 * log(scale2) - (shape2 - 1) * (digamma(shape1) +

 log(scale1)) + scale1 * shape1 / scale2
}

find_optimum <- function(use_fused_ll, k) {
 if (use_fused_ll) {

 fun <- compute_ll_fused

 } else {
 fun <- compute_ll_disaggregate

 }

28

 fit1 <- optim(c(1, 1), fun, k = k, control = list(fnscale = -1))

 fit2 <- optim(c(100, 100),

 fun,

 k = k,
 control = list(fnscale = -1))

 fit3 <- optim(c(.01, .01),

 fun,
 k = k,

 control = list(fnscale = -1))

 fit4 <- optim(fit1$par, fun, k = k, control = list(fnscale = -1))
 fit5 <- optim(fit2$par, fun, k = k, control = list(fnscale = -1))

 fit6 <- optim(fit3$par, fun, k = k, control = list(fnscale = -1))

 fit_ll <-
 c(fit1$value,

 fit2$value,

 fit3$value,
 fit4$value,

 fit5$value,

 fit6$value)
 ind_best <- which(fit_ll == max(fit_ll))

 fit_best <-

 if (ind_best == 1) {
 fit1

 } else if (ind_best == 2) {

 fit2
 } else if (ind_best == 3) {

 fit3
 } else if (ind_best == 4) {

 fit4

 } else if (ind_best == 5) {
 fit5

 } else if (ind_best == 6) {

 fit6
 }

 fit <- optim(fit_best$par,

 fun,
 k = k,

 control = list(fnscale = -1))

 return(fit)

}

Test ###
KL_fused <- rep(0, n - 1)

KL_disaggregate <- rep(0, n - 1)

fit_opt <- find_optimum(TRUE, n)
alpha_fit_opt <- fit_opt$par[1]

beta_fit_opt <- fit_opt$par[2]

for (i in 2:n) {
 fit_fused <- find_optimum(TRUE, i)

 KL_fused[i - 1] <-

 KL.gamma(fit_fused$par[2], fit_fused$par[1], beta_fit_opt, alpha_fit_opt)
 fit_disaggregate <- find_optimum(FALSE, i)

 KL_disaggregate[i - 1] <-

 KL.gamma(fit_disaggregate$par[2],
 fit_disaggregate$par[1],

 beta_fit_opt,

 alpha_fit_opt)
 print(i)

}

par(mfrow = c(2, 2))
plot(KL_fused,

 type = "l",

 log = 'y',
 col = 'red', xlab='Sample Size (k)', ylab='KL Divergence')

lines(KL_disaggregate, col = 'blue')

legend(x=350, y=1, legend=c('MPL', 'MLE'), col=c('red', 'blue'), lty=1,cex=.6)
plot(

 KL_disaggregate - KL_fused,

 type = "l",
 log = 'y',

29

 col = 'red',

 xlab = 'Sample Size (k)', ylab = 'Difference in KL Divergence')

Question 1 ###
alpha_true = 1

beta_true = 1

n <- 10000
reps <- 100

KL_fused <-

 matrix(rep(0, (floor(log(
 n, base = 10

)) - 1) * reps), nrow = reps, ncol = floor(log(n, base = 10)) - 1)

KL_disaggregate <-
 matrix(rep(0, (floor(log(

 n, base = 10

)) - 1) * reps), nrow = reps, ncol = floor(log(n, base = 10)) - 1)
for (i in 1:reps) {

 data <- rgamma(n, alpha_true, beta_true)

 fit_opt <- find_optimum(TRUE, n)
 alpha_fit_opt <- fit_opt$par[1]

 beta_fit_opt <- fit_opt$par[2]

 for (c in 10 ^ (2:log(n / 10, base = 10))) {
 fit_fused <- find_optimum(TRUE, c)

 KL_fused[i, log(c, base = 10)] <-

 KL.gamma(fit_fused$par[2],
 fit_fused$par[1],

 beta_fit_opt,
 alpha_fit_opt)

 fit_disaggregate <- find_optimum(FALSE, c)

 KL_disaggregate[i, log(c, base = 10)] <-
 KL.gamma(fit_disaggregate$par[2],

 fit_disaggregate$par[1],

 beta_fit_opt,
 alpha_fit_opt)

 }

 print(i)
}

c <- 3

par(mfrow = c(2, 2))

hist(KL_fused[, c], col = rgb(1, 0, 0, 0.5), breaks = 40, xlab = 'KL Divergence (k=1,000)', ylab = 'Frequency', main = 'MPL vs MLE')

hist(

 KL_disaggregate[, c],
 col = rgb(0, 0, 1, 0.5),

 breaks = 40,

 add = TRUE
)

legend("topright", c("MPL", "MLE"), col=c("red", "blue"), lty=1, cex=.6)

hist(KL_disaggregate[, c] - KL_fused[, c],
 breaks = 40,

 col = 'red', xlab = 'Difference in KL Divergence (k=1,000)', ylab='Frequency', main='KL_MLE - KL_MPL')

colMeans(KL_fused)
colMeans(KL_disaggregate)

sd(KL_disaggregate[,3]-KL_fused[,3])

Question 2 ###

alpha_true = .1

beta_true = .1
n <- 10000

reps <- 100

KL_fused <- matrix(rep(0, reps*3), ncol=3, nrow=reps)
alpha_vec <- matrix(rep(0, reps*3), ncol=3, nrow=reps)

beta_vec <- matrix(rep(0, reps*3), ncol=3, nrow=reps)

for (c in 1:reps) {
 data <- rgamma(n, alpha_true, beta_true)

 for (i in c(100,1000,10000)) {

 fit_fused <- find_optimum(TRUE, i)
 KL_fused[c,log(i,base=10)-1] <- KL.gamma(fit_fused$par[2], fit_fused$par[1], beta_true, alpha_true)

 alpha_vec[c, log(i,base=10)-1] <- fit_fused$par[2]

 beta_vec[c, log(i,base=10)-1] <- fit_fused$par[1]
 }

30

 print(c)

}

par(mfrow = c(2, 3))

var_vec <- alpha_vec/beta_vec^2
hist(var_vec[,1], breaks=10, xlab = 'Variance', main = 'Variance Under MPL Estimates (k=100)', col='blue')

abline(v=10, col='red')

hist(var_vec[,2], breaks=10, xlab = 'Variance', main = 'Variance Under MPL Estimates (k=1,000)', col='blue')
abline(v=10, col='red')

hist(var_vec[,3], breaks=10, xlab = 'Variance', main = 'Variance Under MPL Estimates (k=10,000)', col='blue')

abline(v=10, col='red')
backup_alpha_vec <- alpha_vec

backup_beta_vec <- beta_vec

Question 3 ###
alpha_true = .5

beta_true = .1

n <- 1000
data_true <- rgamma(n, alpha_true, beta_true)

k <- 100

data_disaggregate <- data_true[1:k]
mean_aggregate <- mean(data_true[(k+1):n])

data <- data_disaggregate

fit_init <- find_optimum(FALSE, k)
data <- c(data, rep(mean_aggregate,(n-(k+1)+1)))

expectation_step <- function(alpha_hat, beta_hat) {

 samp <- sample(seq(k+1,n,1),replace=FALSE)
 for(i in seq(1,n-k,2)) {

 x1 <- data[samp[i]]
 x2 <- data[samp[i+1]]

 samples <- convolution(alpha_hat, beta_hat, x1, x2)

 data[samp[i]] <- samples[1]
 data[samp[i+1]] <- samples[2]

 }

 return(data)
}

convolution <- function(alpha_hat, beta_hat, x1, x2) {

 total <- x1+x2
 x1 <- total*rbeta(1, alpha_hat, alpha_hat)

 x2 <- total - x1

 if(x1 == 0 || x2 == 0) {

 return(c(total/2, total/2))

 }

 return(c(x1, x2))
}

maximization_step <- function() {

 return(find_optimum(FALSE, n))
}

alpha_hat <- fit_init$par[1]

beta_hat <- fit_init$par[2]
reps <- 100

alpha_vec <- rep(0, reps)

beta_vec <- rep(0, reps)
ll_vec <- rep(0, reps)

KL_vec <- rep(0, reps)

for(i in 1:reps) {
 data <- expectation_step(alpha_hat, beta_hat)

 fit_new <- maximization_step()

 alpha_hat <- fit_new$par[1]
 beta_hat <- fit_new$par[2]

 alpha_vec[i] <- alpha_hat

 beta_vec[i] <- beta_hat
 ll_vec[i] <- fit_new$value

 KL_vec[i] <- KL.gamma(alpha_hat, beta_hat, alpha_true, beta_true)

 print(i)
}

burnin <- 20

alpha_vec <- alpha_vec[burnin:reps]
beta_vec <- beta_vec[burnin:reps]

ll_vec <- ll_vec[burnin:reps]

KL_vec <- KL_vec[burnin:reps]
ind <- which(ll_vec==max(ll_vec))

31

alpha_hat <- alpha_vec[ind]

beta_hat <- beta_vec[ind]

KL <- KL_vec[ind]

par(mfrow=c(2,2))
plot(KL_vec, type='l', ylab='KL Divergence',xlab='Iterations',main='KL', col='red')

plot(ll_vec, type='l', ylab='Log Likelihood',xlab='Iterations',main='LL', col='red')

Normal-Normal Mixture #####

rm(list = ls())

Generate Data ###
mu1 = -2

sigsq1 = 1

mu2 = 4
sigsq2 = 2

p <- .8

n <- 500
groups <- rbinom(n, 1, p)

group1 <- rnorm(n, mu1, sqrt(sigsq1))

group2 <- rnorm(n, mu2, sqrt(sigsq2))
data <- groups * group1 + (1 - groups) * group2

Compute LL ###
compute_ll_fused <- function(parameters, k) {

 mu1_hat <- parameters[1]

 sigsq1_hat <- parameters[2]
 mu2_hat <- parameters[3]

 sigsq2_hat <- parameters[4]
 p_hat <- parameters[5]

 if(p_hat > 1 || p_hat < 0 || sigsq1_hat <= 0 || sigsq2_hat <= 0) {

 return(-100000000000)
 }

 if (k > 0 && k < n) {

 ll_disaggregate <-
 sum(log(

 p_hat * dnorm(data[1:k], mu1_hat, sqrt(sigsq1_hat)) + (1 - p_hat) * dnorm(data[1:k], mu2_hat, sqrt(sigsq2_hat))

))
 average <- mean(data[(k + 1):n])

 mean_theoretical <- p_hat * mu1_hat + (1 - p_hat) * mu2_hat

 var_theoretical <-

 (p_hat * sigsq1_hat + (1 - p_hat) * sigsq2_hat + p_hat * (1 - p_hat) *

 (mu1_hat - mu2_hat) ^ 2) / (n - (k + 1) + 1)

 ll_aggregate <-
 dnorm(average, mean_theoretical, sqrt(var_theoretical), log = TRUE)

 ll_total <- ll_disaggregate + ll_aggregate

 if (!is.finite(ll_total)) {
 ll_total <- -100000000000

 }

 return(ll_total)
 }

 if (k == n) {

 ll_total <- sum(log(
 p_hat * dnorm(data, mu1_hat, sqrt(sigsq1_hat)) + (1 - p_hat) * dnorm(data, mu2_hat, sqrt(sigsq2_hat))))

 if (!is.finite(ll_total)) {

 ll_total <- -100000000000
 }

 return(ll_total)

 }
 if (k == 0) {

 average <- mean(data)

 mean_theoretical <- p_hat * mu1_hat + (1 - p_hat) * mu2_hat
 var_theoretical <-

 (p_hat * sigsq1_hat + (1 - p_hat) * sigsq2_hat + p_hat * (1 - p_hat) *

 (mu1_hat - mu2_hat) ^ 2) / (n - (k + 1) + 1)
 ll_total <- dnorm(average, mean_theoretical, sqrt(var_theoretical), log = TRUE)

 if (!is.finite(ll_total)) {

 ll_total <- -100000000000
 }

 return(ll_total)

 }
}

32

compute_ll_disaggregate <- function(parameters, k) {

 mu1_hat <- parameters[1]

 sigsq1_hat <- parameters[2]
 mu2_hat <- parameters[3]

 sigsq2_hat <- parameters[4]

 p_hat <- parameters[5]
 ll_total <- sum(log(p_hat * dnorm(data[1:k], mu1_hat, sqrt(sigsq1_hat)) + (1 - p_hat) * dnorm(data, mu2_hat, sqrt(sigsq2_hat))))

 if (!is.finite(ll_total)) {

 ll_total <- -100000000000
 }

 return(ll_total)

}

find_optimum <- function(use_fused_ll, k) {

 if (use_fused_ll) {
 fun <- compute_ll_fused

 } else {

 fun <- compute_ll_disaggregate
 }

 fit1 <-

 optim(
 c(-1, 1, 1, 1, .5),

 fun,

 k = k,
 control = list(fnscale = -1),

 lower = c(-Inf, 0,-Inf, 0, 0),
 upper = c(Inf, Inf, Inf, Inf, 1),

 method = "L-BFGS-B"

)
 fit2 <-

 optim(

 c(0, 5, 0, 1, .5),
 fun,

 k = k,

 control = list(fnscale = -1),
 lower = c(-Inf, 0,-Inf, 0, 0),

 upper = c(Inf, Inf, Inf, Inf, 1),

 method = "L-BFGS-B"

)

 fit3 <-

 optim(
 c(-1, 2, 1, 1, .1),

 fun,

 k = k,
 control = list(fnscale = -1),

 lower = c(-Inf, 0,-Inf, 0, 0),

 upper = c(Inf, Inf, Inf, Inf, 1),
 method = "L-BFGS-B"

)

 fit4 <-
 optim(

 c(-1, 1, 1, 2, .9),

 fun,
 k = k,

 control = list(fnscale = -1),

 lower = c(-Inf, 0,-Inf, 0, 0),
 upper = c(Inf, Inf, Inf, Inf, 1),

 method = "L-BFGS-B"

)
 fit5 <-

 optim(

 c(10, 5,-5, 10, .3),
 fun,

 k = k,

 control = list(fnscale = -1),
 lower = c(-Inf, 0,-Inf, 0, 0),

 upper = c(Inf, Inf, Inf, Inf, 1),

 method = "L-BFGS-B"
)

33

 fit6 <-

 optim(

 c(5, 10,-10, 5, .7),

 fun,
 k = k,

 control = list(fnscale = -1),

 lower = c(-Inf, 0,-Inf, 0, 0),
 upper = c(Inf, Inf, Inf, Inf, 1),

 method = "L-BFGS-B"

)

 fit_ll <-

 c(fit1$value,
 fit2$value,

 fit3$value,

 fit4$value,
 fit5$value,

 fit6$value)

 ind_best <- which(fit_ll == max(fit_ll))
 fit_best <-

 if (ind_best == 1) {

 fit1
 } else if (ind_best == 2) {

 fit2

 } else if (ind_best == 3) {
 fit3

 } else if (ind_best == 4) {
 fit4

 } else if (ind_best == 5) {

 fit5
 } else if (ind_best == 6) {

 fit6

 }
 fit <- optim(fit_best$par,

 fun,

 k = k,
 control = list(fnscale = -1))

 return(fit)

}

dx <- .01

KL.norm <- function(params1, params2) {
 mu1_1 <- params1[1]

 sigsq1_1 <- params1[2]

 mu2_1 <- params1[3]
 sigsq2_1 <- params1[4]

 p_1 <- params1[5]

 mu1_2 <- params2[1]
 sigsq1_2 <- params2[2]

 mu2_2 <- params2[3]

 sigsq2_2 <- params2[4]
 p_2 <- params2[5]

 lb <-

 min(mu1_1 - 6 * sigsq1_1,
 mu1_2 - 6 * sigsq1_2,

 mu2_1 - 6 * sigsq2_1,

 mu2_2 - 6 * sigsq2_2)
 ub <-

 max(mu1_1 + 6 * sigsq1_1,

 mu1_2 + 6 * sigsq1_2,
 mu2_1 + 6 * sigsq2_1,

 mu2_2 + 6 * sigsq2_2)

 print(c(lb, ub))
 support <- seq(lb, ub, by = dx)

 dens1 <-

 p_1 * dnorm(support, mu1_1, sqrt(sigsq1_1)) + (1 - p_1) * dnorm(support, mu2_1, sqrt(sigsq2_1))
 dens2 <-

 p_2 * dnorm(support, mu1_2, sqrt(sigsq1_2)) + (1 - p_2) * dnorm(support, mu2_2, sqrt(sigsq2_2))

 dens1 <- dens1 * dx
 dens2 <- dens2 * dx

34

 ratio <- dens1/dens2

 ratio[!is.finite(ratio)] <- -1

 largest <- max(ratio)

 ratio[ratio == -1] <- largest
 return(sum(dens1 * log(ratio)))

}

Test ###

KL_fused <- rep(0, n - 10)

KL_disaggregate <- rep(0, n - 10)
fit_opt <- find_optimum(TRUE, n)

for (i in 11:n) {

 fit_fused <- find_optimum(TRUE, i)
 KL_fused[i - 1] <-

 KL.norm(fit_fusedpar, fit_optpar)

 fit_disaggregate <- find_optimum(FALSE, i)
 KL_disaggregate[i - 1] <-

 KL.norm(fit_disaggregatepar, fit_optpar)

 print(i)
}

par(mfrow = c(2, 1))

plot(KL_fused,

 type = "l",

 log = 'y',
 col = 'red', xlab='Sample Size (k)', ylab='KL Divergence')

lines(KL_disaggregate, col = 'blue')
legend(x=350, y=1, legend=c('MPL', 'MLE'), col=c('red', 'blue'), lty=1,cex=.6)

plot(

 KL_disaggregate - KL_fused,
 type = "l",

 log = 'y',

 col = 'red',
 xlab = 'Sample Size (k)', ylab = 'Difference in KL Divergence')

Question 1 ###
mu1 = -2

sigsq1 = 1

mu2 = 4

sigsq2 = 2

p <- .8

n <- 10000
reps <- 100

KL_fused <-

 matrix(rep(0, (floor(log(
 n, base = 10

)) - 1) * reps), nrow = reps, ncol = floor(log(n, base = 10)) - 2)

KL_disaggregate <-
 matrix(rep(0, (floor(log(

 n, base = 10

)) - 1) * reps), nrow = reps, ncol = floor(log(n, base = 10)) - 2)
for (i in 1:reps) {

 groups <- rbinom(n, 1, p)

 group1 <- rnorm(n, mu1, sqrt(sigsq1))
 group2 <- rnorm(n, mu2, sqrt(sigsq2))

 data <- groups * group1 + (1 - groups) * group2

 fit_opt <- find_optimum(TRUE, n)
 for (c in 10 ^ (2:log(n / 10, base = 10))) {

 fit_fused <- find_optimum(TRUE, c)

 KL_fused[i, log(c, base = 10)-1] <-
 KL.norm(fit_fusedpar, fit_optpar)

 fit_disaggregate <- find_optimum(FALSE, c)

 KL_disaggregate[i, log(c, base = 10)-1] <-
 KL.norm(fit_disaggregatepar, fit_optpar)

 }

 print(i)
}

c <- 2

par(mfrow = c(2, 2))

35

hist(KL_fused[, c], xlim=c(0,.25), col = rgb(1, 0, 0, 0.5), breaks = 4, xlab = 'KL Divergence (k=1,000)', ylab = 'Frequency', main = 'MPL vs

MLE')

hist(

 KL_disaggregate[, c],
 col = rgb(0, 0, 1, 0.5),

 breaks = 10,

 add = TRUE
)

legend("topright", c("MPL", "MLE"), col=c("red", "blue"), lty=1, cex=.6)

hist(KL_disaggregate[, c] - KL_fused[, c],
 breaks = 40,

 col = 'red', xlab = 'Difference in KL Divergence (k=1,000)', ylab='Frequency', main='KL_MLE - KL_MPL')

colMeans(KL_fused)
colMeans(KL_disaggregate)

Question 2 ###
mu1 = 0

sigsq1 = 1

mu2 = 10
sigsq2 = 5

p <- .4

n <- 10000
reps <- 100

KL_fused <- matrix(rep(0, reps*3), ncol=3, nrow=reps)

mu1_vec <- matrix(rep(0, reps*3), ncol=3, nrow=reps)
sigsq1_vec <- matrix(rep(0, reps*3), ncol=3, nrow=reps)

mu2_vec <- matrix(rep(0, reps*3), ncol=3, nrow=reps)
sigsq2_vec <- matrix(rep(0, reps*3), ncol=3, nrow=reps)

p_vec <- matrix(rep(0, reps*3), ncol=3, nrow=reps)

for (c in 1:reps) {
 groups <- rbinom(n, 1, p)

 group1 <- rnorm(n, mu1, sqrt(sigsq1))

 group2 <- rnorm(n, mu2, sqrt(sigsq2))
 data <- groups * group1 + (1 - groups) * group2

 for (i in c(100,1000,10000)) {

 fit_fused <- find_optimum(TRUE, i)
 KL_fused[c, log(i, base=10)-1] <- KL.norm(fit_fused$par, c(mu1, sigsq1, mu2, sigsq2, p))

 mu1_vec[c, log(i, base=10)-1] <- fit_fused$par[1]

 sigsq1_vec[c, log(i, base=10)-1] <- fit_fused$par[2]

 mu2_vec[c, log(i, base=10)-1] <- fit_fused$par[3]

 sigsq2_vec[c, log(i, base=10)-1] <- fit_fused$par[4]

 p_vec[c, log(i, base=10)-1] <- fit_fused$par[5]
 }

 print(c)

}
var_vec <- p_vec*sigsq1_vec+(1-p_vec)*sigsq2_vec+(p_vec)*(1-p_vec)*(mu1_vec-mu2_vec)^2

hist(var_vec[,1], breaks=10, xlab = 'Variance', main = 'Variance Under MPL Estimates (k=100)', col='blue')

abline(v=27.4, col='red')
hist(var_vec[,2], breaks=10, xlab = 'Variance', main = 'Variance Under MPL Estimates (k=1,000)', col='blue')

abline(v=27.4, col='red')

hist(var_vec[,3], breaks=10, xlab = 'Variance', main = 'Variance Under MPL Estimates (k=10,000)', col='blue')
abline(v=27.4, col='red')

Question 3 ###
mu1_true = 0

sigsq1_true = 1

mu2_true = 4
sigsq2_true = .1

p_true <- .9

n <- 1000
groups <- rbinom(n, 1, p_true)

group1 <- rnorm(n, mu1_true, sqrt(sigsq1_true))

group2 <- rnorm(n, mu2_true, sqrt(sigsq2_true))
data_true <- groups * group1 + (1 - groups) * group2

k <- 200

data_disaggregate <- data_true[1:k]
mean_aggregate <- mean(data_true[(k+1):n])

data <- data_disaggregate

fit_init <- find_optimum(FALSE, k)
data <- c(data, rep(mean_aggregate,(n-(k+1)+1)))

36

expectation_step <- function(parameters) {

 samp <- sample(seq(k+1,n,1),replace=FALSE)

 for(i in seq(1,n-k,2)) {

 x1 <- data[samp[i]]
 x2 <- data[samp[i+1]]

 samples <- convolution(parameters, x1, x2)

 data[samp[i]] <- samples[1]
 data[samp[i+1]] <- samples[2]

 }

 return(data)
}

dx <- .01

convolution <- function(parameters, x1, x2) {
 total <- x1+x2

 mu1_hat <- parameters[1]

 sigsq1_hat <- parameters[2]
 mu2_hat <- parameters[3]

 sigsq2_hat <- parameters[4]

 p_hat <- parameters[5]
 lb1 <- min(mu1_hat - 6*sigsq1_hat, mu2_hat - 6*sigsq2_hat)

 ub1 <- max(mu1_hat + 6*sigsq1_hat, mu2_hat + 6*sigsq2_hat)

 lb <- min(lb1, total - ub1)
 ub <- max(ub1, total-lb1)

 support <- seq(lb, ub, dx)

 p_x1_equals_x1 <- p_hat*dnorm(support, mu1_hat, sqrt(sigsq1_hat)) + (1-p_hat)*dnorm(support, mu2_hat, sqrt(sigsq2_hat))
 p_x2_equals_kminusx1 <- p_hat*dnorm(rev(support), mu1_hat, sqrt(sigsq1_hat)) + (1-p_hat)*dnorm(rev(support), mu2_hat, sqrt(sigsq2_hat))

 numerator <- p_x1_equals_x1*p_x2_equals_kminusx1
 denominator <- p_hat^2*dnorm(total,2*mu1_hat,sqrt(2*sigsq1_hat))+(1-p_hat)^2*dnorm(total,2*mu2_hat,sqrt(2*sigsq2_hat))+2*p_hat*(1-

p_hat)*dnorm(total,mu1_hat+mu2_hat, sqrt(sigsq1_hat+sigsq2_hat))

 dens <- numerator/denominator
 dens <- dens/sum(dens)

 x1 <- sample(support, size=1, prob=dens)

 x2 <- total - x1
 return(c(x1, x2))

}

maximization_step <- function() {
 return(find_optimum(FALSE, n))

}

mu1_hat <- fit_init$par[1]

sigsq1_hat <- fit_init$par[2]

mu2_hat <- fit_init$par[3]

sigsq2_hat <- fit_init$par[4]
p_hat <- fit_init$par[5]

reps <- 250

mu1_vec <- rep(0, reps)
sigsq1_vec <- rep(0, reps)

mu2_vec <- rep(0, reps)

sigsq2_vec <- rep(0, reps)
p_vec <- rep(0, reps)

ll_vec <- rep(0, reps)

KL_vec <- rep(0, reps)
for(i in 1:reps) {

 data <- expectation_step(c(mu1_hat, sigsq1_hat, mu2_hat, sigsq2_hat, p_hat))

 fit_new <- maximization_step()
 mu1_hat <- min(fit_new$par[1], fit_new$par[3])

 sigsq1_hat <- max(fit_new$par[2], fit_new$par[4])

 mu2_hat <- max(fit_new$par[1], fit_new$par[3])
 sigsq2_hat <- min(fit_new$par[2], fit_new$par[4])

 p_hat <- max(fit_new$par[5], 1-fit_new$par[5])

 mu1_vec[i] <- mu1_hat
 sigsq1_vec[i] <- sigsq1_hat

 mu2_vec[i] <- mu2_hat

 sigsq2_vec[i] <- sigsq2_hat
 p_vec[i] <- p_hat

 ll_vec[i] <- fit_new$value

 KL_vec[i] <- KL.norm(c(mu1_hat, sigsq1_hat, mu2_hat, sigsq2_hat, p_hat), c(mu1_true, sigsq1_true, mu2_true, sigsq2_true, p_true))
 print(c(mu1_hat, sigsq1_hat, mu2_hat, sigsq2_hat, p_hat))

 print(i)

}
burnin <- 50

37

mu1_vec <- mu1_vec[burnin:reps]

sigsq1_vec <- sigsq1_vec[burnin:reps]

mu2_vec <- mu2_vec[burnin:reps]

sigsq2_vec <- sigsq2_vec[burnin:reps]
p_vec <- p_vec[burnin:reps]

ll_vec <- ll_vec[burnin:reps]

KL_vec <- KL_vec[burnin:reps]
ind <- which(ll_vec==max(ll_vec))

mu1_hat <- mu1_vec[ind]

sigsq1_hat <- sigsq1_vec[ind]
mu2_hat <- mu2_vec[ind]

sigsq2_hat <- sigsq2[ind]

p_hat <- p_vec[ind]
ll_hat <- ll_vec[ind]

KL <- KL_vec[ind]

par(mfrow=c(1,1))
plot(ll_vec, type='l', ylab='Log Likelihood',xlab='Iterations',main='LL', col='red')

plot(KL_vec, type='l', ylab='KL Divergence',xlab='Iterations',main='KL', col='red')

plot(mu2_vec, type='l', ylab='Mean 2 Value',xlab='Iterations',main='Mean 2', col='red')
plot(sigsq2_vec, type='l', ylab='Variance 2 Value',xlab='Iterations',main='Variance 2', col='red')

plot(p_vec, type='l', ylab='Proportion (p) Value',xlab='Iterations',main='Proportion', col='red')

hist(var_vec, breaks=10, main='Variance From Estimated Parameters', xlab='Variance', xlim=c(2.2,3.2), col='blue')
abline(v=var_true, col='red')

	Analyzing Methods for Aggregate-Disaggregate Data Fusion
	Analyzing Methods for Aggregate-Disaggregate Data Fusion
	Abstract
	Keywords
	Disciplines

	tmp.1607103377.pdf.8ieIN

