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Abstract 
Lithium batteries provide excellent energy storage capabilities at a relatively high density; 

however, precautions must be taken with these high energy devices to ensure safe operation. A 

battery management system (BMS) provides protection by monitoring cell and pack voltage 

levels and maintaining them in a specific range. They limit the output current and disable the 

output in extreme conditions. Most devices in the targeted power range (<1000W) do not allow 

the user to manipulate the values for maximum current, cut-off voltage, or other limits. This 

project introduces the Programmable BMS (PBMS), which instead allows the user to select these 

values through a physical interface. The interface displays measurements including pack voltage 

and output current, and it reports additional characteristics of interest such as the battery’s 

temperature, state of charge, and cumulative number of charge cycles. This level of access and 

control permits users to receive the maximum performance and safety from common lithium 

battery packs. 
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Chapter 1. Introduction 

This section introduces the motivation to develop a programmable battery management system 

and discusses both previous and current technology. As the current state of the art for consumer 

battery technology, lithium batteries find use every day in devices across the world due to factors 

including their energy density and versatility. Lithium battery applications include portable 

consumer electronics, electric vehicles, and off grid storage systems. In most applications, 

batteries require monitoring systems that ensure safe operation and prevent catastrophic failure. 

Lithium batteries sustain damage from improper use and may fail when they reach temperatures 

above 100°C resulting in an event known as thermal runaway [1][2]. Failure often results in fire 

and injury. Improper usage includes drawing excessive amounts of current, discharging the 

battery too far, and overcharging the battery; the values for these safety limits differ for each 

style and brand of lithium battery. Most lithium ion cells in the 18650 and 21700 form factors 

operate safely between 2.5V and 4.2V, but each cell design from various manufacturers and 

chemistries may have a different current rating [3]. Table I on the following page, from Battery 

University, provides a comparison of various lithium battery chemistries. With the widely 

varying limits for batteries, each chemistry, form factor, and brand can require unique 

management to remain safe in most situations. Battery management systems often passively 

control batteries; simple electronics monitor battery conditions and disable the battery input and 

output if the operating conditions exceed predetermined limits for that specific model of battery 

[4].  
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TABLE I: SUMMARY TABLE OF LITHIUM-BASED BATTERIES [3] 
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In general, battery management systems divide into two groups: digital and analog. Table II 

below distinguishes the different functions for each type of BMS. A BMS may accomplish any 

of the following functions: monitor the battery, protect the battery, estimate the battery’s state, 

maximize the performance, and report to users or external systems [4][5]. For lithium batteries, 

BMS monitor the cell voltage, current flow, and temperature; some systems add to this by 

balancing the cell voltages to maximize overall pack capacity. This project aims to provide the 

maximum benefit to the user and, thus, falls under the digital “protector” category. Many chip 

manufacturers, including Texas Instruments and Analog Devices, offer ICs with an array of 

available functions that facilitate lithium BMS design [6][7]. While battery management systems 

are not a new technology, consumer BMS rarely provide direct control of the battery operating 

limits. A typical BMS restricts the battery to a single cutoff voltage, maximum current, and 

maximum temperature [3][5][8]. This provides sufficient protection for most consumers due to 

the added safety relative to an unprotected battery and low cost. This project improves on the 

basic system by adding external control over these quantities and displaying the operating 

conditions to the user. Commercial battery management systems that offer similar 

programmability typically target large scale applications including large electric vehicles [4][9]. 

Small scale (<1000W) applications rarely feature this technology due to the cost of production 

relative to the price of the battery. Current options require additional electronics to program the 

device, and the manufacturers may not include programming instructions or sell directly to 

consumers [5][9]. Smart lithium battery chargers offer similar advantages to a programmable 

battery management system; however, this technology has yet to reach common usage and only 

protects the battery during charging [10].  

TABLE II: TYPES OF BATTERY MANAGEMENT SYSTEMS AND FUNCTIONS [4] 

 

Battery longevity is a vital aspect of widespread electric vehicle adoption. While lithium 

batteries can store large amounts of energy, this capability degrades as the battery charges and 

discharges over time. In addition, the fast discharge rates of electric vehicles hasten the 

degradation process. To counteract this and extend the lifetime of the battery, it must operate 

within a narrower voltage range. For example, instead of charging a battery to 100% and 
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discharging it down to 0%, it may last up to twice as long if only charged to 80% and discharged 

to 20% [11]. Increased longevity helps reduce waste and environmental effects caused by battery 

production [12]. This requires calculation of the battery’s SOC, or state of charge, which 

estimates the remaining battery capacity relative to its maximum. The simplest method measures 

the open circuit voltage of the battery and compares this to the general operating range of the 

battery. The equation below demonstrates the relationship between the SOC and open circuit 

voltage [13].  

 
In this equation, a0 represents the battery voltage at 0% SOC, and a1 represents a constant found 

by plugging in the open circuit voltage at 100% SOC. For example, a lithium battery ranging 

from 2.5V to 4.2V contains approximately 60% of its maximum capacity when the voltage 

measures 3.5V. However, the nonlinear relationship of the battery’s capacity to its voltage 

introduces error near the bottom and top of the operating range. Additional methods, such as 

Coulomb counting, attempt to improve this by measuring the amount of charge entering and 

exiting the battery [13]. This technology provides convincing advantages to lithium battery users 

who value safe and controlled battery use; the following chapter considers the factors driving 

demand for a PBMS and the expected capabilities of the device. 
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Chapter 2. Customer Needs, Requirements, and 

Specifications 

This chapter evaluates the needs and expectations of users of small scale lithium battery systems. 

The PBMS must meet the requirements of common devices at this scale while focusing on user 

safety. A brief list provides the device’s specifications and justification for each. The chapter 

then discusses how the device meets the specifications and how later iterations may be improved 

to achieve additional specifications.  

2.1 Customer Needs Assessment 

Lithium batteries provide enormous amounts of energy and require simple and effective control 

for safe, efficient usage. Most lithium battery packs in the targeted power range utilize primitive 

battery management systems; they always charge the battery to its maximum capacity and allow 

it to discharge down to a static, predetermined limit [8]. Additionally, these battery management 

systems fail to provide the user with measurements or feedback. Many small electric vehicle 

operators realize the limitations of these systems and seek additional capabilities; internet forums 

of EV enthusiasts who build their own batteries indicate a present need for a low cost, 

programmable BMS. A knowledgeable user who wishes to build and maintain a long-lasting 

high performance battery, while protecting against the associated hazards, requires a device that 

adds capability to the simple passive systems by offering access to battery operating conditions 

and limits. The variable parameters provide adaptability that most primitive BMS lack; for 

example, instead of requiring individuals to choose a BMS that matches their required output 

current limit, any battery under the maximum current capability of the PBMS may use the same 

PBMS. In addition, the device enables users to actively monitor the battery conditions during 

operation, including cell voltage, pack voltage, output current, and temperature. This provides 

advantages in many situations; for example, if one cell bank shows a consistently different 

voltage than the others, the overall capacity and utility of the pack decreases. The live 

measurements allow the user to observe this directly and replace whichever cell bank causes 

issues without needing to replace the entire pack.  

Lithium batteries pose an inherent risk to both the users and public due to their high energy 

density relative to other battery chemistries; however, failures rarely occur (on the order of one 

part per million) when following all safety standards. Ignoring safety precautions may cause 

batteries to hiss, bulge, or leak before catching fire and even exploding. A failure can cause third 

degree burns and permanent injury to anyone within a few feet of the device [3]. Thus, battery 

safety remains a key factor for all users, especially when considering lithium-based chemistries. 

The PBMS prioritizes safety by educating the operator about lithium batteries and allowing the 

user to determine the operating limits they deem safe. It responds to potentially catastrophic 
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events much faster than any person can react. The following section discusses project 

requirements that provide the user with the best and safest experience for devices in the targeted 

power range.  

2.2 Requirements and Specifications 

The primary objective of a BMS includes monitoring battery characteristics and triggering an 

immediate shutoff when reaching predefined limits that indicate a dangerous fault. BMS include 

protection from faults including overvoltage (OVP), undervoltage (UVP), overcurrent (OCP), 

and overtemperature (OTP). A programmable BMS expands on the commonplace BMS by 

adapting to meet the needs of each unique user. The requirements of the programmable BMS 

center around providing the user with the most control over the battery while maximizing safety. 

Table III lists and justifies each PBMS specification. It also describes the marketing 

requirements of the PBMS; a successful product provides tangible benefits to the consumer. 

Each engineering specification listed in the table targets at least one marketing requirement. In 

short, the marketing requirements dictate that a successful BMS covers a wide range of devices, 

provides a simple user experience, maintains high efficiency, improves the experience of the 

user, and encourages sustainable practices.   

Since consumer lithium batteries range in power from milliwatts to many kilowatts, the project 

targets a common range for users who gain the most by the added capabilities of the PBMS: 

~100W to ~1000W (peak). With pack capacity a priority, low power consumption provides the 

maximum benefit to the user. This project defines low power consumption as utilizing less than 

1% of the maximum allowable wattage of the device; for example, the device consumes less than 

5W maximum for a 500W battery. A power heavy user interface including an LCD and 

microcontroller draws no more than 500mA and 5V, and the electronics performing battery 

control and measurements draw small amounts of power relative to the size of the battery [6]. 

Efficiency limits the device’s utility at smaller scales – interface electronics consume relatively 

low power and remain constant as the product scales to larger power capabilities. 

Common voltage and current ratings for battery packs in this range span from 11V up to 48V 

and from 5A to over 30A. The initial estimate of a maximum output voltage of 27V originates 

from the Texas Instruments BQ76PL536, used in similar senior projects at Cal Poly, [7][10]. 

Further research and evaluation leads to new and improved options with a larger voltage range 

thus enhancing versatility. The selected range balances simple electronic design and safety 

versus the number of applicable devices. The well documented and common LTC6804 BMS 

meets the voltage requirements for the targeted range of devices [6]. In addition, the LTC6804 

features efficient, passive cell balancing. Every cell bank requires voltage balancing for even 

discharge, maximum capacity, battery longevity, and optimal safety [11]. This chip also includes 

extensive documentation from the manufacturer and use by lithium BMS expert Davide Andrea, 

author of “Battery Management Systems for Large Lithium Ion Battery Packs” and experienced 

designer of lithium BMS since 2004 [4]. 
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TABLE III: PROGRAMMABLE BATTERY MANAGEMENT SYSTEM REQUIREMENTS AND 

SPECIFICATIONS 

Marketing 

Requirements 

Engineering 

Specifications 
Justification 

1,5 Allows output voltage from 11 - 50V 

(with adjustable OVP and UVP for 

3-12 cell banks in series) 

This range applies to a large variety of 

consumer scale lithium battery powered 

systems. It helps prioritize safety during 

development, facilitates part 

acquisition, and reduces complexity.  

1,5,6 Measures output current up to 20A 

and provides adjustable OCP limit 

A 20A overcurrent protection (OCP) 

limit simplifies electronics/heat 

dissipation design while remaining safe 

for low wattage batteries. This stems 

from the maximum current of many 

common 18650 cells, like the Samsung 

25R used in this project [14]. 

1,5,6 Balances individual cell bank 

voltages within 2-3% of each other 

using passive balancing 

Cells range 2.5 – 4.2V; 3% = 75 – 126 

mV, achievable with LTC6804. Passive 

balancing simplifies design and lowers 

cost of development and consumer 

product. 

2,6,7 Actively displays pack and cell 

voltage (+ 100mV), output current 

(+ 1A), temperature (+ 5°C), state of 

charge, and number of cycles on user 

interface 

These vital characteristics inform the 

user about the safety of a lithium 

battery’s operating conditions. The user 

must have access to the measured 

characteristics and limits during 

operation.  

6 Monitors pack temperature within 

5°C; adjustable maximum operating 

temperature 

Lithium battery heat sensitivity requires 

active temperature monitoring. After 

reaching the tipping point, thermal 

runaway causes dangerous reactions. 

6 Responds to fault event in under 1 

second 

Reacts faster than humans thus 

increasing safety. Similar systems show 

similar or slower response times [8]. 

3 Active power consumption under 

5W 

“Active” means user interacts with 

device interface by changing settings or 

observing measurements. The 5W 

estimation minimizes impact on battery 

life and comes from simulating 

components and analyzing competition 

[9][5]. 

1,4 Physical dimensions smaller than 

1”x4”x4” 

The BMS must not significantly impact 

the overall dimensions of the battery. 

Lithium batteries at low (<1000W) 

wattages significantly exceed this size.  
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1,2,3,4,7 First time setup under 1 hour  Simple configuration procedure allows 

implementation with minimal setup 

time for a user with moderate 

electronics experience (<1 year 

soldering); also allows user time to 

learn interface and educates on lithium 

battery technology. 

1,2 Settings changes require less than 5 

minutes of user interaction 

Low voltage cut-off or maximum 

output current are accessible without 

significantly interrupting battery usage. 

Simple and intuitive interface increases 

ease of use. 

5 Cost of prototype unit below $500 Can scale down to competitive and 

consumer friendly price with higher 

volume. Estimated using typical 

component prices (see Appendix C for 

BOM). 

Marketing Requirements 

1. Versatile and easy to implement 

2. Simple and intuitive interface 

3. Low power consumption  

4. Compact and portable 

5. Low cost 

6. Increased utility and safety from lithium batteries 

7. Encourage sustainability 

 

The device must feature similar size and form to current BMS technology; the shape of the BMS 

should not significantly increase the overall size of the battery pack. Typical BMS have a 

minimal effect on overall battery dimensions [5]. The small scale focus of the device’s design 

helps minimize the risk of injury during the project, but it also restricts the overall dimensions of 

the product which adds complexity to the design process and difficulty during prototyping.  

To appeal to a large demographic, the PBMS features a simple integration experience and user-

friendly interface that requires less than 5 minutes to change device settings. The PBMS provides 

operating conditions and up-to-date measurements of voltage, current, temperature, and more at 

any point during operation to ensure constant safety. It also allows the users to change the 

operating limits to meet their needs. A logically organized interface with a gentle learning curve 

minimizes device downtime during settings changes.  

The requirements and specifications table format derives from [15], Chapter 3. The 

specifications listed in the table provide a usable balance between device compatibility, 

development safety, design simplicity, and cost of production. Many specifications allow room 

for later improvement and refinement after proving the concept of a truly programmable BMS in 

this power range. The follow chapter details the system from a top down approach by providing 

multiple block diagrams and explanations of internal subsystems.  
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Chapter 3. Functional Block Diagrams 

This section breaks down the programmable battery management system into functional blocks 

at various levels of detail. The first level looks solely at the inputs and outputs of the system. The 

next level separates the design into the three subsystems; user interface, central processing unit, 

and battery management. Tables V-VII list the inputs and outputs of each subsystem. Finally, a 

system level diagram including all components and subsystems demonstrates internal 

connections and organization.  

3.1 Level 0 Decomposition 

Figure 1 below offers a top-level block diagram of the PBMS including the main inputs and 

outputs described in Table IV. The battery pack consists of several individual cell banks in 

series. The BMS measures the voltage of each cell bank, current entering or exiting the battery, 

and pack temperature. It accepts user settings to determine maximum operating limits and 

outputs the protected power from the battery. The PBMS also provides real time measurements 

and data on a graphical interface. 

  
Figure 1: Level 0 block diagram for battery management system 
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TABLE IV 

PRROGRAMMABLE BATTERY MANAGEMENT SYSTEM LEVEL 0 INPUTS, OUTPUTS, 

AND FUNCTIONALITY DESCRIPTION 

Inputs • Battery power from cell banks (up to 50V, up to 20A) 

• User selected settings including maximum output current, minimum battery 

cell voltage, maximum operating temperature 

Outputs • Allows up to 50V at up to 20A (user specified) 

• “Battery feedback & data”: Battery characteristics and measurements 

including operating voltage, cell bank voltage, output current, battery state 

of charge, and present settings for OVP, UVP, OCP, and OTP. 

Functionality The battery management system balances individual cell voltages; monitors, 

reports in real time, and limits the battery pack’s overall operating voltage, current, 

and temperature; and offers user control over input/output cutoff limits. 

3.2 Level 1 Decomposition 

 

Figure 2 on the following page shows the internal modules of the PBMS design. The 

subcomponents fall under three main categories: user interface hardware, battery characteristic 

monitor/control unit, and the microcontroller. The functional breakdown derives from the block 

diagram in Cheng [16] Figure 1. Tables V, VI, and VII describe the functionality of each 

category and the associated inputs/outputs.  

 

 
Figure 2: Level 1 Block Diagram of Programmable Battery Management System 
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TABLE V: 

PBMS LEVEL 1 BLOCK DIAGRAM DESCRIPTION – USER INTERFACE HARDWARE  

Inputs • Hardware interface featuring button pushes on touchscreen LCD 

Outputs • User specified setting – maximum charge voltage, maximum output 

current, among others to microcontroller for interpretation.  

• LCD data to display – user settings, user interface, battery feedback & 

data 

Functionality The user interface offers direct control over system settings. The 

microcontroller interprets the input and alters system settings accordingly. 

Internal storage maintains user settings, which the user may view and access at 

any point during device operation on the included screen. The interface displays 

real time battery measurements including voltage and output current.  

 

TABLE VI: 

PBMS LEVEL 1 BLOCK DIAGRAM DESCRIPTION – BATTERY CHARACTERISTIC 

MONITOR/CONTROL UNIT 

Inputs • Battery cell bank voltages 

• Cell temperature 

• Input/output current 

Outputs • Battery measurements to microcontroller for processing 

Functionality The battery control unit consists of several subcomponents that ensure the 

lithium battery operates safely. Main components include cell balancing 

module, current monitor, and temperature monitor. Contains high power 

input/output cutoff circuitry. The LTC6804 provides simple cell balancing 

options and voltage readings [6]. It communicates directly with the 

microcontroller using a 4-wire SPI interface 

 

TABLE VII: 

PBMS LEVEL 1 BLOCK DIAGRAM DESCRIPTION – MICROCONTROLLER 

Inputs • User inputs from physical interface 

• Battery measurements from battery characteristic monitor 

Outputs • Battery measurements to display on interface 

• Internal settings to display 

• Control signals to battery monitor 

Functionality The microcontroller obtains battery measurements from the battery control 

unit and alters internal settings accordingly. Signals from the microcontroller 

may initiate a current cutoff. The microcontroller contains a simple user 

interface with a display. User settings adjust the battery output and operating 

conditions.  

 

  



12 
 

3.3 System Level Diagram 

 

Figure 3 below illustrates an entire lithium battery system built around the programmable battery 

management system. The battery monitor unit from Figure 2 comprises the LTC6804 PCB, cell 

balancing PCB, cutoff circuit, current sensor, and temperature sensor all pictured in Figure 3. 

The user interface hardware consists exclusively of the Nextion 4.3” Touchscreen LCD. These 

peripherals all communicate with the Arduino MEGA2560, which serves as the central 

processing unit of the battery management system. The battery powers the Arduino through a 

DC-DC converter. The Arduino provides power to the LCD, current sensor, and temperature 

sensor through its 5V supply. It communicates with the LTC6804 using SPI and the LCD using 

UART; the current sensor and temperature sensor provide analog voltages to pins A8 and A9 on 

the Arduino. The Arduino also provides a digital (TTL) signal to the cutoff circuit to disable the 

battery’s input and output using pin D26.  

 

 
Figure 3: System diagram containing all components and subsystems after integrating with a 

battery 

 

The following chapter details the project planning, milestones, and costs.  
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Chapter 4. Project Planning 

This chapter explains the planning process for the BMS development. First, a Gantt chart 

showing the initial timeline predictions helps estimate how much time the project requires and 

when to expect deliverables. Then, an updated Gantt chart illustrates the actual timeline of the 

project and allows the comparison of expectations versus reality. Finally, Table VIII and IX 

demonstrate the difference between the projected development cost and actual cost. 

4.1 Timeline 

The project spans approximately 11 months as demonstrated in the Gantt chart from EE460 in 

Figure 4a below. The Project Plan phase consists mainly of researching a chosen topic and 

submitting an outline of a possible project, as part of EE460. Time allocation must initially allow 

at least two design, build, test iterations to optimize device performance. The first design 

iteration involves lower level system design; the process of building a system from scratch 

provides excellent learning opportunities absent from top level approaches. The second design 

makes use of knowledge gained during the first iteration and considers the benefits of a top-

down approach. The expected time spent on a senior project varies from 180 – 230 hours per 

student. The weekly time requirement generally varies from 4-6 hours throughout EE460, 

EE461, and EE462. This approximation derives from a simple calculation: 180 hours divided 

into three quarters, with 10 weeks each quarter, results in 6 hours per week not including 

summer. 
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Figure 4a: Preliminary Gantt chart for programmable BMS design and documentation process. 

 

EE461 and EE462 mainly include additional researching, designing, building, and evaluating the 

design. Figures 4b and 4c on the following pages demonstrate the updated project timeline at 

each stage of the development process. The initial predictions utilize the summer quarter gap 

between EE461 and EE462 to provide additional time to complete development as needed. 

However, as the COVID-19 global pandemic developed during the first and second phases of the 

project, unforeseen circumstances continue to require constant reevaluation of the available time 

for development. The loss of development time during summer increases the required weekly 

time requirement to at least 6 hours during EE462. The project’s actual timeline in EE461 trails 

the predicted timeline by approximately four weeks; part acquisition and unforeseen additional 

steps, including circuit design and PCB assembly, require at least twice the initial allotted time.  
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Figure 4b: Gantt chart for programmable battery management system design and documentation 

process from EE461. Green bars signify completion; red indicates the specified objective is off 

track; yellow indicates work progressing. 

 

Additionally, the Gantt chart in Figure 4c includes only one design iteration due to time 

constraints. While building and evaluating two designs provides the best result, this requires two 

complete designs to evaluate. Near the beginning of EE462, the project concentrates on 

completing a single functioning system that accomplishes the requirements. The knowledge 

gained from working with each subsystem increases the educational value of the project versus 

an approach that incorporates an off the shelf BMS. Creating a complete system from scratch 

that meets the minimum specifications provides a better foundation for future development and 

improvements like those listed in the initial Gantt charts. 
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Figure 4c: Actual Gantt chart update near the end of EE462 

 

Table VIII below lists major milestones in the project reporting process. Expected project 

completion occurs approximately one month before the end of EE462 according to initial 

estimates. Various setbacks throughout the course of the project delay project completion, 

resulting in a final demonstration that includes various subsystems but fails to meet some 

requirements.  

TABLE VIII: 

PROGRAMMABLE BATTERY MANAGEMENT SYSTEM DELIVERABLES 

Delivery 

Date 
Deliverable Description 

04/17/2020 EE 461 Design Review  

05/29/2020 EE 461 Demonstration 

06/12/2020 EE 461 report 

09/15/2020 Project Status Update 

12/02/2020 EE 462 Demonstration 

12/04/2020 ABET Sr. Project Analysis 

12/04/2020 EE 462 Report 
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4.2 Cost Estimation 

 

Most costs associated with BMS production include obtaining the hardware (excluding labor). 

High quality batteries and control circuitry demand higher prices but provide maximum safety 

and benefit to the user and public. Development costs occur predominately in Spring 2020 and 

extend to Fall 2020. 

 

The total predicted cost for this project including labor should not exceed $4,870 as 

demonstrated in Table IX below. The Gantt chart in Figure 4a and the calculation described 

earlier provide the approximate time allocation. A fair hourly rate for a fourth-year engineering 

intern in California averages $30 per hour and is the figure used to estimate labor costs. 

Individual component costs may vary greatly from the initial prediction, but a balance of 

conservative and exaggerated values provide an accurate overall cost estimation. For example, 

the interface hardware may consist only of a $10 LCD touchscreen whereas the battery 

management modules may include costly systems and fabrication of printed circuit boards. 

Inexpensive resistors, capacitors, and most necessary passive components likely sum to less than 

$20. Potential interface hardware components including potentiometer knobs and LCDs average 

$10; a simple interface requires no more than ten components. The BMS also requires internal 

modules like a cell balancing circuit, which should generally cost about $10. A basic BMS like 

the one in Cheng [16] Figure 1 can be built using 10 of these modules or fewer. A 

microcontroller contains built in modules and offers the ability to develop solutions using 

software instead of additional hardware. Assembly of a complete system requires hardware 

including wire, solder, battery connectors, batteries, and an enclosure; the cost estimation for 

these stems from similar projects in previous courses.  

 

TABLE IX: PREDICTED PARTS AND LABOR COSTS 

 Price Qty Total 

Labor $30/hr 150 

hrs 

$4500 

Parts    

Resistors, Capacitors, etc $20 1 $20 

Interface Hardware $10 10 $100 

Microcontroller $25 2 $50 

Battery Management 

Modules 

$10 5 $50 

Batteries $10 10 $100 

Wires, Connectors $50 1 $50 

Enclosure $50 1 $50 

Project Cost   $4870 

The actual costs mostly line up with predictions, although some individual costs far exceed 

predictions due to unforeseen development challenges. Table X below features a summary of the 
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true cost of parts and labor. The method of exaggerating some expenses and conservatively 

estimating others results shows success; while the interface hardware cost approximately half the 

initial prediction, passive components require over five times the expected capital. Initial 

estimates assume a complete LTC6804 BMS costs approximately $200 to produce, and 

additional modifications necessary to meet the requirements increase both development time and 

parts cost. The cutoff circuitry explained in Chapter 5.3 allow the BMS to meet the current and 

voltage requirements listed in Chapter 2, but it adds at least 20 hours of labor and $50 in 

hardware. The Bill of Materials in Appendix C provides a complete list of the hardware prices. 

The BOM indicates approximately $424 for the total price of the hardware required for a 

complete PBMS. Development includes ordering additional parts in case prototypes break thus 

increasing up front cost. In addition, the BOM quotes only a single PCB for both the LTC6804 

Arduino BMS and the cell balancing PCB. This results in a lower unit cost than possible for a 

single board; the true cost for the PCBs increases to approximately $400 total when factoring in 

the number of boards ordered. The total sum for all development hardware equates to $866.  

TABLE X: ACTUAL DEVELOPMENT COST BREAKDOWN 

 Price Qty Total 

Labor $30/hr 180 

hrs 

$5400 

Parts    

Batteries $2.75 40 $110 

Res, Caps, FETs, etc $60 2 $120 

LCD Touchscreen $60 1 $60 

Microcontroller $15 1 $15 

Sensors $10 2 $20 

Battery Management Modules $25 3 $75 

LTC6804 BMS PCB $26 5 $130 

Cell Balance PCB $64 4 $256 

Wires, Connectors $30 1 $30 

Miscellaneous Supplies $10 5 $50 

Project Cost   $6266 

 

Most of the increase in the cost of development relative to predictions stems from the labor 

involved. Design modifications, complications, and other unrelated issues result in at least 30 

hours of additional time dedication. This 20% increase raises the total cost of labor by $900 to 

$5,400. The following chapter details the project design, construction, troubleshooting, and 

evaluation process.  
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Chapter 5. Design, Build, and Evaluate 
 

This chapter covers all completed steps of the design phase including battery design and 

construction, BMS design, circuit assembly, and graphical interface design. Each section 

includes evaluation plans for the subsystem, and the final section describes the plan for, and 

results of, testing the BMS as a complete system.  

 

5.1 Battery Construction 

  
Figure 5: Spot welding one bank of 18650’s together with nickel strip (left) and welded battery 

(right). 

Construction begins with an appropriately sized battery in need of management. Batteries 

intended for small electric vehicle use generally contain 500Wh or lower. This project uses a 

36V 10S4P battery with a maximum capacity of 10Ah resulting in a 370Wh rating, which can 

power a 500W electric bicycle motor. 10S4P indicates ten lithium battery cells in series and four 

in parallel. The Samsung 25R 18650 lithium ion cells used for construction provide a relatively 

low capacity, low cost option useful for the scope of this project. Each cell features a nominal 

voltage rating of 3.6V, with a total range from 2.5V at 0% to 4.2V at 100% [14]. The cells can 

each receive up to 4 amps of charging current and output up to 20 amps continuously, meaning 

the pack can theoretically safely receive up to 16 amps and output up to 80 amps. The 2500mAh 

cell capacity adds in parallel resulting in the 10Ah rating. Pure (99.5% or higher) nickel strips 

measuring 0.2mm x 8mm provide low contact resistance and high current carrying capability 

between cells. Spot welding the strips to the cells results in a reliable connection without 

injecting dangerous amounts of heat into the cells during construction. Each button push on the 
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welder sends 2 pulses, 100 ms and 50 ms each, between the copper tips; the pulses include 

hundreds of amps of current and quickly melt the nickel strip to the electrodes of the cells at the 

contact points. Welding starts by joining cells in parallel before connecting them in series. Ten 

sets of parallel banks, each containing four 18650s and measuring 3.50V during construction, 

alternate polarity to create the required voltage as in Figure 5. The white ring indicates the top of 

the battery cell (positive). All cells are tested for quality before connection; each cell selected for 

use measures 3.50V + 5mV. “Dead” cells measure below 2.5V and reduce the reliability and 

capacity of a pack [17][18]. Additionally, connecting unbalanced cells in parallel forces the 

voltage to immediately equalize, driving large amounts of current from one cell to another. As 

discussed previously, high charge/discharge rates lead to decreased battery longevity and may 

cause fire due to excessive heat production. Figure 5 above shows the complete battery ready for 

a management system. After soldering cell balancing wires to the individual cell banks, heat 

shrink encapsulates the battery and exposed terminals thus preventing accidental shorts. All main 

power connections from the battery utilize XT60 connectors for their high current capability (60 

amps), protection against reverse polarity, and ease of swapping.  

According to the specifications list in Chapter 2, the battery falls in the desired power range for 

the PBMS. The design requires a battery that can supply up to 20 amps at a voltage between 11V 

and 50V. Measurement across the terminals with a multimeter proves the output voltage of ~36V 

nominally (34.8V at time of testing). A load test using the BK Precision 8540 150W DC 

Electronic Load in constant resistance mode shows the battery safely provides at least 3 amps at 

11 ohms, which approaches the power limit of the electronic load and proves the battery serves 

the required purpose for this project. 

5.2 Arduino LTC6804 BMS PCB 

The PBMS design makes use of the common Linear Technologies LTC6804 battery 

management system intended for automotive applications. Many experts, including Davide 

Andrea, utilize the LTC6804 in lithium BMS designs for its expansive feature list, precision, 

compatibility in daisy chains, and C++ library support from Analog Devices [4]. The inspiration 

for this project builds on the “Arduino LTC6804 BMS” article written by Instructables.com user 

David M. Caditz, which provides many opportunities for expansion [19]. The LTC6804 allows 

up to twelve banks of parallel batteries to connect in series resulting in a maximum output 

voltage 50.4V, which enables the device to meet the 1000W power requirement assuming a 

maximum 20 amp current draw. The 6804 measures the voltage of each cell bank using a 16 bit 

ADC and sends the values to the Arduino using either 2-wire isoSPI or 4-wire SPI up to 1 MHz. 

The LTC6804 facilitates cell balancing by providing internal circuitry while also supporting 

external balancing hardware. The specific part number for this project, LTC6804HG-2, includes 

the “HG” to denote the higher temperature rating relative to the “IG”. The “2” distinguishes 

between the LTC6804-1 (allows connecting multiple BMS in series for higher voltage packs) 

and LTC6804-2 (allows connecting multiple BMS in parallel).  
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The Arduino LTC6804 BMS design by Caditz utilizes a shield approach to connect the BMS 

with the microcontroller. It provides five general purpose input/output ports for external 

temperature sensors, current sensors, and other peripherals. Filter networks made of resistors and 

capacitors, suggested on the LTC6804 datasheet, attenuate high frequency noise during operation 

[6]. Based on the Arduino Uno, Caditz’s design lacks the number of inputs and outputs necessary 

to utilize both the BMS and user interface while allowing future expansion. An Arduino 

MEGA2560 replaces the Uno due to the increased I/O capacity and shield compatibility. 

Selected circuit diagram segments shown below in Figure 6 demonstrate the LTC6804 and 

Arduino connections. The PBMS excludes the relay driver circuit (right) and instead uses pin 

D26 (not pictured) to control the cutoff circuitry. The PCB designed by Caditz provides 

advantages and disadvantages compared to designing a PCB from scratch. Starting with a 

functioning BMS significantly reduces the required development time associated with board 

layout, component selection, and debugging. However, the board includes connections and 

circuitry not needed for this project, which increases fabrication cost and troubleshooting 

difficulty. Modifications to the design necessary to fulfill the requirements, such as the cutoff 

circuit in Section 5.3, also add unexpected development time.  
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Figure 6: Selected segments of Arduino LTC6804 BMS circuit diagram by Caditz demonstrate 

connections between the Arduino and LTC6804 [19]. 

Caditz suggests Sunstone Circuits as the PCB manufacturer. Figure 7 on the following page 

shows a snapshot from ViewMate with all layers of the PCB. Upon obtaining quotes from 

competitors, Sunstone provides the best balance of quick turnaround, confidence, and cost. Other 

PCB manufacturers advertise lower prices but require additional time for fabrication and 

shipping. The proven history of producing a satisfactory BMS PCB according to the designer 

distinguishes Sunstone as the best option. Due to the time sensitive nature of the project, faulty 

PCBs due to manufacturing errors have significant potential to impact the project’s success. The 

Gantt chart in Figure 4a lacks time allocation for delayed PCB acquisition.  
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Figure 7: ViewMate snapshot of PCB files designed by Caditz [19] 

Budgetary constraints result in manual soldering for all components in this project. Although 

paying a supplier to fabricate and populate the PCB with components reduces both turnaround 

time and likelihood of soldering mistakes, the prohibitive cost forces manual assembly. The PCB 

uses predominantly surface mount components, which complicate the assembly process but 

decrease overall size relative to through-hole components. The LTC6804 features a 48 pin SSOP 

package with leads spaced 0.5mm apart; John Gammel’s surface mount soldering tutorials 

provide the methods necessary to solder similarly sized components [20]. Copper braid solder 

wick helps to remove unintended solder bridges without overheating the sensitive components. 

Until verifying the LTC6804 functions as intended, the PCB uses the fewest components 

necessary as shown in Figure 8 below. The LTC6804 requires the battery voltage, V+, to set 

internal reference voltages according to the block diagram on page 19 of the datasheet. For this 

reason, construction of the cell balancing circuitry occurs before evaluating the 6804. The 

LTC6804 also requires three bypass capacitors between Vref1, Vref2, Vreg, and ground. A 4.99k 

pullup resistor between MISO and ground permits the device to communicate using SPI. 

Connection of the ISOMD pin to the V- pin sets the device to use traditional 4-wire SPI instead 

of 2-wire isoSPI [6], which filters out communication noise.  
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Figure 8: Partially populated Arduino BMS shield. The red circle contains an unused relay driver 

circuit.  

To confirm the LTC6804 BMS PCB helps the project meet the specifications in Chapter 2, it 

must possess the ability to accurately measure and communicate the cell voltages to the Arduino. 

The datasheet claims a cell measurement error of less than 1 mV at specified voltages. However, 

according to Davide Andrea, the protection circuits may introduce a small voltage difference 

between C0 and V-, significantly affecting the error between the reported “SOC” voltage and 

actual string voltage [4]. Verification begins by measuring the voltage of the entire battery pack 

connected to the BMS with a known reliable voltmeter. The voltage reading from the BMS 

should agree within 100mV. Repeating this test for each bank of cells proves the device 

functions as required. Next, verification includes measuring the BMS reaction speed to 

overvoltage and undervoltage faults; cutoff must occur less than 1 second after meeting the 

condition. The device also must balance the voltage of each cell bank; see Section 5.4. 

 

After uploading code to the LTC6804, covered in section 5.8, expected behavior includes a 

response from the chip indicating successful configuration of internal registers. The code then 

sends the cell voltages to the LCD to display. Failure to establish communication results in 

receiving 255 on the Arduino. Before debugging the code, a multimeter in continuity mode 

assists in verifying hardware connections and ruling out any mishaps like solder bridges. 

Connection between ISOMD and V– verifies the LTC6804’s configuration for 4-wire SPI mode. 



25 
 

Pins 45-48 (A0 – A3) connect to V- (ground) on the 6804 to set the device address to 0 in a daisy 

chain. The datasheet requires connection of pins 36 and 37 to enable the software timer. 

Measuring various reference voltages on the 6804 assists in ruling out other hardware issues. 

VREG must read between 4.5V and 5.5V. The device generates reference voltages on pins 34 

and 35 measuring 3.2V and 3V; it also outputs between 5.2V and 6.0V on the DRIVE pin. 

Confirmation of all hardware connections and reference voltages indicates that any existing 

errors likely stem from programming the device.  

During initial construction, an unknown issue causes unintended current to flow from C2 to C1 

and from C1 to ground when the BMS and battery are connected; after measuring with the 

multimeter, only 104 ohms separates C1 from ground, and 66k ohms separates C2 from C1. This 

creates a dangerous situation as uncontrolled current flow can damage a cell. A functioning PCB 

has much higher isolation between cells, on the order of mega ohms. Disconnecting the cell 

balancing PCB from the LTC6804 PCB demonstrates that the issue lies in the LTC6804 PCB; 

after populating a new LTC6804 PCB with new components, the issue resolves and the device 

can undergo safe evaluation. Possible causes of this problem include excessive heat during 

soldering and failed components; further analysis is required to confirm the root cause and 

address the potential design flaw.  

A communication issue between the Arduino and LTC6804 initially stifles further progress. An 

oscilloscope shows the Arduino sends some data over SPI but receives no response from the 

LTC6804. Careful measurement with a multimeter confirms all pin connections with the 

schematic, and reference voltages with the datasheet. Upon further inspection, the Arduino UNO 

R3 and MEGA2560 use different pins for the default SPI communication. The SPI hardware 

within the UNO defaults to pins 10, 11, 12, and 13, whereas the MEGA utilizes pins 50, 51, 52, 

and 53. Figure 9 above demonstrates the necessary modification to use code and shield hardware 

designed for the UNO on the MEGA. Additionally, the code sets pins 10-13 to high impedance 

inputs to allow the signals to pass through. After correcting this issue, the device measures the 

overall pack voltage (V+) approximately 0.5V below the true value, and it accurately measures 

the voltage of cell banks 1 through 7; an unknown issue leads to inaccurate and fluctuating 

values for cells 8, 9, and 10. Altering the configuration array solves related problems; the issue 

likely stems from improper initialization of the LTC6804 ADC or related internal hardware (see 

Section 5.8 for code discussion). 
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Figure 9: A wiring modification to the MEGA2560 solves the communication issue. 

5.3 Charge/Discharge Cutoff Circuitry 

Caditz’s design uses relays for cutoff switches to disconnect the battery from the load due to a 

fault condition; a signal generated by the Arduino turns on a transistor that activates the relay. 

However, relays capable of withstanding the required 50V and 20A specifications significantly 

increase the cost and size of the device, requiring consideration of alternative cutoff circuits. This 

project modifies the design by replacing the two charge/discharge relays with versatile, high 

power MOSFETs to act as a high side switch. The circuit diagram in Figure 10 illustrates the 

suggested circuit replacement, and the red circle in Figure 8 demonstrates the unused section of 

Caditz’s PCB design. Figure 6 contains the obsolete relay driver circuit diagram; Arduino pin 

D26 provides the cutoff signal to the optocoupler in the replacement circuit. Before construction, 

LTSpice simulation of the circuit in Figure 10 verifies correct output toggling with minimal 

power dissipation. The design requires two cutoff circuits; one circuit switches current that enters 

the battery (OVP), and the other switches current that exits the battery (UVP, OCP, 

overtemperature). 
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Figure 10: Proposed MOSFET-based cutoff circuit from LTSpice simulation. 

 

The proposed replacement circuit utilizes the common 4N25 optocoupler to isolate the Arduino 

and power FETs. The circuit requires both an N-type and P-type power FET to act as a high side 

switch. The optocoupler requires at least 10mA from the Arduino to turn on the LED, which 

turns on the N-type FET thus turning on the P-type FET and allowing the battery to connect with 

the load. Zener diodes provide the 12V necessary to turn on the NMOS and limit the gate-source 

voltage drop across the PMOS. Vishay’s SQM120P06 P-Channel MOSFET features high 

voltage, current, and power tolerances required for use in automotive applications without 

significant external heat sinks. Vishay claims the FET features an RDS(on) of 6.7 milliohms; the 

maximum current limit (20A) and on resistance (.0067 Ω) limit the maximum power dissipation 

to 2.68W using Ohm’s Law. The Vishay FET can handle up to 375W and features a junction-to-

ambient temperature resistance of 40 °C/W [21]. Under these assumptions, temperatures of the 

FET remain safe under normal operating conditions with a maximum of approximately 110 °C 

versus the specified maximum of 175 °C. The N-type FET experiences lower currents than the P-

type in this circuit; thus, the specifications of this FET carry less significance, and cost becomes 

the primary factor in the component selection process. The RFP30N06LE enjoys widespread 

usage in BMS for its cost to performance ratio. Additionally, the widely available Spice models 

for these FETs simplify the design and simulation process.  
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Figure 11: Prototype of MOSFET based cutoff circuit (left) and final version (right). 

Figure 11 depicts the functioning prototype cutoff circuit before implementation with the 

LTC6804. Scrap prototyping board provides a safe and somewhat reliable backbone for testing 

compared to breadboards. Simple tests show the board functions as expected by simulations. 

Confirming functionality of the prototype permits construction of the final version of the cutoff 

circuit used in this project as shown in Figure 11. Evaluating the cutoff circuit includes verifying 

the circuit’s capability to quickly disconnect the battery from the load based on an input received 

from the Arduino. The device outputs zero volts when the Arduino pulls the optocoupler input to 

ground, and it outputs the battery voltage (34.8V) in the presence of the 5V signal. Verification 

requires testing for the entire specified voltage range from 11V to 50V. The device cannot 

introduce significant voltage drop between the battery and the load; the drop across the FET 

measures less than 10mV at 1A. Finally, the time between receiving a fault signal and turning off 

the voltage must span less than 0.5 seconds while coordinating with the rest of the system to 

meet the 1 second timing specification in Chapter 2. 

Initial attempts at evaluating the circuit fail to produce the expected results after integrating with 

the rest of the system. After addressing an issue with insufficient current driving the optocoupler, 

the circuit performs as expected. The initial design uses a 4.7k Ω resistor between the Arduino 

digital pin and the input to the optocoupler; this provides less than the 10mA required to turn on 

the LED, but the device appears to function in simulation and with an external power supply. 

Replacing the 4.7k Ω resistor with a 220 Ω fixes the issue and allows the circuit to perform as 

expected with the Arduino. The next steps include thorough evaluation of the cutoff circuit to 

verify it acts as a safe replacement for the relays. If the circuit fails to meet the specifications, 
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future design improvements can likely address any issues. For example, the SQM120P06 

features poor compatibility with the chosen prototype board because it requires surface mount 

soldering, resulting in poor connection quality between the FET and circuit output. Future work 

also involves designing a dedicated PCB for this section of the BMS to safely handle the high 

current, increase volumetric efficiency, and improve connection quality with other components 

of the BMS.  

5.4 Cell Balancing 

As mentioned in the specifications list in Chapter 2, the BMS must feature passive cell 

balancing. The LTC6804 offers multiple options for balancing; the user may utilize the FETs 

internal to the IC or provide their own external circuitry. The internal FETs limit the balancing 

current to milliamps, and the external circuits allow the user to decide the balancing current as 

needed. Figure 12 illustrates the two options from the LTC6804 datasheet.  

  
Figure 12: Cell balancing options offered by the LTC6804 [6]. 

While the simple method using internal discharge circuitry shows potential, the relative lack of 

available information highlights the attraction of the external method. Caditz provides an 

additional PCB that stacks vertically with the LCT6804 Arduino BMS PCB. While this 

facilitates connection to the Arduino, it complicates troubleshooting, because it covers the 

LTC6804 Arduino BMS entirely. PCB fabrication also adds significant production cost to the 

project. Multiple design paths emerge from this tradeoff, and they are summarized in Table XI 

along with their weights for each aspect of the development process and score in each section. 

Option 1 involves ordering and using the PCB designed by Caditz. Option 2 uses the same 

components as Option 1 but saves money by constructing the circuit on prototyping board 
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instead of a custom PCB. Option 3 includes an unknown amount of researching the internal cell 

balancing within the LTC6804 and constructing the required additional circuitry. 

  

TABLE XI: CELL BALANCING DESIGN TRADEOFF MATRIX 

 
 

Initially, the design tradeoff matrix suggests Option 2 over the others due to misjudging the 

complexity and time requirement. Option 3 carries excessive uncertainty and limits the device’s 

capabilities. After attempting Option 2, it fails to meet expectations; issues related to soldering 

small components and ensuring safe connections prevent the idea from succeeding. Thus, the 

design path changes to incorporate Option 1 in the final design. The cell balancing components 

electrically connect to the LTC6804 in parallel with the cell filtering networks as shown in 

Figure 13. Since the design uses fewer than the maximum 12 cell banks in series, the top two cell 

pins of the LTC6804 (C11 and C12) connect to the V+ pin for proper functionality. Both Options 

1 and 2 utilize the concept shown in Figure 36 from the LTC6804 datasheet (found in Figure 12 

above). When the device detects an imbalance in cell voltage, the LTC6804 signals the FETs to 

drain current from the overcharged cells through the resistors. The FETs in this design 

(BSS308PE) permit up to two amps of balancing current; however, the resistor used (16 ohms) 

limits the current to approximately 250mA. This exceeds the capabilities of the internal circuits 

by a factor of 5.  
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Figure 13: LTC6804 cell balancing circuit diagram. The reference designations differ from those 

in Figure 14. 

 

This project makes two modifications to Caditz’ balancing PCB. First, the programmable BMS 

excludes the LEDs that indicate when each cell’s balancing MOSFET conducts. The LEDs 

consume power and provide an additional point of failure. Although the cell balance PCB stacks 

vertically on the LTC6804 BMS PCB using 2.54 mm headers, this prevents access to the pins of 

the LTC6804 and significantly complicates troubleshooting during the design process. Thus, the 

alternative connection method in Figure 14 using jumper wires provides the best method to meet 

present needs. The final implementation benefits from the compact design achieved using the 

headers. The connections between the battery voltage banks and LTC6804 BMS require extreme 

attention. Reversing the polarity destroys the costly LTC6804. The design requires modification 

to include a keyed connector that prohibits reverse polarity.  
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Figure 14: Cell balancing PCB designed by Caditz; this implementation eliminates the LEDs and 

uses minimal components. 

 

The specification list requires the BMS to balance the cells within 2-3% of each other. With cell 

voltages ranging from 2.5 – 4.2V, this results in acceptable measurement error up to 75 – 126 

mV. To confirm the BMS balances the cells, at least one cell bank must read a different voltage 

than the others. To achieve this, the battery initially reads around 20-50% of the full capacity. 

Then, additional current applied to only one cell bank increases the voltage of that bank relative 

to the others. After connecting the entire battery to a charger, the device charges the cells equally 

until any one bank reaches a predetermined voltage set within the LTC6804. Once detecting this 

voltage, the LTC6804 diverts current from the overcharged cell through the 16 ohm resistors 

until the cells all read equal voltage. The cells should all read the same voltage, within 126 mV, 

once the pack reaches full capacity to meet the specified requirements. After establishing 

communication between the LTC6804 and the Arduino, the display must show accurate cell 

voltages for all banks before evaluating the cell balancing functionality. If the device falsely 

detects one cell bank much lower than the others, it attempts to balance the pack according to the 

lowest measured value. The measurements for cells 8, 9, and 10 currently fluctuate and prevent 

evaluation of the cell balancing feature.  

 

5.5 Current Sensor 

The specifications in Chapter 2 demand current measurement up to at least 20 amps. The 

ACS712 module, based on the Hall effect, supports up to 30 amps in either direction and 

promises simple integration with the Arduino microcontroller [22]. The current sensor detects 

the current of the positive wire from the battery while in series with the load/charger. The 

ACS712 datasheet specifies a measurement resolution of 66 mV/A and 1.2 mΩ conductor 

resistance. XT60 connectors facilitate removal of the sensor during prototyping, if necessary. 
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The XT60 connectors use 14 AWG wire; however, the current sensor input requires a smaller 

diameter despite supporting up to 30 amps. For this reason, soldering the wires directly to the 

PCB provides the best connection. Containing only 3 pins, few hiccups arise while integrating 

the current sensor with the Arduino. The sensor requires a 5V and ground connection from the 

Arduino; it outputs an analog voltage to the Arduino on pin A8. As a widely used device, an 

internet search provides countless examples of implementation. The current sensing circuit’s 

small dimensions allow versatility in its location within the BMS. Figure 15 features the current 

sensor with the battery connectors and wires to the Arduino.  

 
Figure 15: Current sensor based on ACS712 IC. 

A library built for the ACS712 by GitHub user Ruslan Koptiev facilitates incorporation of the 

module with the Arduino [23]. Utilization of the library only requires the sensor model number 

to set the input sensitivity. The library contains functions to automatically calibrate the sensor, 

measure AC or DC current, and set the zero point of the sensor. The Arduino calibrates the 

sensor on startup and measures the current during each loop. Recalibration occurs when the 

output is disabled, as calibration requires zero current flow through the ACS712. After 

measurement, the Arduino stores the value and displays it on the Nextion 4.3” LCD.  

The datasheet for the ACS712 claims 1.5% measurement error from -30A to 30A at 66mV/A 

sensitivity for the 30 amp model (x30A). Verification of the current sensor’s capabilities requires 

measuring the current under different loads and comparing the sensor’s measurement to the real 

value. The test setup includes the battery, Arduino, current sensor, and load. USB noise forces 

the Arduino to use two spare 18650 cells in series as a low noise, isolated power supply. While 

unable to test the device at the maximum 36V and 30A, the BK Precision 8540 Electronic Load 

features a maximum power sink of 150W, permitting verification up to 3 amps safely at the 

nominal voltage. The device permits the user to adjust the resistance and displays the current 

absorbed by the load with 1mA precision. Comparing the measured value from the sensor with 

the reading on the BK Precision 8540 indicates the sensor features higher error than expected. 

The measurement constantly fluctuates despite the code averaging many samples. The results in 
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Table XII summarize the device’s capabilities in this implementation. The results indicate higher 

uncertainty at lower current values than higher values, with a minimum measurement error of 

4% versus the claimed 1.5%. With this accuracy, the device succeeds in meeting the 

specification of 1A accuracy while including room for improvement. At full load (20A), 5% 

error converts to a margin of 1A, an acceptable error for a battery measurement device in this 

operating range [8]. The measured on resistance of ~1 milliohm indicates a maximum of 0.5W 

dissipation at full load, helping the device remain under 5W total consumption.  

TABLE XII: MEASURED CURRENT SENSOR RESULTS VS ACTUAL CURRENT 

READING FOR VALUES UP TO 3 AMPS AT 35V 

Actual Current Value (A) Current Sensor Reading (A) % Error 

0.00 -0.04 + 0.06 - 

0.50 0.5 + 0.03 + 6% 

1.00 1.01 + 0.03 + 4% 

2.00 2.05 + 0.04 + 4.5 % 

3.00 3.10 + 0.03 + 4.3% 

 

The root cause of the discrepancy between the observed and expected accuracy lies in the 

combination of the low sensor sensitivity and the low resolution ADC. At 66mV/A, the 

maximum voltage output from the sensor relative to the baseline is 66mV/A * 30A = 1.98V. For 

the Arduino’s 10 bit ADC, this corresponds to approximately 2mV per bit. While the system 

detects these small changes, noise can lead to significant error in the reported measurement. The 

accuracy may also stem from poor calibration or Arduino ADC instability. Arduinos using the 

5V power from USB experience noise which may cause issues with the reference voltage. A test 

replaces the USB power with two 18650s to eliminate noise and provide a consistent, high-

power supply; however, the current reading shows little improvement. To improve resolution, 

precision, and volumetric efficiency, future designs can incorporate a low resistance shunt 

resistor on the cutoff circuit PCB and measure the voltage drop using a precision ADC.  

5.6 Temperature Sensor 

The PBMS design allows incorporation of multiple temperature sensors. The low cost MCP9700 

thermistor pictured in Figure 16 provides a simple and inexpensive method of confirming this 

functionality. The sensor features only 3 pins; +5V, ground, and an analog voltage for the 

Arduino. Implementation in the software requires simply reading the analog pin value and 

converting the ADC measurement to the corresponding temperature, as demonstrated in the code 

example below. The voltage generated by the temperature sensor increases by 10mV for each 

degree Celsius [24]. 
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float T; 

int tempPin = A9; 

 

void loop () { 

  T = (analogRead(tempPin)*5./1024. - 0.5) * 100.; 

}; 

 

 
Figure 16: MCP9700-E/TO temperature sensor and cable. 

The attached wires allow a maximum distance of 12 inches from the Arduino, providing 

sufficient length to measure any location of the battery. The sensor features a measurement 

accuracy of ± 4°C from 0°C to +70°C when placed directly against a battery cell [24]. Evaluation 

includes comparing the measured temperature of the cell by the MCP9700 to a reading by a 

device with verified accuracy. With a relative lack of equipment at disposal, a multimeter with 

thermocouple provides the best option for the reference temperature measurement. To ensure 

equal temperature of both sensors, they are suspended in warm water while taking care not to 

short the leads of the MCP9700 in the water. The test then compares the measurement from the 

thermocouple with the values generated by the sensor before and after ADC conversion. The 

measured voltage from the middle pin of the MCP9700 converts to temperature using the 

10mV/°C equation from the datasheet.  The code snippet above generates the temperature after 

ADC conversion. Table XIII below illustrates the results and relative error for each 

measurement.  
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Table XIII: MCP9700 characterization results. All measurements listed in degrees Celsius. 

 

 

Actual tests show accuracy to approximately 2 degrees Celsius using the voltage from the sensor, 

and 2 - 5 degrees of fluctuation after ADC conversion. The data directly from the sensor shows a 

reasonably linear response as in Figure 17, but the ADC conversion introduces nonlinearity. 

Despite these issues, the temperature sensor meets the + 5 °C specification in Chapter 2. After 

characterizing the sensor, additional Arduino code takes 25 temperature measurements and 

reports the average result. Averaging greatly improves accuracy of display value; now, the 

measurement from the ADC indicates agreement within 1-2 degrees. The nonlinearity introduced 

by the ADC likely stems from noise from the USB power supply influencing the ADC reference 

voltage AREF. The measured value using USB power reads 4.8V instead of the require 5.0V. 
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Figure 17: MCP9700 Characterization results. Linearity of sensor voltage (top) vs linearity after 

ADC conversion (bottom). 

Although the temperature sensors meet the requirements, the design leaves room for 

improvement. The next step incorporates the temperature sensors with different 3-pin connectors 

on the BMS PCB to improve connection quality. The connectors from Caditz’s design (TE/APM 

5-103634-2) fit together loosely and fail to make consistent contact. The MCP9700 datasheet 

also includes a calibration method for + 0.5C accuracy for further enhancements to the PBMS 

temperature measurement accuracy (see AN1001 [25]).  

5.7 Graphical User Interface 

The requirements of the project include a simple user interface that provides direct access to the 

BMS limits. The Nextion Touchscreen LCD allows fast and simple prototyping of a user-

friendly interface; the manufacturer provides software called Nextion Editor which significantly 

decreases complexity. The editor includes quick methods to place pages, buttons, and values. 

The picture used as the background for each page must match the screen’s resolution (480 x 272 

pixels). Each picture starts as shapes in Microsoft PowerPoint, and Microsoft Paint permits 
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saving the image in the correct resolution. Placing some of the static objects in the background 

reduces the number of objects stored by the display and simplifies the code. The Arduino easily 

controls these objects through serial communications (UART) and preset commands. For 

example, to change the value of the “Output Voltage” monitor, the Arduino sends the command 

“Vout.txt=” before sending the output voltage as a string. The Nextion display features poor 

support for floating point numbers; the simplest method converts floats in Arduino to strings 

before sending to the LCD to display. Likewise, the user sends signals to the Arduino by tapping 

the screen. Buttons created in the Nextion editor contain a method of sending string objects over 

the serial port after detecting a touch. The Arduino waits for any user input and determines the 

next action by comparing the received string with a list of expected commands. After designing 

the GUI in the editor, an SD card transfers the code from the computer to the LCD. The display 

must connect to a 5V source that supplies at least 500mA during an SD update; the computer’s 

USB port lacks the current necessary to power the screen and Arduino during this update. 

 

The graphical interface features two sections; the first page shows battery measurements and 

characteristics, while the second allows the user to change the operating limits. Depicted in 

Figure 18 below, page one of the PBMS features measurements of the battery pack’s output 

voltage, output current, pack temperature, number of cycles, and state of charge (SOC). It also 

indicates the status of the output with a colored indicator and provides a reset button for the user 

if the BMS encounters a fault. The current implementation uses the simple SOC estimation based 

on the open circuit voltage described in Chapter 1. The number of cycles does not currently 

reflect the actual number of battery cycles; this feature requires additional programming after 

verifying the accuracy of the voltage measurement from the LTC6804. Both page one and page 

two display the real time cell voltage measurements (C1 – C10). If the user presses the green 

“Edit Mode” button at the bottom of the GUI, the LCD changes to display page two, seen in 

Figure 19. Indicators for the presence of each type of fault event can provide useful information 

to the battery operator and warrant inclusion in future versions. 

Page two provides the user access to the maximum pack voltage, minimum pack voltage, 

maximum output current, and maximum pack temperature. The user changes the values by 

tapping either the “-“ or “+” buttons to decrement/increment the value. The voltage and current 

values change by 0.1 V or A for each tap. The maximum temperature in memory changes 1 

degree Celsius for each button press, although the MCP9700 sensor used in this iteration only 

provides ± 4°C accuracy. The user must set the maximum temperature to 4°C below the actual 

maximum allowable temperature. The corresponding values stored in the Arduino change 

immediately as the user interacts with the device. When the user finishes changing the values, 

tapping “Monitor” returns the user to page one. 
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Figure 18: Page one (“Monitor”) of PBMS graphical interface. 

 

Figure 19: Page two (“Edit Mode”) of PBMS graphical interface. 

5.8 Arduino Code 

The Elegoo MEGA2560 (Arduino) provides the central processing unit of the programmable 

battery management system. The peripherals, including the LTC6804, LCD, and sensors, act as 

minion devices communicating with the controller. While nonfunctional, Appendix B includes 

the complete Arduino code used in development. The program builds from the code provided by 

Caditz in the Instructables article to incorporate this design’s modifications including the unique 



40 
 

cutoff method, temperature sensor, current sensor, and touchscreen based user interface. The 

flowchart in Figure 20 illustrates the theory behind the BMS operation. Each loop includes 

monitoring each subsystem and updating stored values as needed. The program compares the 

measured values with the stored limits and sends a signal to the cutoff circuit if necessary. The 

device then waits for the user’s input before continuing operation.  

 
Figure 20: Top level flowchart of PBMS V1.0 software. 

 

One of the advantages gained by the programmable battery management system includes the 

user’s ability to adjust the operating limits during operation. If the user reaches the lower limit of 

the pack voltage, the software permits the user to lower the limit and continue operation. 

Comparable battery management systems disable the output until the user charges the battery 

voltage to the minimum value. However, a software bug may reset the user’s selection if they 

press the “reset” button after changing a value. In order to properly change the value in storage, 
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the user must remove the condition causing the fault before pressing reset; then, the value 

entered by the user serves as the new limit until pushing the “reset” button again. Future 

refinements to software include allowing the user to set a default value at the beginning of 

operation and storing changes without requiring the user to re-enter the value after resetting the 

output. This also enables the user to continue battery operation without removing the fault 

condition. 

 

The code contains functions to measure the pack temperature, measure the output current, and 

communicate with the LCD. The ACS712 library contains all functions necessary to use the 

current sensor. The temperature sensor, also based on an analog voltage measurement, utilizes 

similar functions. Both the current and temperature measurements include averaging of multiple 

readings to reduce measurement error. The code to communicate with the LCD simply checks 

for user inputs by waiting for an indication through the serial port, and it updates objects on the 

display by sending the values back though UART.  

Linear Technologies (LT) provides multiple libraries to facilitate designs utilizing the LTC6804. 

The code uses “Linduino”, “LT_SPI”, and “LTC68042” to reduce the required software 

development. The first two simplify communication setup between the Arduino and LTC6804 

BMS. Specifically, they allow the program to utilize SPI write and read functions with the 

LTC6804. The IC’s library contains functions that initialize the BMS, begin specific processes 

within the BMS like ADC conversion, and force the IC to “wake up” or “sleep”. These included 

functions save time by automatically generating the bytes that configure the chip’s internal 

registers. They also facilitate interpretation of the PEC (packet error code), which communicates 

the BMS error status. Additional functions provide access to features such as the LTC6804’s 

GPIO pins, but the PBMS ignores these in the current design. The LTC6804 datasheet includes 

extensive explanation of utilizing multiple LTC6804 chips with one another. The PBMS can 

expand to make use of this capability in future applications as the design scales to larger 

batteries.  

After solving communication issues, the code fails to configure the LTC6804 to measure all 10 

cell voltages accurately. At first, the device only reports the values of the first three cell banks; 

further research reveals errors in the configuration array sent to the device using Caditz’ code for 

this implementation. The initialization function configures the LTC6804 using the CFGRx[] 

arrays. CFGR0 bits 3-7 initialize the LTC6804 GPIO pins (unused); bit 2 indicates use of the 

WDT; bit 1 is a “don’t-care”; bit 0 configures the ADC operating mode. The other registers set 

over/undervoltage limits (CFGR1-3) and dictate which cells may discharge for balancing 

(CFGR4-5). A presentation by GitHub user Ayush Agrawal assists in setting these registers [26]. 

After altering the configuration array to exclude the GPIO and UVP/OVP features, the device 

reports cell voltages C1 through C7 within a few mV of the true value; C8 through C10 fluctuate 

and do not represent the actual voltage of that cell bank. The next steps include closer inspection 

of the WDT and ADC initialization (CFGR0[2] and CFGR0[0]) and consultation with the 

datasheet to determine the proper configuration data. 
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5.9 Enclosure 

Although this project lacks an enclosure during the development phase, a case facilitates 

eventual integration with a battery for regular usage. Table XIII below lists the dimensions of 

each component in preparation of enclosure design for a final product. The current design fails to 

meet the specification of 4”x4”x1” due to the connection methods during troubleshooting. Fully 

integrated as a final product, the estimated dimensions measure 0.75” deep by 3” wide by 5” 

long using the measurements from Table XIV. A new shield containing all supporting circuitry, 

including the BMS, cell balancing hardware, cutoff circuitry, and peripheral interfacing allows a 

depth of approximately 0.7”, since the thickest component is the BMS PCB. Integrating the 

microcontroller onto the same PCB as the other electronics permits a total depth under the 

specified 1”. Additionally, the LCD used in prototyping features an excessively large size for the 

function it provides. A screen measuring closer to 2” by 3” accomplishes the same task while 

saving significant space. This product adds 11.25 cubic inches of volume to the battery’s 69.3, 

which equates to an increase of 16%. At smaller scales, the size of the BMS becomes a 

significant factor; however, the added volume is negligible in larger implementations as the 

product scales up. Commercial systems with similar capabilities measure between 5 and 114 

cubic inches in volume [9][5]. For the battery used in this project, this correlates to a volume 

increase of 7.2% to 164%. The smaller BMS from Bestech features no screen nor simple method 

of adjusting limits. The larger system from Orion generally fits in stationary systems due to the 

enormous volume. Based on other offerings in the industry, the potential size of the final BMS 

meets the requirement of adding an insignificant volume to the battery while adding valuable 

features. 

TABLE XIV: 

SUBSYSTEM AND COMPONENT DIMENSIONS 

 W L D 

Battery Pack 3.15” 8.0” 2.75” 

Microcontroller 2.11” 4.26” 0.50” 

LTC6804 BMS PCB 2.11” 2.7” 0.68” 

Cell Balance PCB 2.11” 2.35” 0.22” 

Cutoff Circuit 1.63” 3.1” 0.5” 

Nextion LCD 2.92” 4.73” 0.48” 

Current Sensor 0.52” 1.25” 0.56” 
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5.10 Design Evaluation  

After building and evaluating each subsystem independently, the next step involves 

incorporating all components into a complete system. Figure 21 encompasses the first prototype 

programmable battery management system with all subsystems integrated. The first prototype 

system uses the Arduino’s USB port for power; final implementation requires a DC-DC 

converter between the battery and the Arduino’s VIN pin. A converter like the 3796 from Pololu 

Corporation outputs a constant 12V up to 600mA with an input ranging anywhere from 12.2V to 

50V, allowing the system to function using power from the battery pack itself [27]. After finding 

the USB supplies insufficient power for the entire system, two 18650 cells in series (not 

pictured) replace the USB power supply and provide a noiseless source for troubleshooting.  

 
Figure 21: Programmable Battery Management System Version 1.0 with all subsystems integrated 

Despite many of the subsystems functioning as intended, the final device fails to perform some 

of the required functions. The code provided by Caditz does not function in this implementation; 

the wiring modification in Section 5.2 and the configuration array change in Section 5.8 correct 

the issues and allow the device to communicate. After addressing these, additional hardware and 

software problems stagnate progress. The unintentional current flow, mentioned in Section 5.2, 
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poses a potential safety issue as the root cause remains unknown. Measurement errors likely 

stem from incorrect configuration of the LTC6804. In its current form, the LTC6804 provides a 

voltage measurement of the pack approximately 0.5V below its true value, and it accurately 

reports the voltages of cells 1 through 7. As altering the configuration array resolves similar 

issues, the next step includes further inspection of the values in these registers to verify proper 

initialization. The failure to produce accurate cell measurements inhibits further progress and 

evaluation and remains the top priority in development. 

 

The cutoff circuit initially performs as predicted by simulation; it achieves the goal of quickly 

disconnecting the battery from the BMS power input/output with a low voltage drop and power 

consumption. This design adds immense capability relative to the relay based approach while 

reducing cost. It also features component flexibility if future design expansions require different 

limits. Issues with both the prototype and final version reveal the design flaw documented in 

Section 5.3; addressing this flaw appears to allow the circuit to function as expected with the 

Arduino. While the current sensor offers an inexpensive and simple means of prototyping, the 

design leaves room for improvement and requires additional research regarding methods of 

accurately measuring current. After integrating the current sensor with the other subsystems, the 

current measurement appears to fluctuate approximately 100mA and suffers from poor 

sensitivity. One method to possible address this problem inserts a current calibration function in 

the code with a button on the GUI. Alternative current measurement methods may provide 

increased reliability without the need for constant calibration by the user in future design 

iterations. One current measurement concept utilizes a precision ADC measurement of the 

voltage drop across a low resistance shunt resistor. The temperature sensor provides accurate 

results, but a lack of proper testing equipment prevents thorough evaluation. The sensor meets 

the requirements of this project and can detect when pack temperature exceeds safe values, but 

the measurement contains room to improve. Future opportunities for design improvement begin 

by taking advantage of the calibration method provided by Microchip to achieve +0.5C 

precision. 

 

Preliminary tests indicate the device successfully measures and reports the output current and 

operating temperature within the required margins from Chapter 2; the voltage measurements fail 

by approximately 400mV due to a measurement error from the LTC6804. Discovering the source 

of issues late in the development cycle limits the extent of system integration and evaluation 

currently possible. Before evaluating the complete system, the BMS must report accurate voltage 

measurements for C8 – C10; this also enables verification of the cell balancing function. After 

resolving all issues and verifying the success of each subsystem, complete system evaluation 

indicates whether the PBMS design achieves the requirements from Table III. Table XV below 

lists the steps to evaluate the system after completion. 
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TABLE XV: EVALUATION PLAN FOR PBMS V1.0 

Requirement Test Result 

Measures pack and cell 

voltages to 100mV accuracy 

Compare the reported values from 

the LCD to the multimeter values 

for all voltages from 11.1V to 

50.4V 

The system measures the pack 

voltage with ~0.5V error. The 

BMS only measures cells 1 

through 7 within 100mV 

Measures current to 1A 

accuracy 

Compare reported values on LCD 

to multimeter values for all 

currents from 1A to 20A 

The PBMS provides 

approximately 100mA of accuracy 

for all measured currents above 1A 

(up to 3A possible on test 

platform) 

Measures temperature to 5C 

accuracy 

Compared reported values on 

LCD to thermocouple values for 

temperatures from 0 C to 70 C 

The measured values agree within 

3 - 4 C 

Balances cell voltages within 

2-3% 

Observe cell voltages throughout 

multiple charge/discharge cycles 

Currently impossible; to be 

completed 

Responds to OVP, UVP, 

OCP, OTP faults in less than 

1 second 

Verify each fault triggers at the 

specified value; measure the time 

between initiating a fault and 

disconnecting battery output 

The device initiates an output 

cutoff within approximately 

250ms for each type of fault 

Reports SOC and number of 

cycles 

Observe the values on LCD; 

verify accuracy (if possible) 

The system provides the SOC but 

lacks the number of cycles. 

Consumes less than 5W Measure power consumption of 

all subsystems with various loads 

(0A up to 20A) 

Some subsystems approach this 

limit; verification requires further 

evaluation 

Small volume Measure dimensions of final 

system 

The system fails due to the 

experimental setup prioritizing 

ease of troubleshooting over 

compactness 

Fast setup Remove the system from the 

current battery and time the setup 

process on a new battery 

The system fails due to inefficient 

connection methods between the 

battery, BMS PCB, and 

subsystems 

Fast settings change Measure the required time to 

change the operating limits using 

the GUI 

The device allows changes within 

seconds. A reset bug erases user 

settings when recovering from a 

fault.  

Low cost prototype Estimate the cost of development 

for a single PBMS 

The prototype costs approximately 

$420 as explained in Section 4.2 
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With safety a priority, steps to evaluate the PBMS include monitoring the output voltage under 

various loads and conditions. The system must quickly respond to events that warrant battery 

cutoff; full evaluation involves measuring the reaction time in each scenario. Overcurrent, 

overvoltage, undervoltage, and overtemperature events should all measure approximately the 

same time (under 1 second) from initiating a fault event to turning off the battery’s input/output 

for all expected conditions. Additionally, all cell voltages should remain within approximately 

100mV throughout full charge and discharge cycles. Further evaluation includes measuring the 

power consumption of the device during operation. Initial tests estimate less than 5W of power 

consumption by the entire system. Using a regulated 12V supply, the Arduino and LCD together 

draw 330mA resulting in 4W. The other peripherals, including the LTC6804, current sensor, 

temperature sensor, and cutoff circuit, draw relatively small amounts of current (less than 

100mA total) that do not significantly impact overall power consumption. While current 

estimates predict the system meets specifications, the system includes room to improve 

efficiency in all subsystems.  

 

The current state of the BMS serves as a proof of concept that allows many options for future 

development. The device allows programmability and interfacing that other systems lack, 

accomplishing the main objective of the design. Additional software can increase the number of 

features of the PBMS, like an adjustable balance threshold voltage or a “sleep” mode for the 

LCD to improve efficiency. The design permits the comparison of multiple SOC calculation 

methods to select the best option, such as those provided by Xiong et al. [28] and Wilkinson 

[29]. Other possible additions include graphs and plots that facilitate battery monitoring and offer 

useful information to the user. The Nextion display offers excellent potential for expansion 

during development; GUI development requires no prior experience, and the Nextion Editor 

facilitates troubleshooting. However, the screen contains excessive capabilities for the function it 

provides to the project; to meet the price needs of a consumer, the design must port the GUI from 

the Nextion display to a smaller, simpler, and lower cost display. An alternative method includes 

developing an application for a cellphone; this reduces the size of the device and cost to 

manufacture over time but increases the required investment up front.  

 

Future designs may reconsider utilizing the LTC6804, as search engine results indicate many 

cases of communication issues [4]. While it provides useful functionality by measuring and 

balancing cell voltages, the unneeded features, excessive price, and communication problems 

encourage research into alternative methods. For example, a standalone ADC can measure all 

cell voltages, costs less to manufacture, and easily integrates with the Arduino, but they 

generally do not contain the ability to balance the cells or trigger an over/undervoltage fault. 

These functions require additional systems in hardware or software. Future versions of the 

PBMS also incorporate all electronics on a single PCB; this simplifies and strengthens the 

connections while increasing safety and reducing volume. This also permits higher current 

specifications than listed in Chapter 2 and reduces the number of possible points of failure. Many 
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of the included components feature higher limits than required, but other bottlenecks, like cable 

diameter and connection quality, limit the maximum safe current. The next and final chapter 

wraps up thoughts about the PBMS design and development.  

  



48 
 

 

Chapter 6. Conclusions 

Currently in the troubleshooting phase, the Programmable Battery Management System remains 

incomplete. Several factors inhibit progress as expected, stemming from unanticipated design 

modifications to a global pandemic. Due to the number of subsystems incorporated in the PBMS 

and extra care required when working with lithium batteries, excessive fabrication provides a 

significant time sink in this project that ultimately prevents completion. For example, 

constructing the battery from bare cells adds unnecessary development time to the project; an off 

the shelf battery can provide the same utility for the purposes of this project with slight 

modification. Additionally, any setback in assembly delays evaluation and integration with the 

rest of the system. Manual soldering of all components leaves many opportunities for mistakes 

costing both time and money. Weeks spent on a failed approach add value to the project from the 

knowledge gained but hinder progress toward a fully functioning system. Failure to consider the 

connections between all subsystems before beginning to build the system introduces significant 

slow downs during development; thus, future designs of all types require closer attention to 

connectors early in the design phase. 

In general, developing a successful programmable battery management system requires 

significantly more time investment than anticipated. Designing a BMS using multiple 

subsystems seems simple initially, but the intricacies of each subsystem hinder progress. 

Struggling for a long period with one system forces attention to time management such that no 

one part of the project gets neglected. The current design succeeds in its main objective despite 

failing to meet some requirements; it adds the programmable functionality to a BMS but requires 

additional troubleshooting and refinement. However, each success and failure provide valuable 

learning opportunities that ultimately benefit both the project and designer eventually. As an 

electric bicycle enthusiast, attempting to construct a PBMS offers invaluable insight into the field 

of lithium battery management systems. The field features a seemingly infinite number of rabbit-

holes to explore from advanced calculation methods for evaluating the remaining charge of a cell 

to methods of reducing noise in ADC measurements on the Arduino. The new experiences from 

this project include ordering a custom PCB from the Gerber files, developing a graphical 

interface using a touchscreen display, and exposure to the vast field of power electronics design, 

which is a new interest and potential career focus. This project lays an excellent foundation for 

future BMS development and expansion by providing a platform open to refinement from all 

directions. After addressing issues with the LTC6804 cell measurements, opportunities for 

improvement exist from changing the method of current measurement to incorporating all 

components on one PCB, adding new features in software, and designing an enclosure that 

houses a finished system.  
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Appendix A – ABET Senior Project Analysis 

 

Project Title: Programmable Battery Management System 

Student’s Name: Jason Erbert 

Advisor’s Name: Prof. David Braun   Initial:     Date:  

1. Summary of Functional Requirements 

The programmable battery management system (BMS) provides additional capabilities 

and functionality to any small scale lithium battery pack (<1000W, 11V to 50V, up to 

20A). Maximum charge percentage, minimum voltage, and maximum current among 

other quantities directly influence the battery’s health and longevity. The programmable 

BMS allows the user to set these values and change all settings without removing the 

device from the battery pack. The device protects the user from dangerous events like 

thermal runaway by detecting hazardous conditions and intervenes by turning off the 

battery output. 

2. Primary Constraints 

The table in Chapter 2 lists the design specifications, the main source of the project 

constraints. The required voltage and current levels complicate component selection and 

force design modification (see explanation of cutoff circuitry in Chapter 5.3). The 

unexpected modifications early in the project delay progress and leave insufficient time 

for complete evaluation of all subsystems. The BMS device primarily targets small scale 

applications (<1000W) to minimize risk of injury during development. This restricts the 

overall dimensions of the product which adds complexity to the design process. 

Efficiency limits the device’s utility at smaller scales – interface electronics consume 

relatively low power and remain constant as the product scales to larger power 

capabilities.  

 

Challenges to developing the programmable BMS primarily include time restraints, 

excessive fabrication, small part size, expense, and lack of documentation. The overall 

system complexity limits what is achievable by one project, with five subsystems that 

each require design, construction, troubleshooting, and evaluation. The amateur 

equipment used for this project creates difficulty in evaluation, occasionally requiring a 

creative approach that increases the required time allocation. An example of this includes 

developing a method to verify the temperature sensor accuracy using household objects. 

In addition, soldering mistakes and equipment failures due to small component size and 

inadequate tooling result in unexpected project delays. Three LTC6804 BMS chips burnt 

during prototyping, requiring new BMS PCBs. An attempt to save cost by using 

prototyping board instead of proceeding with a custom PCB significantly set back 

production of the cell balancing hardware and project development. In addition, the 

libraries supplied by LT lack sufficient documentation to quickly program the LTC6804. 
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While the provided functions help code development, the LTC6804 remains relatively 

complex and requires significant time investment to fully understand all features and 

intricacies. Failure to foresee the additional development associated with LTC6804 itself 

and supporting hardware severely constrain the success of the project. 

 

Additionally, the COVID-19 global pandemic continues to influence the entire world in 

many ways throughout the course of the project. Numerous setbacks due to the pandemic 

prevent completion of the PBMS as initially envisioned; development interruptions and 

supplies-related issues slow the rate of progress. Equipment access limits the scope of 

evaluation to what is achievable with an amateur home setup. The timeframes estimated 

during the project planning phase change often due to pandemic related uncertainty. 

 

3. Economics 

a. Human Capital 

A sufficiently useful BMS requires over 100 hours of work to design and build. A 

conservative estimate using Equation (6) from Coulston [1] suggests the project 

requires at least 150 hours due to complexity and only one engineer. This includes 

design, production, and evaluation of both hardware and software. Once 

completed, the device generates demand for human capital in manufacturing 

everything from the individual ICs to complete lithium battery powered systems. 

The device has the potential to influence the global labor market by encouraging 

transition of short distance delivery services to light EV as the technology 

advances.  

b. Financial Capital 

Since the project focuses on small scale devices, the battery and electronics used 

in development do not require significant financial capital. Components 

incorporated in the design cost less than $500 as shown in Appendix C. The self 

funded project requires no outside capital; the design prioritizes commonly found 

components, with many salvageable from previous school projects at little cost. 

However, the resulting product’s additional features, including the screen and 

microcontroller, require significant financial capital relative to a simple BMS. 

This increases the upfront cost to the consumer and cost of manufacturing. 

c. Manufactured Capital 

Since the subsystems mainly consist of entire modules, a significant portion of the 

manufactured capital stems from the processes used to create the components 

including the LCD screen, microcontroller, and batteries. This project requires 

additional manufacturing capital during development as the design evolves; much 

of this consists of manual assembly of each subsystem. Development of the 

prototype device uses low cost and freely available machines such as soldering 

irons, multimeters, amateur oscilloscopes, and basic computers. Assembly of a 
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complete system requires additional hardware such as wire, solder, battery 

connectors, and an enclosure. 

d. Natural Capital 

As the current state of the art in battery storage chemistry, lithium experiences 

high demand. Current mining tactics show extremely detrimental effects to the 

environment [2]. The previously mentioned subcomponents generate pollution 

while shipping from overseas. Each manufactured component comes at a cost to 

the environment beginning with material extraction and ending with disposal after 

usage.  

e. Cost and Benefit Accrual 

Most of the costs associated with BMS production arise in obtaining the hardware 

(excluding labor). High quality batteries and interfaces demand higher prices but 

provide maximum safety and benefits. Development costs occur predominately in 

Spring 2020 and extend to Fall 2020. Benefits to the engineer, primarily 

knowledge gained, accrue throughout the project’s entire lifecycle beginning with 

project planning and extending beyond the end of EE462. Each phase of 

development provides a new learning opportunity that helps to improve future 

designs.  

TABLE VI: 

PREDICTED PARTS AND LABOR COSTS 

 Price Qty Total 

Labor $30/hr 150 

hrs 

$4500 

Parts    

Electrical Components    

Resistors, Capacitors $20 1 $20 

Interface Hardware $10 10 $100 

Microcontroller $25 2 $50 

Battery Management 

Modules 

$10 5 $50 

Batteries $10 10 $100 

Wires, Connectors $50 1 $50 

Enclosure $50 1 $50 

Project Cost   $4870 

 

 
Equation (6) from Coulston [1] 

 

The total predicted cost for this project sums to $4,870 and splits between labor 

and equipment cost, as in Table VI above. Time commitment and price 

estimations result from equation (6) from Coulston [1]. The first term in the 
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numerator represents the optimistic estimation; the second term the realistic 

estimation; and the third term a pessimistic estimation. A fair rate for a fourth 

year engineering intern in California averages $30 per hour and provides the 

expected labor costs. According to Prof. Dolan, students should expect to spend 

around 100 hours on a senior project. The individual nature and ambitious goals 

of the project require at least an additional 50 hours. Using time instead of cost in 

the equation above results in 150 hours required. Thus, most of the expected 

project cost comes from labor at $4500. Initial hardware price estimates predict 

approximately $370 for all subsystems and components. They also assume free 

access to supporting hardware, including solder and tools. Actual development 

costs exceed predictions as demonstrated in Table VIII in Chapter 4.2. Chapter 

4.2 also explains the sources of additional expense. 

 

f. Timing 

 
Figure 22: Preliminary Gantt chart for programmable BMS design and documentation process. 

 

The project spans approximately 11 months as predicted in Figure 22 above; excluding summer 

quarter leaves 8 months. Initial estimates budget 6 hours per week of development time. A 

physical product emerges in Fall 2020 during EE462. Reevaluation at the end of EE461 and 
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numerous setbacks during EE462 result in the updated Gantt chart in Figure 23 below. Chapter 

4.1 contains the Gantt chart created during EE461 as well as explanations of time-reallocation.  

 

  
Figure 23: Actual Gantt chart of design process 

 

4. If manufactured on a commercial basis 

a. Estimated number of devices sold per year: 100,000 

High volumes of lithium batteries are produced annually to meet the growing 

demand for electric devices. A small but present percentage of these users desire 

direct control over the batteries’ characteristics.  

b. Estimated manufacturing cost for each device: $50-$100 

The first device costs the most, but after optimizing the production process, the 

price decreases dramatically.  

c. Estimated purchase price for each device: $100-$200 

d. Estimated profit per year: $5,000,000 - $10,000,000 

e. Estimated operating cost for user: Less than $5 per year at 50Wh daily 

consumption and $.20/kWh. 

5. Environmental 

Lithium is a relatively scare element in the Earth’s crust found in small quantities. 

Extraction requires large mining operations with severe impacts to the local environment 

[2]. In addition, lithium batteries and electronics production occurs predominately in 
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countries including China where manufacturing operations have significantly harmed on 

the environment. Maximizing battery longevity and utility helps decrease the demand for 

additional lithium and lessens the environmental impact from battery production. Devices 

utilizing lithium batteries like cars benefit from this device, which further helps the global 

ecosystem by facilitating the transition from fossil fuel powered transportation to electric. 

6. Manufacturability 

Lithium batteries provide large amounts of power which carry danger during handling. 

Assembling and testing the device requires proper safety precautions to prevent risk of 

injury from fires or explosions. Production faces many challenges in the current 

economic climate due to COVID-19. Businesses across the world are shut down and 

supply chains are interrupted. Electric vehicle components primarily originate overseas 

where travel is currently limited, possibly decreasing the available supply and/or 

increasing prices until a vaccine permits full production. Budgetary and time constraints 

work together to inhibit manufacturability during project development; production of a 

satisfactory device requires delicate balancing of functionality/feature list, time, and cost. 

Small component size allows the potential for solder bridges on the LTC6804; connecting 

the wrong pins can lead to catastrophic failure. 

7. Sustainability 

This product encourages reuse intrinsically; the versatile design allows a wide array of 

applications and adjustability after implementation with a battery. This cuts down on 

waste and extends the planet’s limited resources. While this holds true for devices up to 

the specified voltage and current limit, future development is required to allow the BMS 

to have higher overall limits and decrease the need for different devices. Society’s 

transition to battery powered transportation also influences the infrastructure; increased 

demand on the electrical grid arises with more battery charging from EVs. With the grid 

in California experiencing issues each year, this issue need a solution before widespread 

EV adoption approaches feasibility. 

8. Ethical 

From a utilitarian point of view, the Programmable BMS attempts to achieve the greatest 

good for the greatest number. It provides users who value safety over performance direct 

control over the battery to prioritize this; users who desire increased longevity can 

achieve their goals with the same device. However, while many benefit from the device, 

some may experience negative effects. Increased demand for low cost manufacturing of 

batteries and electronics enables continued abuse of workers from various countries; the 

number of affected workers could possibly outnumber those who benefit from the device, 

thus failing from a utilitarian standpoint.  Additionally, the safety of the public is a top 

priority during the design process, as described by the IEEE code of Ethics #1 guideline 

[3]. However, the design process must also consider the potential negatives of allowing 

extreme control over batteries to potentially unexperienced users. For example, a user 

who removes the temperature limit out of ignorance puts all those around themselves at 
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risk. An ethical solution could include temporary preset limits within the device; if the 

user wishes to change the limits, a one-time process initiates developer mode and 

removes the limits. This product also offers direct interaction with important technology 

in society’s daily life; as a byproduct, users receive lithium battery education. The device 

offers a unique means of informing the public about the dangers, capabilities, and 

operation of lithium batteries (see IEEE Code of Ethics #2 [3]).  

Additionally, the design requires improved connections between subsystems; prototyping 

allows development at low power levels but a consumer product requires extreme 

attention to connection quality and safety at full power. Public usage mandates a full 

evaluation of the device and analysis of the possible modes of failure to prevent possible 

injury (see IEEE Code of Ethics II). 

The higher up front cost relative to a traditional BMS brings the potential to exclude 

users on a tight budget; devices that drastically increase safety should be available 

regardless of fortune, but economic feasibility poses an issue due to the difference in 

production cost. 

9. Health and Safety 

All devices incorporating lithium battery technology carry a certain amount of risk. The 

devices store large amounts of energy which causes overheating, fires, and even 

explosions according to a recent OSHA Safety and Health Information Bulletin [4]. 

Precautions must be taken during product testing and manufacturing to limit risk of 

injury. The extreme fire danger mandates extra attention to accidental shorts across 

battery terminals, with a type B.C. extinguisher on standby. It also requires the assembler 

to avoid adding excessive heat to the battery cells during pack construction. Production of 

the PBMS involves soldering with lead based solder, which causes lead poisoning if 

ingested in high quantities. Assembly must occur in a well ventilated area where the 

assembler avoids inhaling any fumes. In addition, all connections must meet the current 

and voltage specifications listed in Chapter 2, and the design requires thorough safety 

evaluation before public usage. Users of the product must take similar precautions, 

especially if operating the device publicly. As mentioned previously, punctures in the 

side walls, excessive current, high temperatures, and numerous other events in lithium 

batteries result in fire [4].  

10. Social and Political 

Lithium battery technology acts as one of the main bottlenecks in the transition from 

petroleum powered to electric vehicles. As battery technology improves and costs 

decrease, the demand for electric vehicles grows while the demand for oil decreases. The 

oil industry across the globe, with a history of significant political turmoil, suffers if 

electric vehicles adequately replace petroleum powered vehicles. The device has a large 

impact on the public; it facilitates the transition to electric transportation. As 

transportation becomes more dependent on lithium batteries, the demand for the metals 

required to manufacture the batteries increases. Certain geographic locations with rich 
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lithium, copper, and nickel deposits may see political turmoil and conflict regarding the 

rights to the materials.  

The primary stakeholders include small scale lithium battery operators and 

manufacturers. Direct benefits of the PBMS to the user include reduced waste, longer 

battery lifetime, and improved safety. However, the larger up front cost relative to a 

typical BMS reduces accessibility and increases difficulty to manufacturers. Indirect 

impacts received by the users include awareness and education about battery safety and 

optimization, as having programmable control requires the user to understand the 

potential for harm from and to the battery.  

11. Development 

a. New Tools and Techniques 

New methods of managing lithium batteries undergo research each day. As the 

PBMS proceeds through development, various approaches are considered 

including known reliable methods and relatively new, experimental methods. 

New technology learned for this project consists of the graphical user interface 

created on the Arduino using the Nextion display, the cutoff circuit that serves as 

a replacement for the relays, and the method of spotwelding the 18650 cells using 

nickel strip. The unexpected problems from each step of the development cycle 

documented in Chapter 5 provided excellent opportunities to learn about the field 

of power electronics, which now poses as a potential career focus. Research 

completed during EE460 and EE461 assisted me in my summer internship project 

between EE461 and EE462. Industry research throughout the course of the project 

continues to produce new commercial battery management systems and inspires 

ideas for alternative battery control designs. 
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• The authors’ credentials and support to back up claims inspire confidence. The article has 

390 citations. 
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Appendix B – Arduino Code 
//PBMS V1.0 

//1 Dec. 2020 

//Jason Erbert 

//This code builds on the LTC6804 Arduino BMS from David Caditz: 

//https://www.instructables.com/Arduino-LTC6804-Battery-Management-System/ 

 

#include <SoftwareSerial.h> 

#include <Average.h> 

#include <UserInterface.h> 

#include <Linduino.h> 

#include <LT_SPI.h> 

#include <LTC68042.h> 

#include <ACS712.h>     //ACS712 Library from Ruslan Koptiev: 

https://github.com/rkoptev/ACS712-arduino 

 

#define currentPin A3 

#define tempPin A4 

 

ACS712 Isensor(ACS712_30A, currentPin); 

SoftwareSerial Serial1(3, 2); // RX, TX 

 

#define TOTAL_IC  1            // Number of ICs in the isoSPI network 

LTC6804-2 ICs must be addressed in ascending order starting at 0. 

 

//Battery measurement variables 

float Vout = 34.8;     

float CellV = 3.48; 

float Iout = 5.2; 

int T = 25; 

int cycles = 10; 

int charge = 65; 

 

/***** Pack and sensor characteristics *****/ 

float Imax = 2.0;          // Maximum battery current(amps) before cutoff 

int Tmax  = 30;                   // Maximum pack temperature (deg C) before 

cutoff 

float Vmin = 33.0;                  // Minimum allowable cell voltage (10S 

cells). Depends on battery chemistry. 

float Vmax = 42.0;                  // Maximum allowable cell voltage. 

Depends on battery chemistry. 

float CELL_BALANCE_THRESHOLD_V = 3.3;     // Cell balancing occurrs when 

voltage is above this value 

 

/******** Arduino digital pin definitions ********/ 

int dischargeCutoffPin = 4;                

 

/********  Variables for tracking cell voltages and states ***************/ 

int overCharge_state = LOW;           // Over charge state. HIGH = relay on, 

LOW = relay off 

int underCharge_state = LOW;          // Under charge state. HIGH = relay on, 

LOW = relay off 

int overTemp_state = LOW;             // Over temperature state. HIGH = relay 

on, LOW = relay off 

int overCurrent_state = LOW;          // Over current state. HIGH = relay on, 

LOW = relay off 
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int cutoff_state;                      

int cellMax_i;                        // Temporary variable for holding index 

of cell with max voltage 

int cellMin_i;                        // Temporary variable for holding index 

of cell with min voltage 

float cellMin_V;                     // Temporary variable for holding  min 

measured cell voltage 

float cellMax_V;                     // Temporary variable for holding  max 

measured cell voltage 

float minV1 ; 

float maxV1 ; 

 

int error = 0; 

unsigned long  tstart; 

 

/****************************************************** 

  Global Battery Variables received from 6804 commands 

  These variables store the results from the LTC6804 

  register reads and the array lengths must be based 

  on the number of ICs on the stack 

 ******************************************************/ 

 

 

uint16_t cell_codes[TOTAL_IC][12]; 

/*!< 

  The cell codes will be stored in the cell_codes[][12] array in the 

following format: 

 

  |  cell_codes[0][0]| cell_codes[0][1] |  cell_codes[0][2]|    .....     |  

cell_codes[0][11]|  cell_codes[1][0] | cell_codes[1][1]|  .....   | 

  |------------------|------------------|------------------|--------------|--

-----------------|-------------------|-----------------|----------| 

  |IC1 Cell 1        |IC1 Cell 2        |IC1 Cell 3        |    .....     |  

IC1 Cell 12      |IC2 Cell 1         |IC2 Cell 2       | .....    | 

****/ 

 

uint16_t aux_codes[TOTAL_IC][6]; 

/*!< 

  The GPIO codes will be stored in the aux_codes[][6] array in the following 

format: 

 

  |  aux_codes[0][0]| aux_codes[0][1] |  aux_codes[0][2]|  aux_codes[0][3]|  

aux_codes[0][4]|  aux_codes[0][5]| aux_codes[1][0] |aux_codes[1][1]|  .....    

| 

  |-----------------|-----------------|-----------------|-----------------|--

---------------|-----------------|-----------------|---------------|---------

--| 

  |IC1 GPIO1        |IC1 GPIO2        |IC1 GPIO3        |IC1 GPIO4        

|IC1 GPIO5        |IC1 Vref2        |IC2 GPIO1        |IC2 GPIO2      |  

.....    | 

*/ 

 

uint8_t tx_cfg[TOTAL_IC][6]; 

/*!< 

  The tx_cfg[][6] stores the LTC6804 configuration data that is going to be 

written 
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  to the LTC6804 ICs on the daisy chain. The LTC6804 configuration data that 

will be 

  written should be stored in blocks of 6 bytes. The array should have the 

following format: 

 

  |  tx_cfg[0][0]| tx_cfg[0][1] |  tx_cfg[0][2]|  tx_cfg[0][3]|  

tx_cfg[0][4]|  tx_cfg[0][5]| tx_cfg[1][0] |  tx_cfg[1][1]|  tx_cfg[1][2]|  

.....    | 

  |--------------|--------------|--------------|--------------|--------------

|--------------|--------------|--------------|--------------|-----------| 

  |IC1 CFGR0     |IC1 CFGR1     |IC1 CFGR2     |IC1 CFGR3     |IC1 CFGR4     

|IC1 CFGR5     |IC2 CFGR0     |IC2 CFGR1     | IC2 CFGR2    |  .....    | 

 

*/ 

 

uint8_t rx_cfg[TOTAL_IC][8]; 

/*!< 

  the rx_cfg[][8] array stores the data that is read back from a LTC6804-1 

daisy chain. 

  The configuration data for each IC  is stored in blocks of 8 bytes. Below 

is an table illustrating the array organization: 

 

  |rx_config[0][0]|rx_config[0][1]|rx_config[0][2]|rx_config[0][3]|rx_config[

0][4]|rx_config[0][5]|rx_config[0][6]  |rx_config[0][7] 

|rx_config[1][0]|rx_config[1][1]|  .....    | 

  |---------------|---------------|---------------|---------------|----------

-----|---------------|-----------------|----------------|---------------|----

-----------|-----------| 

  |IC1 CFGR0      |IC1 CFGR1      |IC1 CFGR2      |IC1 CFGR3      |IC1 CFGR4      

|IC1 CFGR5      |IC1 PEC High     |IC1 PEC Low     |IC2 CFGR0      |IC2 CFGR1      

|  .....    | 

*/ 

 

/*!********************************************************************** 

  \brief  Inititializes hardware and variables 

 ***********************************************************************/ 

void setup() 

{ 

  pinMode(dischargeCutoffPin,OUTPUT); 

  pinMode(tempPin, INPUT); 

   

  Serial.begin(9600); 

  while(!Serial); // wait for serial port to connect. Needed for native USB 

port only 

  Serial1.begin(9600);   //LCD communication 

 

  Isensor.calibrate(); 

   

  LTC6804_initialize();  //Initialize LTC6804 hardware 

  init_cfg();            //initialize the 6804 configuration array to be 

written 

  delay(1000); 

   

  overCurrent_state = HIGH; 

  tstart = millis(); 

 

  //turn on battery output at startup 
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  digitalWrite(dischargeCutoffPin, HIGH); 

  Serial1.print("t1.txt=\"ON\""); 

  scmd(); 

  Serial1.print("t1.bco=2016");   //set output indicator background to green 

  scmd(); 

} 

 

void loop() 

{ 

  //measure current 

  Iout = 0.05 + (Isensor.getCurrentDC()  * -1); 

  if (Iout > Imax) { 

      overCurrent_state = LOW; 

      Serial.println("OVER CURRENT STATE DETECTED."); 

    } 

     

  // read temperature 

  overTemp_state = HIGH; 

  measureTemp(); 

  if (T > Tmax) { 

      overTemp_state = LOW; 

      Serial.println("OVER TEMPERATURE STATE DETECTED."); 

    } 

   

  // read cell voltages 

  wakeup_idle(); 

  LTC6804_adcv(); // do cell AD conversion and fill cell registers 

  delay(10); 

  wakeup_idle(); 

  error = LTC6804_rdcv(0, TOTAL_IC, cell_codes); // read cell voltages from 

registers 

  if (error == -1) 

  { 

    Serial.println("PEC error detected in the received data"); 

  } 

 

  // print to serial outputs: 

  print_cells(); 

/* 

  // test for over charge/undercharge states: 

  minV1 = Vmin; 

  maxV1 = Vmax; 

 

  if (overCharge_state == LOW) { // add hysteresis 

    maxV1 = maxV1 - .2; 

  } 

 

  if (underCharge_state == LOW) { // add hysteresis 

    minV1 = minV1 + .2; 

  } 

 

  // get maximum and minimum cells: 

  cellMax_i = -1; 

  cellMin_i = -1; 

  cellMin_V = 100.; 

  cellMax_V = 0.; 

  for (int i = 0; i < 10; i++) 
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  { 

    float V = cell_codes[0][i] * 0.0001; 

    if (V < cellMin_V) { 

      cellMin_V = V; 

      cellMin_i = i; 

    } 

    if (V > cellMax_V) { 

      cellMax_V = V; 

      cellMax_i = i; 

    } 

  } 

*/ 

  underCharge_state = HIGH; 

  overCharge_state = HIGH; 

  overCurrent_state = HIGH; 

 

  if(Vout > Vmax){ 

    overCharge_state = LOW; 

    Serial.println("OVER VOLTAGE STATE DETECTED."); 

  } 

 

  if(Vout < Vmin){ 

    underCharge_state = LOW; 

    Serial.println("UNDER VOLTAGE STATE DETECTED."); 

  } 

 

  if(Iout > Imax){ 

    overCurrent_state = LOW; 

    Serial.println("OVER CURRENT STATE DETECTED."); 

  } 

/* 

  if (cellMin_V <= minV1) 

  { 

    underCharge_state = LOW; 

  } 

  if (cellMax_V >= maxV1) 

  { 

    overCharge_state = LOW; 

  } 

   

  //  cell balancing: 

  //  Turn on switch Sx for highest cell x if voltage is above threshold 

  //  Note: DCP is set to 0 in initialize() This turns off discharge when 

cell voltages are read. 

  // set values in tx_cfg 

 

  if (cellMax_V >= CELL_BALANCE_THRESHOLD_V) 

  { 

    balance_cfg(0, cellMax_i); 

  } else { 

    balance_cfg(0, -1); 

  } 

 

  // write tx_cfg to LTC6804. This sets the LTC6804 DCCx registers which 

control the S pins for balancing: 

  LTC6804_wrcfg( TOTAL_IC, tx_cfg); 

  */ 
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  // set cutoff state: 

  cutoff_state = overCurrent_state &&  underCharge_state && overCharge_state 

&&  overTemp_state; 

 

  charge = (Vout - 25.0)/17.0;  //calculate state of charge using voltage 

method 

   

  //Send values to GUI and receive input 

  displayVals(); 

 

  if(!cutoff_state){ 

    digitalWrite(dischargeCutoffPin, LOW); 

     

    Serial1.print("t1.txt=\"OFF\""); 

    scmd(); 

    Serial1.print("t1.bco=63488");    //set output indicator background to 

red 

    scmd(); 

  } 

 

  //check for user input on touchscreen 

  if(Serial1.available()){ 

    String data_from_display = ""; 

    data_from_display = (Serial1.readStringUntil('c')); 

    storeVals(data_from_display);     

  } 

  

} 

 

void init_cfg() 

{ 

  for (int i = 0; i < TOTAL_IC; i++) 

  { 

    tx_cfg[i][0] = 0x04; 

    tx_cfg[i][1] = 0x00; 

    tx_cfg[i][2] = 0x00; 

    tx_cfg[i][3] = 0x00; 

    tx_cfg[i][4] = 0x00; // discharge switches  0->off  1-> on.  S0 = 0x01, 

S1 = 0x02, S2 = 0x04, 0x08, 0x10, 0x20, 0x40, 0x80                    

    tx_cfg[i][5] = 0x20; // sets the software timer to 1 minute 

  } 

} 

 

/*!*********************************** 

  \brief sets  the configuration array for cell balancing 

  uses CFGR4 and lowest 4 bits of CGFR5 

 **************************************/ 

void balance_cfg(int ic, int cell) 

{ 

  tx_cfg[ic][4] = 0x00; // clears S1-8 

  tx_cfg[ic][5] = tx_cfg[ic][5]  & 0xF0; // clears S9-12 and sets software 

timer to 1 min 

   

  if (cell >= 0 and cell <= 7) { 

    tx_cfg[ic][4] = tx_cfg[ic][4] | 1 << cell; 

  } 
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  if ( cell > 7) { 

    tx_cfg[ic][5] = tx_cfg[ic][5] | ( 1 << (cell - 8)); 

  } 

} 

 

/*!************************************************************ 

  \brief Prints Cell Voltage Codes to the serial port 

 *************************************************************/ 

void print_cells() 

{ 

  unsigned long elasped = millis()  - tstart; 

   

  serialPrint(elasped);   //ELAPSED TIME: 

  Vout=0; 

  //INDIVIDUAL CELL VOLTAGES: 

  for (int current_ic = 0 ; current_ic < TOTAL_IC; current_ic++) 

  { 

     

    for (int i = 0; i < 10; i++) 

    { 

      Vout = Vout + cell_codes[current_ic][i] * 0.0001; 

      serialPrint(cell_codes[current_ic][i] * 0.0001);      

    } 

  }   

   

  serialPrint("\r\n"); 

 

} 

 

 

/*!**************************************************************************

** 

  \brief print function overloads: 

 ****************************************************************************

*/ 

void serialPrint(String val) 

{ 

  Serial.print(val); 

  Serial.print("\t"); 

} 

 

void serialPrint(unsigned long val) 

{ 

  Serial.print(val); 

  Serial.print("\t"); 

} 

 

 

void serialPrint(double val) 

{ 

  Serial.print(val, 4); 

  Serial.print("\t"); 

} 

 

void serialPrint(int val) 

{ 

  Serial.print(val); 
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  Serial.print("\t"); 

} 

 

void print_config() 

{ 

  int cfg_pec; 

 

  Serial.println("Written Configuration: "); 

  for (int current_ic = 0; current_ic < TOTAL_IC; current_ic++) 

  { 

    Serial.print(" IC "); 

    Serial.print(current_ic + 1, DEC); 

    Serial.print(": "); 

    Serial.print("0x"); 

    serial_print_hex(tx_cfg[current_ic][0]); 

    Serial.print(", 0x"); 

    serial_print_hex(tx_cfg[current_ic][1]); 

    Serial.print(", 0x"); 

    serial_print_hex(tx_cfg[current_ic][2]); 

    Serial.print(", 0x"); 

    serial_print_hex(tx_cfg[current_ic][3]); 

    Serial.print(", 0x"); 

    serial_print_hex(tx_cfg[current_ic][4]); 

    Serial.print(", 0x"); 

    serial_print_hex(tx_cfg[current_ic][5]); 

    Serial.print(", Calculated PEC: 0x"); 

    cfg_pec = pec15_calc(6, &tx_cfg[current_ic][0]); 

    serial_print_hex((uint8_t)(cfg_pec >> 8)); 

    Serial.print(", 0x"); 

    serial_print_hex((uint8_t)(cfg_pec)); 

    Serial.println(); 

  } 

  Serial.println(); 

} 

 

/*!***************************************************************** 

  \brief Prints the Configuration data that was read back from the 

  LTC6804 to the serial port. 

 *******************************************************************/ 

void print_rxconfig() 

{ 

  Serial.println("Received Configuration "); 

  for (int current_ic = 0; current_ic < TOTAL_IC; current_ic++) 

  { 

    Serial.print(" IC "); 

    Serial.print(current_ic + 1, DEC); 

    Serial.print(": 0x"); 

    serial_print_hex(rx_cfg[current_ic][0]); 

    Serial.print(", 0x"); 

    serial_print_hex(rx_cfg[current_ic][1]); 

    Serial.print(", 0x"); 

    serial_print_hex(rx_cfg[current_ic][2]); 

    Serial.print(", 0x"); 

    serial_print_hex(rx_cfg[current_ic][3]); 

    Serial.print(", 0x"); 

    serial_print_hex(rx_cfg[current_ic][4]); 

    Serial.print(", 0x"); 
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    serial_print_hex(rx_cfg[current_ic][5]); 

    Serial.print(", Received PEC: 0x"); 

    serial_print_hex(rx_cfg[current_ic][6]); 

    Serial.print(", 0x"); 

    serial_print_hex(rx_cfg[current_ic][7]); 

    Serial.println(); 

  } 

  Serial.println(); 

} 

 

void serial_print_hex(uint8_t data) 

{ 

  if (data < 16) 

  { 

    Serial.print("0"); 

    Serial.print((byte)data, HEX); 

  } 

  else 

    Serial.print((byte)data, HEX); 

} 

 

/* 

   * Measure Temperature from MCP9700 with averaging for noise reduction 

   * 10mV/ 1C sensitivity; 0.5V offset at 0 C 

   * Vcc = 5V 

   */ 

void measureTemp() { 

  int avgs = 25; //number of temp measurements to average 

  T = 0.0; 

   

  for(int i = 0; i < avgs; i++) 

  { 

    T += ((analogRead(tempPin) * 5. / 1024.) - 0.5) / 0.01;   

  } 

  T = T / avgs; 

} 

 

void storeVals(String data_from_display){ 

  if(data_from_display.indexOf("VmaxIn") > -1){ 

    Vmax += 0.1; 

  } 

  if(data_from_display.indexOf("VmaxDe") > -1){ 

    Vmax -= 0.1; 

  } 

  if(data_from_display.indexOf("VminIn") > -1){ 

    Vmin += 0.1; 

  } 

  if(data_from_display.indexOf("VminDe") > -1){ 

    Vmin -= 0.1; 

  } 

  if(data_from_display.indexOf("ImaxIn") > -1){ 

    Imax += 0.1; 

  } 

  if(data_from_display.indexOf("ImaxDe") > -1){ 

    Imax -= 0.1; 

  } 

  if(data_from_display.indexOf("TmaxIn") > -1){ 
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    Tmax += 1; 

  } 

  if(data_from_display.indexOf("TmaxDe") > -1){ 

    Tmax -= 1; 

  } 

  if(data_from_display.indexOf("Reset") > -1){ 

    softReset(); 

  } 

} 

 

//Send all measurement values to display 

void displayVals(){ 

  char buff[6];//buffer for float to str) 

   

  dtostrf(Vout, 3, 2, buff); 

  Serial1.print("Vout.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(Iout, 3, 2, buff); 

  Serial1.print("Iout.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  Serial1.print("T.val=" + String(T)); 

  scmd(); 

   

  Serial1.print("Cycles.val=" + String(cycles)); 

  scmd(); 

 

  Serial1.print("Charge.val=" + String(charge)); 

  scmd(); 

   

  dtostrf(Vmax, 3, 2, buff); 

  Serial1.print("Vmax.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(Vmin, 3, 2, buff); 

  Serial1.print("Vmin.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(Imax, 3, 2, buff); 

  Serial1.print("Imax.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

   

  Serial1.print("Tmax.val=" + String(Tmax)); 

  scmd(); 

 

  displayCells(); 
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} 

 

//Display voltage measurements for each cell 

//converts float to string and changes value of text object on LCD 

void displayCells(){ 

  char buff[6]; 

   

  dtostrf(cell_codes[0][0]/10000., 3, 2, buff); 

  Serial1.print("C1.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(cell_codes[0][1]/10000., 3, 2, buff); 

  Serial1.print("C2.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(cell_codes[0][2]/10000., 3, 2, buff); 

  Serial1.print("C3.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(cell_codes[0][3]/10000., 3, 2, buff); 

  Serial1.print("C4.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(cell_codes[0][4]/10000., 3, 2, buff); 

  Serial1.print("C5.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(cell_codes[0][5]/10000., 3, 2, buff); 

  Serial1.print("C6.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(cell_codes[0][6]/10000., 3, 2, buff); 

  Serial1.print("C7.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(cell_codes[0][7]/10000., 3, 2, buff); 

  Serial1.print("C8.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(cell_codes[0][8]/10000., 3, 2, buff); 

  Serial1.print("C9.txt=\""); 
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  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

 

  dtostrf(cell_codes[0][9]/10000., 3, 2, buff); 

  Serial1.print("C10.txt=\""); 

  Serial1.print(buff); 

  Serial1.print("\""); 

  scmd(); 

} 

 

//send end bytes to complete command to Nextion display 

void scmd(){ 

  Serial1.write(0xff); 

  Serial1.write(0xff); 

  Serial1.write(0xff); 

} 

 

void softReset(){ 

asm volatile ("  jmp 0"); 

} 
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Appendix C – Bill of Materials 

 

 


