
Semantic Document Clustering Using a
Similarity Graph

Lubomir Stanchev
Computer Science Department

California Polytechnic State University
San Luis Obispo, California, USA

e-mail: stanchev@gmail.com

Abstract—Document clustering addresses the problem of iden-
tifying groups of similar documents without human supervision.
Unlike most existing solutions that perform document clustering
based on keywords matching, we propose an algorithm that
considers the meaning of the terms in the documents. For
example, a document that contains the words “dog” and “cat”
multiple times may be placed in the same category as a document
that contains the word “pet” even if the two documents share
only noise words in common. Our semantic clustering algorithm
is based on a similarity graph that stores the degree of semantic
relationship between terms (extracted from WordNet), where a
term can be a word or a phrase. We experimentally validate
our algorithm on the Reuters-21578 benchmark, which contains
11, 362 newswire stories that are grouped in 82 categories using
human judgment. We apply the k-means clustering algorithm to
group the documents using a similarity metric that is based on
keywords matching and one that uses the similarity graph. We
show that the second approach produces higher precision and
recall, which means that this approach matches closer the results
of the human study.

I. INTRODUCTION

Consider a web portal for an online store. To simplify nav-
igation, merchandise may be grouped into categories. When a
new product is introduced, it will be beneficial if the system
can automatically classify the product in the correct category.
This classification can be performed based on the description
of the product. For example, consider a product with the
following text description: “white sneakers, size 10”. If the
system contains the knowledge that the terms “sneakers” and
“athletic shoes” are related, then it can classify the new product
in the “athletic shoes” category. In this paper, we show how
such semantic knowledge can be stored in a similarity graph
and how it can be used to cluster documents based on the
meaning of terms in their text.

The problem of semantic document clustering is interesting
because it can improve the quality of the clustering result as
compared to keywords-matching algorithms. For example, the
later algorithm will likely put documents that use different
terminology to describe the same concept in separate cate-
gories. Consider a scientific document that contains the term
“ascorbic acid” multiple times and a scientific document that
contains the term “vitamin C” multiple times. The documents
are semantically similar because “ascorbic acid” and “vitamin
C” refer to the same organic compound and therefore the clus-
tering algorithm should take this fact into account. However,

this will only happen when the close relationship between the
two terms is stored in the system and used during document
clustering. The need for a semantic clustering system becomes
even more apparent when the number of documents is small
or when they are very short. In this case, it is likely that
the documents will not share many words in common and a
keywords-matching system will struggle to find evidence for
grouping documents together.

The problem of semantic document clustering is difficult
because it involves some understanding of the meaning of
words and phrases and how they interact. Although significant
effort has been put forward in automated natural language
processing [9], [10], [24], current approaches fall short of
understanding the precise meaning of human text. In fact,
whether computers will ever become as fluent as humans in
understanding natural language text is an open problem. In
this paper, we do not analyze natural language text and break
it down into the parts of speech. Instead, we only consider
the words and phrases in the documents and use the similarity
graph, which is based on a probabilistic model, to compute the
distance between pairs of documents. Note that, as described
in the next paragraph, most clustering algorithms rely on a
distance metric to cluster the documents.

A traditional keywords-matching algorithm for document
clustering falls short because it only considers the words and
their frequencies in each document. For example, the popular
k-means clustering algorithm [23] starts with k document
seeds. It then finds the documents that are closest to each seed
using a distance metric. Next, the centroid (i.e., mean) of each
cluster is found and then new clusters are created using the
centroids as the seeds. The process repeats and it is guaranteed
to converge. The algorithm is based on a vector representation
of the documents (based on words frequencies) and a distance
metric (e.g., the cosine similarity between two document
vectors). Unfortunately, this approach will incorrectly compute
the similarity distance between two documents that describe
the same concept using different words. It will only consider
the common words and their frequencies and it will ignore
the meaning of the words. Conversely, our approach adds all
the documents to the similarity graph. The distance between a
pair of documents is measured by evaluating the paths between
them, where a path in the graph can go through several terms
that are semantically similar. In this way, we consider not only

Stanchev, 2016. Published in 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), 1-8.
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/359014266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:stanchev@gmail.com

words, but also phrases (a.k.a. terms) that consist of several
words. We also consider the meaning of these phrases.

Our approach for semantic document clustering is based
on a similarity graph that was described in [38]. The graph
uses mainly information from WordNet to find the degree of
semantic similarity between 150, 000 of the most common
terms in the English language. The edges in the graph are
asymmetric, where an edge between two nodes represents the
probability that someone is interested in the concept that is
described by the destination node given that they are interested
in the concept that is described by the source node. Our
approach adds the documents as nodes in the graph. They
are connected to the graph based on the terms in them. For
example, a document that contains the word “cat” will be
connected to the word “cat”, which in tern is connected to the
word “feline”, which in tern can be connected to a document
that contains the word “feline”. In this way, our algorithm
can compute the semantic distance between two documents
by evaluating the degree of similarity between pairs of terms
that appear in the documents.

When computing the similarity distance between two doc-
uments, we aggregate the evidence from all the paths be-
tween the first and the second document. Every path provides
additional evidence about the similarity between the two
documents. Note that the weight of a path decreases as the
length of the path increases because longer paths provide
weaker evidence. Since the paths in the graph are directed, we
also examine the paths from the second to the first document
and average the aggregated results.

We experimentally validate our document clustering algo-
rithm on the Reuters-21578 benchmark. Out f the 21,578
newswire stories, 11,362 are categories in one of several
categories using human judgment. Since our algorithm is based
on hard clustering, that is every document can belong to at
most one category, we consider only the first human classi-
fication for each of the documents. We compare the results
from the human judgment to applying the k-means clustering
algorithm with two different distance metrics. The first is based
on the popular cosine similarity metric that compares two
documents as the cosine of the angle between the document
vectors. The second metric is based on the distance between
the documents in the similarity graph. We use the F-measure,
which is popular in the research community [29], to evaluate
how the results from the clustering algorithms compare to
those of human judgment. The metric takes into account
the number of documents that were correctly and wrongly
classified to the same class and the number of documents that
were wrongly assigned to different classes. When we apply
the second distance metric, we get a higher value for the F-
measure. This means that by using the similarity graph we
can produce results that more closely match human judgment.
The reason is that the similarity graph metric considers the
meaning of the words and terms in the documents, while the
cosine similarity metric only considers the words and their
frequencies.

In what follows, in Section II we present a brief overview

of related research. The next section describes the similarity
graph and presents example scenarios for creating the graph.
While Section IV explains how to measure the semantic
similarity between terms, Section V describes how to measure
the semantic similarity between documents. Our main contri-
butions are in the next two sections. Section VI describes two
algorithms for clustering documents: using keywords matching
and using the similarity graph. Section VII validates our
semantic clustering algorithm by showing how it can produce
data of better quality than the algorithm that is based on simple
keywords matching. Lastly, Section VIII summarizes the paper
and outlines areas for future research.

II. RELATED RESEARCH

A plethora of research has been published on using su-
pervised learning models with training sets for document
classification [5], [40]. Our approach differs because it is
unsupervised, it does not use a training set, and it can cluster
documents in any number of classes rather than just classify
the documents in preexisting topics.

One alternative to supervised learning is using a knowledge-
base that contains information about the relationship between
the words and phrases that can be found in the documents to
be clustered. For example, in 1986, W. B. Croft proposed the
use of a thesaurus that contains semantic information, such
as what words are synonyms [7]. Sequentially, there have
been multiple papers on the use of a thesaurus to represent
the semantic relationship between words and phrases [13],
[14], [15], [17], [19], [27], [32], [41]. This approach, although
very progressive for the times, differs from our approach
because we consider indirect relationships between words (i.e.,
relationships along paths of several words). We also do not
apply document expansion (e.g., adding the synonyms of the
words in a document to the document) when comparing two
documents. Instead, we use the similarity graph to compute the
distance between two documents. Some limited user interac-
tion is possible when classifying documents – see for example
the research on folksonomies [11]. Our system currently does
not allow for user interaction when creating the document
clusters.

In later years, the research of Croft was extended by creating
a graph in the form of a semantic network [4], [30], [33] and
graphs that contain the semantic relationships between words
[2], [1], [6]. Later on, Simone Ponzetto and Michael Strube
showed how to create a graph that only represents inheritance
of words in WordNet [21], [34], while Glen Jeh and Jennifer
Widom showed how to approximate the similarity between
phrases based on information about the structure of the graph
in which they appear [18]. All these approaches differ from
our approach because they do not consider the strength of the
relationship between the nodes in the graph. In other words,
there are no weights that are assigned to the edges in the graph.

Natural language techniques can be used to analyze the
text in a document [16], [26], [36]. For example, a natural
language analyzer may determine that a document talks about
animals and words or concepts that can represent an animal

can be identified in other documents. As a result, documents
that are identified to refer to the same or similar concepts can
be classified together. One problem with this approach is that
this is computationally expensive. A second problem is that it
is not a probabilistic model and therefore it is difficult to be
applied towards generating a document similarity metric.

Ontologies can be used for document classification [31].
Our approach is different because we do not consider pres-
elected categories. Using ontologies also requires manual or
automatic annotation of each document with a description in
a formal language [20], [28], [12]. This may be problematic
because manual annotation is time consuming and automatic
annotation is not very reliable.

Since the early 1990s, research on LSA (stands for latent
semantic analysis [8]) has been carried out. The approach has
the advantage of not relying on external information. Instead,
it considers the closeness of words in text documents as proof
of their semantic similarity. For example, LSA can be used
to detect words that are synonyms [22]. This differs from our
approach because we do not consider the closeness of words in
a document. The only time we consider the position of words
is when we examine the order of the words in the definition of
a WordNet sense when we build the similarity graph, where we
assume that the first words are more important. Although the
LSA approach has its applications, we believe that our sources
of knowledge, such as WordNet, provide data of higher quality.

III. CREATING THE SIMILARITY GRAPH

In this section, we review how the similarity graph can
be created using information from WordNet [25], where we
encourage the reader to refer to [38] for a more detailed
description. WordNet gives us information about the words
in the English language. The similarity graph is initially
constructed using WordNet 3.0, which contains about 150, 000
different terms. Both words and phrases can be found in
WordNet. For example, “sports utility vehicle” is a term from
WordNet. We will sometimes refer to these words and phrases
as terms, while WordNet uses the terminology word form.
Note that the meaning of a term is not precise. For example,
the word “spring” can mean the season after winter, a metal
elastic device, or natural flow of ground water, among others.
This is the reason why WordNet uses the concept of a sense.
For example, earlier in this paragraph we cited three different
senses of the word “spring”. Every word form has one or more
senses and every sense is represented by one or more word
forms. A human can usually determine which of the many
senses a word form represents by the context in which the
word form is used. WordNet contains about 116, 000 senses
for the 150, 000 word forms.

The initial goal of the similarity graph is to model the rela-
tionship between the terms in WordNet using a probabilistic
model. The weight of an edge between two nodes represents
the probability that a user is interested in documents that
contain the label of the destination node given that they are
interested in the label of the source node. For every term that
is not a noise word, a node that has the term as a label is

created. Similarly, for every sense we create a node with a
label that is the description of the sense. All node labels are
converted to lower case and we do not create multiple nodes
with the same label.

As expected, we join every word form node with the sense
nodes for the word form using edges. We also join a sense
node with the nodes for the non-noise words in the description
of the sense using edges, where higher weights are given to
the first words. The reason is that we believe that there is a
greater chance that a user will be interested in one of the first
words in the definition of a sense given that they are interested
in the sense. For example, the most popular sense of the word
“chair” is “a seat for one person”. There is obviously a strong
relationship between the words “chair” and “seat”, which
is extracted by the algorithm. Similarly, WordNet contains
example use for each sense and the similarity graph contains
an edge between each sense and each non-noise word in its
example use. As expected, the weights of these edges are
smaller than the weights for the definition edges because
the definition of a sense provides stronger evidence than the
example use of a sense about the degree of semantic relevance.

WordNet also contains a plethora of information about
the relationship between senses. The senses in WordNet are
divided into four categories: nouns, verbs, adjectives, and
adverbs. For example, WordNet stores information about the
hyponym and meronym relationship for nouns. The former
corresponds to the “kind-of” connection (e.g., “dog” is a
hyponym of “canine”). The later corresponds to the “part-
of” relationship (e.g., “window” is a meronym of “building”).
Similar relationships are also defined for verbs, adjectives,
and adverbs. For each such relationship, the similarity graph
contains an edge between the sense nodes, where the weight of
the edge depends on the likelihood that a user will be interested
in the destination sense given that they are concerned about
the source sense. The relationship between two terms is
determined as a function of the relationship between their
senses.

Instead of presenting a detailed description of how the
weights of the edges are extracted from WordNet (this infor-
mation can be found in [38]), we show some previously un-
published examples. First, consider Fig. 1. The edge between
the word “shoe” and its main sense has weight 27/31 because
WordNet defines five senses of the word “shoe”. The main
sense is shown in the figure and WordNet gives it a frequency
value of 27, where all the other senses of the word have a
frequency of one. In other words, the sum of the frequencies
of all senses, according to WordNet, is 31 and therefore there
is a 27/31 chance that someone who is interested in the word
“shoe” will also want to know about the most popular sense
of the word. The backward edge has weight of one because
there is a 100% probability that someone who is interested in
a sense is also concerned about the words that describes it.

The edge between the two senses represents the hypernym
relationship (the reverse of the hyponym relationship). In other
words, sneaker is a type of shoe. Our algorithm tries to find the
“size” of the two senses. For the word “shoe”, we consider all

the hypernyms and add their sizes. Suppose the result is 930.2.
This information is computed with the help of the British
National Corpus (BNC) [3], which tells us the frequency of
use of the words in the English language. For example, the
word “sneaker” has four senses, where the main sense that
we are interested in has a frequency of two and the other two
senses have frequency of one. Suppose that BNC tells us that
the frequency of the word “sneaker” is seven. Then the size
the sense that is in the figure is 7 ∗ (2/4) = 3.5. Note that,
for simplicity, in our example we did not consider the other
terms that represent the sense for the word “sneaker” (such
as “gym shoe”) and doing so increases the size of the sense.
By dividing the size of the sense for the word “sneaker” by
the size of the sense for word “shoe”, we get an approximate
idea of how likely it is that someone who is interested in
shoes is also concerned about sneakers. We believe that there
is a 90% chance that someone who is interested in a sense
will also want to get information about one of it hypernyms.
Note that throughout the paper we use several such constants
and [38] shows that these numbers can produce graph data of
good quality. As Fig. 1 suggests, our formula for the hypernym
relationship is 0.9 times the size of the destination sense and
divided by the size of the source sense. Note that the size of the
later is calculated as the sum of the sizes of all its hypernyms.
The backward edge between the two nodes has weight of 0.3,
which is the weight that we assign to all hyponym (i.e., kind-
of) relationships in the graph.

Lastly, the weight of the edge between the main sense of
the word “sneaker” and the word “sneaker” is one because
the sense represents the word. In other words, there is a 100%
probability that someone who is interested in a sense will also
want to know about one of the terms that represents it. The
backward edge has weight 2/4 and corresponds to the fact that
there are three senses of the word sneaker: “a canvas shoe
with a pliable rubber sole”, ”someone acting as an informer
or decoy for the police”, and “marked by quiet and caution
and secrecy” and the main sense has frequency of two, while
the other two senses have a frequency of one.

In order to compute the relevance score between the words
“shoe” and “sneaker”, we need to multiply the weights of
all the edges along the forward path. If there are multiple
paths between the words, then we compute the product of the
weights of the edges along each path and then we aggregate the
evidence. Note that there is also a reverse paths from the word
“sneaker” to the word “shoe”. Our algorithm considers paths in
both directions and then it averages the results (see Section IV
for more details). Based only on Fig. 1, the weight of the

0.9·3.5forward path will be 27 · ·1 and the weight of backward 31 930.2
path will be 2 · 0.3 · 1. The average of the two numbers will4
give us an idea about the strength of the relationship between
the two concepts.

There is a second path in the graph between the words
“shoe” and “sneaker”. As shown in Fig. 2, the word “shoe” ap-
pears in the definition of the main sense of the word “sneaker”.
Assume that the word “shoe” appears in the definition of
exactly three senses. We will then draw a forward edge with

0.3

shoe footwear shaped to fit the foot ...

a canvas shoe with a pliable rubber solesneaker

0.9*3.5/930.2

1.0

27/31

1

2/4

Fig. 1. Example relationship between the words “shoe” and “sneaker” along
the hypernym relationship.

1weight 0.3· . The constant 0.3 represents that we approximate3
that there is a 30% probability that a user that is interested
in a term will also want to know about one of the senses
that contains the term in its definition. In [39], we have
experimentally shown that this number produces a graph with
good quality data. The ratio 1 is based on the fact that there are 3
three different sense definitions that contain the word “shoe”.

0.8*computeMinMax(0,0.6,1/5)

shoe

a canvas shoe with a pliable rubber solesneaker

0.3*1/3

1

2/4

Fig. 2. Example relationship between the words “shoe” and “sneaker” along
the words-in-sense-definition relationship.

The backward edge between the two words uses the
computeMinMax function. We use the function every
time we consider the frequency of terms inside text. The
computeMinMax function returns a number that is almost
always between the first two arguments, where the magnitude
of the number is determined by the third argument. The last
parameter is the number of times a word appears in the text
divided by the total number of words. In our example, we
only consider the non-noise words in the definition of the
sense and therefore the value of the third parameter is 1/5
because “shoe” is one of the five non-noise words in the
definition of the main sense for the word “sneaker”. The
second parameter (i.e., 0.6) is a constant that represents how
likely it is for someone to be interested in one of the words
in the definition of a sense given that they are interested in
the sense. The computeMinMax function smoothens the value
of the third parameter. For example, a word that appears as
one of 20 words in the definition of a sense is not 10 times
less important than a word that appears as one of two words
in the definition. The function makes the difference between
the two cases less extreme. Using this function, the weight of
the edge in the second case will be only roughly four times
smaller than the weight of the edge in the first case. This is a
common approach when processing text. The importance of a
word in a text decreases as the size of the text increases, but
the importance of the word decreases slower than the rate of
growth of the text. Formally, the function computeMinMax is
defined as follows.

w1 →s w2 + w2 →s w1 1 |w1, w2|lin = min(α,) ∗ (3)
2 α

computeMinMax (minV alue, maxV alue, ratio) =
−1minV alue + (maxV alue − minV alue) ∗ log2(ratio)

−1 |w1, w2|log = norm() (4)
log2(min(α, w1→sw2+w2→sw1))2

Note that when raio = 0.5, then the function returns max-
Value. An unusual case is when the value of the variable ratio
is bigger than 0.5. For example, if ratio = 1, then we have
division by zero and the value for the function is undefined.
We handle this case separately and assign value to the function
equal to 1.2 ∗ maxValue . This is an extraordinary case when
there is a single non-noise word in the text description and we
need to assign higher weight to the edge.

We multiply the backward edge by 0.8 because “shoe” is
the second non-noise word in the definition of the sense. Our
algorithm multiplies the first non-noise word by one and the
coefficient is decreased by 0.2 for every sequential word until
it reaches 0.2. This strategy is based on our belief that the first
words in the definition of a sense are more important, where
[39] experimentally validates this belief.

2/4

shoe

a canvas shoe with a pliable rubber sole sneaker

0.3*1/3 0.8*computeMinMax(0,0.6,1/5)

footwear shaped to fit the foot ...
27/31

1
0.3

0.9*3.5/930.2

1

Fig. 3. Example relationships between the words “shoe” and “sneaker”.

Fig. 3 shows the result of combining the two graph. In the
figure, there are two forward paths from the word “shoe” to the
word “sneaker”. If we add the evidence from the two paths,
then we get the number 27 · 0.9·3.5 · 1 + 0.3 ∗ 1 · 131 930.2 3 . Similarly,
from the backward paths we will collect additional evidence
about the similarity of the two words: 2 · 0.3 · 1 + 2 · 0.8 · 4 4
computeMinMax (0, 0.6, 1)5 . As we add evidence from several
paths, the weight for a path can become bigger than one and
therefore cease to represent a probability. In the next section,
we address this issue by capping the similarity score between
two nodes in the graph.

IV. MEASURING THE SEMANTIC SIMILARITY BETWEEN
ERMS T

The similarity graph is used to represent the conditional
probability that a user is interested in the term that is described
by the label of a node given that they are also interested in
the label of an adjacent node in the graph. We compute the
directional similarity between two nodes using the following
formula. X
A →s C = PPt(C|A) (1)

Pt is a cycleless path from node A to node C

Y
PPt(C|A) = P (n2|n1) (2)

(n1,n2) is an edge in the path Pt

The function P (n2|n1) refers to the weight of the edge
from the node n1 to the node n2. Informally, we compute the
directional similarity between two nodes as the sum of the
weights of all the paths between the two nodes, where we
eliminate cycles from the paths. Each path provides evidence
about the similarity between the terms that are represented
by the two nodes. We compute the weight of a path between
two nodes as the product of the weights of the edges along the
path, which follows the Markov chain model. Since the weight
of an edge along the path is almost always smaller than one
(i.e., equal to one only in rear circumstances), the value of
the conditional probability will decrease as the length of the
path increases. This is a desirable behavior because a longer
path provides less evidence about the similarity of the two
end nodes. For alternative ways of computing the directional
similarity between two nodes, see [39].

Next, we present two functions for measuring the semantic
similarity between two nodes. The linear function for com-
puting the semantic similarity between two nodes is shown in
Equation 3.

The minimum function is used in order to cap the value of
the similarity function at one. The coefficient α amplifies the
available evidence (α ≤ 1). Note that when α is equal to one,
then the function simply takes the average of the two numbers
and caps the result at 1.

The second similarity function is inverse logarithmic, that
is, it amplifies the smaller values. It is shown in Equation 4.
The norm function simply multiplies the result by a constant
(i.e., −log2(α)) in order to move the result value in the range
[0,1].

The paper [39] suggests that the two similarity metrics
produce best results when α is around 0.1 and this is the value
that we will use in the experimental section.

V. MEASURING THE SEMANTIC SIMILARITY BETWEEN
DOCUMENTS

In the previous section, we described how to measure the
semantic similarity between two nodes of the graph. In this
section, we describe how to measure the semantic similarity
between any two text documents. The idea is to create a node
for each document and then connect the nodes to the graph.
The semantic similarity between two documents will then be
measured by computing the distance between the two nodes
using the linear or logarithmic algorithm from the previous
section.

In order to demonstrate our approach, consider a fictitious
document that contains a total of 10 non-noise words in its title
and a total of 100 non-noise words in its body. Among these
non-noise words, suppose that the word “sneaker” appears

~ ~d1 · d2|d1, d2|cosine =
~ ~|d1| ∗ |d2|

once in the title and the word “shirt” is present four times
in the body. We will represent this information by drawing
the graph that is shown in Fig. 4. The weight of the edge
between the document and the word “sneaker” is equal to
computeMinMax (0, 0.6, 1/10) = 0.18. Similarly, the weight
of the edge between the document and the word “shirt” is

4equal to computeMinMax (0, 0.3,) = 0.13. This is the100
same formula that is used to compute the weight of an edge
between a sense and the words in its definition. The number
0.6 is used because we believe that there is a high probability
that someone who is interested in a document will also want
information about one of the terms that appears in its title. The
number 0.3 represents our belief that there is a 30% chance
that someone who is interested in a document is also concerned
about one of the terms that appear in its body. Here, we assume
that the terms in the title of a document are twice as important
as the terms in the body.

Next, consider the backward edge between the word
“sneaker” and the document. Suppose that the word appears
a total of 10 times in all documents. Then the weight of the
edge between the word “sneaker” and the document will be

1equal to 0.3 · = 0.03. This is the same formula that is used 10
for computing the weights of the backward edges between a
word form from WordNet and the definition of the sense in
which it appears. We believe that the backward edges are less
important and therefore we divide the coefficients by two for
backward edges (the coefficient for the forward edge is 0.6
as shown in the previous paragraph). Similarly, if the word
“shirt” appears a total of 20 times in all documents, then we

4will draw a backward edge with weight 0.15 · = 0.03 (the20
coefficient for the forward edge is 0.3 and the coefficient for
the backward edge is half of that, that is, 0.15).

0.03

and 100 non−noise words in its body.

The word "sneaker" appears once in the title and

the word ‘‘shirt" appears four times in the body.

sneaker

0.13

shirt

0.18 0.03

Document with 10 non−noise words in its title

Fig. 4. Example of adding a document to the graph.

Although we consider the words in the title more important
than the words in the body, we do not pay special attention to
the order of the words. The reason is that there is no empirical
evidence that the first words in the title or body of a document
or more important.

The word “sneaker” has two different senses. Our algorithm
does not try to identify which of these senses the document
refers to. Instead, there will be paths in the graph to both
senses. We take this approach because it can be possible that
different occurrences of the word in the document refer to
distinct senses. The strength of the relationship to a particular
sense will be computed based on additional evidence. For
example, if the document also contains the word “shoe”, then

there will be stronger connection between the document and
the main sense of the word “sneaker”.

Second, note that the distance between two documents is
not calculated in isolation. In particular, the other documents
in the corpus are also taken into account when calculating
the backward edges. In other words, we calculate how similar
two documents are relative to the rest of the documents
in the corpus. Once the similarity graph is extended with
the documents, the distance between two documents can be
calculated using the linear or logarithmic metrics that were
described in the previous section.

VI. CLUSTERING THE DOCUMENTS

In this section we describe how a set of documents can
be clustered using the k-means clustering algorithm. The
algorithm relies on a way for computing the distance between
two documents. We present two variations: using keywords
matching and using the similarity graph. In the next section
we show how the results of the two algorithms compare to
human judgment.

A common approach for computing the similarity distance
between two documents is to represent them as vectors and
then compute the cosine of the angle between the two vectors
as the normalized dot product of the vectors. For example,
suppose that “dog”, “cat” and “shirt” are the only words that
are used. Then for every document we can denote the number
of times each word occurs. For example, a document that
contains the word “dog” twice, the word “cat” three times
and does not contain the word “shirt” can be represented as
the document vector [2, 3, 0]. Alternatively, a document that
contains the word “cat” twice and the word “shirt” four times
can be represented as [0, 2, 4]. The dot product of the two
vectors is [2, 3, 0] · [0, 2, 4] = 6. Next, we need to divide
the result by the product of the sizes of the two documents.
Therefore, the angle between the documents in radians will

6be √ √ ≈ 0.37. Unfortunately, this approach
(22+32)∗ 22+42

does not take into account that the words “cat” and “dog” are
semantically similar and will calculate the similarity distance
between a document about cats and one about dogs as zero if
the two documents do not share words in common. In general,
the cosine similarity between two documents is computed
using the formula in Equation 5. Alternatively, we can use
the linear or logarithmic metric from the previous section to
compute the semantic distance between two documents.

(5)

The k-means clustering algorithm starts with a constant k.
This is the number of clusters that will be produced. Initially,
a centroid (i.e., a document) is randomly chosen for every
cluster. Next, each document is assigned to the group that
contains the closest centroid. After that, the centroid (i.e.,
mean) is found for each cluster and then the documents are
clustered again around each centroid. The algorithm converges
and continues until applying the last step does not change the

TP P = TP +FP

TP R = TP +FN

(β2 +1)·P ·RFβ = β2·P +R

clustering. If the documents are represented as vectors as we
showed earlier in this section, then computing the mean of a
set of documents amounts to adding the document vectors and
dividing by the number of documents. For example, the mean
of our two document vectors from the beginning of this section

[2,5,4]is mean([2, 3, 0], [0, 2, 4]) = = [1, 2.5, 2]. Note that2
the mean function is independent of the document similarity
metric that is used.

VII. EXPERIMENTAL RESULTS

All our code was implemented in Java. We first created the
similarity graph using WordNet and it took about 10 minutes
to create the graph on a standard laptop with Intel i5 CPU. We
used the Java API for WordNet Searching (JAWS) to connect
to WordNet. The interface was developed by Brett Spell [35].
We stored the graph as several Java hash tables, where the size
of the file is 89MB.

We next read all the documents from the Reuters-21578
benchmark. The benchmark contains 21, 578 documents that
are stored in 22 text files. Our program read the files and we
extracted information about the 11, 362 documents that were
classified in one of 82 categories using human judgment. For
every document, we stored its title, its text, the category it
belongs to, and a document vector. The later contains the non-
noise words in the documents and their frequency. Since the
words in the title are more important, we counted these words
twice. We stored the information in Java hash tables, where
the size of the file is 27MB. It took about two minutes to parse
the text files.

We next added the documents to the similarity graph.
We followed the algorithm from Section V and gave higher
weights to the terms in the titles of the documents. The size
of the graph increased to 129MB. For document nodes, we
stored the title of the document in the label of the node.
We also stored a hash table that keeps the mapping between
the document nodes in the graph and the documents in the
document file that was described in the previous paragraph. It
took about five minutes to add the documents to the graph.

We next clustered the documents using the k-means clus-
tering algorithm. We chose the value k = 82 because this
is the number of categories as determined by the human
judgment. The first 82 documents were put in 82 distinct
clusters. At this point, the lonely document in each category
was designed as the centroid. We next processed the rest of the
documents. Every document was compared to the 82 centroids
and assigned to the cluster with the closest centroid. Next, a
new centroid was chosen for each cluster. This was done by
adding the document vectors in each cluster and dividing the
result by the number of vectors (i.e., finding the mean in each
cluster). Next, the documents were reclustered around the new
centroids and the process was repeated until it converged (i.e.,
applying the algorithm did not change the clusters).

The k-means clustering algorithm is based on two document
functions: finding the distance between two documents and
computing the average of several documents. The later func-
tion is implemented by simply adding the document vectors

TABLE I
RESULTS OF APPLYING THE K-MEANS ALGORITHM

cosine linear logarithmic
of rounds 30 45 45
precision 0.57 0.66 0.66
recall 0.05 0.07 0.07
F-measure 0.09 0.13 0.13

and dividing the result by the number of vectors. However,
we have three choices for the distance metric: the cosine,
linear, and logarithmic. When we applied the cosine similarity
metric, the k-means clustering program terminated in about
three hours and it took 30 rounds until ed paths of length more
than three edges or weight less than 0.01 when computing the
distance between two documents using the similarity graph.
The results of using the three different distance metrics are
shown in Table I.

The table shows the F-measure when using the three
different distance metrics. The measure gives a single number
based on the precision and recall of the result of the clustering
algorithm. Let TP be the number of true positives, that is,
the number of documents that were classified in the same
category by both the program and human judgment. Let
FP be the number of false positives, that is, the number of
documents that were classified in the same category by the
program, but were classified in different categories by human
judgment. Lastly, let FN be the number of false negatives, that
is, the number of documents that were classified in the same
category by human judgment but were classified in different
categories by the program. The formula for computing the
F-measure is shown below.

In the above formulas, P is used to denote the precision and
R is used to denote the recall. We used the value β = 1 in
the experimental results, which is a popular parameter for the
F-measure metric. As the table suggests, using the similarity
graph can lead to both higher precision and recall. Note that
using the linear or logarithmic similarity metric did not make
a difference. The reason is that the two metrics apply different
monotonic functions on the average of the sum of the forward
and backward paths. Applying these monotonic functions has
no effect on the ordering of the distances between nodes and
on the clustering result.

VIII. CONCLUSION AND FUTURE RESEARCH

In this paper we reviewed how information from WordNet
can be used to build a similarity graph. The graph shows the
strength of the relationship between words and phrases from
the English language. We showed how to use the graph to
cluster documents. We validated the algorithm experimentally

by comparing it to an algorithm that uses the cosine similarity
metric. Using the similarity graph leads to increased precision
and recall on the popular Reuters-21578 benchmark.

One area for future research is using an extended version of
the similarity graph that contains information from Wikipedia
[37] to perform document clustering. One challenge in this
area is that the extended graph is relatively big (more than
10GB) and computing the distance between documents can
be computationally expensive.

REFERENCES

[1] M. Agosti and F. Crestani. Automatic Authoring and Construction of
Hypertext for Information Retrieval. ACM Multimedia Systems, 15(24),
1995.

[2] M. Agosti, F. Crestani, G. Gradenigo, and P. Mattiello. An Approach
to Conceptual Modeling of IR Auxiliary Data. IEEE International
Conference on Computer and Communications, 1990.

[3] L. Burnard. Reference Guide for the British National Corpus (XML
Edition). http://www.natcorp.ox.ac.uk, 2007.

[4] P. Cohen and R. Kjeldsen. Information Retrieval by Constrained
Spreading Activation on Sematic Networks. Information Processing and
Management, pages 255–268, 1987.

[5] R. Collobert and J. Weston. A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning. Twenty
Fifth International Conference on Machine Learning, 2008.

[6] F. Crestani. Application of Spreading Activation Techniques in Infor-
mation Retrieval. Artificial Intelligence Review, 11(6):453–482, 1997.

[7] Croft. User-specified Domain Knowledge for Document Retrieval.
Nineth Annual International ACM Conference on Research and Devel-
opment in Information Retrieval, pages 201–206, 1986.

[8] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman. Indexing by Latent Semantic Analysis. Journal of the
Society for Information Science, 41(6):391–407, 1990.

[9] C. Fox. Lexical Analysis and Stoplists. Information Retrieval: Data
Structures and Algorithms, pages 102–130, 1992.

[10] W. Frakes. Stemming Algorithms. Information Retrieval: Data Struc-
tures and Algorithms, pages 131–160, 1992.

[11] T. Gruber. Collective knowledge systems: Where the social web meets
the semantic. Web Journal of Web Semantics, 2008.

[12] R. V. Guha, R. McCool, and E. Miller. Semantic Search. Twelfth
International World Wide Web Conference (WWW 2003), pages 700–
709, 2003.

[13] A. M. Harbourt, E. Syed, W. T. Hole, and L. C. Kingsland. The
Ranking Algorithm of the Coach Browser for the UMLS Metathesaurus.
Seventeenth Annual Symposium on Computer Applications in Medical
Care, pages 720–724, 1993.

[14] W. R. Hersh and R. A. Greenes. SAPHIRE An Information Retrieval
System Featuring Concept Matching, Automatic Indexing, Probabilistic
Retrieval, and Hierarchical Relationships. Computers and Biomedical
Research, pages 410–425, 1990.

[15] W. R. Hersh, D. D. Hickam, and T. J. Leone. Words, Concepts, or Both:
Optimal Indexing Units for Automated Information Retrieval. Sixteenth
Annual Symposium on Computer Applications in Medical Care, pages
644–648, 1992.

[16] E. H. Hovy, L. Gerber, U. Hermjakob, M. Junk, and C. Y. Lin. Question
Answering in Webclopedia. TREC-9 Conference, 2000.

[17] K. Jarvelin, J. Keklinen, and T. Niemi. ExpansionTool: Concept-based
Query Expansion and Construction. Springer Netherlands, pages 231–
255, 2001.

[18] G. Jeh and J. Widom. SimRank: A Measure of Structural-context
Similarity. Proceedings of the Eight ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 538–543,
2002.

[19] S. Jones. Thesaurus Data Model for an Intelligent Retrieval System.
Journal of Information Science, 19(1):167–178, 1993.

[20] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff. Se-
mantic Annotation, Indexing, and Retrieval. Journal of Web Semantics,
2(1):49–79, 2004.

[21] R. Knappe, H. Bulskov, and T. Andreasen. Similarity Graphs. Fourteenth
International Symposium on Foundations of Intelligent Systems, 2003.

[22] T. K. Landauer, P. Foltz, and D. Laham. Introduction to Latent Semantic
Analysis. Discourse Processes, pages 259–284, 1998.

[23] J. B. MacQueen. Some Methods for Classification and Analysis of
Multivariate Observations. Proceedings of Fifth Berkeley Symposium on
Mathematical Statistics and Probability, page 281?297, 1967.

[24] M.F.Porter. An Algorithm for Suffix Stripping. Readings in Information
Retrieval, pages 313–316, 1997.

[25] G. A. Miller. WordNet: A Lexical Database for English. Communica-
tions of the ACM, 38(11):39–41, 1995.

[26] D. Moldovan, S. Harabagiu, M. Pasca, R. Mihalcea, R. Goodrum, and
R. Girju. LASSO: A Tool for Surfing the Answer Net. Text Retrieval
Conference (TREC-8), 1999.

[27] C. Paice. A Thesaural Model of Information Retrieval. Information
Processing and Management, 27(1):433–447, 1991.

[28] B. Popov, A. Kiryakov, D. D. Ognyanoff, D. Manov, and A. Kirilov.
KIM A Semantic Platform for Information Extraction and Retrieval.
Journal of Natural Language Engineering, 10(3):375–392, 2004.

[29] D. Powers. ”evaluation: From precision, recall and f-measure to
roc, informedness, markedness and correlation”. Journal of Machine
Learning Technologies, 2(1):37?63, 2011.

[30] L. Rau. Knowledge Organization and Access in a Conceptual Informa-
tion System. Information Processing and Management, 23(4):269–283,
1987.

[31] S. S. Luke, L. Spector, and D. Rager. Ontology-Based Knowledge
Discovery on the World Wide Web. Internet-Based Information Systems:
Papers from the AAAI Workshop, pages 96–102, 1996.

[32] M. Sanderson. Word Sense Disambiguation and Information Retrieval.
Seventeenth annual international ACM SIGIR conference on Research
and development in information retrieval, 1994.

[33] P. Shoval. Expert consultation system for a retrieval database with
semantic network of concepts. Fourth Annual International ACM SIGIR
Conference on Information Storage and Retrieval: Theoretical Issues in
Information Retrieval, pages 145–149, 1981.

[34] Simone Paolo Ponzetto and Michael Strube. Deriving a Large Scale
Taxonomy from Wikipedia. 22nd International Conference on Artificial
Intelligence, 2007.

[35] B. Spell. Java API for WordNet Searching (JAWS).
http://lyle.smu.edu/ tspell/jaws/index.html, 2009.

[36] K. Srihari, W. Li, and X. Li. Information Extraction Supported Question
Answering. In Advances in Open Domain Question Answering, 2004.

[37] L. Stanchev. Creating a Phrase Similarity Graph from Wikipedia. Eight
IEEE International Conference on Semantic Computing, 2014.

[38] L. Stanchev. Creating a Similarity Graph from WordNet. Fourth
International Conference on Web Intelligence, Mining and Semantics,
2014.

[39] L. Stanchev. Measuring the Strength of the Semantic Relationship
Between Words. International Journal on Artificial Intelligence Tools,
2015.

[40] J. Turian, L. Ratinov, and Y. Bengio. Word representations: A simple
and general method for semi-supervised learning. In Forty Eight Anual
Meeting of the Association for Computational Linguistics, pages 384–
394, 2010.

[41] Y. Yang and C. G.Chute. Words or Concepts: The Features of Indexing
Units and their Optimal use in Information Retrieval. Seventeenth
Annual Symposium on Computer Applications in Medical Care, pages
685–68, 1993.

http://lyle.smu.edu
http://www.natcorp.ox.ac.uk

