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Abstract—Document clustering addresses the problem of iden-
tifying groups of similar documents without human supervision. 
Unlike most existing solutions that perform document clustering 
based on keywords matching, we propose an algorithm that 
considers the meaning of the terms in the documents. For 
example, a document that contains the words “dog” and “cat” 
multiple times may be placed in the same category as a document 
that contains the word “pet” even if the two documents share 
only noise words in common. Our semantic clustering algorithm 
is based on a similarity graph that stores the degree of semantic 
relationship between terms (extracted from WordNet), where a 
term can be a word or a phrase. We experimentally validate 
our algorithm on the Reuters-21578 benchmark, which contains 
11, 362 newswire stories that are grouped in 82 categories using 
human judgment. We apply the k-means clustering algorithm to 
group the documents using a similarity metric that is based on 
keywords matching and one that uses the similarity graph. We 
show that the second approach produces higher precision and 
recall, which means that this approach matches closer the results 
of the human study. 

I. INTRODUCTION 

Consider a web portal for an online store. To simplify nav-
igation, merchandise may be grouped into categories. When a 
new product is introduced, it will be beneficial if the system 
can automatically classify the product in the correct category. 
This classification can be performed based on the description 
of the product. For example, consider a product with the 
following text description: “white sneakers, size 10”. If the 
system contains the knowledge that the terms “sneakers” and 
“athletic shoes” are related, then it can classify the new product 
in the “athletic shoes” category. In this paper, we show how 
such semantic knowledge can be stored in a similarity graph 
and how it can be used to cluster documents based on the 
meaning of terms in their text. 

The problem of semantic document clustering is interesting 
because it can improve the quality of the clustering result as 
compared to keywords-matching algorithms. For example, the 
later algorithm will likely put documents that use different 
terminology to describe the same concept in separate cate-
gories. Consider a scientific document that contains the term 
“ascorbic acid” multiple times and a scientific document that 
contains the term “vitamin C” multiple times. The documents 
are semantically similar because “ascorbic acid” and “vitamin 
C” refer to the same organic compound and therefore the clus-
tering algorithm should take this fact into account. However, 

this will only happen when the close relationship between the 
two terms is stored in the system and used during document 
clustering. The need for a semantic clustering system becomes 
even more apparent when the number of documents is small 
or when they are very short. In this case, it is likely that 
the documents will not share many words in common and a 
keywords-matching system will struggle to find evidence for 
grouping documents together. 

The problem of semantic document clustering is difficult 
because it involves some understanding of the meaning of 
words and phrases and how they interact. Although significant 
effort has been put forward in automated natural language 
processing [9], [10], [24], current approaches fall short of 
understanding the precise meaning of human text. In fact, 
whether computers will ever become as fluent as humans in 
understanding natural language text is an open problem. In 
this paper, we do not analyze natural language text and break 
it down into the parts of speech. Instead, we only consider 
the words and phrases in the documents and use the similarity 
graph, which is based on a probabilistic model, to compute the 
distance between pairs of documents. Note that, as described 
in the next paragraph, most clustering algorithms rely on a 
distance metric to cluster the documents. 

A traditional keywords-matching algorithm for document 
clustering falls short because it only considers the words and 
their frequencies in each document. For example, the popular 
k-means clustering algorithm [23] starts with k document
seeds. It then finds the documents that are closest to each seed
using a distance metric. Next, the centroid (i.e., mean) of each
cluster is found and then new clusters are created using the
centroids as the seeds. The process repeats and it is guaranteed
to converge. The algorithm is based on a vector representation
of the documents (based on words frequencies) and a distance
metric (e.g., the cosine similarity between two document
vectors). Unfortunately, this approach will incorrectly compute
the similarity distance between two documents that describe
the same concept using different words. It will only consider
the common words and their frequencies and it will ignore
the meaning of the words. Conversely, our approach adds all
the documents to the similarity graph. The distance between a
pair of documents is measured by evaluating the paths between
them, where a path in the graph can go through several terms
that are semantically similar. In this way, we consider not only
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words, but also phrases (a.k.a. terms) that consist of several 
words. We also consider the meaning of these phrases. 

Our approach for semantic document clustering is based 
on a similarity graph that was described in [38]. The graph 
uses mainly information from WordNet to find the degree of 
semantic similarity between 150, 000 of the most common 
terms in the English language. The edges in the graph are 
asymmetric, where an edge between two nodes represents the 
probability that someone is interested in the concept that is 
described by the destination node given that they are interested 
in the concept that is described by the source node. Our 
approach adds the documents as nodes in the graph. They 
are connected to the graph based on the terms in them. For 
example, a document that contains the word “cat” will be 
connected to the word “cat”, which in tern is connected to the 
word “feline”, which in tern can be connected to a document 
that contains the word “feline”. In this way, our algorithm 
can compute the semantic distance between two documents 
by evaluating the degree of similarity between pairs of terms 
that appear in the documents. 

When computing the similarity distance between two doc-
uments, we aggregate the evidence from all the paths be-
tween the first and the second document. Every path provides 
additional evidence about the similarity between the two 
documents. Note that the weight of a path decreases as the 
length of the path increases because longer paths provide 
weaker evidence. Since the paths in the graph are directed, we 
also examine the paths from the second to the first document 
and average the aggregated results. 

We experimentally validate our document clustering algo-
rithm on the Reuters-21578 benchmark. Out f the 21,578 
newswire stories, 11,362 are categories in one of several 
categories using human judgment. Since our algorithm is based 
on hard clustering, that is every document can belong to at 
most one category, we consider only the first human classi-
fication for each of the documents. We compare the results 
from the human judgment to applying the k-means clustering 
algorithm with two different distance metrics. The first is based 
on the popular cosine similarity metric that compares two 
documents as the cosine of the angle between the document 
vectors. The second metric is based on the distance between 
the documents in the similarity graph. We use the F-measure, 
which is popular in the research community [29], to evaluate 
how the results from the clustering algorithms compare to 
those of human judgment. The metric takes into account 
the number of documents that were correctly and wrongly 
classified to the same class and the number of documents that 
were wrongly assigned to different classes. When we apply 
the second distance metric, we get a higher value for the F-
measure. This means that by using the similarity graph we 
can produce results that more closely match human judgment. 
The reason is that the similarity graph metric considers the 
meaning of the words and terms in the documents, while the 
cosine similarity metric only considers the words and their 
frequencies. 

In what follows, in Section II we present a brief overview 

of related research. The next section describes the similarity 
graph and presents example scenarios for creating the graph. 
While Section IV explains how to measure the semantic 
similarity between terms, Section V describes how to measure 
the semantic similarity between documents. Our main contri-
butions are in the next two sections. Section VI describes two 
algorithms for clustering documents: using keywords matching 
and using the similarity graph. Section VII validates our 
semantic clustering algorithm by showing how it can produce 
data of better quality than the algorithm that is based on simple 
keywords matching. Lastly, Section VIII summarizes the paper 
and outlines areas for future research. 

II. RELATED RESEARCH 

A plethora of research has been published on using su-
pervised learning models with training sets for document 
classification [5], [40]. Our approach differs because it is 
unsupervised, it does not use a training set, and it can cluster 
documents in any number of classes rather than just classify 
the documents in preexisting topics. 

One alternative to supervised learning is using a knowledge-
base that contains information about the relationship between 
the words and phrases that can be found in the documents to 
be clustered. For example, in 1986, W. B. Croft proposed the 
use of a thesaurus that contains semantic information, such 
as what words are synonyms [7]. Sequentially, there have 
been multiple papers on the use of a thesaurus to represent 
the semantic relationship between words and phrases [13], 
[14], [15], [17], [19], [27], [32], [41]. This approach, although 
very progressive for the times, differs from our approach 
because we consider indirect relationships between words (i.e., 
relationships along paths of several words). We also do not 
apply document expansion (e.g., adding the synonyms of the 
words in a document to the document) when comparing two 
documents. Instead, we use the similarity graph to compute the 
distance between two documents. Some limited user interac-
tion is possible when classifying documents – see for example 
the research on folksonomies [11]. Our system currently does 
not allow for user interaction when creating the document 
clusters. 

In later years, the research of Croft was extended by creating 
a graph in the form of a semantic network [4], [30], [33] and 
graphs that contain the semantic relationships between words 
[2], [1], [6]. Later on, Simone Ponzetto and Michael Strube 
showed how to create a graph that only represents inheritance 
of words in WordNet [21], [34], while Glen Jeh and Jennifer 
Widom showed how to approximate the similarity between 
phrases based on information about the structure of the graph 
in which they appear [18]. All these approaches differ from 
our approach because they do not consider the strength of the 
relationship between the nodes in the graph. In other words, 
there are no weights that are assigned to the edges in the graph. 

Natural language techniques can be used to analyze the 
text in a document [16], [26], [36]. For example, a natural 
language analyzer may determine that a document talks about 
animals and words or concepts that can represent an animal 



can be identified in other documents. As a result, documents 
that are identified to refer to the same or similar concepts can 
be classified together. One problem with this approach is that 
this is computationally expensive. A second problem is that it 
is not a probabilistic model and therefore it is difficult to be 
applied towards generating a document similarity metric. 

Ontologies can be used for document classification [31]. 
Our approach is different because we do not consider pres-
elected categories. Using ontologies also requires manual or 
automatic annotation of each document with a description in 
a formal language [20], [28], [12]. This may be problematic 
because manual annotation is time consuming and automatic 
annotation is not very reliable. 

Since the early 1990s, research on LSA (stands for latent 
semantic analysis [8]) has been carried out. The approach has 
the advantage of not relying on external information. Instead, 
it considers the closeness of words in text documents as proof 
of their semantic similarity. For example, LSA can be used 
to detect words that are synonyms [22]. This differs from our 
approach because we do not consider the closeness of words in 
a document. The only time we consider the position of words 
is when we examine the order of the words in the definition of 
a WordNet sense when we build the similarity graph, where we 
assume that the first words are more important. Although the 
LSA approach has its applications, we believe that our sources 
of knowledge, such as WordNet, provide data of higher quality. 

III. CREATING THE SIMILARITY GRAPH 

In this section, we review how the similarity graph can 
be created using information from WordNet [25], where we 
encourage the reader to refer to [38] for a more detailed 
description. WordNet gives us information about the words 
in the English language. The similarity graph is initially 
constructed using WordNet 3.0, which contains about 150, 000 
different terms. Both words and phrases can be found in 
WordNet. For example, “sports utility vehicle” is a term from 
WordNet. We will sometimes refer to these words and phrases 
as terms, while WordNet uses the terminology word form. 
Note that the meaning of a term is not precise. For example, 
the word “spring” can mean the season after winter, a metal 
elastic device, or natural flow of ground water, among others. 
This is the reason why WordNet uses the concept of a sense. 
For example, earlier in this paragraph we cited three different 
senses of the word “spring”. Every word form has one or more 
senses and every sense is represented by one or more word 
forms. A human can usually determine which of the many 
senses a word form represents by the context in which the 
word form is used. WordNet contains about 116, 000 senses 
for the 150, 000 word forms. 

The initial goal of the similarity graph is to model the rela-
tionship between the terms in WordNet using a probabilistic 
model. The weight of an edge between two nodes represents 
the probability that a user is interested in documents that 
contain the label of the destination node given that they are 
interested in the label of the source node. For every term that 
is not a noise word, a node that has the term as a label is 

created. Similarly, for every sense we create a node with a 
label that is the description of the sense. All node labels are 
converted to lower case and we do not create multiple nodes 
with the same label. 

As expected, we join every word form node with the sense 
nodes for the word form using edges. We also join a sense 
node with the nodes for the non-noise words in the description 
of the sense using edges, where higher weights are given to 
the first words. The reason is that we believe that there is a 
greater chance that a user will be interested in one of the first 
words in the definition of a sense given that they are interested 
in the sense. For example, the most popular sense of the word 
“chair” is “a seat for one person”. There is obviously a strong 
relationship between the words “chair” and “seat”, which 
is extracted by the algorithm. Similarly, WordNet contains 
example use for each sense and the similarity graph contains 
an edge between each sense and each non-noise word in its 
example use. As expected, the weights of these edges are 
smaller than the weights for the definition edges because 
the definition of a sense provides stronger evidence than the 
example use of a sense about the degree of semantic relevance. 

WordNet also contains a plethora of information about 
the relationship between senses. The senses in WordNet are 
divided into four categories: nouns, verbs, adjectives, and 
adverbs. For example, WordNet stores information about the 
hyponym and meronym relationship for nouns. The former 
corresponds to the “kind-of” connection (e.g., “dog” is a 
hyponym of “canine”). The later corresponds to the “part-
of” relationship (e.g., “window” is a meronym of “building”). 
Similar relationships are also defined for verbs, adjectives, 
and adverbs. For each such relationship, the similarity graph 
contains an edge between the sense nodes, where the weight of 
the edge depends on the likelihood that a user will be interested 
in the destination sense given that they are concerned about 
the source sense. The relationship between two terms is 
determined as a function of the relationship between their 
senses. 

Instead of presenting a detailed description of how the 
weights of the edges are extracted from WordNet (this infor-
mation can be found in [38]), we show some previously un-
published examples. First, consider Fig. 1. The edge between 
the word “shoe” and its main sense has weight 27/31 because 
WordNet defines five senses of the word “shoe”. The main 
sense is shown in the figure and WordNet gives it a frequency 
value of 27, where all the other senses of the word have a 
frequency of one. In other words, the sum of the frequencies 
of all senses, according to WordNet, is 31 and therefore there 
is a 27/31 chance that someone who is interested in the word 
“shoe” will also want to know about the most popular sense 
of the word. The backward edge has weight of one because 
there is a 100% probability that someone who is interested in 
a sense is also concerned about the words that describes it. 

The edge between the two senses represents the hypernym 
relationship (the reverse of the hyponym relationship). In other 
words, sneaker is a type of shoe. Our algorithm tries to find the 
“size” of the two senses. For the word “shoe”, we consider all 



the hypernyms and add their sizes. Suppose the result is 930.2. 
This information is computed with the help of the British 
National Corpus (BNC) [3], which tells us the frequency of 
use of the words in the English language. For example, the 
word “sneaker” has four senses, where the main sense that 
we are interested in has a frequency of two and the other two 
senses have frequency of one. Suppose that BNC tells us that 
the frequency of the word “sneaker” is seven. Then the size 
the sense that is in the figure is 7 ∗ (2/4) = 3.5. Note that, 
for simplicity, in our example we did not consider the other 
terms that represent the sense for the word “sneaker” (such 
as “gym shoe”) and doing so increases the size of the sense. 
By dividing the size of the sense for the word “sneaker” by 
the size of the sense for word “shoe”, we get an approximate 
idea of how likely it is that someone who is interested in 
shoes is also concerned about sneakers. We believe that there 
is a 90% chance that someone who is interested in a sense 
will also want to get information about one of it hypernyms. 
Note that throughout the paper we use several such constants 
and [38] shows that these numbers can produce graph data of 
good quality. As Fig. 1 suggests, our formula for the hypernym 
relationship is 0.9 times the size of the destination sense and 
divided by the size of the source sense. Note that the size of the 
later is calculated as the sum of the sizes of all its hypernyms. 
The backward edge between the two nodes has weight of 0.3, 
which is the weight that we assign to all hyponym (i.e., kind-
of) relationships in the graph. 

Lastly, the weight of the edge between the main sense of 
the word “sneaker” and the word “sneaker” is one because 
the sense represents the word. In other words, there is a 100% 
probability that someone who is interested in a sense will also 
want to know about one of the terms that represents it. The 
backward edge has weight 2/4 and corresponds to the fact that 
there are three senses of the word sneaker: “a canvas shoe 
with a pliable rubber sole”, ”someone acting as an informer 
or decoy for the police”, and “marked by quiet and caution 
and secrecy” and the main sense has frequency of two, while 
the other two senses have a frequency of one. 

In order to compute the relevance score between the words 
“shoe” and “sneaker”, we need to multiply the weights of 
all the edges along the forward path. If there are multiple 
paths between the words, then we compute the product of the 
weights of the edges along each path and then we aggregate the 
evidence. Note that there is also a reverse paths from the word 
“sneaker” to the word “shoe”. Our algorithm considers paths in 
both directions and then it averages the results (see Section IV 
for more details). Based only on Fig. 1, the weight of the 

0.9·3.5forward path will be 27 · ·1 and the weight of backward 31 930.2 
path will be 2 · 0.3 · 1. The average of the two numbers will4 
give us an idea about the strength of the relationship between 
the two concepts. 

There is a second path in the graph between the words 
“shoe” and “sneaker”. As shown in Fig. 2, the word “shoe” ap-
pears in the definition of the main sense of the word “sneaker”. 
Assume that the word “shoe” appears in the definition of 
exactly three senses. We will then draw a forward edge with 

0.3

shoe footwear shaped to fit the foot ... 

a canvas shoe with a pliable rubber solesneaker

0.9*3.5/930.2

1.0

27/31

1

2/4

Fig. 1. Example relationship between the words “shoe” and “sneaker” along 
the hypernym relationship. 

1weight 0.3· . The constant 0.3 represents that we approximate3 
that there is a 30% probability that a user that is interested 
in a term will also want to know about one of the senses 
that contains the term in its definition. In [39], we have 
experimentally shown that this number produces a graph with 
good quality data. The ratio 1 is based on the fact that there are 3 
three different sense definitions that contain the word “shoe”. 

0.8*computeMinMax(0,0.6,1/5)

shoe

a canvas shoe with a pliable rubber solesneaker

0.3*1/3

1

2/4

Fig. 2. Example relationship between the words “shoe” and “sneaker” along 
the words-in-sense-definition relationship. 

The backward edge between the two words uses the 
computeMinMax function. We use the function every 
time we consider the frequency of terms inside text. The 
computeMinMax function returns a number that is almost 
always between the first two arguments, where the magnitude 
of the number is determined by the third argument. The last 
parameter is the number of times a word appears in the text 
divided by the total number of words. In our example, we 
only consider the non-noise words in the definition of the 
sense and therefore the value of the third parameter is 1/5 
because “shoe” is one of the five non-noise words in the 
definition of the main sense for the word “sneaker”. The 
second parameter (i.e., 0.6) is a constant that represents how 
likely it is for someone to be interested in one of the words 
in the definition of a sense given that they are interested in 
the sense. The computeMinMax function smoothens the value 
of the third parameter. For example, a word that appears as 
one of 20 words in the definition of a sense is not 10 times 
less important than a word that appears as one of two words 
in the definition. The function makes the difference between 
the two cases less extreme. Using this function, the weight of 
the edge in the second case will be only roughly four times 
smaller than the weight of the edge in the first case. This is a 
common approach when processing text. The importance of a 
word in a text decreases as the size of the text increases, but 
the importance of the word decreases slower than the rate of 
growth of the text. Formally, the function computeMinMax is 
defined as follows. 



w1 →s w2 + w2 →s w1 1 |w1, w2|lin = min(α, ) ∗ (3)
2 α 

computeMinMax (minV alue, maxV alue, ratio) = 
−1minV alue + (maxV alue − minV alue) ∗ log2(ratio) 

−1 |w1, w2|log = norm( ) (4)
log2(min(α, w1→sw2+w2→sw1 ))2 

Note that when raio = 0.5, then the function returns max-
Value. An unusual case is when the value of the variable ratio 
is bigger than 0.5. For example, if ratio = 1, then we have 
division by zero and the value for the function is undefined. 
We handle this case separately and assign value to the function 
equal to 1.2 ∗ maxValue . This is an extraordinary case when 
there is a single non-noise word in the text description and we 
need to assign higher weight to the edge. 

We multiply the backward edge by 0.8 because “shoe” is 
the second non-noise word in the definition of the sense. Our 
algorithm multiplies the first non-noise word by one and the 
coefficient is decreased by 0.2 for every sequential word until 
it reaches 0.2. This strategy is based on our belief that the first 
words in the definition of a sense are more important, where 
[39] experimentally validates this belief. 

2/4

shoe

a canvas shoe with a pliable rubber sole sneaker

0.3*1/3 0.8*computeMinMax(0,0.6,1/5)

footwear shaped to fit the foot ...
27/31

1
0.3

0.9*3.5/930.2

1

Fig. 3. Example relationships between the words “shoe” and “sneaker”. 

Fig. 3 shows the result of combining the two graph. In the 
figure, there are two forward paths from the word “shoe” to the 
word “sneaker”. If we add the evidence from the two paths, 
then we get the number 27  · 0.9·3.5 · 1 + 0.3 ∗ 1 · 131 930.2 3 . Similarly, 
from the backward paths we will collect additional evidence 
about the similarity of the two words: 2 · 0.3 · 1 + 2 · 0.8 · 4 4 
computeMinMax (0, 0.6, 1 )5 . As we add evidence from several 
paths, the weight for a path can become bigger than one and 
therefore cease to represent a probability. In the next section, 
we address this issue by capping the similarity score between 
two nodes in the graph. 

IV. MEASURING THE SEMANTIC SIMILARITY BETWEEN 
ERMS T

The similarity graph is used to represent the conditional 
probability that a user is interested in the term that is described 
by the label of a node given that they are also interested in 
the label of an adjacent node in the graph. We compute the 
directional similarity between two nodes using the following 
formula. X 
A →s C = PPt(C|A) (1) 

Pt is a cycleless path from node A to node C 

Y 
PPt(C|A) = P (n2|n1) (2) 

(n1,n2) is an edge in the path Pt 

The function P (n2|n1) refers to the weight of the edge 
from the node n1 to the node n2. Informally, we compute the 
directional similarity between two nodes as the sum of the 
weights of all the paths between the two nodes, where we 
eliminate cycles from the paths. Each path provides evidence 
about the similarity between the terms that are represented 
by the two nodes. We compute the weight of a path between 
two nodes as the product of the weights of the edges along the 
path, which follows the Markov chain model. Since the weight 
of an edge along the path is almost always smaller than one 
(i.e., equal to one only in rear circumstances), the value of 
the conditional probability will decrease as the length of the 
path increases. This is a desirable behavior because a longer 
path provides less evidence about the similarity of the two 
end nodes. For alternative ways of computing the directional 
similarity between two nodes, see [39]. 

Next, we present two functions for measuring the semantic 
similarity between two nodes. The linear function for com-
puting the semantic similarity between two nodes is shown in 
Equation 3. 

The minimum function is used in order to cap the value of 
the similarity function at one. The coefficient α amplifies the 
available evidence (α ≤ 1). Note that when α is equal to one, 
then the function simply takes the average of the two numbers 
and caps the result at 1. 

The second similarity function is inverse logarithmic, that 
is, it amplifies the smaller values. It is shown in Equation 4. 
The norm function simply multiplies the result by a constant 
(i.e., −log2(α)) in order to move the result value in the range 
[0,1]. 

The paper [39] suggests that the two similarity metrics 
produce best results when α is around 0.1 and this is the value 
that we will use in the experimental section. 

V. MEASURING THE SEMANTIC SIMILARITY BETWEEN 
DOCUMENTS 

In the previous section, we described how to measure the 
semantic similarity between two nodes of the graph. In this 
section, we describe how to measure the semantic similarity 
between any two text documents. The idea is to create a node 
for each document and then connect the nodes to the graph. 
The semantic similarity between two documents will then be 
measured by computing the distance between the two nodes 
using the linear or logarithmic algorithm from the previous 
section. 

In order to demonstrate our approach, consider a fictitious 
document that contains a total of 10 non-noise words in its title 
and a total of 100 non-noise words in its body. Among these 
non-noise words, suppose that the word “sneaker” appears 



~ ~d1 · d2|d1, d2|cosine = 
~ ~|d1| ∗ |d2| 

once in the title and the word “shirt” is present four times 
in the body. We will represent this information by drawing 
the graph that is shown in Fig. 4. The weight of the edge 
between the document and the word “sneaker” is equal to 
computeMinMax (0, 0.6, 1/10) = 0.18. Similarly, the weight 
of the edge between the document and the word “shirt” is 

4equal to computeMinMax (0, 0.3, ) = 0.13. This is the100 
same formula that is used to compute the weight of an edge 
between a sense and the words in its definition. The number 
0.6 is used because we believe that there is a high probability 
that someone who is interested in a document will also want 
information about one of the terms that appears in its title. The 
number 0.3 represents our belief that there is a 30% chance 
that someone who is interested in a document is also concerned 
about one of the terms that appear in its body. Here, we assume 
that the terms in the title of a document are twice as important 
as the terms in the body. 

Next, consider the backward edge between the word 
“sneaker” and the document. Suppose that the word appears 
a total of 10 times in all documents. Then the weight of the 
edge between the word “sneaker” and the document will be 

1equal to 0.3 · = 0.03. This is the same formula that is used 10 
for computing the weights of the backward edges between a 
word form from WordNet and the definition of the sense in 
which it appears. We believe that the backward edges are less 
important and therefore we divide the coefficients by two for 
backward edges (the coefficient for the forward edge is 0.6 
as shown in the previous paragraph). Similarly, if the word 
“shirt” appears a total of 20 times in all documents, then we 

4will draw a backward edge with weight 0.15 · = 0.03 (the20 
coefficient for the forward edge is 0.3 and the coefficient for 
the backward edge is half of that, that is, 0.15). 

0.03

and 100 non−noise words in its body.

The word "sneaker" appears once in the title and

the word ‘‘shirt" appears four times in the body.

sneaker                                     

0.13

shirt

0.18 0.03

Document with 10 non−noise words in its title

Fig. 4. Example of adding a document to the graph. 

Although we consider the words in the title more important 
than the words in the body, we do not pay special attention to 
the order of the words. The reason is that there is no empirical 
evidence that the first words in the title or body of a document 
or more important. 

The word “sneaker” has two different senses. Our algorithm 
does not try to identify which of these senses the document 
refers to. Instead, there will be paths in the graph to both 
senses. We take this approach because it can be possible that 
different occurrences of the word in the document refer to 
distinct senses. The strength of the relationship to a particular 
sense will be computed based on additional evidence. For 
example, if the document also contains the word “shoe”, then 

there will be stronger connection between the document and 
the main sense of the word “sneaker”. 

Second, note that the distance between two documents is 
not calculated in isolation. In particular, the other documents 
in the corpus are also taken into account when calculating 
the backward edges. In other words, we calculate how similar 
two documents are relative to the rest of the documents 
in the corpus. Once the similarity graph is extended with 
the documents, the distance between two documents can be 
calculated using the linear or logarithmic metrics that were 
described in the previous section. 

VI. CLUSTERING THE DOCUMENTS 

In this section we describe how a set of documents can 
be clustered using the k-means clustering algorithm. The 
algorithm relies on a way for computing the distance between 
two documents. We present two variations: using keywords 
matching and using the similarity graph. In the next section 
we show how the results of the two algorithms compare to 
human judgment. 

A common approach for computing the similarity distance 
between two documents is to represent them as vectors and 
then compute the cosine of the angle between the two vectors 
as the normalized dot product of the vectors. For example, 
suppose that “dog”, “cat” and “shirt” are the only words that 
are used. Then for every document we can denote the number 
of times each word occurs. For example, a document that 
contains the word “dog” twice, the word “cat” three times 
and does not contain the word “shirt” can be represented as 
the document vector [2, 3, 0]. Alternatively, a document that 
contains the word “cat” twice and the word “shirt” four times 
can be represented as [0, 2, 4]. The dot product of the two 
vectors is [2, 3, 0] · [0, 2, 4] = 6. Next, we need to divide 
the result by the product of the sizes of the two documents. 
Therefore, the angle between the documents in radians will 

6be √ √ ≈ 0.37. Unfortunately, this approach
(22+32)∗ 22+42 

does not take into account that the words “cat” and “dog” are 
semantically similar and will calculate the similarity distance 
between a document about cats and one about dogs as zero if 
the two documents do not share words in common. In general, 
the cosine similarity between two documents is computed 
using the formula in Equation 5. Alternatively, we can use 
the linear or logarithmic metric from the previous section to 
compute the semantic distance between two documents. 

(5)

The k-means clustering algorithm starts with a constant k. 
This is the number of clusters that will be produced. Initially, 
a centroid (i.e., a document) is randomly chosen for every 
cluster. Next, each document is assigned to the group that 
contains the closest centroid. After that, the centroid (i.e., 
mean) is found for each cluster and then the documents are 
clustered again around each centroid. The algorithm converges 
and continues until applying the last step does not change the 



TP P = TP +FP 

TP R = TP +FN 

(β2 +1)·P ·RFβ = β2·P +R 

clustering. If the documents are represented as vectors as we 
showed earlier in this section, then computing the mean of a 
set of documents amounts to adding the document vectors and 
dividing by the number of documents. For example, the mean 
of our two document vectors from the beginning of this section 

[2,5,4]is mean([2, 3, 0], [0, 2, 4]) = = [1, 2.5, 2]. Note that2 
the mean function is independent of the document similarity 
metric that is used. 

VII. EXPERIMENTAL RESULTS 

All our code was implemented in Java. We first created the 
similarity graph using WordNet and it took about 10 minutes 
to create the graph on a standard laptop with Intel i5 CPU. We 
used the Java API for WordNet Searching (JAWS) to connect 
to WordNet. The interface was developed by Brett Spell [35]. 
We stored the graph as several Java hash tables, where the size 
of the file is 89MB. 

We next read all the documents from the Reuters-21578 
benchmark. The benchmark contains 21, 578 documents that 
are stored in 22 text files. Our program read the files and we 
extracted information about the 11, 362 documents that were 
classified in one of 82 categories using human judgment. For 
every document, we stored its title, its text, the category it 
belongs to, and a document vector. The later contains the non-
noise words in the documents and their frequency. Since the 
words in the title are more important, we counted these words 
twice. We stored the information in Java hash tables, where 
the size of the file is 27MB. It took about two minutes to parse 
the text files. 

We next added the documents to the similarity graph. 
We followed the algorithm from Section V and gave higher 
weights to the terms in the titles of the documents. The size 
of the graph increased to 129MB. For document nodes, we 
stored the title of the document in the label of the node. 
We also stored a hash table that keeps the mapping between 
the document nodes in the graph and the documents in the 
document file that was described in the previous paragraph. It 
took about five minutes to add the documents to the graph. 

We next clustered the documents using the k-means clus-
tering algorithm. We chose the value k = 82 because this 
is the number of categories as determined by the human 
judgment. The first 82 documents were put in 82 distinct 
clusters. At this point, the lonely document in each category 
was designed as the centroid. We next processed the rest of the 
documents. Every document was compared to the 82 centroids 
and assigned to the cluster with the closest centroid. Next, a 
new centroid was chosen for each cluster. This was done by 
adding the document vectors in each cluster and dividing the 
result by the number of vectors (i.e., finding the mean in each 
cluster). Next, the documents were reclustered around the new 
centroids and the process was repeated until it converged (i.e., 
applying the algorithm did not change the clusters). 

The k-means clustering algorithm is based on two document 
functions: finding the distance between two documents and 
computing the average of several documents. The later func-
tion is implemented by simply adding the document vectors 

TABLE I 
RESULTS OF APPLYING THE K-MEANS ALGORITHM 

cosine linear logarithmic 
# of rounds 30 45 45 
precision 0.57 0.66 0.66 
recall 0.05 0.07 0.07 
F-measure 0.09 0.13 0.13 

and dividing the result by the number of vectors. However, 
we have three choices for the distance metric: the cosine, 
linear, and logarithmic. When we applied the cosine similarity 
metric, the k-means clustering program terminated in about 
three hours and it took 30 rounds until ed paths of length more 
than three edges or weight less than 0.01 when computing the 
distance between two documents using the similarity graph. 
The results of using the three different distance metrics are 
shown in Table I. 

The table shows the F-measure when using the three 
different distance metrics. The measure gives a single number 
based on the precision and recall of the result of the clustering 
algorithm. Let TP be the number of true positives, that is, 
the number of documents that were classified in the same 
category by both the program and human judgment. Let 
FP be the number of false positives, that is, the number of 
documents that were classified in the same category by the 
program, but were classified in different categories by human 
judgment. Lastly, let FN be the number of false negatives, that 
is, the number of documents that were classified in the same 
category by human judgment but were classified in different 
categories by the program. The formula for computing the 
F-measure is shown below. 

In the above formulas, P is used to denote the precision and 
R is used to denote the recall. We used the value β = 1 in 
the experimental results, which is a popular parameter for the 
F-measure metric. As the table suggests, using the similarity 
graph can lead to both higher precision and recall. Note that 
using the linear or logarithmic similarity metric did not make 
a difference. The reason is that the two metrics apply different 
monotonic functions on the average of the sum of the forward 
and backward paths. Applying these monotonic functions has 
no effect on the ordering of the distances between nodes and 
on the clustering result. 

VIII. CONCLUSION AND FUTURE RESEARCH 

In this paper we reviewed how information from WordNet 
can be used to build a similarity graph. The graph shows the 
strength of the relationship between words and phrases from 
the English language. We showed how to use the graph to 
cluster documents. We validated the algorithm experimentally 



by comparing it to an algorithm that uses the cosine similarity 
metric. Using the similarity graph leads to increased precision 
and recall on the popular Reuters-21578 benchmark. 

One area for future research is using an extended version of 
the similarity graph that contains information from Wikipedia 
[37] to perform document clustering. One challenge in this 
area is that the extended graph is relatively big (more than 
10GB) and computing the distance between documents can 
be computationally expensive. 
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