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Abstract—Given a set of documents and an input query that 
is expressed in a natural language, the problem of document 
search is retrieving the most relevant documents. Unlike most 
existing systems that perform document search based on key-
words matching, we propose a search method that considers 
the meaning of the words in the query and the document. 
As a result, our algorithm can return documents that have 
no words in common with the input query as long as the 
documents are relevant. For example, a document that contains 
the words “Ford”, “Chrysler” and “General Motors” multiple 
times is surely relevant for the query “car” even if the word 
“car” does not appear in the document. Our semantic search 
algorithm is based on a similarity graph that contains the degree 
of semantic similarity between terms, where a term can be a 
word or a phrase. We experimentally validate our algorithm 
on the Cranfield benchmark that contains 1400 documents and 
225 natural language queries. The benchmark also contains the 
relevant documents for every query as determined by human 
judgment. We show that our semantic search algorithm produces 
a higher value for the mean average precision (MAP) score than 
a keywords matching algorithm. This shows that our approach 
can improve the quality of the result because the meaning of the 
words and phrases in the documents and the queries is taken 
into account. 

I. INTRODUCTION 

Consider an information retrieval system that consists of a 
list of restaurants and a short description for every restaurant. 
Next, suppose that someone is driving and searching for a 
“Mexican restaurant” in a five miles radius. If there are no 
Mexican restaurants near by, then a simple keywords matching 
system will not return any results. However, a better option 
will be to consider all restaurants that are close by and return 
them ranked based on the semantic similarity to the phrase 
“Mexican restaurant”. For example, the system may contain 
the knowledge that “Puerto Rican restaurant” is semantically 
closer to “Mexican restaurant” than “Greek restaurant” and 
therefore return Puerto Rican restaurants before Greek restau-
rants. In this paper, we address the problem of building such 
an information retrieval system that returns ranked documents 
based on their semantic similarity to the input query. 

The problem of finding results based on the semantic sim-
ilarity between the words and phrases in the input query and 
the documents in the information retrieval system is interesting 
because it can lead to increased recall. For example, documents 
that will not be returned using a simple keywords matching 
system will now be returned. Consider a scientific document 
about “ascorbic acid”. The query “vitamin C” should definitely 
return this document because the terms “ascorbic acid” and 

“vitamin C” refer to the same organic compound. However, 
this document will be part of the query result only if the close 
relationship between the two terms is stored in the system and 
used during query answering. The need for an information 
retrieval system that returns results based on the semantics 
of words and phrases becomes even more apparent when the 
number of documents in the information retrieval system is 
relatively small. In this case, a keywords matching system will 
return the empty set in most cases. However, a system that 
considers the semantic similarity of the words and phrases in 
the query and each of the documents can return result even 
in the case when all the documents do not contain any of the 
words in the input query. This was the case in the Mexican 
restaurant example from the previous paragraph. 

The problem of creating a semantic search engine for 
information retrieval is difficult because it involves some 
understanding of the meaning of words and phrases and how 
they interact. Although significant effort has been put forward 
in automated natural language processing ([12], [13], [30]), 
current approaches fall short of understanding the precise 
meaning of human text. In fact, the question of whether 
computers will ever become as fluent as humans in under-
standing natural language text is an open problem. In this 
paper we do not analyze natural language text and break it 
down into the parts of speech. Instead, we only consider the 
words and phrases in the documents and query and use the 
similarity graph that we previously developed and that is based 
on a probabilistic model to compute the semantic similarity 
between the query and each of the documents. 

Note that a traditional keywords matching algorithm, such 
as TF-IDF (stands for term frequency – inverse document 
frequency – see [22]), will fall short because it only considers 
the frequency of the query words in each document. It will 
not return relevant documents if they do not contain the query 
words. In recent years, researchers have explored how to 
represent knowledge using a knowledgebase that is written in 
OWL (OWL stands for web ontology language – see [46]) and 
how to pose queries using a knowledgebase query language, 
such as SPARQL (a recursive acronym that stands for SPARQL 
Protocol and RDF Query Language – see [41]). However, 
this approach poses two challenges. First, every document 
must have an OWL description. Annotating the documents 
manually is time consuming and systems that automatically 
annotate documents (e.g., [27]) are still in their early stages of 
development. However, the main contrast with our approach is 
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that a SPARQL query returns all resources that are subsumed 
by the input query and there is no notion of ranking the result 
based on the degree of semantic similarity with the input query. 

Our approach of finding semantically similar documents is 
based on a similarity graph that was developed in two previous 
papers ([44], [43]). The graph uses mainly information from 
WordNet and Wikipedia to find the degree of semantic similar-
ity between 150,000 of the most common words in the English 
language and about 4,000,000 titles of Wikipedia articles. The 
edges in the graph are asymmetric, where an edge between two 
nodes represents the probability that someone is interested in 
the concept that is described by the destination node given 
that they are interested in the concept that is described by the 
source node. Our approach adds the queries and documents in 
the information retrieval system as nodes in the graph. Then 
the new nodes are connected to the graph based on the words 
and phrases that appear in them. For example, the query “cat” 
will be connected to the word “cat”, which is connected to the 
word “feline”, which in tern can be connected to a document 
that contains the word “feline” multiple times. In this way, 
we can retrieve a semantically relevant document that does 
not need to include any of the words in the initial query. 
We consider all paths in the graph between the input query 
and the documents, where every path provides additional data 
about the probability that a user is interested in the destination 
document. Note that the weight of a path decreases as the 
length of the path increases because longer paths provide 
weaker evidence. Given an input query, our system returns 
the documents in ranked order, where the ordering is based 
on the probability that a user is interested in each document. 
One shortcoming of our system is that it does not return a 
subset of the documents. However, this shortcoming can be 
addressed by returning only documents with high probability 
of relevance (e.g., relevance score of above 90%). 

We experimentally validate our semantic search algorithm 
on the Cranfield benchmark that contains 1400 documents and 
225 queries. Human subjects have determined the documents 
that are relevant for every query. We compare our algorithm 
with the TF-IDF algorithms that is implemented in Apache 
Lucene. The experimental section shows that our semantic 
search algorithm produces higher value for the mean average 
precision (MAP) over all queries than the Lucene algorithm, 
where MAP has been shown to have especially good dis-
crimination and stability for information retrieval systems that 
produce ranked retrieval results (see [4]). The reason why our 
system has higher value for the MAP measure than the Apache 
Lucene system is because we consider not only the words and 
phrases in the queries and the documents, but also the strength 
of their semantic relationship. 

In what follows, in Section II we present a brief overview 
of related research. Section III describes the similarity graph 
and contains example scenarios for creating the graph. The 
main contribution of the paper is Section IV, which explains 
how queries and documents can be added to the similarity 
graph. Section V describes the scoring function that is used 
for ranking the documents. Section VI validates our semantic 

search algorithm by showing how it can produce data of 
better quality than an algorithm that is based on simple 
keywords matching. Lastly, Section VII summarizes the paper 
and outlines areas for future research. 

II. RELATED RESEARCH 

In this section, we present a chronological overview of the 
major breakthroughs in semantic search research. In 1986, 
W. B. Croft proposed the use of a thesaurus of concepts for 
implementing semantic search ([9]). The words in both the 
user query and the documents can be expanded using infor-
mation from the thesaurus, such as the synonym relationship. 
Sequentially, there have been multiple papers on the use of 
a thesaurus to implement semantic search (e.g., [16], [17], 
[18], [20], [23], [33], [38], [47]). This approach, although 
very progressive for the times, differs from our approach 
because we consider indirect relationships between words (i.e., 
relationships along paths of several words). We also do not 
apply query and document expansion. Instead, we use the 
similarity graph to find the documents that are semantically 
related to the input query. Similarly to the approach in [9], 
we use a probabilistic model to rank the documents in the 
result. Croft also proposed retrieving documents based on user 
interaction, where this direction has been further extended in 
the area of folksonomies ([14]). Our system currently does not 
allow for user interaction when computing the list of relevant 
documents. However, we believe that allowing interactive 
mode during query answering and implementing user profiling 
can improve our system and we identify this topic as an area 
for future research. 

In later years, the research of Croft was extended by creating 
a graph that contains a semantic network ([7], [35], [39]) and 
graphs that contain the semantic relationships between words 
([3], [2], [8]). Later on, Simone Ponzetto and Michael Strube 
showed how to create a graph that only represents inheritance 
of words in WordNet ([25], [40]), while Glen Jeh and Jennifer 
Widom showed how to approximate the similarity between 
phrases based on information about the structure of the graph 
in which they appear ([21]). All these approaches differ from 
our approach because they do not consider the strength of the 
relationship between the nodes in the graph. In other words, 
there are no weights that are associated with the edges in the 
graph. 

The problem of semantic search is somewhat related to 
the problem of question answering. Instead of returning a 
set of documents, question answering deals with the problem 
of finding the answer to a question inside the available 
documents. Natural language techniques are used to determine 
the type of expected answer ([19], [32], [42]). For example, 
if the natural language analyzer determines that the answer 
to a question must be an animal, than words or concepts in 
the documents that can represent an animal are identified as 
potential query answers. 

Since the early 1990s, research on LSA (stands for latent se-
mantic analysis – see [11]) has been carried out. The approach 
has the advantage of not relying on external information. 



Instead, it considers the closeness of words in text documents 
as proof of their semantic similarity. For example, LSA can 
be used to detect words that are synonym (see [26]). This 
differs from our approach because we do not consider the 
closeness of the words in a document. We only consider the 
order of the words in the definition of a WordNet sense when 
we build the similarity graph, where we assume that the first 
words are more important. Although the LSA approach has its 
applications, we believe that our sources of knowledge, such 
as WordNet and Wikipedia, provide higher quality of data. 

Since the late 1990s, ontologies have been examined as 
tools to improve the quality of the data that is returned by 
information retrieval systems (see [37]). However, ontologies 
use the boolean search model. An ontology language, such as 
OWL, can be used to precisely annotate the input documents. 
Queries are expressed in a language that is based on mathe-
matical logics, such as SPARQL, and a document is either part 
of the query result or it is not. Unlike the probabilistic model 
that is used in this paper, there is no notion of approximate 
query answering or ranking the output documents based on 
their relevance with the input query. Therefore, this approach 
is better suited towards query answering problems than to 
document searches (see [28], [29], [1], [5]). Research on 
automatic annotation of documents with OWL descriptions is 
also relevant (see [24], [34], [15]). 

Lastly, there are papers that consider a hybrid approach of 
information retrieval using both an ontology and keywords 
matching. For example, [36] examines how queries can be 
expanded based on the information from an OWL knowl-
edgebase. Alternatively, [45] proposes a ranking function that 
depends on the length of the logical derivation of the result, 
where the assumption is that shorter derivations will produce 
more relevant documents. Unfortunately, these approaches are 
only useful in the presence of an ontology and, as mentioned 
earlier, research on automatic annotation of documents with 
OWL descriptions is still in its early stages of development. 

III. CREATING THE SIMILARITY GRAPH 

In this section, we review how the similarity graph can be 
created using information from WordNet ([31]) and Wikpedia, 
where we encourage the reader to refer to [44] and [43], 
respectively, for a more detailed description. WordNet gives 
us information about the words in the English language. The 
similarity graph is initially constructed using WordNet 3.0, 
which contains about 150,000 different words. WordNet also 
contains phrases, such as “sports utility vehicle”. WordNet 
uses the term word form to refer to both the words and the 
phrases in the corpus. Note that the meaning of a word form 
is not precise. For example, the word “spring” can mean the 
season after winter, a metal elastic device, or natural flow of 
ground water, among others. This is the reason why WordNet 
uses the concept of a sense. For example, earlier in this 
paragraph we cited three different senses of the word “spring”. 
Every word form has one or more senses and every sense is 
represented by one or more word forms. A human can usually 

determine which of the many senses a word form represents 
by the context in which the word form is used. 

The initial goal of the similarity graph is to model the 
relationship between the word forms in WordNet using a 
probabilistic model. The weight of an edge between two nodes 
describes the probability that a user is interested in documents 
that contain the label of the destination node given that they 
are interested in the label of the source node. For every word 
form, a node that has the word form as a label is created. 
Similarly, for every sense we create a node with a label that 
is the description of the sense. In the graph, we join a sense 
node with the nodes for the non-noise words in the description 
of the sense using edges, where higher weights are given to 
the first words. The reason is that we believe that there is a 
greater chance that a user will be interested in one of the first 
words in the definition of a sense given that they are interested 
in the sense. For example, the most popular sense of the word 
“chair” is a “a seat for one person”. There is obviously a strong 
relationship between the words “chair” and “seat”, which 
is extracted by the algorithm. Similarly, WordNet contains 
example use for each sense and the similarity graph contains 
an edge between each sense and each non-noise word in its 
example use. As expected, the weights of these edges are 
smaller than the weights for the definition edges because 
the definition of a sense provides stronger evidence than the 
example use of a sense about the degree of semantic relevance. 

WordNet also contains a plethora of information about 
the relationship between senses. The senses in WordNet are 
divided into four categories: nouns, verbs, adjectives, and 
adverbs. For example, WordNet stores information about the 
hyponym and meronym relationship for nouns. The hyponym 
relationship corresponds to the “kind-of” relationship (for 
example, “dog” is a hyponym of “canine”). The meronym 
relationship corresponds to the “part-of” relationship (for 
example, “window” is a meronym of “building”). Similar re-
lationships are also defined for verbs, adjectives, and adverbs. 
For each such relationship, the similarity graph contains an 
edge between the sense nodes, where the weight of the edge 
depends on the likelihood that a user will be interested in the 
destination sense given that they are interested in the source 
sense. 

Instead of presenting a detailed description of how the 
weights of the edges are extracted from WordNet (this infor-
mation can be found in [44]), we show some previously un-
published examples. First, consider Fig. 1. The edge between 
the word “cat” and its main sense has weight 18/25 because 
WordNet defines eight senses of the word “cat”. The main 
sense is shown in the figure and WordNet gives it a frequency 
value of 18, where all the other senses of the word have a 
frequency of 1. In other words, the sum of the frequencies of 
all senses, according to WordNet, is 25 and therefore there 
is an 18/25 chance that someone who is interested in the 
word “cat” is also interested in the most popular sense of the 
word. The edge between the two senses represents a hypernym 
relationship. This is the opposite of the hyponym relationship. 
For example, the main sense of the word “cat” is a hypernym 



computeMinMax (minV alue, maxV alue, ratio) = 
−1minV alue + (maxV alue − minV alue) ∗ log2(ratio) 

of the main sense of the word “feline” because a cat is-a 
feline. The algorithm weights all such relationships with value 
0.3. Lastly, the weight of the edge between the main sense 
of the word “feline” and the word “feline” is 1 because the 
sense represents the word. In other words, there is a 100% 
probability that someone who is interested in a sense will also 
be interested in one of the word forms that represents it. In 
order to compute the relevance score between the words “cat” 
and “feline”, we need to multiply the weights of all the edges 
in the path. In other words, the graph so far tells us that there 
is a (18/25) ∗ 0.3 = 21.6% probability that a user who is 
interested in cats will also be interested in felines. 

any of various lithe−bodied roundheaded

cat
feline mammal usually having 

thick soft fur and ability to roar 

18/25

feline
1

0.3

fissiped mammals with retractile claws 

Fig. 1. Example relationship between the words “cat” and “feline” along 
hypernym relationship. 

There is a second path in the graph between the words “cat” 
and “feline”. As shown in Fig. 2, the word “feline” appears in 
the definition of the main sense of the word “cat”. The weight 
of the second edge uses the computeMinMax function. It 
returns a number that is almost always between the first two 
arguments, where the magnitude of the number is determined 
by the third argument. In our case, this magnitude is equal 
to 1/7 because “feline” is one of the seven non-noise words 
in the definition of the sense. The computeMinMax function 
smoothens the value of the third parameter. For example, a 
word that appears as one of 20 words in the definition of a 
sense is not 10 times less important than a word that appears 
as one of two words in the definition. The function makes 
the difference between the two cases less extreme. Using this 
function, the weight of the edge in the second case will be 
only roughly four times smaller than the weight of the edge 
in the first case. This is a common approach when processing 
text. The importance of a word in a text decreases as the 
size of the text increases, but the importance of the word 
decreases at a slower rate than the rate of growth of the text. 
Formally, the function computeMinMax is defined as follows. 

Note that when raio = 0.5, then the function returns max-
Value. An unusual case is when the value of the variable ratio 
is bigger than 0.5. For example, if ratio = 1, then we have 
division by zero and the value for the function is undefined. 
We handle this case separately and assign value to the function 
equal to 1.2 ∗ maxValue . This is an extraordinary case when 
there is a single non-noise word in the text description and we 

need to assign higher weight to the edge. 

computeMinMax(0,0.6,1/7)

feline

cat
feline mammal usually having 

thick soft fur and ability to roar 

18/25

Fig. 2. Example relationship between the words “cat” and “feline” alone the 
words-in-sense-definition relationship. 

Note that the weights of the edges to sequential words in 
the definition of a sense will be multiplied by a coefficient that 
decreases their value. The reason is that we believe that the 
first words in the definition of a sense are the most important 
ones. The second edge in Fig. 2 was not multiplied by such a 
coefficient because “feline” is the first word in the definition 
of the sense. 

We have shown two paths between the words “cat” and 
“feline”. If we add the evidence from the two paths, then 
we will get the number 0.214 + 0.216 = 0.43. The number 
0.43 gives us the contribution of the word “feline” towards 
the word “cat” in a query that contains the word “cat”. In 
other words, for this query we will consider documents that 
contain the word “feline”. However, as expected, documents 
that contain the word “cat” will be preferred (the weight for 
such documents for the word “cat” is multiplied by 1.0 instead 
of 0.43). 

We next review how information from Wikipedia is used 
to augment the similarity graph, where the detailed algorithm 
is presented in [43]. Nodes are created for Wikipedia articles, 
categories, and redirects, where the label of each node is the 
title of the Wikipedia page. Edges are used to connect the 
Wikipedia and WordNet nodes. For example, an edge will be 
drawn both ways between the Wikipedia node “Government 
of the United States” and the WordNet nodes “government” 
and “United States”. These edges will represent the semantic 
relationship between a Wikipedia article and the word forms 
that appear in its title. Similarly, a two-way edge will be drawn 
between the node for a Wikipedia page and a node for a word 
form that contains a word form that appears in the subtitle of 
the page. An edge is also drawn between a Wikipedia node 
and the word form nodes for word forms that appear five 
times or more in the body of the article. Edges that represent 
the category/subcategory relationship and the membership of 
a Wikipedia article to a category are also drawn. Wikipedia 
articles contain see-also and hyperlink relationships to other 
Wikipedia articles and edges that represent these relationships 
are also drawn in the graph. Lastly, Wikipedia contains page 
redirects, where a page can contain no article and only a 
redirect to a different Wikipedia page, where this relationship 
is also modeled in the similarity graph. 

Instead of describing how the weights of the edges for 
the Wikipedia part of the similarity graph are assigned 



(this information is available in [43]), we present a previ-
ously unpublished example that demonstrates how we can 
return semantically relevant documents based on informa-
tion from Wikipedia. Consider Fig. 3. It describes that the 
word “hockey” appears in the title of the Wikipedia arti-
cle about ice hockey in the Olympic Games and that the 
word “Canada” appears in this Wikipedia article 89 times. 
As a result, we can extract information about the relation-
ship between the words “hockey” and “Canada”. Specif-
ically, suppose that 10 Wikipedia titles contain the word 
“hockey”, where “Ice Hockey at the Olympic Games” is one 
of these pages. The edge between the nodes “hockey” and 
“Ice Hockey in the Olympic Games” will have a weight 
of computeMinMax(0, 0.1, 1/10), where the last parameter 
represents that the article is only one of 10 Wikipedia articles 
that have the word “hockey” in their title. Next, suppose 
that the word “Canada” appears 89 times in the Wikipedia 
article and that the size of the text that contains words that 
appear five times of more in the article is 300 words. Then 
we will draw the second edge that is shown in the figure 
with weight computeMinMax(0, 0.1, 89/300). The parameter 
89/300 describes the contribution of the word “hockey” to 
the text that contains frequently accruing words. Note that for 
both edges the coefficient 0.1 is relatively low because the 
information in Wikipedia is not as reliable as the information 
in WordNet. 

computeMinMax(0,0.1,1/10)hockey

computeMinMax(0,0.1,89/300)

ice hockey at

the olympic games

Canada

Fig. 3. Example part of a similarity graph that is created from Wikipedia. 

Next, consider Fig. 4. The nodes in the graph represent the 
Wikipedia article on hockey and the word “Canada”. Suppose 
that the word “Canada” appears 10 times in the body of the 
article. If we assume that the size of the text in the Wikipedia 
article on Canada that consists of words that repeat five times 
or more is 45 words, then we will create the edge that is shown 
in the figure. The parameter 10/45 describes the contribution 
of the word “Canada” to the text that contains frequently 
accruing words. Since this is the second path between 
the nodes with labels “hockey” and “Canada”, we need to 
aggregate the evidence from the two paths and get the number 
computeMinMax(0, 0.1, 1/10)∗computeMinMax(0, 0.1, 89/300) 
+ computeMinMax(0, 0.1, 10/45) = 0.05. In other words, 
based on the presented Wikipedia evidence, we will consider 
documents that contain the word “Canada” when searching 
for documents about hockey. However, we will assign weight 
to these documents for the word “hockey” of only 0.05. 
Alternatively, documents that contain the word “hockey” will 
be assigned the full weight of 1 for the word “hockey”. 

hockey

Canada

computeMinMax(0,0.1,10/45)

Fig. 4. Example part of a similarity graph that is created from Wikipedia. 

IV. ADDING QUERIES AND DOCUMENTS TO THE 
SIMILARITY GRAPH 

Let us examine the first query of the Cranfield benchmark 
(see [6]): “What similarity laws must be obeyed when con-
structing aeroelastic models of heated high speed aircraft?” 
After we remove all the noise words, we are left with 10 
words. We are going to create a node for the query and draw 
an edge to each of the 10 word nodes – see Fig. 5. We will 
use term to refer to both a word form or a phrase that is a 
Wikipedia page title. In general, we consider all the terms in 
the query and try to match them against node labels in the 
graph. In the specific example, there are no Wikipedia pages 
that contain terms of two words or more from the query. If 
there were, then edge will be drawn to these nodes as well. The 
weight of each edge is equal to computeMinMax (0, 1, ratio), 
where ratio is the number of times the term appears in the 
query divided by the total number of terms that are considered. 
As explained in the previous section, the computeMinMax 
function can be used to smoothen the result. In other words, 
we do not consider a term that appears twice in the query 
twice more important than a term that appears only once. The 
computeMinMax function makes the ratio of the two cases 
1.3 instead of 2. As we will describe later in this section, the 
graph model can be used to implement the standard TF-IDF 
scoring function. If we follow this model, then the weight of 
each of the edges should be equal to the value of the ratio 
parameter. Note that multiplying the weights of the edges by 
a number will not affect the ranking of the query result. Here, 
we multiply by one because we assume that there is a 100% 
probability that the user will be interested in one of the terms 
in their query. Note as well that we give equal importance 
to all the terms in the query and we do not assume that the 
leading terms are more important. Of course, this model can 
be adjusted if the user specifies the importance of each term 
in the query using a numerical value. 

Fig. 5 shows how the query is connected to the 
similarity graph. The weight of each edge is equal to 
computeMinMax (0, 1, 1/10) = 0.3. If the query contains 
a word that is not part of the similarity graph (i.e., not in 
WordNet), then we will not draw an edge for this word. As 
an alternative example, if there is a Wikipedia page with title 
“high speed aircraft”, then a node with this label will exist in 
the similarity graph and we will draw an edge between the 
query and the node. 

Next, let us consider the first document in the Cranfield 
benchmark. The word “propeller” appears once in the body of 



√ 
∗ (1 + log2( numDocs weight = tf ))2 

docF req+1 

P p 
numDocs score(q, d) = ( tf (t in d) ∗ (1 + log2( ))2)docFreq(t)+1 

t in q 

aeroelastic

Q1

aircraft speed

heated

models

constructing

obeyed

laws

similarity high

all edge weights: computeMinMax(0,1,0.1)

Fig. 5. Connecting the first query of the Cranfield benchmark to the similarity 
graph. 

the article and it does not appear in its title. Suppose that the 
word also appears once in three other documents. Then we 
will create the subgraph that is shown in Fig. 6. In general, 
the weight of an edge from a term to a document that contains 
the term in the tile is equal to computeMinMax (0, 0.8, ratio) 
and to a document that contains the term in the body – 
computeMinMax (0, 0.2, ratio). Here, ratio is the number of 
times the term appears in the title or body of the document, 
respectively, divided by the total number of occurrences in 
all documents. The reason behind these formulas is that we 
believe that documents that have a term from the query in their 
title are more likely to be relevant than documents that contain 
the term in the body of the document. To put it differently, 
the formula implies that there is an 80% chance that a user 
that is interested in a term will be also interested in one of the 
documents that contains the term in the title. Similarly, there 
is a 20% chance that the user will be interested in one of the 
documents that contains the term in its body. 

computeMinMax(0,0.2,1/4)

propeller

document 1

all edges:

Fig. 6. Connecting the word “propeller” with the documents. 

Note that the formulas for computing the edge weights 
that connect documents and queries to the graph follows 
the TF-IDF model. When computing the value for the ratio 
parameter, we consider the number of times the term appears 
in the document (the term frequency) and divide by the 
number of times the term appears in all documents (the 
document frequency). In other words, we multiply the term 
frequency by the inverse of the document frequency. An 
alternative formula for calculating the weight of an edge 
between a term and a document is shown below. This formula 
is based on the way the ranking function is computed in the 
Apache Lucene system ([10]). 

In the above formula, tf is the number of times the 

term appears in the document, numDocs is the total number 
of documents, and docFreq is the number of documents in 
which the term appears. In order to be consistent with the 
previous way of computing the edge weights, we need to 
multiply the weights of edges that represent the containment 
of a term in the title of a document by 0.8 and the weights 
of edges that represent the containment of a term in the body 
of a document by 0.2. In the experimental section of this 
paper, we compare the two ways of connecting queries and 
documents to the graph. 

Note that the main contribution of the paper is incorporating 
the similarity graph when returning relevant documents ranked 
based on their relevance to the input query. If we remove the 
similarity graph that is created from WordNet and Wikipedia, 
then we will only draw edges from the query to the words in 
the query and from the words in the query to the documents, 
which is equivalent to applying the TF-IDF model for ranked 
document retrieval. In other words, the paper proposes an 
extension the TF-IDF model by adding information about term 
similarity that can be extracted from WordNet and Wikipedia. 

V. SCORING FUNCTIONS 

First, let us examine the scoring function that is used 
by Apache Lucene ([10]), which is a popular software that 
contains a toolkit of routines for information retrieval. Given 
a document d and a query q, the scoring function is defined 
as follows. 

In the function, tf (t in d) denotes the number of ap-
pearances of the term t in the document d, numDocs refers 
to the total number of documents, and docFreq(t) refers 
to the number of documents in which the term t appears. 
This follows the TF-IDF formula because the second part of 
the formula is one way of computing the inverse document 
frequency. The scoring function can be multiplied by boosting 
and normalizing parameters, which are skipped because they 
are optional parameters and require user tuning. 

Next, let us consider how the similarity graph can be used 
to compute the value of the scoring function. Recall that the 
weight of an edge in the similarity graph is used to represent 
the conditional probability that a user is interested in the 
destination concept given that they are interested in the source 
concept. We compute the directional similarity between two 
nodes using the following formula.X 
A →s C = PPt(C|A) (1) 

Pt is a cycleless path from node A to node C Y 
PPt(C|A) = P (n2|n1) (2) 

(n1,n2) is an edge in the path Pt 

In the above formula, P (n2|n1) is used to denote the weight 
of the edge from the node n1 to the node n2. Informally, 
we compute the directional similarity between two nodes 



dX1 
MAP(Q) = Precision(Ri) 

d 
i=1 

1 |w1, w2| = 0.8 ∗ min(α, w1 →s w2) ∗ 
α 

#(relevant items retrieved) 
Precision(Ri) = 

#(retrieved items) 

in the graph as the sum of all the paths between the two 
nodes, where we eliminate cycles from the paths. Each path 
provides evidence about the similarity between the terms 
that are represented by the two end nodes. We compute the 
similarity between two nodes along a path as the product of the 
weights of the edges along the path, which follows the Markov 
chain model. Since the weight of an edge along the path is 
almost always smaller than one (i.e., equal to one only in rear 
circumstances), the value of the conditional probability will 
decrease as the length of the path increases. This is a desirable 
behavior because a longer path provides less evidence about 
the semantic relationship between the two end nodes. 

Note that the value of A →s C can be potentially greater 
than 1. Therefore, we will apply the following function for 
normalizing the relevance score between two internal nodes 
of the graph (i.e., nodes that do not represent queries or 
documents). 

(3)

In previous work (e.g., [44], [43]) we have shown that 
value of 0.1 for α produces data of good quality. Here, we 
will use this value. The function transforms the relevance 
score between two internal nodes into the range [0,0.8]. The 
value 0.8 guarantees that if we substitute a term in the query 
with a different term, then the new term will be weighted 
with value 0.8 or less. Using this new function, the relevance 
score between a query q and a document d is computed as 
follows, where w1 iterates over all nodes that can be reached 
by following an edge from q and w2 are nodes that have a 
direct edge to d. P 
relevance score(q, d) = P (w1|q)∗|w1 →s w2|∗p(d|w2) 

w1,w2 

In the above formula, for each value of w1 we restrict w2 

to the 50 nodes that have the highest relevance score with w1. 
In other words, we consider up to 50 substitutions for every 
term in the query. 

VI. EXPERIMENTAL RESULTS 

The Cranfield benchmark ([6]) contains 1400 short docu-
ments about the physics of aviation. Each document contains 
a title and a short body that is usually around 10 lines. As part 
the benchmark, 225 natural language queries were created. As 
part of the study, the documents and queries were examined 
by experts in the area and the documents that are relevant 
to each query were identified. The relevant documents were 
clustered in four groups. Highly relevant documents were 
given relevance score of 1, less relevant documents were given 
a relevance score of 2, even less relevant documents were given 
a relevance score of 3, while documents of minimum interest 
were given a relevance score of 4. 

As Table I suggests, for each algorithm we ran four ex-
periments. In the first experiment, we only considered the 
documents with relevance score of 1 to be relevant. In the 
second experiment, we only considered the documents with 
relevance scores of 1 and 2 to be relevant and so on. Each 

Rel. 1 Rel. 1-2 Rel. 1-3 Rel. 1-4 
Similarity Graph + 
our weights 

0.29 0.29 0.30 0.35 

Similarity Graph + 
Lucene weights 

0.28 0.28 0.30 0.34 

Lucene Algorithm 0.25 0.25 0.27 0.29 
Lucene Algorithm + 
our weights 

0.26 0.26 0.27 0.30 

TABLE I 
MAP VALUES FOR DIFFERENT ALGORITHMS AND DEGREES OF 

RELEVANCE FOR THE CRANFIELD BENCHMARK. 

of the experiments took about 10 minute to complete on a 
typical laptop with an Intel Core i7 processor and 4GB of 
main memory. 

For each query, we computed the mean average precision 
score, which is also known as the MAP score. Consider the 
query Q. Let {Di}d be the relevant documents. Let Ri bei=1 
the set of documents that are retrieved by the algorithm until 
document Di is returned. Then the MAP score for the query 
Q is defined as the average precision of Ri over all values, or 
formally as follows. 

(4)

The precision for Ri is defined as the fraction of retrieved 
documents that are relevant, or formally as follows. 

(5)

Next, let us examine Table I in more details. The MAP 
score is the average MAP value over all 225 queries. The 
top algorithm is the algorithm that is described in the paper. 
As the table suggests, it produces higher value for the MAP 
metric than the Apache Lucene algorithm. The reason is that 
the later performs simple keywords matching and does not 
consider the semantic relationship between the terms in queries 
and documents. It is clear from the table that our algorithm 
produces especially good results when we consider documents 
with relevance score from 1 to 4 to be relevant. The reason is 
that our algorithm is strong at identifying documents that are 
weakly related with the input query. Alternatively, the Apache 
Lucene algorithm fails to discriminate between documents that 
do not contain the query words. 

It is also worth noting that our edge weight functions for 
connecting the query and document nodes to the graph produce 
slightly higher values for the MAP score than the functions 
that are used in the Apache Lucene algorithm. 

VII. CONCLUSION AND FUTURE RESEARCH 

In two previous papers, we showed how to create a sim-
ilarity graph that stores the degree of semantic relationship 
between terms ([44], [43]). In this paper we apply the semantic 
similarity graph to the problem of ranked document retrieval. 
Specifically, we enhanced the TF-IDF document retrieval 
algorithm with the similarity graph and presented an algorithm 



that retrieves documents based on the similarity between the 
terms in the documents and the terms in the query. We 
experimentally validated the algorithm by showing that the 
similarity graph can contribute to achieving more relevant 
results than using the TF-IDF approach alone. 

In the future, we plan to continue exploring new applications 
of the similarity graph. Incorporating the graph in a query 
answering system that uses an ontology and using the graph 
to cluster documents based on the meaning of the terms in 
them are two possible areas for future research. 
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