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ABSTRACT 

Experimental Testing of a Lightly Reinforced Concrete Shear Wall 

 

Jerry Hue Truong Luong & Rory Sebastian de Sevilla 

 

This project report summarizes the findings of a half-scale laboratory test on a slender lightly 

reinforced concrete (LRC) shear wall subjected to cyclic loading. LRC shear walls, specifically those of 

pre-1980’s type design, have longitudinal and horizontal reinforcement ratios near the code minimum, 

while often lacking confinement in the wall end-zones. These walls are thought to exhibit brittle 

compressive failure mechanisms such as rebar buckling or concrete crushing based on observations from 

past earthquakes. Non-ductile concrete buildings are a large contributor to earthquake losses around the 

globe, as noted in the San Fernando (1971) and Christchurch (2011) earthquakes, to name a few. In the 

U.S., buildings constructed before the 1976 UBC are at risk for collapse and pose a significant threat to 

occupant life-safety and community resilience. Thus, there is a pressure among structural engineers to 

create feasible and economical design solutions to address these non-ductile concrete performance issues.  

The wall test performed in this paper reproduced a unique failure mechanism of LRC walls tested 

at the University of Auckland, University of Illinois, and University of Canterbury where there is a limited 

distribution of plasticity, such that there are few, wide primary cracks and secondary cracks do not develop. 

Also, the several of these tests (Cal Poly and Auckland) exhibit higher than anticipated displacement 

ductilities due to rocking at the wall-foundation interface. The experimental test results from this project 

enable the examination of current industry practice for conducting nonlinear analysis of LRC walls as 

discussed in Doan & Williams (2020). 

 

 

 

Keywords: [Non-ductile concrete shear wall, lightly-reinforced shear wall, slender wall, pre-1980’s 

detailing, rectangular structural wall] 
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1. INTRODUCTION 

1.1. Background 

Reinforced concrete (RC) buildings are common in California, especially in the most populated cities of 

Los Angeles, San Francisco, and San Diego. The construction of RC buildings is not new, with the late 

1800’s marking their first construction in California (Wermiel, 2009). Since that time, engineers have faced 

challenges designing them for zones with high seismicity. Each major earthquake has propelled a greater 

understanding of seismic RC design, but often at the cost of collapsed structures and lost lives.  

Non-ductile RC buildings are the most vulnerable concrete structures to catastrophic earthquake 

damage or collapse. These buildings have insufficient detailing to allow the lateral force resisting system 

(LFRS) to withstand large earthquake forces and displacement demands. The LFRS can be comprised of 

either concrete frames or concrete shear walls, and while each system has its own design concerns to achieve 

adequate performance when subject to seismic loading this report will focus on shear walls. 

The code-mandated design of RC shear wall systems in California per the American Concrete 

Institute (ACI) Building Code Requirements for Structural Concrete (ACI 318) has evolved dramatically 

over time. Some of the most important updates happened after the San Fernando earthquake in 1971. As a 

result, RC buildings built around this time and before (or, pre-1980s construction in general) are specifically 

susceptible to damage in a major seismic event. Unfortunately, many pre-1980s RC buildings exist in the 

greater Los Angeles and San Francisco areas. Recent efforts by the Concrete Coalition to quantify the 

number of vulnerable RC buildings in California yield estimates indicating between 16,000-17,000            

pre-1980s RC buildings exist in California with over 3000 in Los Angeles alone (Comartin, 2011). The 

survey also confirms a large percentage of these structures utilize RC shear wall systems as the LFRS.  

Pre-1980s non-ductile RC shear walls have distinct detailing flaws which are most concerning to 

the engineering community, including low longitudinal reinforcement ratios and no boundary elements. 

These walls have undesirable failure mechanisms when subjected to large earthquake lateral forces: lightly 
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reinforced walls may not develop plastic hinges necessary for ductile behavior to occur, and walls without 

modern boundary element detailing are susceptible to sudden failure due to rebar buckling or concrete 

crushing in the highly stressed wall end zones. The occurrence of these failure mechanisms can be observed 

in the Alaska earthquake of 1964, San Fernando earthquake of 1971, Chile earthquakes of 1985 and 2010, 

and others (Birely, 2012). The consequences of these non-ductile failures are catastrophic to the building 

and its inhabitants. 

Structural engineers have been aware of the dangers associated with non-ductile RC shear walls for 

several years, but the public is slower to respond to this danger. Financial reasons are a barrier to building 

owners retrofitting their property to prevent building collapse before a large seismic event occurs 

(Bernstein, 2005). As a result, the structural engineering profession is seeking to better understand the 

performance of pre-1980s RC shear walls to economically mitigate the related risks. 

1.2. Objective and Scope 

The primary objective of this project was to investigate the behavior of flexure dominated lightly reinforced 

concrete (LRC) shear walls subjected to cyclic loading. The secondary objective is to understand current 

methodologies available on increasing performance of LRC shear walls, mostly with retrofits involving 

fiber-reinforced polymer (FRP). The experimental findings from this project were utilized to review current 

industry practice for nonlinear analysis of LRC walls in Doan & Williams (2020).  

1.3. Organization of Contents 

The contents of this paper are centered around the full-scale LRC wall test performed by the project team.   

Chapter 1 provides insight into the background and the issues with LRC and non-ductile RC walls.  

Chapter 2 presents typical failure modes of LRC walls after seismic events, a survey of relevant ACI-318 

code changes surrounding concrete walls, existing literature involving experimental testing of LRC walls, 

and existing literature involving experimental testing of modern walls. 
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Chapter 3 overviews the dimensions, materials, and sectional capacities of the tested wall specimen. 

Chapter 4 provides details on the experiment setup, loading systems, instrumentation, and construction of 

the test specimen. 

Chapter 5 describes the experimental testing of the wall specimen including the loading protocol, damage 

progression, and results.  

Chapter 6 presents the analysis methods chosen to predict the wall specimen’s global behavior.  

Chapter 7 summarizes key findings of the experimental testing performed and provides recommendations 

for further research. 

The appendices contains supplementary information used during the design and implementation of the 

experimental test.  



LITERATURE REVIEW 

4 

 

2. LITERATURE REVIEW 

This chapter presents a review of the seismic design and performance of flexurally-dominated, lightly-

reinforced concrete (LRC) walls. Section 2.1 presents an overview of LRC damage types observed after 

significant earthquakes. Section 2.2 presents a focused overview of the progression of the ACI 318 design 

provisions for detailing boundary element rebar. Section 2.3 provides an overview of experimental tests 

that examine the response of LRC walls which do not contain boundary elements. Section 2.4 contrasts the 

performance of modern walls to vintage walls. 

2.1. Earthquake Damage of Lightly Reinforced Concrete Shear Walls 

The documentation of building damage after earthquakes is mainly attributable to engineers who perform 

reconnaissance and disseminate these observations in journal articles. The information in these reports or 

articles is often sparse regarding structural wall damage, yet there are a number of researchers that have 

synthesized data about recorded structural wall damage to identify trends and for comparison to 

experimental testing of walls (Wood et al., 1987; Kaplan et al., 2004; Moehle, 2011; Kam, Pampanin, & 

Elwood, 2011; Birely, 2012). This section summarizes the most relevant types of damage specifically for 

flexure-dominated LRC shear walls.  

2.1.1. Compressive Boundary Element Damage 

Compressive boundary element damage is evident when the end zones of a rectangular wall have become 

highly stressed usually due to excessive cyclic loading. Flexural-compression failures typically result from 

this type of damage and are visually identifiable by bar buckling and/or concrete crushing in the wall end 

zone. Examples of this failure mode are shown in Figure 2-1. A survey of 91 damaged buildings with 

reinforced concrete walls spanning between the 1957 Mexico City Earthquake to the 2010 Chile Earthquake 

reveals that this damage type was the governing behavior in about 50% of the damaged walls in the U.S. 

and Chile (Birely, 2012). Similarly, the 2011 Christchurch Earthquake produced many flexural-

compression wall failures, especially in pre-1980s construction (Kam et al., 2011). It is widely accepted 
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that these failures are due to poor ductility detailing as well as inadequate horizontal and vertical 

reinforcement at critical regions of the walls. 

 

 

2.1.2. Flexural Tension Damage / Rebar Fracture 

Flexural tension damage is evident when the rebar typically in the end zones of a rectangular wall have 

fractured due to excessive cyclic loading and/or axial tension. These failures are visually identifiable in 

locations where concrete has spalled, exposing fractured rebar segments. Significant horizontal cracking is 

another indicator of axial tension and thus possible rebar fracture. Minor rebar buckling prior to rebar 

fracture is common. Examples of this failure mode are shown in Figure 2-2.  

Figure 2-1: Compressive Boundary Element Damage in the 2011 Christchurch Earthquake, Kam et al. (2011) 
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(Left) Longitudinal rebar fracture following the 1971 San Fernando Earthquake (Birely, 2012) and 

(Right) Longitudinal rebar fracture following the 2011 Christchurch Earthquake (Kam et al., 2011) 

Figure 2-2 (right) shows a structural wall in the Gallery Apartments building in Christchurch is a 

particular case of flexural tension damage where vertical rebar fractured along a single primary crack plane 

(Kam et al., 2011; CERC, 2012; Hoult et al., 2018). The concentrated yielding of the vertical rebar crossing 

the primary crack was due to the lack of secondary crack formations (CERC, 2012). This failure mode was 

also observed in the El Faro building 1st floor shear walls during the 1985 Chile Earthquake (Hoult et al., 

2018).  

2.1.3. Summary of Earthquake Damage  

In general, flexural-dominated LRC walls have exhibited two types of failure modes after earthquakes: 

compressive boundary element damage resulting in flexural-compression failures, vertical rebar buckling, 

and concrete crushing; and flexural tension damage resulting in vertical rebar fracture and a lack of 

secondary crack formations. Engineers believe these failures are non-ductile given how suddenly they can 

occur and because significant lateral strength capacity is lost. If vintage LRC walls are shown to have non-

ductile failures after earthquakes, it is relevant to investigate the progression of structural wall detailing to 

understand the context in which these walls could be constructed. 

Figure 2-2: Fracture of Longitudinal Reinforcement in Major Earthquakes 
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2.2. Progression of Structural Wall Detailing in ACI 318  

The design provisions from ACI 318 for detailing of reinforced concrete (RC) shear walls have changed 

significantly between the years 1971 and 2019. Note that only ACI 318-63, 71, 14, 19 are considered as it 

compares and contrasts walls design requirements for what is considered non-ductile and ductile detailing. 

More information on the historical changes in ACI 318 can be found in Behrouzi (2016). The most 

important changes came as earthquakes occurred and more knowledge about effective seismic design 

became available. This section presents a summary of the changes in relevant code provisions regarding 

wall reinforcement and boundary element detailing. 

2.2.1. ACI 318-63 

ACI 318-63 allows for two methods of design – via structural analysis or based on empirical formulas. The 

wall design requirements, per ACI 318-63 Chapter 22, are as follows: 

• Minimum vertical wall reinforcement: 0.0015*reinforced section of the wall, if of reinforcement 

(ACI 318-63 §2202(f)). 

• Minimum horizontal wall reinforcement: 0.0025*gross area (ACI 318-63 §2202(f)). 

• Minimum curtains of reinforcement: Walls more than 10 inches thick need two curtains (ACI 318-

63 §2202(g)). 

• Spacing of reinforcement: No. 3 at 18” o.c. (ACI 318-63 §2202(g)). 

2.2.2. ACI 318-71 

ACI 318-71 allows for two methods of design – via structural analysis and empirical formulas. Changes to 

the empirical wall design requirements, per ACI 318-71 Chapter 14, are as follows: 

• Minimum vertical wall reinforcement: 0.0015*gross area but may be reduced to 0.0012 if of a 

specified yield strength of 60 ksi and No. 5 or smaller reinforcing is used (ACI 318-71 §14.2(f)).  

• Minimum horizontal wall reinforcement: 0.0025*gross area but may be reduced to 0.002 if of a 

specified yield strength of 60 ksi and No. 5 or smaller reinforcing is used (ACI 318-71 §14.2(f)). 
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2.2.3. ACI 318-14 

ACI 318-14 has two chapters regarding the design of walls resisting gravity and lateral forces – ordinary 

and special structural walls. Special structural walls require increased detailing and are required in regions 

with high seismicity. Modifications to the wall design requirements are listed in the following sections. 

2.2.3.1. Requirements for Ordinary Structural Walls 

ACI 318-14 Chapter 11 provides design requirements for non-prestressed cast-in-place walls.  

• Minimum vertical and horizontal wall reinforcement: based on ratio of concrete strength to ultimate 

shear demands (ACI 318-14 §11.6).  

• Minimum spacing of longitudinal reinforcement: Minimum spacing of 18 inches on center or 3 

times the wall thickness. If shear reinforcement is required, spacing is limited to 1/3 times the wall 

length (ACI 318-14 §11.7). 

• Minimum spacing of transverse reinforcement: Minimum spacing of 18 inches on center or 3 times 

the wall thickness. If shear reinforcement is required, spacing is limited to 1/5 times the wall length 

(ACI 318-14 §11.7). 

• Transverse ties: If longitudinal steel is required for axial strength or if Ast exceeds 0.01Ag, 

longitudinal reinforcement will be tied with transverse ties. (ACI 318-14 §11.8). 

2.2.3.2. Requirements for Special Structural Walls 

ACI 318-14 Chapter 18 provides design requirements in §18.2.1.5, §18.2.1.6(g), and T. R18.2 for special 

structural walls.  

• Shear-span and aspect ratio: Geometry of wall affects the governing design provisions of walls 

(ACI 318-14 T.R18.10-1). 

• Minimum vertical and horizontal wall reinforcement: the required reinforcing ratio, ρl , is 0.0025 

(ACI 318-14 §18.10.2) but may be reduced to values found in ACI 318-14 §11.6 based on the 

expected shear demand.  
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• Boundary element detailing: Special boundary reinforcing is required for flexural dominated walls 

where concrete strains exceed those prescribed by ACI 318-14 §18.10.6.2. Boundary element shall 

extend horizontally into the compression zone (ACI 318-14 §18.10.6.4(a)). Transverse 

reinforcement shall satisfy requirements for columns of special moment frames ACI 318-14 

§18.10.6.4(e)). 

2.2.4. ACI 318-19 

With the release of ACI 318-19, there are even more requirements on detailing of the boundary elements. 

Detailing issues with under-reinforced concrete shear walls are addressed to prevent rupture of rebar at a 

crack plane. As a result of more knowledge of better detailing and nonlinear performance of concrete shear 

walls, several changes were implemented. 

2.2.4.1. Requirements for Special Structural Walls 

• Longitudinal reinforcement: boundary reinforcement steel is limited to the region of 0.15 lw  from 

the ends of the wall, which is intended to promote the formation of secondary flexural cracks in the 

plastic hinge region, as noted in ACI 318-19 §18.10.2.4.  

• Boundary element detailing: the geometry and drift capacity of the wall are considered in the 

boundary detailing, as discussed in ACI 318-19 §18.10.6.2. Additionally, more stringent 

requirements for detailing of horizontal rebar in the boundary element is provided (ACI 318-19 

§.18.10.6.4(e).  

2.2.5. Comparison of ACI 318 Requirements for Structural Walls 

This section compares the requirements of pre-1980’s shear wall reinforcement and detailing to modern 

requirements per ACI 318-14/19. Structural concrete walls designed to ACI 318-71 and prior were not 

required to have boundary element detailing. However, it is not uncommon to have columns integrated into 

the ends of the wall. This may have created issues with walls being over-reinforced, which may experience 

a shear-controlled failure or non-ductile failure. Earlier code provisions did not explicitly require limit state 

analysis and ductile detailing.  
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 The shear span and cross-sectional aspect ratio are factors that have considerable effects on inelastic 

performance of walls. ACI 318-14 requires checks on shear-span and cross-sectional aspect ratio to ensure 

that the wall behaves in a ductile manner. Additionally, ACI 318-14 requires special detailing for rebar in 

the regions experience high compressive strains and the region experiencing high inelastic deformation. 

When compared with ACI 318-63/71, ACI 318-14 has more stringent requirements for the design of 

concrete shear walls.  

ACI 318-19 furthers that by providing additional requirements for boundary element detailing, as 

well as minimum reinforcement requirements to prevent under-reinforced concrete shear walls. Based on 

recent studies, ACI 318-19 has modified requirements for detailing of rebar in the boundary zones and in 

the expected plastic hinge region. One significant change, with regards to the performance of flexure-

dominated lightly reinforced concrete shear walls, is the requirement of minimum longitudinal 

reinforcement in the boundary element. Additionally, no lap splices and tighter spacing is required in the 

region where plastic deformations is expected. These provisions are intended to improve distribution of 

plasticity, specifically secondary flexural cracking.   

2.3. Testing of Lightly Reinforced Concrete Shear Walls 

This section reviews the existing literature for experimental tests of rectangular, lightly reinforced concrete 

shear walls. The purpose of this section is to synthesize the procedures and results from the most relevant 

wall tests for comparison with the wall test performed in this paper. The tests are presented in chronological 

order and are summarized regarding each researcher’s purpose, test setup, specimen design, materials, and 

results with specific attention given to the LRC walls in each experiment. A summary table concludes the 

section along with final discussion. Relevant parameters of interest are discussed below as a preface: 

• Longitudinal Reinforcement Ratio: this parameter is the primary factor of interest for this paper. For 

reference, the minimum longitudinal reinforcement ratio per ACI 318-14 is 0.0025 for moderately 

loaded cast-in-place walls (§11.6.2). Therefore, the LRC walls explored in this literature review have 

just above or below this minimum ratio and have no substantial boundary element reinforcement.   
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• Wall Failure Mode: flexure-tension, shear, shear-compression, or web crushing (Birely, 2012). When 

a failure mode has caused the lateral load capacity of the wall to drop by at least 20% of the maximum 

achieved load in a laboratory experiment, this is considered a failure (Park, 1989). 

2.3.1.  Cardenas & Magura (1973) 

Cardenas and Magura were researchers from the University of Illinois investigating the flexural strength of 

concrete shear walls for high-rise buildings, testing six rectangular walls under quasi-static unidirectional 

loading. The test setup for the six specimens included loading rods attached to the laboratory floor for lateral 

load and post-tensioning rods for gravity load (Figure 2-3). The loading was meant to replicate the shear 

force diagram shown in Figure 2-4, acting on a lower portion of a taller wall. For ease of testing, the 

specimens were rotated 90 degrees to fit into the testing space. LVDT’s were used to measure base rotations, 

graduated scales measured lateral deflections, load cells measured axial and lateral loads, and strain gages 

measured longitudinal strains in the vertical rebar. 

 

Figure 2-3: Test Setup for Shear Wall Investigation, Cardenas & Magura (1973) 
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Figure 2-4: Shear and Moment Diagrams for a Typical High-Rise wall, Translated to an Equivalent Model for a Shorter Wall, 

Cardenas & Magura (1973) 

The specimen designs were based upon a survey of high-rise buildings in the Chicago area and 

cities on the West Coast. The main difference between the specimens was the amount of longitudinal 

reinforcement in the wall cross section: Specimen SW-1 had the lowest ratio at  �� = 0.0027. Other 

parameters for SW-1 can be found in Table 2-1. SW-1 failed in flexure governed by fracture of tension 

reinforcement at the base of the wall where one large crack formed (Figure 2-5). The researchers attributed 

this failure mode to the low amount of reinforcement and the relatively high cracking strength of the 

concrete. All the other specimens with higher reinforcement ratios failed due to concrete crushing. 

 

Figure 2-5:  Single Crack Plane at the Support of LRC Wall Specimen SW-1 After Testing, Cardenas & Magura (1973). 
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Cardenas and Magura calculated and measured ductility by comparing the ratio of curvatures at 

ultimate and at first yield of the rebar. These calculated values were based on Chapter 10 of ACI 318-71, 

and measured values were averaged over a 40 in. gage length near the base of the walls. In general, curvature 

ductility decreased with increasing longitudinal reinforcement ratio in the wall specimens, meaning that 

SW-1 had the greatest ductility equal to 7.0 (Figure 2-6). The next highest ductility was equal to 3.9 for 

specimen SW-6 with 8.5 times more reinforcement. 

In summary, this research and testing by Cardenas and Magura illustrated how changing the 

longitudinal reinforcement ratios and reinforcement schemes in concrete walls can drastically affect the 

curvature ductility and energy absorption characteristics of the walls. They also discovered a unique failure 

mechanism for lightly reinforced walls where a single horizontal crack plane forms at the wall-foundation 

interface and secondary cracks do not occur. 

2.3.2.  Ireland et al. (2007) 

Ireland and collaborating researchers at the University of Canterbury in New Zealand investigated an 

unconventional method of shear wall retrofitting using selective weakening techniques. As part of their 

shear wall program, they designed, constructed, and tested several benchmark walls via quasi-static cyclic 

uni-directional loading at two-thirds scale. Specimen W1 was the baseline specimen (with no selective 

weakening techniques) and had a low reinforcement ratio consistent with a typical pre-1980’s New Zealand 

structural wall. 

Figure 2-6: Moment-Curvature Relationships, Cardenas & Magura (1973) 
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The loading setup and instrumentation layout for specimen W1 can be seen in Figure 2-7. The 

tested wall was loaded to represent the lower portion of a much taller wall. The wall was subjected to a 

constant axial load via two post-tensioning rods on either side of the wall which spanned between a spreader 

beam and a steel foundation. The lateral force was applied with the horizontal actuator shown, and the 

wall’s movement was restricted by low-friction steel channels alongside the loading beam. Wall response 

was recorded using linear potentiometers, rotary potentiometers, load cells, and strain gauges on the rebar.  

The loading protocol used for specimen W1 was displacement controlled and is shown in Figure 

2-8. At each drift level, two complete cycles were performed. The researchers based this loading protocol 

off the ACI T1.1-01, 2001 recommended regime but used two-cycle sets instead of three-cycle sets, 

expecting the three-cycle set to be too demanding on the wall.  

Figure 2-7: Experimental Setup, Ireland et al. (2007) 

The specimen design was based on reinforcement details typical of construction practice from the 

pre-1980’s period in New Zealand. The longitudinal reinforcement ratio of specimen W1 was 0.47%, rebar 

was plain round reinforcement and spliced at the foundation level; additionally, the wall had no boundary 

elements (see Figure 2-9). Other parameters for W1 are found in Table 2-1. 
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Figure 2-8: Loading Protocol for Specimen W1, Ireland et al. (2007). 

 

 

Figure 2-9: Specimen W1 Reinforcement Scheme. Ireland et al. (2007) 
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The failure of specimen W1 was triggered by buckling and subsequent rupture of longitudinal 

reinforcement at the wall ends governed by a single crack plane at the wall-foundation interface. A ductile 

force versus displacement response was achieved up to 2.5% drift, although the wall was tested up to 3% 

drift (Figure 2-10). When considering the failure of the wall to occur at 2.5% drift, the displacement ductility 

of specimen W1 was about 10.  

2.3.3.  Lu et al. (2017) 

Lu et al. were researchers at the University of Auckland evaluating the appropriateness of the current 

minimum longitudinal reinforcement requirements for structural RC walls per the New Zealand Concrete 

Structures Standard (NZS 3101:2006). They performed a series of tests on six RC walls designed with 

minimum longitudinal rebar to investigate the failure mode observed by flexure dominated walls during the 

2010/2011 Canterbury earthquakes.  

The test setup for the wall specimens is shown in Figure 2-11 below. A horizontal actuator applied 

lateral load at the top of the wall, vertical actuators at each end of the wall applied axial load and moment, 

and a steel frame surrounding the wall provided out-of-plane stability. The loading was meant to replicate 

Figure 2-10: Experimental Hysteresis of Specimen W1, Ireland et al. (2007) 
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the net forces acting on a lower portion of a taller wall. String pots were used to measure horizontal drift at 

the top of the wall, portal gauges (displacement gauges attached to embedded steel studs) were used to 

measure axial strains and curvatures, and load cells monitored load throughout the tests. The cyclic loading 

protocol for testing was created in accordance with ACI 374.2R-13 and ACI ITG-5.1-07. All cycles after 

the theoretical cracking moment was reached were displacement controlled with three cycles per drift level.  

 

Figure 2-11: Test Setup for Shear Wall Testing, Lu et al. (2017) 

The six specimens varied by shear span from two to six, axial load ratio from zero to 6.6%, and usage of 

end ties from none to about 2.5 inches on center. The walls also had a longitudinal reinforcement ratio of 

0.53% and a thickness of about 6 inches. The dimensions of the test specimens were chosen at about half-

scale relative to the prototype wall. All specimens failed by rebar buckling and subsequent fracture of the 

longitudinal reinforcement. The researchers conclude that rebar buckling is particularly likely for LRC 

walls at moderate drifts. The drift capacity of all specimens except one was 2.5%, defined by a 20% global 

strength loss (see Figure 2-3 for a hysteresis of specimen C1). The researchers describe this seemingly 

ductile response to be overestimated by scaling issues of the reinforcement / crack widths and caution 

readers to expect full-sized walls to perform much worse.  
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In summary, the behavior of all six test walls was controlled by one to three large flexural cracks 

at the wall base. The axial load and transverse reinforcement were varied between specimens but had little 

effect on cracking patterns. Transverse end ties had no significant effect on global ductility. The plastic 

hinge was estimated using conventional methods but proved inaccurate for these lightly reinforced walls 

due to the lack of secondary cracking in the plastic hinge region. The researchers recommend that the 

minimum longitudinal reinforcement per ACI-318, Eurocode 8, and NZS 3101:2006 be revised due to the 

undesirable failure mode of these walls.  

 

2.3.4.  Summary of Lightly Reinforced Walls 

A summary of relevant conclusions regarding the lightly reinforced walls is presented below in addition to 

a table of important parameters for each test. In general, the walls had similar global ductility and failure 

mode. Each wall exhibited a distinct failure plane between the foundation block and the base of the wall. 

Most of the walls exhibited non-ductile behavior compared to the behavior of walls with modern detailing; 

however, the vintage walls reached higher than anticipated ductility values.  Despite this, Lu et al. (2017) 

notes that the drift capacity of scaled experimental tests may be inaccurately high when compared to the 

full-size prototype walls they represent.   

 

Figure 2-12: Experimental Hysteresis of Wall Specimen C1, Lu et al. (2017) 
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Table 2-1:Summary of Wall Tests of Lightly Reinforced Concrete Walls 

Researcher Specimen �� (%) �� (%) �′� (���) CSAR SS Ductility Failure Mode 

Cardenas & Magura (1973) SW-1 0.27 5.6 7.42 25 2.0 7.01 FT 

Ireland et. al. (2007) W1 0.47 4.7 3.63 8.2 1.3 10 FC 

Lu et. al. (2017) 
C1 0.53 3.5 5.58 9.3 2.0 12.5 FC 

C2 0.53 3.5 5.00 9.3 4.0 12.5 FC 

1 Listed value is curvature ductility. 
2 FT indicates flexural-tension failure (rebar fracture). FC indicates flexural-compression failure (bar buckling / concrete crushing). 
3 A flexural tension failure can occur after bar buckling and/or concrete crushing have occurred.  
4 Failure defined as 20% of maximum lateral force loss. 

 

 

2.4. Performance of Modern Concrete Shear Walls 

This section reviews the existing literature for comparisons between modern and vintage design 

requirements and analytical and experimental tests of modern reinforced concrete shear walls. The purpose 

of this section is to provide insight to the differences between modern walls and LRC walls with regards to 

the performance and failure modes, as reviewed in the previous section.      

2.4.1. Dashti and Dhakal (2013)  

Dashti and Dhakal (2013) compared analytical models of the performance of reinforced concrete shear 

walls designed under various standards. The main differences noted in the various standards are the 

detailing of the boundary elements and minimum reinforcement requirements. The authors distinguish two 

types of walls – pre-1980s and post- 1980s walls. They describe that pre-1980s generally perform poorly 

in seismic events due to lack of confinement detailing, inadequate reinforcement, and poor material 

properties. Consequently, pre-1980s walls were observed to experience concrete crushing and rebar 

buckling failures. Post-1980s walls were noted to fail from wall web buckling and fracture of vertical rebar 

in the boundary element. 
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Figure 2-13: Wall Sections, Dashti and Dhakal (2013) 

The various standards compared in the study were ACI 318-11, NZS3101:2006, and Eurocode 8. 

Additionally, the standards were compared to a case study wall built according to the NZS3101:1982, as 

shown in Figure 2-13. The walls were all slightly modified, such that shear and flexural capacities were 

similar. An axial load ratio, Na, of 25% was applied to the analytical models.  

From the comparison of the analytical models, it was noted that all the walls performed similarly 

in the linear range, specifically at cracking and yielding of rebar. Walls with boundary reinforcement 

detailing that extended beyond the compression depth were able to achieve larger curvature and 

displacement ductility. Walls lacking the required horizontal confinement length resulted in abrupt strength 

degradation and lower ductilities, regardless of the volumetric reinforcement ratio in the boundaries.  
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In summary, analytical models were created to compare the performance of various modern 

structural standards for concrete shear walls, specifically with regards to boundary element detailing. From 

the finite element modeling, the walls with the longest length of confined boundary reinforcement were 

able to achieve displacement and curvature ductilities on the magnitude of 2 and 8x larger than the original 

wall, respectively.  

2.4.2. Seismic Performance Limitations of Slender Reinforced Concrete Structural Walls  

Segura (2017) presented experimental results of modern walls and their deficiencies. Segura mentions that 

modern walls have the potential to achieve high drift ductility and is assumed that modern walls are 

governed by tension-controlled failures. However, field observations of buildings in regions with similar 

seismic design standards, when compared to ACI 318-14, demonstrated that modern walls are susceptible 

to compression-controlled failures. 

The experimental testing consisted of two phases. The first phase considered walls WP1-4, which 

were designed to ACI 318-14 provisions, and the second phase considered walls WP5-7, which included 

detailing to enhance the performance. The wall specimens are shown in Figure 2-14.  Both phases were 

subjected to reversed-cyclic loads and axial load ratios, Na, of 10%. 

 

Figure 2-14: Wall Sections, Segura (2017) 
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Slender walls meeting the minimum thickness requirements of ACI 318-14, are unlikely to exhibit 

ductile failure modes. Also, slender walls are more unlikely to achieve the desired plastic rotations, such as 

those prescribed in ASCE 41-13 and ASCE 7-10, and likely to experience out-of-plane instability. 

Furthermore, modern walls may experience abrupt compression failures when transverse boundary 

elements are detailed with single hoops and crossties, as opposed to continuous transverse reinforcement, 

due to non-uniform distribution of transverse strains. In general, walls with lower compression depth-to-

wall thickness ratios, c/b, will remain stable in compression and achieve larger plastic deformations. 

2.4.3. Summary of Performance of Modern Walls 

The literature from this section summarized existing analytical and physical studies involving modern 

reinforced concrete walls. The intent of modern code provisions for concrete shear walls is to prevent non-

ductile failure and implies that walls will be tension-controlled (Segura, 2017). However, it is possible for 

walls designed to current code to still experience non-ductile behavior. Segura states that flexural yielding 

for slender walls, usually in the formation of a single critical region near the base of the wall and also known 

as the plastic hinge, is the ideal mechanism for ductile behavior. The intent of ACI 318-14 design provisions 

for structural walls is to prevent premature compression failures and suggests that walls will be governed 

by tension-controlled failures. From field observations, walls designed to similar provisions experience 

concentrated damage near the base, which includes longitudinal reinforcement buckling, out-of-plane 

instability at boundary elements and crushing of the wall boundary and web.  

When walls are well-detailed, such that transverse strains are uniformly distributed, buckling of 

longitudinal reinforcement is limited, and strains are limited to the region where boundary elements are 

detailed, more ductile behavior can be expected (Segura, 2017; Dashti and Dhakal, 2013). One notable 

difference is that LRC walls will develop isolated flexural crack planes, including at the base of the wall, 

whereas modern walls tend to have distributed flexural cracks, which is a typical indicator of ductile 

behavior. 
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2.5. Discussion of Literature Review  

This chapter presented a review of the existing literature involving reinforced concrete walls, including a 

review of prominent earthquake damage types (Section 2.1), previous and current versions of ACI 318 

code-based design of structural shear walls dating back to ACI 318-63 (Section 2.2), a review of previous 

experimental testing of lightly reinforced concrete shear walls in the laboratory (Section 2.3), and an 

overview of the performance of modern-detailed concrete shear walls (Section 2.4). The following 

summarizes the observations made: 

1. ACI 318 has changed significantly since 1963 regarding the appropriate design of concrete shear 

walls and thus raises concern for the walls designed to the previous standard. 

2. Past earthquakes have revealed the typical failure modes of lightly reinforced concrete (LRC) walls, 

including compressive boundary element and flexural tension failures.  

3. The failure behavior of LRC walls is not easily predicted per contemporary analysis means and the 

displacement ductility of these walls can be overestimated in the lab due to scaling effects.  

4. Thin walls with poor boundary element detailing are unlikely to achieve moderate levels of 

displacement and curvature ductility, and in some cases may experience out-of-plane stability. ACI 

318-19 imposes restrictions on minimum wall thickness (ACI 318-19 T.11.3.1.1). However, 

thinner walls are acceptable if strength and stability can be proven via structural analysis (ACI 318-

19 §11.3.1.1). Additionally, detailing requirements for boundary reinforcement were adopted in 

ACI 318-14 to account for lateral instability failures seen in recent earthquakes (ACI 318-14 

R.18.10.6.4) 

5. When compared to LRC walls, walls designed to modern standards can potentially experience 

compression-controlled behavior, rather than the intended tension-controlled failure modes, despite 

differences in reinforcement requirements and increased distributed cracking (Segura, 2017).
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3. WALL DESIGN & MATERIALS 

This chapter outlines the design process, material properties, and geometric parameters chosen for the final 

wall specimen. Section 3.1 provides an overview of the prototype pre-1980’s building used as a basis of 

design. Section 3.2 discusses scaling of the prototype wall, the parametric study used to refine wall 

parameters, and lab constraints considered to achieve a feasible test specimen wall. Section 3.3 describes 

the sectional capacities of the model wall. Section 3.4 describes the footing design used in conjunction with 

the wall design. Section 3.5 outlines the material testing for both the rebar and concrete used in the project. 

3.1. Prototype Building 

Many mid-rise buildings built pre-1980s utilize reinforced concrete shear walls as the main lateral force 

resisting system (Comartin, 2011). As previously mentioned in Section 2.1, ACI 318 had no requirements 

for special detailing of concrete shear walls at that time. These walls were typically designed to either have 

minimum longitudinal web and boundary reinforcement (i.e. lightly reinforced) or are often tied to columns 

at the ends of the wall (overly reinforced). The discussion found in this paper focuses on pre-1980s lightly 

reinforced concrete shear walls.  

The design of the half-scale wall specimen for this project began with plans for a 6-story building 

constructed in 1958 with story heights of 13.5 feet (Hagen, 2019). The LFRS of the building is LRC shear 

walls and the building is representative of a common building type in Los Angeles required to be retrofitted 

per city ordinances. A wall elevation from the prototype building is shown in Figure 3-1. The highlighted 

10” thick wall is flexure-dominated with an aspect ratio above 3:1 and is significantly under reinforced with 

no boundary elements. The typical wall reinforcing schedule for the building is also shown in Figure 3-1. 
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(Left) Wall elevation of a prototype building in Los Angeles and (right) wall reinforcing schedule per original structural details. 

3.2. General Design Process 

The prototype wall in Figure 3-1 has a longitudinal reinforcement ratio of 0.0022, axial load ratio of 1.5%, 

cross-sectional aspect ratio of 25.8, and shear span ratio of 3.9.  Ideally, the wall specimen would have 

similar values for these parameters, while considering lab constraints.  

3.2.1.  Scale and Parametric Study 

The half-scale wall test specimen represented the bottom 2 stories of the 6-story building. The exact 

dimensions, reinforcement layout, material properties, and axial loading of the wall were determined via a 

parametric study to best match the prototype wall behavior (see Table 3-1). An explanation of each wall 

Figure 3-1: Prototype Building Information (Hagen, 2019) 
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parameter and its constraints is described below. The final model wall specimen is shown in Figure 3-2, 

and the construction of the wall is discussed in Chapter 4. 

• Wall Height (h): This parameter was constrained by the reaction frame height of 13’-0” (also, maximum 

height of the actuator applying lateral load to the wall). 

• Wall Length (��): This parameter was selected to achieve a minimum shear span ratio of 2.5-3.0, 

consistent with a flexure-dominated wall response. Given the maximum wall height of 13’-0”, the upper 

bound for the wall length was about 5’-2”. Other aspects that effected wall length were: (i) the 

longitudinal reinforcement spacing and (ii) the maximum shear force that could be applied by the lateral 

actuator to ensure wall capacity could be reached during testing.  

• Wall Thickness (��): This parameter was constrained by the target cross-sectional aspect ratio of          

15-20 and by constructability concerns including bar size/spacing and cover requirements. Therefore, 

the wall thicknesses explored for the half-scale wall was 3” to 6”, translating to 6” to 12” at full scale. 

Wall thickness was also dependent on the presence of one or two curtains of rebar since both were 

common in pre-1980’s shear walls. A double curtain was chosen. 

• Wall Reinforcement Ratios (�� & ��): Both the longitudinal and transverse reinforcement ratios were 

informed by typical pre-1980’s standards (see rebar schedule in Figure 3-1). Horizontal “U” bars at the 

wall ends were also implemented. 

• Material Strengths (�  & �′�): The expected steel yield stress and expected concrete compressive 

strength were informed by typical pre-1980’s standards. Both materials were typically lower grades in 

vintage walls compared to current standards based on ASCE 41-17 Tables 10-3 and 10-4 (specified 

strengths of 40 ksi steel and 3 ksi concrete versus 60ksi and 4.5ksi, respectively).  

• Shear Span (h/��): Since this project is focused on flexure-dominated walls of mid-rise buildings, the 

desired shear span was 2.5-3.0 for the model wall. 

• Cross Sectional Aspect Ratio (��/��): This parameter was constrained by the target ratio of 15-20, 

representative of thin walls consistent with the vintage of the prototype building.  
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• Axial Load Ratio (P/(��′)(!")): The estimated axial load ratio for the prototype wall is 1.5% and 

served as a target for the wall test specimen.  

• Neutral Axis Depth (c): The neutral axis depth, in conjunction with other geometric parameters, has 

been coined the slenderness parameter (λb) and affects wall drift capacity (Abdullah & Wallace, 2019). 

Previous wall tests indicate λb may also affect whether a wall has a compression-controlled or tension-

controlled failure (Hagen & Abdullah, 2019). The target neutral axis depth was based on manipulating 

λb to achieve a compression-controlled failure. 

Table 3-1: Parametric Study Summary Table of Considered Wall Design Parameters (Modified from Ostrom, 2018) 

 Parameter of Interest Desired Analyzed Selected 

Wall Dimension 

Length (in) 48 42-62 60 

Width (in) 5-6 3-6 5 

Height (ft) 12* 11-13 12.75 

Rebar Layout 

Vertical Rebar (#3@ x" o.c.) 16-24 12.4-19.8 14.3 

Horizontal Rebar (#3 @ x" o.c.) 10-24 11-14.3 14.3 

Vertical Reinforcing Ratio, ⍴v (%) - 0.20-0.47 0.44 

Materials 
Concrete Comp. Strength, f'c (ksi) - 3-4 3 

Rebar Yield Strength, fy (ksi) 40 40 40 

Design Parameters 

Shear Span (h/$%) 3* 2.13-3.41 2.55 

CSAR ($%/&%) 15-20* 7.04-20.68 12 

Axial Load Ratio (x% * f'c*Ag) - 1-3.1 3.1 

Neutral Axis 4.17-6.25 2.28-5.25 5.25 

* Based on Lab Restrictions 
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3.3. Sectional Capacities 

3.3.1. Wall Flexural Design 

This section discusses the flexural design of the half-scale wall specimen given design parameter values 

described in Section 3.2.1. Based on the prototype wall in Figure 3-1, No. 4’s at 18” on center for a double 

curtain 10” thick wall were specified. For the scaled wall specimen, this resulted in flexural reinforcement 

of No. 3’s spaced at 19.8” and shear reinforcement of No. 3’s spaced at 14.3” (a stricter spacing 

requirement). For simplicity, No. 3’s spaced at 14.3” were chosen for both the shear and flexural 

reinforcement, compliant with the maximum bar spacing of 18” per ACI 318-19. With this rebar layout, 

the wall thickness and length were selected to be 5” and 60”, respectively. A specified concrete compressive 

strength of 3000 psi was also selected. 

The wall’s flexural design was governed by the maximum load capacity of the lateral load actuator, 

capable of 110 kips (compression) and 23.6 kips (tension). The tension capacity governed the shear force 

that could be applied at the top of the wall at a maximum of 13 feet above the specimen’s base equating to 

a maximum applied moment of 306.8 k-ft. A capacity-based analysis was used to verify that the wall would 

Figure 3-2: Final Half-Scale Wall Specimen Dimensions and Rebar Layout 
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fail in flexure. With the given specimen geometry and reinforcement configuration, an axial load-moment 

interaction diagram was created using SPColumn (StructurePoint, 2019) to estimate the flexural capacity 

of the wall at the given axial load ratio. A nominal moment of 223 kip-ft was predicted, well within the 

capacity of the actuator. 

3.3.2. Wall Shear Design 

This section discusses the shear design of the wall specimen per ACI 318-14. The nominal shear strength 

based on No 3’s at 14.3” was calculated per ACI 318-14 Equation 18.10.4.1. 

 '( = )�* (∝� λ ���� + �. �/) [3 − 1] 
where '( is the nominal shear strength, )�* is the gross area of concrete, ∝�  is the shear-span coefficient, 

and �. is the shear reinforcement ratio. The calculated nominal shear strength is 87.4 kips. The nominal 

shear strength across the assumed shear plane at the base is calculated by ACI 318-14 Equation 22.9.4.2: 

 '(,6 = 7)*6�/ [3 − 2] 
where 7 is the coefficient of friction and )*6 is the area of reinforcement crossing the assumed shear plane 

to resist shear. The longitudinal rebar from the walls provided shear friction resistance.  A coefficient of 

friction of 1.0 is assumed because the interface between the footing and concrete shear wall was roughened. 

The calculated nominal shear friction strength is 60.3 kips. 

3.4. Shear Wall Footing Design 

The reinforced concrete footing was required to provide an adequate tie-down to the strong floor to resist 

loads applied to the wall specimen, be reusable for future wall tests to reduce fabrication time and cost, and 

weigh no more than 5000 pounds to meet the lab crane capacity. The connection of the footing to the strong 

floor relies on clamping and friction (not bearing) of all-thread bolts spaced on a 3’0” grid. The 48” W x 

84” L x 15” H footing was cast directly on top of the existing strong floor to maximize friction between the 

two surfaces; six PVC tubes were cast as sleeves for the all-thread bolts. Since the intent was to use the 

same footing for subsequent wall tests, plans were made for each wall to be constructed in a separate pour 



WALL DESIGN & MATERIALS 

30 

 

from the footing. The vertical rebar in the wall specimens were designed to be epoxied and embedded into 

the footing where the first wall specimen is offset 4”, in the long direction of the footing, from the intended 

location of the second wall specimen.  

Figure 3-3 shows the rebar layout for the footing. 90-degree rebar was provided around the PVC 

sleeves to prevent side-face blowout or concrete cone failure in the footing. Connection points for the 

vertical actuator system applying axial load were located at the middle of the footing on both sides of the 

wall. These regions were assumed to be highly stressed and thus a heavily reinforced strut was designed at 

the bottom of the footing to prevent pullout failure. For more information on the construction of the footing 

refer to Section 4.2, and for footing design or capacities see Appendix Section A. 

 

Figure 3-3: Reinforcement in Footing 

(Top) Cross-section and elevation of rebar in footing and (bottom) plan view of rebar in footing. 

 

3.5. Concrete Mix Design 

The concrete mix design provided by CalPortland for the footing and wall was intended to have similar 

properties to that of 1980’s walls. Vintage concrete mixes typically had a nominal compression strength of 

3000 psi, as opposed to the current standard of 4000 psi. For the half-scale wall specimen, the specified 
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mix also had a maximum aggregate diameter of 3/8” (as opposed to the typical 3/4”) to allow the concrete 

to pass between the rebar and formwork in the narrow wall cross-section for proper consolidation. See 

Table 3-2 for more information on the mix design. 

Table 3-2: Concrete Mix Design 

Materials Percent Used 
Absolute 

Volume [ft3] 

Pounds/Cubic 

Yard [lb/yd3] 

Cement – Type I/II/V Low Alkali 82% 0.27 462 

Pozzolan – Class F: Replacement for Cement 18% 0.47 100 

Water - 4.808 300 

Air (Entrapped) 1.5% 0.405 - 

Garey HMS Gravel (3/8” x #8) 52.7% 9.787 1600 

Garey C 33 Sand 47.3% 8.907 1434 

 

3.5.1.  Concrete Cylinder Tests for Footing 

Four 6x12 concrete cylinders were prepared according to ASTM C31, and after 28 days were tested in a 

Test Mark Compression Testing machine according to ASTM C39 (Table 3-4 presents averaged results). 

Additionally, a slump test according to ASTM C143 was performed. The resulting slump was 

approximately 6-7” at the time of the pour.  

Table 3-3: Summary of Footing Concrete Properties 

 

 

 

 

 

 

 

       fc’ (psi) fr (psi) Ec (ksi) 

Avg. of 4 Cylinders 1879 325 2471 

Figure 3-4: Footing Concrete Cylinder Compression Failure 
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3.5.2. Concrete Cylinder Test for Wall    

At various stages during the wall pour, a total of nine cylinders were prepared of sizes 6x12 and 4x8. A 

slump cone test was also conducted and a 5” slump was measured. After 41 days, one 6x12 and one 4x8 

cylinder were tested in a Test Mark Compression Testing machine. Three days later, four more cylinders 

were tested. On the test day, 82 days after the wall pour, the rest of the cylinders were tested. See Table 3-

4 for results. An average compression strength of 3,790 psi was obtained, including outliers. Figure 3-5 

shows a typical failure obtained from two of the concrete cylinder compression tests. Appendix Sections A 

and B show additional documentation of each cylinder tested for both the footing and wall, respectively. 

Table 3-4: Summary of Wall Concrete Properties 

       fc’ (psi) fr (psi) Ec (ksi) 

Avg. of 9 Cylinders 3790 446 3386 

 

 Figure 3-5: Typical Concrete Cylinder Test for Wall 
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3.6. Reinforcing Steel Tension Testing 

The rebar used for the wall tests were tested for axial tensile capacity in a Tinius Olsen machine. Figure 

3-6 shows the test setup used for each rebar specimen and the stress-strain curves produced. Since grade 40 

rebar was used for these tests, the expected yield stress of these bars according to ASCE 41-17, Table 10-1 

was 50 ksi. The actual average yield and ultimate stresses were about 55 ksi and 83 ksi, respectively and 

the average ultimate fracture strain was about 19%  

 

(Left) Tinius Olsen test setup (Right) Rebar testing results, axial stress versus axial strain. Markers visually show averages.  

 

 

Table 3-5: Average Rebar Properties  

 
 

 

 

 

 

 

 

 

 

State Yield Strain Hardening Max Ultimate 

Parameter fy εy fsh εsh fmax εmax fu εu 

Average Value 54.8 0.28 55.8 1.68 82.8 15.24 81.5 19.16 

 Note: Stresses in ksi, strains in %    

Figure 3-6: Rebar Tension Testing 
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4. TEST SETUP & WALL CONSTRUCTION 

This chapter outlines the experiment setup, footing/wall construction, and instrumentation layout. Section 

4.1 discusses the existing conditions of the High Bay laboratory and overview of the test setup. Section 4.2 

discusses the footing and wall construction. Section 4.3 discusses the instrumentation layout for the wall.  

4.1. Test Setup Overview 

The LRC wall test was performed in the Cal Poly College of Architectural & Environmental Design 

(CAED) High Bay laboratory. As shown in Figure 4-1, many components were necessary in the test setup 

for this experiment including: the wall specimen, strong floor, instrumentation column, out-of-plane 

stability system, axial loading system, and cameras.  

The reinforced concrete strong floor in the CAED High Bay laboratory provided a fixed connection 

for the base of the wall footing via all-thread anchors spaced at 3’-0” each way. During preparations for the 

LRC wall test described in this report, the CAED High Bay’s steel reaction frame was upgraded to stiffen 

the system to limit deflection when applying lateral loading to a reinforced concrete wall specimen.  
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Figure 4-1: Plan View of Test Setup  

(Note: Horizontal and vertical actuators not shown for clarity) 
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Figure 4-2: Elevation A, Test Setup (West Face of Wall) 

(Note: Vertical actuator, reference column, and out-of-plane stability system not shown for clarity) 
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4.2. Out of Plane Stability System 

The out-of-plane system consisted of two Simpson Strong-Frames, four HSS beams, and four Teflon pads 

which together provided stability for the wall during testing and added no additional in-plane stiffness. The 

primary component of the out-of-plane support was the donated Simpson Strong-Frame system, as shown 

in Figure 4-4. This custom set of two, 2-story wide-flange ordinary moment frames (OMF’s) were 

connected by transverse beams and integrated into the existing strong floor system by bolting to wide flange 

section adapter base plates which were anchored to the strong floor. The construction of the out-of-plane 

stability frame was a major undertaking for the authors of this report and supporting CAED shop 

technicians, requiring complete assembly upon arrival and taking several weeks to finish. 

 

Figure 4-3: Elevation B, Out-of-Plane Support System and Axial Loading System 
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The secondary components of the out-of-plane support were the HSS members, which combined 

with the Simpson Strong-Frames, provided stability, and reduced accidental torsion on the wall specimen. 

The four HSS members were 5x5 sections and 9’-0” in length, running parallel to the wall as shown in 

Figure 4-3 and Figure 4-4. The HSS section dimensions were chosen based on a conservative calculation 

of an eccentric load applied to the wall and was governed by a desired stiffness rather than strength. The 

HSS shape was chosen because of ease of use and versatility in both loading directions as well as cost when 

compared to equivalently performing channel section. Each HSS was securely welded onto fabricated steel 

adapter plates designed to be bolted onto the Strong-Frames. This system allows for various placement 

configurations on the Strong-Frame and can be used for later experiments.  

Teflon pads were utilized as a frictionless medium between the rough concrete wall surface and the 

HSS members running parallel to the wall. A total of eight Teflon pieces were drilled into wood shims 

which were epoxied to the ends of the walls at each HSS. To ensure a smooth surface, the holes were 

countersunk with a drill press ahead of time. As a result, the Teflon pads helped create a flat surface between 

the wall and the HSS members. 

Figure 4-4: Simpson Strong Frame for Test Setup 
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4.3. Axial Loading System 

The axial loading system was designed with the ability to apply adjustable magnitudes of force to the 

longitudinal axis of the wall (Ridgley, 2019). The system is shown in Figure 4-3 and consisted of prestressed 

bars, a loading beam, an actuator, a load cell, an automatic hydraulic pump, and three pin connections. 

Using basic statics, the total axial load on the wall specimen is equal to twice the force recorded by the load 

cell on one side of the wall. The maximum force the axial loading system could safely apply to the wall 

was 40 kips. For this experiment, the system delivered a constant axial load of 35 kips to the wall.  

4.4. Lateral Loading System 

The lateral loading system consisted of a loading beam, actuator, embedded anchors into the top of the wall 

specimen, a manually powered hydraulic pump, and the lab reaction frame. As discussed previously in 

Section 3.3.1, the limiting force the actuator could exert was 23.6 kips (tension), so each component in the 

system had to be able to transfer this force to the wall. The load path for this system started with the actuator, 

which applied force to the reaction frame. The reaction frame was designed to be at least 10 times stiffer 

than the wall so that there were minimal deflections during testing. The lateral load is transferred to the 

wall through the longitudinal axis of the horizontal loading beam, applied at the channel’s shear center. 

From the loading beam, the lateral load is transferred into the wall through shear applied to (6) 5/8” diameter 

anchor bolts embedded into the top of the wall. 

4.5. Specimen Construction 

4.5.1. Footing Construction 

The design of the shear wall footing is discussed previously in Section 3.4. The formwork was built 

according to the drawings shown in Appendix Section D. Figure 4-5 shows the construction of the footing 

formwork. The footing formwork was braced to the Simpson Strong Frame footing for additional stability. 

The reinforcing steel for the footing was built according to Figure 3-3. A minimum cover of 1.5” was 

provided on all sides of the footing. A formwork release agent was applied to all surfaces to aid with the 
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removal of the formwork after the concrete cured. Silicone sealant was provided at all corners or edges 

where concrete leaking was a concern. Figure 4-6 shows the rebar cage before and during the concrete pour.  

 

 

Figure 4-5: Shear Wall Footing Formwork Construction 

 

 

Figure 4-6: Shear Wall Footing Reinforcement 

(Left) Footing rebar cage and (right) concrete pour. 
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4.5.2. Shear Wall Construction 

The design of the shear wall is discussed previously in Section 3.3. Construction of the wall rebar cage and 

formwork are shown in Figure 4-7. Before setting the wall formwork in place, 7/16” diameter holes in the 

footing were first drilled and vacuumed in preparation for embedding and epoxying the longitudinal 

reinforcing steel. Additionally, the footing surface was roughened to increase shear friction between the 

wall and footing. The longitudinal reinforcement for the wall was then epoxied into the footing using 

Simpson ‘SET-XP’ epoxy with 1’-0” of embedment. After the longitudinal bars were in place, the 

transverse reinforcing (straight bars and U-hooks) was tied to complete the rebar cage per the wall design 

in Figure 3-2. The reinforcing steel cage was completed with vertically oriented U-hooks installed at the 

top of the wall. After the completion of the rebar cage, the formwork was secured on each side of the cage 

with careful considerations to concrete cover, strain gauges and their lead wires. The schematic drawings 

of the wall formwork can be found in Appendix Section D. During this process, scaffolding was also 

designed and constructed by the project team to increase accessibility to higher portions of the wall. 

 

Figure 4-7: Shear Wall Formwork & Rebar Cage Construction 
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The wall was poured in one lift through two access openings in the formwork - one at the mid 

height and one at the top of the wall. Pump access through these intermediately spaced openings allowed 

the concrete to correctly consolidiate and prevent significant honeycombing effects. After curing, the wall 

formwork was removed and whitewash was applied to the front (east) face of the wall to allow for ease of 

crack mapping and photography of damage progression during testing. The back (west) face of the wall 

was reserved for installation of linear potentiometers as described in Section 4.6.2.  

4.6. Wall Instrumentation 

This section describes the instrumentation used to measure the response of the wall and other test setup 

components, and the data acquisition hardware/software used to record data. Each instrument type as 

described in the subsequent sections were calibrated prior to use in the main experiment. The calibration 

process ensured proper function and data recording for each instrument. 

4.6.1. Strain Gauges 

Strain gauges were applied to rebar in strategic locations so that longitudinal strain values could be recorded 

during testing. A total of 20 gauges were used: 17 applied to longitudinal steel, and three applied to 

transverse steel. The location of each strain gauge is shown schematically in Figure 4-8. Most strain gauges 

were located near the bottom of the wall in the expected critical section. The strain gauges were named 

based on three parameters: location along the length of the wall (Columns A to E), height along wall (Levels 

2 to 60), and row of reinforcement (Row 1 or 2). The exceptions to this nomenclature were the gauges 

placed on the transverse steel, which were all on level 2 and named “ST-XX” where the “XX” represented 

the column location.   
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Figure 4-8: Instrumentation Layout 

Notes: 

A. Strain gauges shown on east face of wall. 

B. Linear/string potentiometers & optical sensors 

shown on west face of wall. 

C. SP12 & SP13 are not shown on this diagram. 
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4.6.2. LVDT’s, Optical Sensors, and String Potentiometers 

The instruments described in this section were used to measure absolute and relative displacement of the 

wall specimen. Linear variable differential transformers (LVDTs) were used to measure displacements 

especially in locations with small, expected displacements. Figure 4-8 presents the overall LVDT layout on 

the specimen and Figure 4-9 shows a typical LVDT applied to this project. These sensors were used to 

measure vertical displacements along the height of the expected critical section by stacking LVDTs in 

groups of three at the ends and in the middle of the wall. In post-processing the data, researchers could 

calculate vertical straining and base rotation at the wall-footing interface. A high-resolution LVDT was also 

used for accurate measurement of horizontal displacement at the top of the wall, necessary as the test was 

conducted via displacement-control after the initial elastic range of response.  

 

(Left) LVDT connected to aluminum bracket (Right) LVDT with protective wrap attached to wall face 

Figure 4-9: LDVT Instrumentation 
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Optical or laser sensors were used to measure absolute displacements along the height (later 

converted to drifts) of the wall specimen. Figure 4-10 shows a typical optical sensor mounted to the 

stationary reference column using a metal extension bar as well as the location of the four optical sensors 

that were attached at various heights and base of the footing to measure in-plane displacement of the wall. 

The optical sensors provided redundancy to other instruments used to calculate drift to ensure the 

displacement-based loading protocol was being executed correctly and in post-processing to create drift 

profiles for various stages during the wall test.   

 

Figure 4-10: Instrumentation Column 

(Left) Typical optical sensor attached to a metal extension bar anchored to the instrumentation column and (Right) 

Instrumentation column with instruments extending out towards the wall. 

String potentiometers shown in Figure 4-8 were used to measure: absolute displacement to 

determine drift (SP1-3); relative displacement between test setup components (SP11-14); and relative 

displacement to calculate wall base sliding, flexural and shear deformation (SP4-10). The SP14 string pot 

measuring relative displacements between the loading beam and the wall is shown in Figure 4-11. String 

pots are especially useful for measuring displacements along lengths which move in two planes at the same 

time. Like the optical sensors, the string pots measuring drift were mounted on the instrument column and 

attached to the wall at various points along the height.  
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Figure 4-11: String Potentiometers, Close-up view of a typical string pot. 

4.6.3. Load Cells 

Two load cells were used to measure the force applied by the lateral and axial actuators throughout the wall 

test. The axial and lateral load cells are shown in Figure 4-12 and Figure 4-13 respectively. The load cells 

were calibrated at the start of the testing to ensure the force-deformation hysteresis plot was accurate.  

 

Figure 4-12: Load Cell Attached to Axial Actuator 
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4.6.4.  Data Acquisition System 

The data acquisition system used an in-house MATLAB GUI script that integrated with National 

Instruments (NI) compact DAQ hardware/software to plot and record data in real time. The MATLAB GUI 

script allowed a user to select channels to use for data acquisition, plot instrument readings against time or 

other variables, pause or resume data acquisition, create a bias, save data to a file, and enter unique 

calibration factors for each instrument. Figure 4-14 shows a screenshot of the MATLAB GUI. 

Figure 4-13: Plan View of Lateral Actuator and Load Cell 
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Figure 4-14: Data Acquisition GUI using MATLAB 

 The NI DAQ modules used for this experiment measured voltage differentials through a discrete 

number of inputs. To make the inputs more accessible to physical connection of instruments, each input 

was extended into a corresponding channel within a custom-made channel box.  
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5. WALL TESTING 

This chapter discusses the experimental testing of the lightly reinforced concrete (LRC) wall specimen 

introduced in Chapter 3, henceforth named R1. Section 5.1 overviews the experimental loading protocol. 

Section 5.2 presents test results including damage progression and general wall performance. Section 5.3 

and 5.4 describe vertical strain and curvature distributions along the height of the wall. Section 5.5 discusses 

contributions to global deformation. Lastly, Section 5.6 presents the drift profile at various stages of testing.  

5.1. Loading Protocol 

The loading protocol was informed by ASCE 41-17 and Priestly (2007) type predictions described in 

Chapter 6 and other cyclic tests of LRC walls summarized in Chapter 2. At low levels of drift and until 

global yielding of the wall (predicted to occur at about 12.5 kips of lateral force), the loading protocol was 

force controlled with 2-cycle sets at each force level. After global yielding of the wall, the loading protocol 

was changed to displacement controlled with 2-cycle sets at each drift level for the remainder of the test. 

Figure 5-1 and Table 5-1 summarize this loading protocol. The increase in applied drift at load step 46, or 

conduct of a monotonic push, was based on the belief that wall failure was imminent after the +/-1.67% 

drift cycles and also where the displacement capacity of the actuator in the tension (negative drift) direction 

had been achieved. However, the load carrying capacity during the monotonic push remained relatively 

constant, so after reaching about + 3.33% drift the decision was made to revert to 2-cycle sets at +2.00/-

1.67%.  
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Figure 5-1: Loading Protocol of R1 

 

 

 

Table 5-1: Loading Protocol of R1 

Load Steps Drift (%) Force (Kips) 

1-4 -  ± 2.2 

5-8 - ± 4.4  

9-12 - ± 6.4 

13-16 - ± 12.6 

17-20 ± 0.20 - 

21-24 ± 0.40 - 

25-28 ± 0.60 - 

29-32 ± 0.80 - 

33-36 ± 1.00 - 

37-40 ± 1.33 - 

41-44 ± 1.67 - 

45 + 2.00 - 

46 + 2.50 - 

47 + 2.75 - 

48 + 3.33 - 

49-52 +2.00/-1.67 - 
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5.2. Wall Experimental Results 

5.2.1. Global Force-Displacement 

In general, the wall response is comparable to other walls mentioned in Section 2.2, with similar peak 

strength and hysteretic behavior, as shown in Figure 5-2. The wall is cyclically loaded to ±1.67% and then 

is pushed monotonically to +3.3%. After the monotonic push, the wall is cycled at +2% and -1.67%. It is 

determined that the wall fails during the final +2% cycle because the wall loses more than 20% of the peak 

strength. However, it is believed that if the wall test had continued with symmetrical loading, not including 

the monotonic push, the drift capacity of the wall would likely be between 2 to 3% drift, rather than the 

maximum 3.3% drift level. The shear capacity of the wall is approximately 20.9 kips, resulting in an 

ultimate moment demand of 266.5 kip-feet.  

 

Figure 5-2: Global Force-Displacement Response 
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5.2.2. Damage Progression 

This section will discuss the progression of damage of the wall at key stages during the experiment: 

5.2.2.1. Load Step 13 (12.6 Kips) 

The first yield of rebar occurred at load step 13, with an applied lateral force of 12.6 kips and approximately 

0.075% global drift, which resulted in a 7” long by 0.01” wide at the wall-footing interface.  

Figure 5-3: Minor Base Cracking at First Yield of Rebar 
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5.2.2.2. Load Step 17 (0.2% Drift) 

Global yield occurred at load step 17, which was recorded at 0.2% drift and about 15 kips of lateral force. 

The first horizontal crack, measured at 31” long by 0.005” wide, appeared 32” above the footing and 

stiffness degradation is first noted. 

 

Figure 5-4: Wall Damage at 0.2% Drift 
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5.2.2.3. Load Step 21-24 (0.4% Drift) 

At load step 21, a flexural crack formed 17” above the footing. At load step 23, a 25” long by 0.025” wide 

crack formed at the base. The recorded drift and lateral force applied were 0.4% and 17.2 kips, respectively.   

  

Figure 5-5: Wall Damage at 0.4% Drift 
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5.2.2.4. Load Step 25 (0.6% Drift) 

At load step 25, the first diagonal crack appeared and was 0.005” wide. The crack formed at a height of 

about 16” and extended 11” inches down at a 60-degree angle. The recorded drift and lateral force were 

0.6% and 18.6 kips, respectively.  

  

Figure 5-6: Wall Damage at 0.6% Drift 
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5.2.2.5. Load Step 25-32 (0.6-0.8% Drift) 

Between load steps 25-32, the wall was cycled between 0.6% and 0.8% drifts, respectively. The horizontal 

cracks progressively widened and a residual drift of 0.39” or 0.26% drift was recorded at the unloaded state 

between cycles. The maximum crack width measured was 0.1875” at load step 29. The wall lateral load 

capacity began to plateau at this stage.  

 

 

 

 

  

Figure 5-7:  Wall Damage at 0.8% Drift 
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5.2.2.6. Load Step 41 (1.67% Drift) 

At load step 41, new horizontal cracks continued forming and the previous horizontal cracks began to 

expose transverse rebar. The maximum crack width measured is 0.6875”. Additionally, vertical cracks 

begin to form in the concrete near the exposed rebar. The recorded drift and lateral force were 1.67% and 

21.1 kips, respectively. A residual drift of about 1% remained in the wall at the unloaded state between load 

steps at this point (when the lateral force was zero). 

 

 

  

Figure 5-8: Wall Damage at 1.67% Drift 
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5.2.2.7. Load Step 45 (2.00% Drift) 

The monotonic loading began at load step 45 and the recorded drift and lateral force were 2.00% and 20 

kips, respectively. At this load step, it was noted that there was a slight decrease in the lateral capacity. 

There was significant base uplift at one end of the wall and minor concrete spalling on the opposite end of 

the wall.  

   

 

  

Figure 5-9: Wall Damage at 2% Drift 
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5.2.2.8. Load Step 48 (3.33% Drift) 

Expecting imminent failure of the wall, the monotonic loading was incrementally continued to 3.33% drift. 

At this point, the largest horizontal crack width was measured to be 0.5” wide. 

 

  

 

  

 

Figure 5-10: Wall Damage at 3.33% drift. 
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5.2.2.9. Load Step 49-52 (+2.0/-1.67% Drift)  

Since the wall had little loss in strength, the wall was re-cycled at a lower level drift set of 1.67% (pull) and 

2% (push) at which point the wall strength dropped by more than a 20% and failed due to fracture of 

longitudinal rebar due to flexure at the base crack plane. With this final stage of loading, the wall had four 

major horizontal crack planes and no secondary cracking. The wall also experienced significant spalling on 

the northern side during load step 50. A maximum out of plane wall offset of about 0.08” was also observed 

along the major crack planes.   

Figure 5-11: Final Damage State of Wall 



WALL TESTING 

61 

 

Table 5-2: Summary of Observations 

Load Step Drift (%) Force (kips) Observations 

13 0.075 12.6 Rebar begins yielding and cracking occurs at the base of the wall 

17 0.2 15 
First major horizontal crack appears at 32” above the base of the 

wall and stiffness degradation of the wall is noted 

21 0.4 17.2 
Second major horizontal crack appeared at 17” above the base of 

the wall and splitting at the base of the wall enlarges 

25 0.6 18.6 First diagonal crack appears at 16” above base of the wall  

25-32 0.6-0.8 18.6-19 
Horizontal cracks widen as wall is cycled, measured residual drift 

of 0.39” (0.26% drift), and wall stiffness begins to plateau.  

41 1.67 21.1 
Transverse rebar is exposed and vertical cracks in concrete begin 

forming near exposed rebar 

45 2.00 20 
Slight drop in lateral resistance with monotonic loading and there 

is significant base uplift at the end of the wall 

48 3.33 19.5 Largest crack opening of 0.50” is measured 

49-52 +2.00/-1.67 13.5/17.5 
Rebar fracture due to flexure and concrete spalling. Failure in wall 

due to lateral strength loss of more than 20%  

Figure 5-12: Final Hysteresis with Damage States 
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5.3. Vertical Reinforcement Strain 

Strain gauges were installed on both horizontal and vertical reinforcing steel, as discussed in Section 4.5.2 

where Figure 4-8 provides the orientation and position of the strain gauges. A hysteresis of the vertical 

reinforcing steel at the ends of the wall at level 2 is shown in Figure 5-13. Data is plotted up to 0.4% global 

drift because after this the strain gages began malfunctioning due to high strains in the rebar (nearing the 

strain capacity of the gauge). The magnitude of strain is visually represented by the relative size of the 

colored circles on the wall elevation shown. 

Figure 5-13: Lateral Force vs. Strain for Strain Gages in Column A (Top) and Column E (Bottom) 
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In Figure 5-13 the magnitude of strain varies along the height of the wall with the largest strain 

near the base of the wall. The strain gages inform the horizontal strain distribution, resulting curvature, and 

curvature distribution along the height of the wall. Note that strain data for SGA1-15 was corrupt.  

5.4. Curvature Distribution 

The strain distributions in Figure 5-14 are calculated as the average strain in the push direction from strain 

gages located in columns A1 and E1 and levels 2, 15, and 30 (see Figure 4-8). The strain was averaged at 

these heights because it is the region that contained most of the plastic deformation. The large shift in strain 

from 0.2% to 0.4% occurs because of rebar yielding when large inelastic deformations begin to occur. The 

strain profiles are limited to 0.4% global drift because the rebar strain gages reach their maximum capacity. 

The compression depth is calculated based on the geometry of the strain profile up to 0.4% drift, 

which informed the curvature profile along the height of the wall. Figure 5-15 illustrates that plastic 

deformation is limited to the bottom of the wall, particularly at the primary flexural cracks which 

corresponds to a limited distribution of plasticity. Curvature is calculated to 60” above the wall base and 

that curvature was assumed zero at the top of the wall due to the whole section being in compression. The 

non-linear distribution of curvature is expected in an idealized and well-detailed cantilever wall system. 

Figure 5-14: Average Strain Profile Along Length of Wall in Push (Top) and Pull Direction (Bottom) 
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Research by Lu et al. (2017) suggest that reversal of curvature near the base may be a result of concentrated 

strains at primary flexural cracks. The unsymmetrical curvature disitrribution in the push and pull 

directions, as shown in Figure 5-15, may be a result of asymetric formation of flexural cracking.   

5.5. Comparison of Contributions to Deformation 

The contribution of other methods of deformation to the global deformation of the wall is minimal – less 

than 5%. Due to data spikes shown in the time history shown in Figure 5-16, outliers with percent errors 

larger than 20% were excluded.  

5.6. Drift Profile 

The drift profile was measured using string potentiometers placed along the height of the wall. Additionally, 

base slip is measured between the wall and footing interface. As shown in Figure 5-17, there is a linear drift 

profile at each drift level, even at significant drifts (+3.33%). This suggests that there is significant base 

rotation/ rocking at drifts after global yield of the wall. Figure 5-18 indicates there is a maximum of 0.05% 

drift due to sliding between the wall and the footing in the pull direction (final -1.67% cycle). This was 

determined to be insignificant, when compared to the global deformation of the wall.   

Figure 5-15:Curvature Along Height of Wall 
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Figure 5-17: Global Drift Profile 

 

Figure 5-16: Contributions to Global Deformation 
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Figure 5-18: Drift Profile at Base 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PREDICTIONS 

67 

 

 

 

6. PREDICTIONS 

This chapter explains the analysis procedures used to predict the global performance of the wall. These 

analyses were performed to inform the loading protocol and provide useful comparisons to experimental 

results. The analyses range from design-oriented methods using ASCE 41 to more rigorous methods using 

PERFORM-3D. Below is a list of assumptions made in the predictions of the wall performance: constant 

axial load of 35.1 kips, or Na = 3.1%, plane sections remain plane, and small angles approximation. 

6.1. ASCE 41-17 Analysis 

ASCE 41-17 provides guidance for creating an action-deformation relationship for concrete members in 

Chapter 10, and more specifically for structural walls in Chapter 10.7. The action-deformation relationship 

can take various forms, including a force-displacement or moment-rotation plot. To compare to 

experimental results most easily from the R1 wall test, a force-displacement plot was developed. Figure 6-1 

illustrates the general plot formation and includes points of interest indicated with capital letters and tabular 

parameters indicated by lowercase letters.  

 

Figure 6-1: Force-Displacement Relationship for Concrete Members from ASCE 41-17 Figure 10-1(a). 
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To generate a simple force-displacement relationship based on Figure 6-19 for the wall specimen 

in this experiment, each point along the plot indicated by a capital letter can be calculated using the 

guidelines outlined in Section 10.3.1.2.2 of ASCE 41-17. Starting from point “A” (the unloaded state) and 

incrementing to point “B” (global yielding) represents an initial linear response with an effective stiffness. 

Point “B” to “C” represents a linear response at a reduced stiffness of between 0-10% of the initial stiffness. 

Point “D” represents a sudden loss of seismic resistance. The final leg to Point “E” represents a maintained 

low strength capacity until complete loss of capacity at point “E”. 

The initial portion of the force-displacement response from point “A” to point “B” requires a 

calculated yield force ('/) and yield deflection (8/) utilizing an effective stiffness (9:;66). The relationship 

between these variables is shown in the equation below and assumes small angles: 

 8/ =  </ℎ = > ?/9:;66 $@A ℎ =  > '/ℎ
9:;66 $@A ℎ [6 − 1] 

where </ is the yield rotation of the wall per ASCE 41 equation 10-5 and $@ is defined in ASCE 41 section 

10.7.2.2.2 as the plastic hinge length. The plastic hinge length is approximated as half the wall length. The 

yield force, '/ is already known based on the nominal flexural strength of the wall as calculated in Chapter 

3 of this paper. The effective stiffness can be determined using several options, including usage of a tabular 

effective stiffness value from Table 10-5 in ASCE 41. For cracked wall components, the effective stiffness 

is equal to 0.35EcEIg where EcE is the expected modulus of elasticity of concrete and Ig is the section moment 

of inertia (note that a typo exists in Table 10-5 where Ig is mistakenly replaced by Ag). With this information, 

the yield deflection can be calculated along with the yield force so point “B” can be plotted.  

 The next point of the force-displacement response, point “C”, requires a new reduced stiffness as a 

proportion of the effective stiffness calculated previously and a plastic hinge rotation from Table 10-19 in 

ASCE 41. Based on the reduced stiffness, 1% of the initial stiffness was chosen. Regarding the plastic hinge 

rotation or “a” parameter, a rotation of 0.008 radians was obtained. Converting this plastic hinge rotation 

into a displacement at the top of the wall specimen is shown below: 
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 ∆"E"= ∆/ + F(ℎ − $@) [6 − 2] 
The next point of the force-displacement response, point “D”, requires only the parameter “c” from 

ASCE 41 table 10-19, calculated to be 0.6. The resulting shear at point “D” is 60% of the shear at point “C” 

at the same displacement ∆"E". At this point, the wall has failed (loss of load carrying capacity by more than 

20%), but the last point will be calculated for completeness. The final point “E” is found by maintaining 

the reduced shear at point “D” and by using the plastic hinge rotation or “b” parameter equal to 0.015 from 

Table 10-19. Like point “C”, the new displacement can be calculated as shown below: 

 ∆"G"= ∆/ + H(ℎ − $@) [6 − 3] 
The resulting force-displacement plot compared to experimental results is shown below in Figure 

6-2. As shown, the prediction was accurate in every respect except displacement ductility. That is, the 

actual wall had a larger final drift before failure compared to the prediction from ASCE 41.  

 

Figure 6-2: ASCE 41-17 Predictions Compared to Experimental Results 
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6.2. Priestley Analysis 

The next analysis method used to predict wall performance is based on guidelines from Displacement-

Based Seismic Design of Structures (Priestley et. al., 2007). From this point going forward, the methods 

derived from this book will be referenced as the “Priestley method” for clarity. Like the ASCE 41 method 

discussed previously, the Priestley method is a lumped plasticity model and utilizes various equations and 

previously recorded experimental findings to ultimately construct a force-displacement response 

approximate to the envelope of the wall’s cyclic behavior.  

6.2.1. Moment-Curvature Relationship 

Since curvature is a better parameter than deflection for estimating nonlinear deformations in flexure- 

dominated shear walls, a moment-curvature analysis was performed to understand how the wall cross 

section responds to increasing moment demands. Given the numerical rigor of performing a moment-

curvature analysis, various software has been created over the years to assist in the process such as 

XTRACT (Chadwell & Imbsen & Associates, 2002) and Sketchulation (Tipping Applications, 2018). Many 

of these programs use fiber discretization or fiber-section analysis to produce a moment-curvature response 

of a cross-section at a critical location, typically the base of a cantilever wall.  

For this paper, Sketchulation was selected as the software to produce a moment-curvature response. 

The moment-curvature analysis was dependent upon user-defined constitutive models for unconfined 

concrete and reinforcing. Typically, the cover concrete is differentiated from the concrete within the 

transverse reinforced core, but since the spacing of the transverse reinforcing was so sparse (14.3 inches) 

there was little to no confinement and thus no justification to create a separate material model for confined 

concrete. The unconfined concrete model used is shown in Figure 6-3 and is based on a trilinear Mander 

model approximation (Elwood and Moehle, 2006) using the average concrete cylinder strength of 3.79 ksi.   
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Figure 6-3: Unconfined Concrete Constitutive Model 

For the reinforcement models used in Sketchulation, two versions were explored: one with only 

tension capacity, and one with both tension and compression capacity (symmetrical). The reason for this 

differentiation was to bound the actual behavior of the reinforcing steel which would have limited 

compression capacity due to bar buckling. The reinforcement models were based on tensile steel test values 

as discussed in Section 3.6 and are shown in Figure 6-4. 

 

 

 

 

(Right) Tension only constitutive model used for reinforcement in Sketchulation and  

(Left) tension and compression constitutive model used for reinforcement in Sketchulation. 

 

Figure 6-4: Reinforcing Steel Constitutive Model 
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Figure 6-5 shows the complete moment-curvature response from Sketchulation after inputting the 

constitutive models into the program and using a constant axial load of 35.1 kips. Note that Figure 6-5 is 

truncated to include data up until 20% loss of strength in the test specimen. As shown, the tension-only 

analysis results in lower ultimate moments and curvatures due to the reduced contribution of the steel. The 

difference in ultimate moment magnitude is about 6%, and the difference in ultimate curvature is about 9%. 

The most accurate model would lie somewhere between the two analyses.  

6.2.2. Priestley Bilinearization of Moment-Curvature 

With the moment-curvature response complete, it would be possible to integrate the curvatures with respect 

to the wall height along the entire curve to obtain a theoretical top displacement of the wall. However, as 

Priestley mentions, this process does not necessarily produce accurate results because it ignores tension 

shift, shear deformation, strain penetration into the foundation, and other considerations. Instead, a 

simplified approach to account for these factors is to assume a lumped plasticity model (plastic hinge) and 

bilinearize the moment curvature response using several key points on the curve. The bilinear moment-

curvature response compared to the unaltered response from Sketchulation is shown in Figure 6-6. The 

major values used to bilinearize the moment-curvature response are listed below: 

Figure 6-5: Moment Curvature Analysis of Wall Cross Section 
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• The cracked moment ?�� is calculated per ACI 318-14 per the following equation: 

 
?�� = ��:I

($%2 ) [6 − 4] 

• K�� is the corresponding curvature to ?�� 

• The yield moment ?/ is the moment on the Sketchulation moment-curvature curve when the extreme 

tension reinforcement first attains yield strain or when the extreme concrete compression fiber attains 

a strain of 0.002, whichever occurs first. The tension reinforcement attained a yield strain first. 

• K′/ is the corresponding curvature to ?/ 

• The nominal moment ?L is the moment on the Sketchulation moment-curvature curve when the 

extreme tension reinforcement attains a strain of 0.015 or when the extreme concrete compression fiber 

attains a strain of 0.004, whichever occurs first. The tension reinforcement attained the strain limit first. 

• The nominal yield curvature K/ is the projection of  ?/ until ?L is reached as shown in the equation: 

 K/ = ?L?/ K′/ [6 − 5] 

• The ultimate moment ?M is the largest moment attained by Sketchulation. 

• The ultimate curvature KM is the largest curvature attained by Sketchulation and is plotted with ?M as 

described above.  
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6.2.3. Priestley Bilinearization of Force-Displacement 

With the bilinear moment-curvature response completed, a series of equations can be used to construct a 

bilinear force-displacement response. In general, each moment corresponds to a force in accordance with 

the following equation:  

 N =  ?
O;66  [6 − 6] 

where an effective height, strain penetration depth, and plastic hinge length are defined as follows: 

 O;66 = O + PQ@ − P@2  [6 − 7] 

 PQ@ = 0.15�/RST�  [6 − 8] 
 P@ = 0.08O + 0.1$V + PQ@ [6 − 9] 

 

 

 

Figure 6-6: Bilinearization of Moment Curvature per the Priestley Method 



PREDICTIONS 

75 

 

To find the associated displacements, the following equations are provided: 

 8�� = ∅��
OY
3  [6 − 10] 

 8/� = ∅′/
ZO + PQ@[Y

3  [6 − 11] 

 ∆/= ∅/
ZO + PQ@[Y

3  [6 − 12] 

 ∆M= ∆/ + (∅M − ∅/)P@O [6 − 13] 
 

The equations are based on the diagram from Priestley’s book shown in Figure 6-7 below. The 

resulting force-displacement plot is shown in Figure 6-8 and is plotted against the experimental hysteresis 

envelope for comparison.  

 

 

 

Figure 6-7: Theory for Lumped Plasticity Model Used in the Priestley Method 
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Compared to the experimental results, the Priestley method provides a good approximation of wall 

behavior. However, the initial stiffness is not captured very well due to an overestimation of yield 

displacement. Corrections for this overestimated yield displacement common in lightly reinforced walls are 

presented elsewhere (Beyer, 2007 & Hoult et al., 2018) and are outside of the scope for this prediction.  

6.3. PERFORM-3D Analysis 

The final tool used for predicting wall behavior was a Computers & Structures Inc. (CSI) software called 

PERFORM 3D. This software is a high-end analysis tool with many sophisticated abilities not covered in 

the scope of this paper. The PERFORM 3D analyses for this wall test are summarized in work completed 

by research collaborators Doan & Williams (2020). 

 

Figure 6-8: Force-Displacement Comparison between Priestley Method and Envelop of Experimental Results 
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7. CONCLUSIONS & FUTURE WORK 

7.1. Summary of Research Study 

Non-ductile RC buildings with insufficient detailing are the most vulnerable concrete structures to critical 

earthquake damage or collapse. Many of these buildings were built before important ACI 318 updates (pre-

1980’s construction) and utilize RC shear walls as the seismic force resisting system. The shear walls in 

these buildings are typically lacking longitudinal or horizontal reinforcement, especially in the wall end-

zones, and may have undesirable compression failure mechanisms such as rebar buckling or concrete 

crushing as noted in recent earthquake reconnaissance. Unfortunately, retrofit solutions for addressing the 

remaining insufficient shear walls are expensive. As a result, structural engineers are exploring why LRC 

walls seem to perform poorly during earthquakes and how to make retrofits more cost effective. 

The primary objective of this project was to investigate the behavior of flexurally dominated LRC 

shear walls subjected to cyclic loading via testing of a slender LRC wall representative of pre-1980’s 

construction at California Polytechnic State University - San Luis Obispo. This experimental investigation 

was performed to physically assess the behavior of the shear wall and to further enable numerical 

investigations to confirm the appropriateness of current computational non-linear methodologies. The 

continuation of this project being undertaken by Doan & Williams (2020), is to review current industry’s 

non-linear analysis practices for LRC walls and to utilize the testing results discussed in this paper. 

7.2. Comparison to Prior LRC Wall Experiments 

This section will compare R1 to the most relevant test specimens discussed in other experiments from 

Section 2.3. Table 7-1 summarizes the parameters compared. SW-1 tested by Cardenas & Magura (1973) 

performed much like R1. SW-1 had a higher CSAR, lower vertical reinforcement ratio, and a higher axial 

load ratio. These factors are shown to influence wall ductility (Wibowo et al., 2013) and contributed to 

SW-1 achieving a lower ductility. Both walls experienced flexural failures due to longitudinal rebar 

fracture after the onset of a base crack of significant width.  
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 The wall specimen W1 tested by Ireland et al. (2007) had a lower CSAR, nearly equivalent 

vertical reinforcement ratio, and a higher axial load ratio compared to R1. Although W1 had a lower 

ductility at failure, both walls experienced a flexural failure after the onset of a significant wall-

foundation interface crack. One noticeable difference is that W1 exhibited bar buckling which is 

unexpected given that W1 had smaller longitudinal bars and more closely spaced horizontal 

reinforcement. W1 also exhibited noticeable sliding at the wall-foundation interface which was negligible 

for R1 at ~0.1 inch. Reinforcement type also varied between walls - W1 used smooth rebar and R1 used 

deformed rebar. The smooth rebar would be expected to have a lesser concrete bond which may partially 

explain the concentrated crack plane at the base of W1 with no other crack planes along the height. 

The wall specimen C1 tested by Lu et al. (2017) performed most similarly to R1. C1 had a lower 

CSAR, slightly greater vertical reinforcement ratio, and slightly higher axial load ratio. These parameters 

alone suggest C1 would be expected to have a very comparable ultimate displacement ductility compared 

to R1. Both walls experienced a flexural failure after the onset of a significant wall-foundation interface 

crack, and both walls lost 20% of the maximum load carrying capacity due to bar rupture.  

Table 7-1: Summary of Previous Experiments Compared to R1 

 

 

 

 

Researcher Specimen �� (%) �� (%) �′� (���) CSAR SS Ductility Failure Mode 

Cardenas & Magura (1973) SW-1 0.27 5.6 7.42 25 2.0 7.01 FT 

Ireland et. al. (2007) W1 0.47 4.7 3.63 8.2 1.3 10 FC 

Lu et. al. (2017) 
C1 0.53 3.5 5.58 9.3 2.0 12.5 FC 

C2 0.53 3.5 5.00 9.3 4.0 12.5 FC 

Luong & de Sevilla (2020) R1 0.44 3.1 3.79 12 2.6 10-155 FT 

1 Listed value is curvature ductility. 
2 FT indicates flexural-tension failure (rebar fracture). FC indicates flexural-compression failure (bar buckling / concrete crushing). 
3 A flexural tension failure can occur after bar buckling and/or concrete crushing have occurred.  
4 Failure defined as 20% of maximum lateral force loss. 
5 Ultimate displacement ductility is bounded by the given range. 
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7.3.  Conclusions of Research Study 

7.3.1. LRC Wall Behavior 

Generally, practitioners have a perception that lightly reinforced concrete (LRC) walls are non-ductile and 

do not perform well in large seismic events. However, the experimental results in this paper and others 

examining LRC walls demonstrate that this assumption is not necessarily correct. The LRC wall specimen 

tested in this paper (R1) had a moderate axial load and was able to achieve ultimate drifts of about 2-3% 

and a corresponding displacement ductility of 10-15. When compared to other LRC experiments, and even 

modern wall tests, this result is on the higher end of what is expected. A major contribution to this behavior 

was the failure mechanism of R1, governed by several primary horizontal crack planes extending up the 

wall height with a flexural tension failure characterized by the rupture of longitudinal rebar at the wall-

foundation interface. This failure mechanism promoted global rocking action of the wall.  

If the wall was not braced out-of-plane, it may have suffered an out-of-plane failure prematurely 

given the significant amount of rocking. The authors suspect that the prominent rocking behavior may not 

be representative of actual walls in buildings braced at each story by the floor slab, leading to an 

overestimate to global displacement ductility, as determined in this experiment.  

7.3.2. LRC Wall Analysis Methods 

ASCE 41-17 underestimates LRC wall global ductility but captures initial stiffness more accurately than 

the Priestley method. However, this prediction method is sensitive to assumed values for post yield stiffness 

and code-recommended tabular values for plastic rotation. The Priestley method provides accurate results 

compared to experimental results in every aspect except for initial stiffness due to an overestimate of yield 

displacement. The prediction options offered by a calibrated Perform-3D model offer the most accurate 

results and provide valuable hysteretic data not obtained from lumped plasticity methods (Doan & Williams 

2020). For a future LRC wall experiment, the authors of this paper would recommend a Perform-3D model 

for predictions as opposed to ASCE-41 and the Priestley Method.  
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7.4. Future Work 

There is evidence in recent literature which shows the cracking behavior of LRC walls can be improved 

with added longitudinal reinforcement in the boundary zones (Lu, 2017; Lu et al., 2017; Lu et al., 2018; 

Shegay et al., 2020). If FRP could be used in a future experiment to increase the longitudinal area of 

resistance in the boundary zones, this could prove to be a useful retrofit strategy for existing LRC walls.  

The continuation of this research investigates the non-linear modeling strategies currently used in the 

structural engineering profession applied to LRC walls, as discussed in Doan and Williams. 
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APPENDIX 

A. Footing Documentation 

 Material Properties 

Table A-1: Footing concrete cylinder test results. 

 

 Rebar Layout and Dimensions  

   

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4 Average 

Concrete compressive strength, fc’ 1.932 2.016 1.621 1.975 1.886 

Figure A-1: Rebar layout and dimensions of wall footing. 
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Figure A-2: Additional rebar layout and dimensions of wall footing. 
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 Nominal Shear Capacity of Footing in Transverse Direction (Per ACI 318-14) 
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 Nominal Shear Capacity of Footing in Longitudinal Direction (Per ACI 318-14) 
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 Flexural Capacity of Footing with All-Thread Bolts 
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B. Wall Documentation   

 Material Properties 

Due to the unexpectedly low strengths derived from the concrete cylinder tests for the footing, a higher 

strength concrete was specified for the wall than originally planned to avoid the same problem from 

occurring. As the pour commenced, a 5” slump was measured and recorded. Compared to the slump from 

the footing pour, this was intentionally specified lower since the previous concrete cylinder tests seemed to 

have moisture issues. As a precaution, extra cylinders were taken during the pour, including both sizes of 

cylinders (6x12 and 4x8).  

The cylinders were taken at three different times during the pour: at the beginning, in the middle, 

and at the end. This procedure was utilized to determine if there was significant variance in the concrete 

strength during the pour. After the pour, half of the cylinders were placed in a moisture bath to cure while 

the other half were left to cure in the same environment as the wall. This procedure was utilized to determine 

if there was significant variance in the concrete strength due to curing conditions. 

 After 41 days, one 6x12 and one 4x8 cylinder were tested in a Test Mark Compression Testing 

machine. Three days later, four more cylinders were tested. On the test day, 82 days later, the rest of the 

cylinders were tested. An average compression strength of 3.79 ksi was obtained including outliers. 

Excluding the lowest compressive strength, the adjusted average was 4.05 ksi. 

It should be noted that all the cylinders taken at the beginning of the concrete pour had significantly 

lower compressive strengths than those taken later in the pour. One reason for this discrepancy could be 

due to extra water added to the initial concrete (to ensure proper flow of concrete and to initialize the pump). 

The extent of this lower concrete strength is unknown except that it increased throughout the pour, reaching 

compressive strengths of 6ksi once the midpoint of the wall had been reached.  Each cylinder failure mode 

was categorized according to ASTM C39/39M-18 as shown below. 
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Figure B-1: Failure modes of concrete cylinders. Figure adapted from ASTM C39/C39M-18 

 

Table B-1: Summary of Concrete Cylinder Tests for Wall Specimen 

Cylinder Parameter 1 2 3 4 5 6 7 8 9 

Curing Environment By Wall By Wall Bath Bath Bath By Wall By Wall Bath Bath 

Pour Sequence Bottom Bottom Bottom Bottom Bottom Bottom Middle Top Middle 

Date Tested 4/18 4/18 4/21 4/21 4/21 4/21 5/29 5/29 5/29 

Cylinder Size 6x12 4x8 6x12 4x8 4x8 4x8 4x8 4x8 6x12 

Max Comp. Force (kips) 79.03 23.87 77.64 34.37 27.10 21.81 75.90 89.40 194.98 

Comp. Strength, f'c (ksi) 2.80 1.90 2.75 2.74 2.16 1.74 6.04 7.11 6.90 

Failure Type 4 5 2 3 5 5 3 5 5 
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 Nominal Capacities of Wall 



APPENDIX 

105 

 



APPENDIX 

106 

 



APPENDIX 

107 

 



APPENDIX 

108 

 

 

 

 



APPENDIX 

109 

 

C. Existing Conditions 

The existing conditions of the College of Architectural & Environmental Design (CAED) High Bay 

laboratory on Cal Poly’s campus affected the design and orientation of the footing and wall specimen. This 

section discusses the existing strong floor and reaction frame as they relate to this project. 

 Strong Floor 

The reinforced concrete strong floor in the High Bay laboratory provided a fixed connection for the base of 

the concrete footing in this project. The strong floor consists of all-thread anchors that are embedded at 

three feet on center, each way. Figure C-1 shows a dimensioned detail of the existing connection at each 

all-thread anchor.  

 Reaction Frame 

For lateral support during testing, the High Bay’s reaction frame was upgraded and utilized. Before testing, 

the reaction frame required stiffening to prevent inaccuracies in testing and data acquisition. The upgraded 

reaction frame is shown in Figure C-2. 

 

Figure C-1: Detail of Existing Connection to Strong Floor 



APPENDIX 

110 

 

 

 

 

 

 

Figure C-2: Upgraded Reaction Frame in the High Bay Laboratory.  
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D. Wall Construction and Instrumentation 

 Wall Construction Details 
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 Instrumentation and Calibrations 
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E. Literature Review of FRP Tests on Walls and Columns for Ductility Improvements 

The wall specimen R1 tested in this report was designed to model the cyclic behavior of slender pre-

1980’s lightly reinforced concrete (LRC) shear walls which are believed to display non-ductile failure 

modes during large earthquakes. Although understanding the LRC failure mode was the primary 

objective of this report, the secondary objective focused on how to retrofit such walls. A fiber reinforced 

polymer (FRP) retrofit scheme with FRP wrapped wall endzones and splay anchors was preliminarily 

proposed and investigated by performing a literature review on the previous use of FRP to retrofit 

columns and walls.  

The following section contains literature review of FRP retrofit schemes to improve deficient wall 

behavior, a review of current practice modeling techniques used to analyze concrete shear walls, and a 

review of other retrofit methods applicable to concrete shear walls. The following is an overview of the 

observations made: 

1. The use of FRP to retrofit reinforced concrete columns is widely accepted and successful for 

increasing the seismic performance of deficient columns. 

2. The use of FRP and steel rods to retrofit reinforced concrete walls has developed recently but is not 

fully investigated regarding improving displacement ductility without also improving strength.    

3. The method used to model walls is important in capturing the nonlinear effects of RC shear walls. 

4. FRP retrofit schemes have worked well for in-field applications on deficient existing buildings, 

especially when combined with experimental testing to calibrate analysis models.  

5. Selective weakening methods for RC shear walls, such as targeted saw cutting, can control the 

inelastic failure mechanism. 

 Testing of Reinforced Concrete Columns Using FRP 

This section provides an overview of experimental tests on concrete columns with FRP retrofit schemes. 

The parameters of interest are like those for lightly reinforced walls. The purpose of this section is to 

confirm the effectiveness of using FRP as a ductility enhancing agent. 
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E.1.1 Sheikh & Yau (2002) 

This paper reports the results from an experimental program which involved cyclic testing on 12 circular 

concrete columns. The researchers were interested in using FRP to improve the seismic performance of 

deficient columns to match or exceed columns designed with the provisions of the 1999 ACI-318 Code. 

Both glass and carbon fiber products were used and shown to enhance the strength, ductility, and energy 

absorption capacity of the tested columns.  

Per the structure of the test program, the 12 columns were divided into three groups: the first group, 

Series S, acted as a control and consisted of four conventionally reinforced concrete (RC) columns utilizing 

longitudinal and spiral steel; the second group, Series ST, consisted of six RC columns that were 

strengthened with FRP; the third group, Series R, consisted of two RC columns that were intentionally 

damaged and subsequently repaired with FRP. Figure E-1(a) shows the rebar layout and dimensions of each 

specimen. The design of the specimens was meant to force the failure into the potential plastic hinge region 

near the face of the footing.  

For ease of testing, the experiment setup was designed horizontally as shown in Figure E-1(b). A 

constant axial load was applied by a hydraulic jack under the column footing, and a cyclic lateral load was 

applied by an actuator running vertically. The loading protocol was displacement controlled for the entire 

test, incremented in proportions of a deflection corresponding to the initial stiffness of the specimens. Each 

specimen had 18 strain gauges installed on the longitudinal reinforcement, 18 LVDT’s to measure core 

deformations, and six LVDT’s to measure transverse deformations.  
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Figure E-1: Specimen dimensions and test setup 

Left (a) Specimen Rebar Layout and Dimensions. Right (b) Cyclic loading test setup for each specimen, Sheikh and Yau (2002).  

 

Most of the test data was compiled into moment-curvature plots for each specimen with labels 

indicating key observations made during testing (see Figure E-2 for two specimens). The researchers 

analyzed the data by comparing column ductility parameters, axial load levels, spiral reinforcement spacing/ 

area, and FRP effectiveness. In general, column ductility was decreased as axial load was added and 

increased as spiral reinforcement pitches were made tighter. Moreover, the FRP was effective at increasing 

the energy absorption capacity of the columns by several orders of magnitude. The researchers note how 

the FRP confines the entire column compared to the spirals which only confine the core.  

 

 

Figure E-2: Moment versus curvature plots for test specimens S-3NT and ST-2NT, Sheikh and Yau (2002).   

 

 

(a) (b) 
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E.1.2 Iacobucci et al. (2003) 

This paper reports the results from an experimental program which involved cyclic testing on eight square 

concrete columns. The researchers were interested in using CFRP (carbon fiber reinforced polymer) to 

improve the seismic performance of deficient columns. The results showed that appropriately utilized 

carbon fiber products enhance the strength, ductility, and energy absorption capacity of columns and can 

exceed the performance of comparable columns with adequate seismic lateral reinforcement.  

The test program consisted of eight columns with varying transverse steel configurations, axial 

loads, and layers of FRP. Each specimen had a rectangular foundation to represent a footing or frame joint. 

The rebar layouts were based on typical pre-1971 column details. Like Sheikh et. al., the specimens were 

tested in a horizontal orientation and utilized the equipment shown in Figure E-3(b). The loading protocol 

was displacement controlled for the entire test, incremented in proportions of a deflection corresponding to 

the initial stiffness of the specimens. Each specimen had 20 strain gauges installed on the longitudinal 

reinforcement, 18 LVDT’s to measure core deformations, six LVDT’s to measure transverse deformations, 

and eight surface strain gauges oriented in the direction of the fibers to measure strains in the CFRP where 

applicable.  

 

 

Figure E-3: Specimen dimensions and test setup 

 Left (a) Specimen Dimensions and Cross Section Rebar Layout. Right (b) Test Setup, Iacobucci et. al. (2003) 

 

Most of the test data was compiled into moment-curvature plots for each specimen with labels 

indicating key observations made during testing (see Figure E-4 for two specimens). The researchers 

analyzed the data by comparing column ductility parameters, axial load levels, number of CFRP layers 

(a) (b) 
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used, and FRP effectiveness. In general, column ductility was decreased as axial load was added and 

increased as more layers of CFRP were used. Moreover, the CFRP confined the critical sections effectively 

enough to completely eliminate the need for additional steel ties to provide confinement. The CFRP was 

also successful at improving the cyclic response of previously damaged specimens.  

 

Figure E-4: Moment versus curvature plots for test specimens AS-1NS and ASC-2NS, Iacobucci et. al. (2003). 

 

E.1.3 Endeshaw et al. (2008) 

This paper investigates retrofit concepts to improve the seismic behavior of deficient rectangular concrete 

bridge columns. A total of eight columns designed at 40% scale and representative of Washington State’s 

deficient interstate column inventory were tested via reverse-cyclic lateral loading under constant axial 

load. Failure mode, displacement ductility, and hysteretic behavior were the parameters of interest for each 

specimen. Columns retrofitted with steel jackets and CFRP wrapping both performed similarly, producing 

satisfactorily ductile response with failure due to flexural hinging and low-cycle fatigue fracture of the 

longitudinal reinforcement.  

 The column specimens were split into three distinct groups. The first group of two were un-

retrofitted control specimens meant to establish the as-built behavior of the deficient columns, incorporating 

lap slices at the base of the columns and sparse transverse reinforcement. The second group of five columns 

were retrofitted with the CFRP composite wrapping. The third group of one was retrofitted with a steel 

jacket. The researchers note the FRP wrapping has several advantages over steel and concrete wrapping, 
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including low weight-to-strength ratios, high elastic moduli, resistance to corrosion, ease of application, 

and little stiffness amplification.  

 Endeshaw et. al. gives detailed guidelines for FRP application and design equations based on ACI 

440-02 and the Advanced Composites Technology Transfer Consortium Report No. ACTT-95/08. Oval-

shaped FRP jackets are recommended over rectangular shaped jackets when possible and are required if 

controlled debonding at the longitudinal reinforcing lap splice is not permissible. CFRP is also compared 

to other FRP products including AFRP and GFRP. Regarding modulus of elasticity, tensile strength, and 

weather durability, the CFRP outperforms the other options, except on cost.  

 The rebar layout and dimensions of the column specimens are shown in Figure E-5 below. The 

footings were overdesigned to force failure into the column plastic hinge region. The testing setup is shown 

in Figure E-6 below. A constant axial load was applied throughout the testing with lateral load delivered 

using a horizontally aligned actuator in a quasi-static manner under a displacement-controlled loading 
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protocol. Each load step consisted of three cycles at a proportion of the calculated theoretical yield 

displacement, and failure was defined as a 20% decrease in peak lateral load.  

Figure E-5: Specimen Rebar Layout, Endeshaw et. al, (2008). 

 

Figure E-6: Test setup for cyclic loading of concrete column, Endeshaw et. al, (2008). 

The remainder of this section will focus on two specimens, AB-1 and FRP-4 for comparison reasons. 

Specimen AB-1 was an un-retrofitted control column and performed better than expected with a reasonable 

displacement ductility of 6.4. The researchers attribute this unexpected behavior to the relatively long lap 
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slice used (35 bar diameters), a low axial load level of 7%, and a low longitudinal reinforcement ratio of 

1.2%. This column failed due to buckling of longitudinal rebar and subsequent low-cycle rebar fracture. 

Specimen FRP-4 was the retrofitted version of AB-1 with four layers of unidirectional CFRP impregnated 

with laminating resin. FRP-4 had a displacement ductility of 7.4, slightly more than AB-1, and failed after 

longitudinal bars began to fracture due to low-cycle fatigue fracture (see  

 for more information).  

 

E.1.4 Realfonzo & Napoli (2009) 

This paper discusses results of an experimental program testing the seismic performance of RC columns 

retrofitted with external steel devices and FRP. The 24 specimens were representative of columns designed 

only for gravity load, where deformation compatibility was not a concern, and were tested under cyclic 

lateral load. The testing consisted of columns with either deformed or smooth rebar. Additionally, the 

columns were further divided into two groups with non-dimensional axial loads of 14 and 40%. The 

literature review in this section focuses on the columns with deformed bars as shown in Table E-.  

Table E-1: Column Specimens with Deformed Bars. Table Modified from Realfonzo & Napoli (2009). 
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 One retrofit scheme tested both unidirectional glass and carbon fiber wrap, which were used to 

continuously confine the region that would experience flexural hinging. Furthermore, FRP strips were used 

to confine the rest of the column. Another retrofit scheme tested steel angles epoxied to the corners of the 

columns, with two anchoring scenarios. Figure E-7 shows type A1 specimens and the two anchoring 

systems. Option (a) was designed to only transfer tension forces, whereas option (b) transfers both tension 

and compression forces to the foundation.  

Figure E-7: Anchoring Systems for Steel Angle Retrofit, Realfonzo & Napoli (2009). 

 Columns subjected to axial loads of 14% experienced the most concentrated damage slightly above 

the column-foundation interface, with the flexural cracks distributed at the position of the steel stirrups. As 

testing progressed, the width of the flexural cracks increased slightly. Prior to collapse, concrete crushing 

occurred at the base of the column. Conversely, CFRP confined columns experienced flexural cracking at 

the column-foundation interface and outside the wrapped regions. These columns were governed by 

concrete spalling and buckling of rebar. Similarly, unconfined columns subject to 40% axial loads were 

governed by rebar buckling or concrete spalling. Horizontal cracks occurred at the stirrups and vertical 

cracks developed prior to the onset of rebar buckling. Confined columns were governed by concrete 

crushing or fracture of the FRP. 

  Axial loads did not dictate the performance of the steel devices. A1(a) anchorages were governed 

by either failure of the weld or pullout of the anchor rod and had sudden loss of strength contribution from 

the steel. A1(b) devices had a more progressive failure transition. Regardless of the axial loads, FRP 

provided significant increases to deformation ductility in the columns. Under high axial loads (40%), the 

FRP passive confinement resulted in noticeable strength increase. The ultimate FRP tensile strain at 
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collapse was approximately 1/5 of the maximum design tensile strain. Anchored steel anchors also provided 

increased flexural capacity. It was noted that columns wrapped with FRP had no increase in stiffness.  

E.1.5 Summary of Experimental Testing of Concrete Columns Using FRP 

This section reviewed several experimental tests of concrete columns with FRP retrofit schemes applied to 

improve the earthquake performance of deficient columns. In all cases, FRP had a positive impact on global 

column displacement ductility. See summary Table E-2 for comparisons between researchers. Additionally, 

the use of steel devices anchored into the footing significantly increased deformation ductility, flexural 

strength of the columns, and provides better ductile detailing, while minimizing the effects on stiffness.  

 

Table E-2: Summary of Experimental Testing of Concrete Columns with FRP 

Researcher Specimen �� �� (%) �′� (���) FRP Ductility Failure Mode 

Sheikh & Yau (2002) 
S-3NT 3.00 30 5.69 N/A 3.0 Bar buckling 

ST-2NT 3.00 30 5.86 (2) GFRP 6.0 Fiber rupture 

Iacobucci et. al. (2003) 
AS-1NS 2.58 40 4.55 N/A 3.7 Bar buckling 

ASC-2NS 2.58 38 5.29 (1) CFRP 6.1 Fiber rupture 

Endeshaw et. al. (2008) 
AB-1 1.33 7 4.50 N/A 6.4 Bar buckling/rupture 

FRP-4 1.33 7 4.50 (4) CFRP 7.4 Bar rupture / fiber bulge 

Realfonzo & Napoli (2009) 
C9-D 1.03 13 4.61 N/A 2.2 Concrete spalling / bar buckling 

C7-D-C 1.03 14 3.84 (2) CFRP 4.9 Fiber/bar rupture, bar buckling 

 

 

 

 Testing of Reinforced Concrete Walls Using FRP 

This section covered three experiments involving concrete shear walls and FRP retrofit schemes. Each 

retrofit sought to improve some combination of shear strength, displacement ductility, energy dissipation, 

flexural strength, base anchorage, and/or lap splice placement. Most of the retrofitted walls became more 

ductile compared to their respective control walls without FRP enhancements.  
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E.2.1 Paterson & Mitchell (2003) 

This paper discusses the results from an experiment for a proposed retrofit to use headed bars and carbon 

fiber wrap for seismic strengthening of shear walls in a 1960s building in Berkeley, California (Mar et al. 

2000). Two walls were tested with lap splices at different locations. Figure E-8 shows the two specimens. 

 

 

 

 

 

 

 

 

 

 

 Specimen W1 had a lap splice near the base of the wall. The wall had poor ductility and failed soon 

after yielding. The wall had a brittle failure where the lap splices occurred, which led to a significant drop 

in capacity. Specimen W2 had more ductility than W1 because of the delayed response of inelastic 

deformation in the lap splice region. W2 had a brittle tensile failure at the lap splice region. 

 The retrofit strategy for W1R used a reinforced collar to add passive confinement where the lap 

splice of the wall occurred to mitigate the effects of lap splice debonding. The reinforced collar consisted 

of FRP, headed dowels, confinement steel, and end pins, as shown in Figure E-9(a). Additionally, the rest 

of the wall was shear strengthened using FRP. As a result of the reinforced collar, the area of concentrated 

inelastic deformation shifted to the region above the reinforced collar. W1 and W1R had overstrength 

factors of 1.18 and 1.26, respectively. The deformation ductility increased from 1.5 to 3.8 in W1R. 

 The retrofit for W2R was FRP with through-wall and end pin confinement reinforcement in the 

region of inelastic deformation as shown in Figure E-9(b). When compared to W2, W2R experienced an 

Figure E-8: Specimen (a) W1 and (b) W2, Paterson et al. (2003). 
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increase of deformation ductility from 4.0 to 6.3 and no loss of strength due to lap splice failure. Also, W2R 

had a larger overstrength of 1.31 when compared to W2, which had an overstrength of 1.18.  

 

Figure E-9: Retrofit Schemes for (a) W1R and (b) W2R, Paterson et al. (2003). 

 Both retrofit schemes were effective in increasing deformation ductility and overstrength. Both 

were effective in providing confinement to prevent lap splice failure in the region of concentrated 

deformation. However, the increase of overstrength will result in increased design demands on the existing 

foundation systems. The retrofit for W1R was more invasive than W2R because of the additional shotcrete 

required but is a viable solution where this is not a concern. 

E.2.2 Khalil & Ghobarah (2005) 

This paper summarizes the results from an experimental program focused on concrete wall retrofit schemes 

using FRP and steel rods to improve the ductility, energy dissipation, and shear strength of existing deficient 

walls. The researchers acknowledge the abundance of rehabilitation testing with FRP in the existing 
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literature for columns and beams but sought to fill in the literature gap for walls retrofitted with FRP. They 

did cyclic testing on three walls: specimen CW as the control, specimen RW1 as an FRP only retrofit, and 

specimen RW2 as a steel and FRP retrofit. Their retrofit schemes were successful at improving the 

performance of their prototype deficient wall. 

 For ease of testing, Khalil & Ghobarah modelled the plastic hinge region of their prototype wall 

and applied loads to replicate the free-body diagram at the plastic hinge (see Figure E-10 below). Cardenas 

& Magura also implemented this simplification for their walls. Their prototype wall was designed to comply 

with ACI 318-68 and CSA-77. Figure E-11 shows the reinforcement schemes and dimensions of each 

specimen.  
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Figure E-10: Prototype wall versus modelled wall, Khalil & Ghobarah (2005). 

 

Figure E-11: Reinforcement Steel Layout for Wall Specimens, Khalil & Ghobarah (2005). 

The retrofit schemes implemented in this paper are described below and shown in Figure E-12. For 

specimen RW1, the retrofit was designed to improve the shear strength and displacement ductility of the 

deficient wall. To improve shear strength, two layers of bidirectional FRP were wrapped around the entire 

wall, stopping 30 mm from the top and bottom of the wall to allow space for development of the flexural 

hinge. The ductility-enhancing aspect of the retrofit also implemented FRP but was only concerned with 

the end column elements of the wall. Similar to transverse ties in a modern boundary element of a concrete 

wall, the ductility-enhancing retrofit used three layers of unidirectional FRP to confine the highly stressed 
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concrete end zones by wrapping around the edge elements of the wall (over the bidirectional FRP) in the 

form of a U-shaped partial hoop. FRP anchors inserted through the wall acted as the fourth side that closed 

the U-shaped hoops. For specimen RW2, the retrofit concept remained nearly identical to RW1 but 

implemented steel anchors (threaded rods) instead of FRP anchors. 

 

Figure E-12: Retrofit specimen details, Khalil & Ghobarah (2005) 

The results of the experiment are summarized below. The control wall specimen CW performed 

very poorly, failing in shear before theoretical yield occurred. Specimen RW1 reached a displacement 

ductility of three before failure triggered by longitudinal bar buckling while specimen RW2 reached a 

displacement ductility of four. Both retrofits also increased the maximum lateral force reached as shown in 

Figure E-13. Specimen RW2 outperformed RW1 because the steel anchors had a higher shear strength than 
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the FRP anchors, preventing failure of the retrofit scheme for longer. In general, the retrofits were 

successful.  

 

Figure E-13: Lateral force versus experimental drift, Khalil & Ghobarah (2005) 

E.2.3 Cruz-Noguez et al. (2015) 

Carlos A. Cruz-Noguez et al. summarizes results from experiments performed by Lombard et al. (2000) 

and Hiotakis et al. (2004) which evaluates seven shear wall specimens using externally bonded FRP as a 

repair/strengthening measure. This document highlights the performance of the FRP schemes and the 

effectiveness of two types of FRP anchoring systems. The overall objectives of the experiment were to 

assess the added flexural strength of FRP to the specimen, gather insight on the different failure 

mechanisms, and to develop models to predict the strength capacity of shear walls with FRP 

repair/strengthening.  

To limit the parameters of the study to consider only FRP performance, the shear wall specimens 

were designed to fail in a ductile behavior. The walls were controlled by flexure, meaning that they would 

fail in flexure before their shear capacities were reached. The test consisted of two baseline walls, which 

were then repaired, and five strengthened walls. The walls were then divided into two groups to test both 

anchoring systems. Table E-3 shows the different schemes used in the two-phase experiment. 
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Table E-3: Summary of Testing Specimens, Cruz-Noguez et al. (2015). 

 

The experimental setup included no axial loads, although an axial stress equal to 0.1bwtwf’c was 

assumed for the sectional analysis. The specimens were subjected to an in-plane, quasi-static, cyclic loading 

sequence of lateral load applied to the top of the structure. FRP was only applied to the face of the wall and 

was not wrapped around the edges to mimic in-field limitations.  

It was observed that the FRP repaired walls were able to recover 87% of the original stiffness. FRP 

strengthened walls were able to achieve 151% of the original stiffness. The walls with the highest 

deformation ductility of 9.1 had two vertical layers and one horizontal layer of FRP (SW2-1). Walls with a 

single layer of vertical FRP achieved a ductility of 9.0 (RW-1, SW1-1, RW-2, SW1-2). Walls with three 

vertical and one horizontal layer of FRP had a ductility of 8.3 (SW3-2). Walls with two vertical layers had 

a ductility of 5.5 (SW2-2). It is noted that horizontal FRP reinforcement attributed significantly to the 

deformation ductility of the walls.   

The anchoring system is important in developing the tensile forces in the vertical layers of FRP 

into the foundation. Two systems were tested – one using angles and the other using a pipe, as shown in 

Figure E-14. The FRP sheets were able to carry tensile stresses after debonding from the concrete surface 

due to FRP being anchored to the base. Additionally, the FRP had an average 11% lower flexural capacity 

than predicted, which is a result of the imperfect bond conditions.  
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In summary, FRP is effective in recovering elastic stiffness and increasing flexural capacity in 

repair situations. Likewise, FRP is effective in increasing stiffness and flexural capacity in strengthening 

situations. Walls with additional horizontal FRP layers performed better, when compared to those without 

horizontal FRP layers. Additionally, it is noted that anchoring system is crucial in development of the 

ultimate stresses in the FRP and preventing premature debonding of the FRP.  

Figure E-14: FRP Anchoring Phases. 

 (Left) Angle Anchor and (Right) Tube Anchor, Cruz-Noguez et al. (2015). 

 

E.2.4 Summary of Experimental Testing of Concrete Shear Walls with FRP 

This section covered three different experiments involving concrete shear walls and FRP retrofit schemes. 

Each retrofit sought to improve some combination of shear strength, displacement ductility, energy 

dissipation, flexural strength, base anchorage, and/or lap splice placement. Most of the retrofitted walls 

became more ductile compared to their respective control walls without FRP enhancements. This 

information gives insight into how FRP can be used to retrofit concrete walls and how effective it can be 

when implemented correctly. See Table E-4 for a summary table of comparisons between experiments.  

Table E-4: Summary of FRP retrofitted wall tests. 

 

Researcher Specimen �� �� (%) CSAR SS �′� (���) FRP Ductility Failure Mode 

Paterson & 

Mitchell (2003) 

W2 0.74 0 4.0 3.1 4.8 N/A 4.0 Lap Splice 

W2R 0.74 0 4.0 3.1 4.5 (1) CFRP 6.3 Bar Rupture 

Khalil & 

Ghobarah (2005) 

CW 4.58 3.3 8.3 2.3 5.5 N/A < 1.0 Shear 

RW1 4.58 3.3 8.3 2.3 5.5 (3) CFRP 3.0 Bar Buckling 

Carlos A. Cruz-

Noguez et al. 

(2015) 

CW1 N/A 0 15 1.2 5.8 N/A 4.0 Conc. Crush 

SW2-1 N/A 0 15 1.2 5.8 (2) CFRP 9.1 Bar Rupture 
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