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 Abstract—Recently, several researchers have 
discovered the need for radios to use description 
techniques for the objects in the wireless realm. The 
concept of RF field-programmable analog array (FPAA) 
was also proposed recently and the lack of hardware 
abstractions was identified as a problem. We propose a 
hardware abstraction for RF FPAAs, which enables an 
open RF-digital interface. We advance the concept of 
wireless thin clients. These clients are connected to the 
cloud using the open RF-digital interface. We describe 
the architecture of a comprehensive wireless ontology. 

1. INTRODUCTION 

Modern civilian, public-safety, and military wireless 
networks are highly heterogeneous. It is highly desirable for 
new radios, services, and applications to be readily 
incorporated, without significant changes elsewhere in the 
network. One of the prerequisites for achieving this goal is 
the development of a language that can be used to describe 
both the capabilities of RF components and their current 
operational status. In traditional radio design, description 
techniques are not necessary because all the metadata is 
constant and it therefore can be assumed known. The need 
for such a language is recognized in several publications [1-
6]. Here we extend these previous works and in Section 2 
we propose a hardware abstraction for RF field-
programmable analog arrays (FPAAs). Furthermore, we 
extend the cloud concept to the radio world and in Section 3 
propose a radio architecture consisting of thin radio clients 
connected over a packet-based interface to a wireless cloud.  
Section 4 is devoted to a comprehensive cognitive radio 
ontology that is the foundation of semantic wireless 
networking. 

2. HARDWARE ABSTRACTION FOR RF FPAAs 

RF field-programmable analog arrays (FPAAs) are 
reconfigurable integrated circuits for analog RF signal 
processing. Not only their components are software-defined, 
but their topology is also software-defined. Here we 
consider a “coarse-grain” reprogrammable RF FPAA that 
consists of multiple amplifiers, mixers, filters, matching 
networks, etc. RF FPAAs are attractive because they can 
implement radio access technologies (RATs) to be defined 
in the future, i.e. they are “future-proof” [1]. Currently RF 
ICs are optimized for a single RAT and are re-designed for 
every new RAT. 

The need for an appropriate Hardware Description 
Language (HDL) is known [1]. To develop an HDL for RF 
mixed-signal programmable ICs, we extend the VITA-49 
standard [7].  VITA-49 defines an open interface for a radio 
receiver with a fixed topology [7]. It defines a packet-based 
interface, i.e., it is a software bus. There are packet encoders 
and parsers/decoders on either side of the connection. We 
extend VITA 49 and define control and extension control 
packets, in addition to the data and context packets. The 
meaning of the context packets is also extended and they 
include parameters that pertain to both the transmitter and 
receiver such as those defined in [7], plus additional 
parameters such as reconfiguration time, partial vs. full 
reconfiguration. Collectively these parameters describe 
completely the RF FPAA. Every time one or more of these 
parameters change, the RF encoder sends a context packet 
containing the current value of the parameters that have 
changed. Initially, the RF IC sends an extension context 
packet to describe its possibilities. The topology (and 
therefore the performance) can be reconfigured using 
commands in a way that is similar to the reconfiguration 
process of a digital gate-level FPGA. The control packets 
are generated on the digital hardware side and contain 
metadata also pertaining to both the transmitter and receiver. 
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These control packets are the reconfiguration commands. 
Controlling the topology of a coarse-grain RF FPAA is done 
using reference points. The control packet decoder translates 
the metadata to the hardware settings of each component on 
the RF FPAA. Note that this description has a hierarchical 
structure, because the metadata descriptions of several 
circuit elements can be combined into aggregate context or 
control packets. This aggregate control or context packet 
describes the entire RF FPAA. 

3. WIRELESS THIN CLIENTS AND CLOUDS   

The area of cloud computing has experienced 
significant growth recently and there have been attempts to 
transfer the cloud concept to wireless systems [8-12]. In 
most cases “wireless cloud” means a collection of radios or 
a collection of base stations connected using the X2 
interface. In these cases the connection to the cloud is over 
the air interface and the “client” is a stand-alone (or fat) 
radio. We propose a different type of wireless architecture 
consisting of a thin client and a cloud, connected using a 
packet-based interface, illustrated in Figure 1. A radio thin 
client can be loosely defined as a radio without the 
capability to perform modulation and coding. This thin radio 
client includes, in general, a software-defined front-end such 
as an RF FPAAs, some mixed-signal elements such as data 
converters, and even some digital hardware. The digital 
hardware implements digital signal processing that is 
independent of the radio access technology (RAT) such as 
decimation/interpolation. The thin client may also include 
digital signal processing hardware to perform spectrum 
sensing. The digital signal processing (modulation, coding, 
etc.) and all higher-layer protocols that implements the RAT 
take place in the cloud. (The cloud concept blurs to some 
extent the distinction between radio and RF device.) The 
thin radio cannot decode signals on its own, but can act as 
an amplify-and-forward relay. The cloud provider manages 
the infrastructure that runs the radio software. In the basic 
model clouds can offer infrastructure as a service (IaaS), 
where the cloud offers only digital hardware. There are 
higher levels of service such as “platform as a service”, 
where in addition to digital hardware, the cloud offers 
system-level software, and “radio software as a service”, 
where the software that implements a RAT together with the 
cognitive engine (CE) is offered as a service. In this model 
users are given access to radio software on an “on-demand” 
basis. This eliminates the need to install and run the radio 
software on the radio platform, which simplifies 
maintenance and support. 

There are some key differences between radio clouds 
and computing clouds. One difference is the interface 
between the thin client and the cloud. In computing clouds 
this interface is trivial and is usually TCP/IP. In radios the 
interface is not a trivial issue. To be able to attach 
seamlessly thin clients to the cloud the RF-digital interface 

must be open and software-based; none of the closed 
interfaces [13, 14] that currently exist are appropriate. 

Another difference between computing and radio 
clouds is that thin computing clients cannot offer any 
services to the cloud, while thin radio clients can offer 
certain services (such as spectrum-sensing) to the cloud. 

The cloud concept allows significant new 
opportunities, particularly for cognitive radios. The CE is an 
“intelligent” agent that manages the cognition tasks in a 
cognitive radio. The CE can be implemented as an 
independent entity interacting with the reconfigurable RF 
front-end, or as a collection of interacting entities each 
fulfilling a specific role. One of the important tasks for the 
CE is to determine which radio protocol is active at any one 
time, and at what parameters, such as RF center frequency 
and RF power this protocol will operate. Cognitive devices 
should dynamically detect available RATs and available 
resources. Therefore the CE must have domain knowledge 
of radio communication. Based on this knowledge, the CE 
can optimize the various parameters and protocols. There is 
one important difference between the CE and other 
applications, such as web browsing; the CE must have 
hardware-specific knowledge. Some metadata parameters, 
such as RF center frequency and RF power level are 
physically determined only by the RF front-end. On the 
other hand, in a cloud architecture the CE must be isolated 
from the underlying hardware. This is possible only with the 
developed hardware abstraction. 

thin 
radio 

Figure 1 Thin radio client connected to a cloud 

4. COGNITIVE RADIO ONTOLOGY  

Ontology is a general mechanism to describe objects in 
a certain domain and the relationships among these objects. 
The Resource Description Framework (RDF) is a simple 
ontology language that describes things using triplets, e.g., 
subject, predicate, object. In [3] the Network Description 
Language (NDL), an RDF-based ontology was proposed. 
Another example is the Web Ontology Language (OWL) 
[15]. An OWL-based cognitive radio ontology was 
proposed in [4]. The Rule Interchange Format (RIF) is 
another possibility [16]. We envision a comprehensive 
cognitive radio ontology, including: 

1) The current and potential parameters and topology 
of the RF FPGA. All parameters in the control and 
context packets should be described. For example,  



 

  
   
     
    

 
 

 

 
  

 
      

     
 

 

 
   

 
 

 
 

 

 
   

   

 
  

 
  

 
 
 

  

  
 

   
  

 

 
   

 
  

 

 
 
 

   
 

  
  

  

 
 
 
 

 

  
  

  
 

 
  

 
  

   
 

 
     

  
   

  
  

  
  

 
  

 
 

 
  

   
    

Device and 
RFFreuqency some MHz[>=5000 <=6000] and 
RFBandwidth some MHz [>=1 <=20] and 
OutputPower some dBm [>=-4 <=30] 

The describes a device with RF frequency between 
5000 and 6000 MHz, RF bandwidth between 1 and 20 MHz 
and output power between -4 and 30 dBm. Note that 
measurement units are not part of OWL. However, 
reasoning with them can be easily introduced. An example 
describing the topology of an RF front-end would be as 
follows.  

RFFPAA SubClassOf contains 1 (Filter and 
(bandwidth some MHz [>=20]) and connected_to min 1 
LNA and connected_to min 1 
(Analog_Digital_Converter  and (number_of_bits 
some int[>=6]) 

Note that the mapping between such ontology 
descriptions and the context and control packets introduced 
earlier is one-to-one. The ontology descriptions are used 
within the cloud and the control and context packets are 
used over the interface to the thin radio client.  

2) The parameters of the digital hardware. The 
parameters that need to be described depend on the 
technology. For example, for FPGAs the 
parameters are number of configurable logic 
blocks, number of I/O pins, I/O logic level, 
configuration method, and power consumption. 

3) RATs such as: GSM, Bluetooth, 
IEEE802.11a/b/g/n, LTE, including MAC-level 
protocols such as IEEE802.11r, IEEE802.21, etc. 

4) System parameters. Location is the most important 
system parameter, but there are other parameters 
that could be useful. For example, battery life can 
be used in energy-aware computing. 

5) Information and user types (types of data, types of 
users, priorities, Quality of Service (QoS)) 

6) Current network topology, available networks, and 
their parameters (data rates, cost of access, security 
protocols, etc.). For example, to describe a Wi-Fi 
device that is connected to an Access Point (AP), 
one can use   
Device and connectedTo some (BSSID value 
[XXXXXX]) 
The AP with the above BSSID can be described as 
having Ethernet interface. Note that the device can 
be connected to other devices as well. 

7) Spectrum etiquette parameters. The etiquette 
includes RF frequency, bandwidth, start time and 
duration of transmissions, power mask, antenna 

pattern and polarization, channel monitoring time, 
channel monitoring bandwidth, etc. 

8) Policies, such as regulatory policy, service provider 
policy, user policy, mission policy, security policy, 
vendor policy, etc. To resolve potential conflicts 
among them, policies can have different priorities.  

This cognitive radio ontology is broader than [4] in all 
categories. It also allows new parameters to be easily 
introduced, since there cannot be one set of parameters 
acceptable to the entire RF community. Note that the 
descriptions must be made by multiple domain experts. 

5. SEMANTIC WIRELESS  NETWORKS  
 

Radios that understand the wireless realm form 
semantic wireless networks. In a semantic wireless network, 
radio clients can use services that are dynamically 
discovered without prior negotiations between client and 
service providers. Note that in addition to radio clients and 
service providers there may be middle agents; the term 
“agent” includes all of these. All agents can access and 
interpret Web-published ontologies, and communicate using 
messages whose content is represented or can be interpreted, 
in terms of published ontologies. Automatic service 
discovery is the automatic location discovery of devices that 
provide particular services. Currently this service is 
provided by a human who has to locate the RF device and 
execute the service manually. Servers can advertise in a 
service registry or be discovered using an ontology search 
engine. Service providers publish descriptions of their 
capabilities using a formal description language, such as 
OWL. There is a service profile – what inputs does it 
require and what outputs does it provide, and a service 
model – how does it work. The ontology must provide 
declarative API for the automatic execution of the services. 
Clients can search using an ontology query language, 
interpret these descriptions, and select appropriate services. 
As a result of this style of interaction, clients will be able to 
adjust smoothly when new devices and new RATs are 
introduced. A semantic wireless network is a highly 
intelligent network where the radios can, on their own and 
without human intervention, carry out tasks such as 
identifying available spectrum and spectrum usage policy; if 
necessary, buy or rent spectrum; identify available 
networks, RATs, and decide which one to use, etc. The 
radios can ensure that the selected RF frequency, RAT, 
network, etc. will comply with all applicable policies based 
on geographic location, user preferences, etc. Semantic 
wireless networks offer “personalization”, where different 
users have access to different parts of the ontology 
descriptions and the network behaves differently for 
different clients. 

Note that the CE must have a semantic search engine. 
Previous works such as [6] assume that cognitive radios will 
have a stand-alone search engine. In a stand-alone search 

https://IEEE802.21


 

  

  
 

 
 
 

  
 

  
     

 
 

   
 

    
 

    
   

    
 

  
   

    
 

  
    

  
 

    
   
    

 

  
 

   
 

 

 
 
 
 

 
  

 
 

  
 

   
 
 

   
 
 

 
   

  
 

 
  

   
 

  
  

  
  

  
  

  
  

   
   

    
 

  

 
 
 

 
 

  
    

 
   

   
  

  
    

        
 

         
 

   

 

engine the crawler browses the description documents of 
policies, hardware, etc. Then the document metadata is 
stored in an index based on which the query engine 
evaluates query requests. The cloud architecture facilitates 
the semantic search done by the CE and allows a different 
type of a search engine, where there is no index of 
documents. Instead, the search engine distributes queries to 
other search engines and combines the results afterwards.  

Consider the following simple example, where the 
current regulatory policy specifies three unlicensed bands, 
ISM1 between 900-928 MHz, ISM 2 between 2400-2483.5 
MHz, and UNII bands between 5 and 6 GHz. They can be 
described using the Manchester OWL syntax as follows: 

ISM1 SubClassOf  Band and Available and (bandwidth 
some MHz [>=900, <=928]) and (maxPower some mW 
[<=1000]) 

ISM2 SubClassOf  Band and Available (bandwidth some 
MHz [>=2400, <=2483.5]) 
and (maxPower some mW [<=1000]) 

UNIILow SubClassOf  Band and Available and 
(bandwidth some GHz [>=5.15, <=5.25]) and (maxPower 
some mW [<=50]) and (use only Indoor) 

UNIIMid SubClassOf  Band and Available and 
(bandwidth some GHz [>=5.25, <=5.35]) and (maxPower 
some mW [<=250]) and (use only (Indoor or Outdoor)) 

UNII2 SubClassOf  Band and Available and (bandwidth 
some GHz [>=5.47, <=5.725]) and (maxPower some mW 
[<=250]) and (use only (Indoor or Outdoor)) 

UNIIHigh SubClassOf  Band and Available and 
(bandwidth some GHz [>=5.725, <=5.825]) and 
(maxPower someW [<=1]) and (use only Indoor) 

So if the CE makes a query about unlicensed bands, there 
will be multiple answers. Additional queries or reasoning 
can be invoked to try to improve the decision. Inference is 
the process of deducing new information [17]. If the 
location of the RF device can be inferred, then the choices 
will be narrowed. Similarly, the CE can infer other 
parameters such as QoS, user preferences, etc.   

6. CONCLUSIONS  

In this paper by leveraging the VITA-49 standard we 
introduced a Hardware Description Language for RF 
FPAAs. We also advance a radio architecture based on thin 

radio clients connected to a cloud using a packet-based 
interface. These cognitive radio clouds rely on sharing of 
resources to achieve economies of scale, and take the 
concept of converged infrastructure to a higher level. 
Because it becomes much easier to add to the cloud another 
thin client, new business models become possible. For 
example, it becomes possible to have free voice and/or data 
services with limited QoS or data rate, with revenue derived 
from the enhanced QoS or from advertising.We describe a 
comprehensive ontology as the foundation of semantic 
wireless networks. The ontology will be dynamic and will 
expand as new radio architectures and solutions are being 
developed. 
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