

Programmable Battery Management System

by

Jason Erbert

Senior Project

Electrical Engineering Department

California Polytechnic State University San Luis Obispo

December 2020

i

Table of Contents

List of Tables…………….……………………………..………………………………………....iii

List of Figures...……………………………………………………..…………………………....iii

Abstract………………………………………………………..………………………………….iv

Chapters

1. Introduction…………………………………………………………...……………….......1

2. Customer Needs, Requirements, and Specifications………………....…………………...5

2.1 Customer Needs Assessment….…………………………...…………………..……...5

2.2 Requirements and Specifications……………….…………...………………………...6

3. Functional Decomposition…………………………………...…………………………....9

3.1 Level 0 Decomposition……………………………….………..……………………...9

3.2 Level 1 Decomposition………………………………………...…………………….10

3.3 System Level Diagram…………………………………………...…………………..12

4. Project Planning……………………………………………………...…………………..13

4.1 Timeline…………………………………………………….…..……………………13

4.2 Cost Estimation…………………………………………………...………………….17

5. Design, Build, Evaluate………………………….....………………………....................19

5.1 Battery Construction………………………….....…………………………...............19

5.2 Arduino LTC6804 BMS PCB………………………….....……………….………....20

ii

5.3 Charge/Discharge Cutoff Circuitry……………….....………………………….........26

5.4 Cell Balancing……………………………………………………………..................29

5.5 Current Sensor……………….....…………………………..............………..............32

5.6 Temperature Sensor……………….....…………………………..............………......34

5.7 Graphical User Interface……………….....………………………….........................37

5.8 Arduino Code ………….....…………………………..............…...............................39

5.9 Enclosure ……..…………….....……………………………………….….................42

5.10 Design Troubleshooting and Evaluation……………..……………….....………….43

6. Conclusions……..…………….....………………………...…….…………….................48

References……………………………..…………………...……....……….…………………....49

Appendices

 A. ABET Senior Project Analysis.…………………………………………………..………..52

 B. Arduino Code…….………………………………………………………………………..63

 C. Bill of Materials…….…………………………………………………….………………..75

iii

List of Tables
I. Summary of Lithium-Based Batteries………………………………………………...….2

II. Types of Battery Management Systems and Functions……………………………...…..3

III. Programmable BMS Requirements and Specifications…………………………………7

IV. Level 0 Block Diagram Description…………………………………………………….10

V. Level 1 Block Diagram Description – User Interface………………………………..…11

VI. Level 1 Block Diagram Description – Battery Control Unit………………………..…..11

VII. Level 1 Block Diagram Description – Microcontroller…………………………….…..11

VIII. Programmable BMS Milestones and Deliverables………………………………….….16

IX. Predicted Parts and Labor Costs……………………………………………………..….17

X. Actual Development Cost………………………………………………………….…...18

XI. Cell Balancing Design Tradeoffs…………………………………………………….....30

XII. ACS712 Current Sensor Characterization………………………….……………….......34

XIII. MCP9700 Temperature Sensor Characterization………………………….…….….......36

XIV. Component Dimensions……………………………………………...............................42

XV. System Evaluation…………….……………….…………….………………………….45

List of Figures
1. Level 0 Block Diagram……………………………………………………………………9

2. Level 1 Block Diagram…………………………………….…………………………….10

3. System Level Diagram…………………………………….…………………………......12

4. Gantt Charts

a. Predicted Timeline………….………………………………………………………..14

b. Mid-Project Timeline Update………….……………………………………...……..15

c. Final Project Timeline………….…………………………………………………….16

5. Battery Construction...…………………………………………………………...………19

6. Arduino LTC6804 BMS Circuit Diagram. ………………….…………………………..22

7. Arduino LTC6804 BMS PCB ViewMate..…………………..……….…….……………23

8. Arduino LTC6804 BMS Shield. …...……………………….…….………….……….…24

9. Wiring modification to Arduino MEGA2560…...……………….……….…….…….….26

10. Cutoff Circuit Diagram…...……………………….………………….…….…….……...27

11. Cutoff Circuit Prototype…...……………………….……………….……….…….…….28

12. Cell Balancing from LTC6804 Datasheet………….……………….….………….…….29

13. LTC6804 Circuit Diagram with External Cell Balancing……………………………….31

14. Modified Cell Balancing PCB………………………………….....…………..…….…...32

15. ACS712 Current Sensor…………………………………....…….…….…….…..….…...33

16. MCP9700 Temperature Sensor…………….....……………….………………………....35

17. MCP9700 Characterization…………….....……………….……….…………………….37

18. Graphical User Interface Page One………………………………………………………39

19. Graphical User Interface Page Two……………………….……….…………………….39

20. PBMS V1.0 Software Flowchart…………………….……….………………………….40

21. PBMS V1.0 Hardware Setup………………….…………………………………………43

iv

Abstract
Lithium batteries provide excellent energy storage capabilities at a relatively high density;

however, precautions must be taken with these high energy devices to ensure safe operation. A

battery management system (BMS) provides protection by monitoring cell and pack voltage

levels and maintaining them in a specific range. They limit the output current and disable the

output in extreme conditions. Most devices in the targeted power range (<1000W) do not allow

the user to manipulate the values for maximum current, cut-off voltage, or other limits. This

project introduces the Programmable BMS (PBMS), which instead allows the user to select these

values through a physical interface. The interface displays measurements including pack voltage

and output current, and it reports additional characteristics of interest such as the battery’s

temperature, state of charge, and cumulative number of charge cycles. This level of access and

control permits users to receive the maximum performance and safety from common lithium

battery packs.

1

Chapter 1. Introduction

This section introduces the motivation to develop a programmable battery management system

and discusses both previous and current technology. As the current state of the art for consumer

battery technology, lithium batteries find use every day in devices across the world due to factors

including their energy density and versatility. Lithium battery applications include portable

consumer electronics, electric vehicles, and off grid storage systems. In most applications,

batteries require monitoring systems that ensure safe operation and prevent catastrophic failure.

Lithium batteries sustain damage from improper use and may fail when they reach temperatures

above 100°C resulting in an event known as thermal runaway [1][2]. Failure often results in fire

and injury. Improper usage includes drawing excessive amounts of current, discharging the

battery too far, and overcharging the battery; the values for these safety limits differ for each

style and brand of lithium battery. Most lithium ion cells in the 18650 and 21700 form factors

operate safely between 2.5V and 4.2V, but each cell design from various manufacturers and

chemistries may have a different current rating [3]. Table I on the following page, from Battery

University, provides a comparison of various lithium battery chemistries. With the widely

varying limits for batteries, each chemistry, form factor, and brand can require unique

management to remain safe in most situations. Battery management systems often passively

control batteries; simple electronics monitor battery conditions and disable the battery input and

output if the operating conditions exceed predetermined limits for that specific model of battery

[4].

2

TABLE I: SUMMARY TABLE OF LITHIUM-BASED BATTERIES [3]

3

In general, battery management systems divide into two groups: digital and analog. Table II

below distinguishes the different functions for each type of BMS. A BMS may accomplish any

of the following functions: monitor the battery, protect the battery, estimate the battery’s state,

maximize the performance, and report to users or external systems [4][5]. For lithium batteries,

BMS monitor the cell voltage, current flow, and temperature; some systems add to this by

balancing the cell voltages to maximize overall pack capacity. This project aims to provide the

maximum benefit to the user and, thus, falls under the digital “protector” category. Many chip

manufacturers, including Texas Instruments and Analog Devices, offer ICs with an array of

available functions that facilitate lithium BMS design [6][7]. While battery management systems

are not a new technology, consumer BMS rarely provide direct control of the battery operating

limits. A typical BMS restricts the battery to a single cutoff voltage, maximum current, and

maximum temperature [3][5][8]. This provides sufficient protection for most consumers due to

the added safety relative to an unprotected battery and low cost. This project improves on the

basic system by adding external control over these quantities and displaying the operating

conditions to the user. Commercial battery management systems that offer similar

programmability typically target large scale applications including large electric vehicles [4][9].

Small scale (<1000W) applications rarely feature this technology due to the cost of production

relative to the price of the battery. Current options require additional electronics to program the

device, and the manufacturers may not include programming instructions or sell directly to

consumers [5][9]. Smart lithium battery chargers offer similar advantages to a programmable

battery management system; however, this technology has yet to reach common usage and only

protects the battery during charging [10].

TABLE II: TYPES OF BATTERY MANAGEMENT SYSTEMS AND FUNCTIONS [4]

Battery longevity is a vital aspect of widespread electric vehicle adoption. While lithium

batteries can store large amounts of energy, this capability degrades as the battery charges and

discharges over time. In addition, the fast discharge rates of electric vehicles hasten the

degradation process. To counteract this and extend the lifetime of the battery, it must operate

within a narrower voltage range. For example, instead of charging a battery to 100% and

4

discharging it down to 0%, it may last up to twice as long if only charged to 80% and discharged

to 20% [11]. Increased longevity helps reduce waste and environmental effects caused by battery

production [12]. This requires calculation of the battery’s SOC, or state of charge, which

estimates the remaining battery capacity relative to its maximum. The simplest method measures

the open circuit voltage of the battery and compares this to the general operating range of the

battery. The equation below demonstrates the relationship between the SOC and open circuit

voltage [13].

In this equation, a0 represents the battery voltage at 0% SOC, and a1 represents a constant found

by plugging in the open circuit voltage at 100% SOC. For example, a lithium battery ranging

from 2.5V to 4.2V contains approximately 60% of its maximum capacity when the voltage

measures 3.5V. However, the nonlinear relationship of the battery’s capacity to its voltage

introduces error near the bottom and top of the operating range. Additional methods, such as

Coulomb counting, attempt to improve this by measuring the amount of charge entering and

exiting the battery [13]. This technology provides convincing advantages to lithium battery users

who value safe and controlled battery use; the following chapter considers the factors driving

demand for a PBMS and the expected capabilities of the device.

5

Chapter 2. Customer Needs, Requirements, and

Specifications

This chapter evaluates the needs and expectations of users of small scale lithium battery systems.

The PBMS must meet the requirements of common devices at this scale while focusing on user

safety. A brief list provides the device’s specifications and justification for each. The chapter

then discusses how the device meets the specifications and how later iterations may be improved

to achieve additional specifications.

2.1 Customer Needs Assessment

Lithium batteries provide enormous amounts of energy and require simple and effective control

for safe, efficient usage. Most lithium battery packs in the targeted power range utilize primitive

battery management systems; they always charge the battery to its maximum capacity and allow

it to discharge down to a static, predetermined limit [8]. Additionally, these battery management

systems fail to provide the user with measurements or feedback. Many small electric vehicle

operators realize the limitations of these systems and seek additional capabilities; internet forums

of EV enthusiasts who build their own batteries indicate a present need for a low cost,

programmable BMS. A knowledgeable user who wishes to build and maintain a long-lasting

high performance battery, while protecting against the associated hazards, requires a device that

adds capability to the simple passive systems by offering access to battery operating conditions

and limits. The variable parameters provide adaptability that most primitive BMS lack; for

example, instead of requiring individuals to choose a BMS that matches their required output

current limit, any battery under the maximum current capability of the PBMS may use the same

PBMS. In addition, the device enables users to actively monitor the battery conditions during

operation, including cell voltage, pack voltage, output current, and temperature. This provides

advantages in many situations; for example, if one cell bank shows a consistently different

voltage than the others, the overall capacity and utility of the pack decreases. The live

measurements allow the user to observe this directly and replace whichever cell bank causes

issues without needing to replace the entire pack.

Lithium batteries pose an inherent risk to both the users and public due to their high energy

density relative to other battery chemistries; however, failures rarely occur (on the order of one

part per million) when following all safety standards. Ignoring safety precautions may cause

batteries to hiss, bulge, or leak before catching fire and even exploding. A failure can cause third

degree burns and permanent injury to anyone within a few feet of the device [3]. Thus, battery

safety remains a key factor for all users, especially when considering lithium-based chemistries.

The PBMS prioritizes safety by educating the operator about lithium batteries and allowing the

user to determine the operating limits they deem safe. It responds to potentially catastrophic

6

events much faster than any person can react. The following section discusses project

requirements that provide the user with the best and safest experience for devices in the targeted

power range.

2.2 Requirements and Specifications

The primary objective of a BMS includes monitoring battery characteristics and triggering an

immediate shutoff when reaching predefined limits that indicate a dangerous fault. BMS include

protection from faults including overvoltage (OVP), undervoltage (UVP), overcurrent (OCP),

and overtemperature (OTP). A programmable BMS expands on the commonplace BMS by

adapting to meet the needs of each unique user. The requirements of the programmable BMS

center around providing the user with the most control over the battery while maximizing safety.

Table III lists and justifies each PBMS specification. It also describes the marketing

requirements of the PBMS; a successful product provides tangible benefits to the consumer.

Each engineering specification listed in the table targets at least one marketing requirement. In

short, the marketing requirements dictate that a successful BMS covers a wide range of devices,

provides a simple user experience, maintains high efficiency, improves the experience of the

user, and encourages sustainable practices.

Since consumer lithium batteries range in power from milliwatts to many kilowatts, the project

targets a common range for users who gain the most by the added capabilities of the PBMS:

~100W to ~1000W (peak). With pack capacity a priority, low power consumption provides the

maximum benefit to the user. This project defines low power consumption as utilizing less than

1% of the maximum allowable wattage of the device; for example, the device consumes less than

5W maximum for a 500W battery. A power heavy user interface including an LCD and

microcontroller draws no more than 500mA and 5V, and the electronics performing battery

control and measurements draw small amounts of power relative to the size of the battery [6].

Efficiency limits the device’s utility at smaller scales – interface electronics consume relatively

low power and remain constant as the product scales to larger power capabilities.

Common voltage and current ratings for battery packs in this range span from 11V up to 48V

and from 5A to over 30A. The initial estimate of a maximum output voltage of 27V originates

from the Texas Instruments BQ76PL536, used in similar senior projects at Cal Poly, [7][10].

Further research and evaluation leads to new and improved options with a larger voltage range

thus enhancing versatility. The selected range balances simple electronic design and safety

versus the number of applicable devices. The well documented and common LTC6804 BMS

meets the voltage requirements for the targeted range of devices [6]. In addition, the LTC6804

features efficient, passive cell balancing. Every cell bank requires voltage balancing for even

discharge, maximum capacity, battery longevity, and optimal safety [11]. This chip also includes

extensive documentation from the manufacturer and use by lithium BMS expert Davide Andrea,

author of “Battery Management Systems for Large Lithium Ion Battery Packs” and experienced

designer of lithium BMS since 2004 [4].

7

TABLE III: PROGRAMMABLE BATTERY MANAGEMENT SYSTEM REQUIREMENTS AND

SPECIFICATIONS

Marketing

Requirements

Engineering

Specifications
Justification

1,5 Allows output voltage from 11 - 50V

(with adjustable OVP and UVP for

3-12 cell banks in series)

This range applies to a large variety of

consumer scale lithium battery powered

systems. It helps prioritize safety during

development, facilitates part

acquisition, and reduces complexity.

1,5,6 Measures output current up to 20A

and provides adjustable OCP limit

A 20A overcurrent protection (OCP)

limit simplifies electronics/heat

dissipation design while remaining safe

for low wattage batteries. This stems

from the maximum current of many

common 18650 cells, like the Samsung

25R used in this project [14].

1,5,6 Balances individual cell bank

voltages within 2-3% of each other

using passive balancing

Cells range 2.5 – 4.2V; 3% = 75 – 126

mV, achievable with LTC6804. Passive

balancing simplifies design and lowers

cost of development and consumer

product.

2,6,7 Actively displays pack and cell

voltage (+ 100mV), output current

(+ 1A), temperature (+ 5°C), state of

charge, and number of cycles on user

interface

These vital characteristics inform the

user about the safety of a lithium

battery’s operating conditions. The user

must have access to the measured

characteristics and limits during

operation.

6 Monitors pack temperature within

5°C; adjustable maximum operating

temperature

Lithium battery heat sensitivity requires

active temperature monitoring. After

reaching the tipping point, thermal

runaway causes dangerous reactions.

6 Responds to fault event in under 1

second

Reacts faster than humans thus

increasing safety. Similar systems show

similar or slower response times [8].

3 Active power consumption under

5W

“Active” means user interacts with

device interface by changing settings or

observing measurements. The 5W

estimation minimizes impact on battery

life and comes from simulating

components and analyzing competition

[9][5].

1,4 Physical dimensions smaller than

1”x4”x4”

The BMS must not significantly impact

the overall dimensions of the battery.

Lithium batteries at low (<1000W)

wattages significantly exceed this size.

8

1,2,3,4,7 First time setup under 1 hour Simple configuration procedure allows

implementation with minimal setup

time for a user with moderate

electronics experience (<1 year

soldering); also allows user time to

learn interface and educates on lithium

battery technology.

1,2 Settings changes require less than 5

minutes of user interaction

Low voltage cut-off or maximum

output current are accessible without

significantly interrupting battery usage.

Simple and intuitive interface increases

ease of use.

5 Cost of prototype unit below $500 Can scale down to competitive and

consumer friendly price with higher

volume. Estimated using typical

component prices (see Appendix C for

BOM).

Marketing Requirements

1. Versatile and easy to implement

2. Simple and intuitive interface

3. Low power consumption

4. Compact and portable

5. Low cost

6. Increased utility and safety from lithium batteries

7. Encourage sustainability

The device must feature similar size and form to current BMS technology; the shape of the BMS

should not significantly increase the overall size of the battery pack. Typical BMS have a

minimal effect on overall battery dimensions [5]. The small scale focus of the device’s design

helps minimize the risk of injury during the project, but it also restricts the overall dimensions of

the product which adds complexity to the design process and difficulty during prototyping.

To appeal to a large demographic, the PBMS features a simple integration experience and user-

friendly interface that requires less than 5 minutes to change device settings. The PBMS provides

operating conditions and up-to-date measurements of voltage, current, temperature, and more at

any point during operation to ensure constant safety. It also allows the users to change the

operating limits to meet their needs. A logically organized interface with a gentle learning curve

minimizes device downtime during settings changes.

The requirements and specifications table format derives from [15], Chapter 3. The

specifications listed in the table provide a usable balance between device compatibility,

development safety, design simplicity, and cost of production. Many specifications allow room

for later improvement and refinement after proving the concept of a truly programmable BMS in

this power range. The follow chapter details the system from a top down approach by providing

multiple block diagrams and explanations of internal subsystems.

9

Chapter 3. Functional Block Diagrams

This section breaks down the programmable battery management system into functional blocks

at various levels of detail. The first level looks solely at the inputs and outputs of the system. The

next level separates the design into the three subsystems; user interface, central processing unit,

and battery management. Tables V-VII list the inputs and outputs of each subsystem. Finally, a

system level diagram including all components and subsystems demonstrates internal

connections and organization.

3.1 Level 0 Decomposition

Figure 1 below offers a top-level block diagram of the PBMS including the main inputs and

outputs described in Table IV. The battery pack consists of several individual cell banks in

series. The BMS measures the voltage of each cell bank, current entering or exiting the battery,

and pack temperature. It accepts user settings to determine maximum operating limits and

outputs the protected power from the battery. The PBMS also provides real time measurements

and data on a graphical interface.

Figure 1: Level 0 block diagram for battery management system

10

TABLE IV

PRROGRAMMABLE BATTERY MANAGEMENT SYSTEM LEVEL 0 INPUTS, OUTPUTS,

AND FUNCTIONALITY DESCRIPTION

Inputs • Battery power from cell banks (up to 50V, up to 20A)

• User selected settings including maximum output current, minimum battery

cell voltage, maximum operating temperature

Outputs • Allows up to 50V at up to 20A (user specified)

• “Battery feedback & data”: Battery characteristics and measurements

including operating voltage, cell bank voltage, output current, battery state

of charge, and present settings for OVP, UVP, OCP, and OTP.

Functionality The battery management system balances individual cell voltages; monitors,

reports in real time, and limits the battery pack’s overall operating voltage, current,

and temperature; and offers user control over input/output cutoff limits.

3.2 Level 1 Decomposition

Figure 2 on the following page shows the internal modules of the PBMS design. The

subcomponents fall under three main categories: user interface hardware, battery characteristic

monitor/control unit, and the microcontroller. The functional breakdown derives from the block

diagram in Cheng [16] Figure 1. Tables V, VI, and VII describe the functionality of each

category and the associated inputs/outputs.

Figure 2: Level 1 Block Diagram of Programmable Battery Management System

11

TABLE V:

PBMS LEVEL 1 BLOCK DIAGRAM DESCRIPTION – USER INTERFACE HARDWARE

Inputs • Hardware interface featuring button pushes on touchscreen LCD

Outputs • User specified setting – maximum charge voltage, maximum output

current, among others to microcontroller for interpretation.

• LCD data to display – user settings, user interface, battery feedback &

data

Functionality The user interface offers direct control over system settings. The

microcontroller interprets the input and alters system settings accordingly.

Internal storage maintains user settings, which the user may view and access at

any point during device operation on the included screen. The interface displays

real time battery measurements including voltage and output current.

TABLE VI:

PBMS LEVEL 1 BLOCK DIAGRAM DESCRIPTION – BATTERY CHARACTERISTIC

MONITOR/CONTROL UNIT

Inputs • Battery cell bank voltages

• Cell temperature

• Input/output current

Outputs • Battery measurements to microcontroller for processing

Functionality The battery control unit consists of several subcomponents that ensure the

lithium battery operates safely. Main components include cell balancing

module, current monitor, and temperature monitor. Contains high power

input/output cutoff circuitry. The LTC6804 provides simple cell balancing

options and voltage readings [6]. It communicates directly with the

microcontroller using a 4-wire SPI interface

TABLE VII:

PBMS LEVEL 1 BLOCK DIAGRAM DESCRIPTION – MICROCONTROLLER

Inputs • User inputs from physical interface

• Battery measurements from battery characteristic monitor

Outputs • Battery measurements to display on interface

• Internal settings to display

• Control signals to battery monitor

Functionality The microcontroller obtains battery measurements from the battery control

unit and alters internal settings accordingly. Signals from the microcontroller

may initiate a current cutoff. The microcontroller contains a simple user

interface with a display. User settings adjust the battery output and operating

conditions.

12

3.3 System Level Diagram

Figure 3 below illustrates an entire lithium battery system built around the programmable battery

management system. The battery monitor unit from Figure 2 comprises the LTC6804 PCB, cell

balancing PCB, cutoff circuit, current sensor, and temperature sensor all pictured in Figure 3.

The user interface hardware consists exclusively of the Nextion 4.3” Touchscreen LCD. These

peripherals all communicate with the Arduino MEGA2560, which serves as the central

processing unit of the battery management system. The battery powers the Arduino through a

DC-DC converter. The Arduino provides power to the LCD, current sensor, and temperature

sensor through its 5V supply. It communicates with the LTC6804 using SPI and the LCD using

UART; the current sensor and temperature sensor provide analog voltages to pins A8 and A9 on

the Arduino. The Arduino also provides a digital (TTL) signal to the cutoff circuit to disable the

battery’s input and output using pin D26.

Figure 3: System diagram containing all components and subsystems after integrating with a

battery

The following chapter details the project planning, milestones, and costs.

13

Chapter 4. Project Planning

This chapter explains the planning process for the BMS development. First, a Gantt chart

showing the initial timeline predictions helps estimate how much time the project requires and

when to expect deliverables. Then, an updated Gantt chart illustrates the actual timeline of the

project and allows the comparison of expectations versus reality. Finally, Table VIII and IX

demonstrate the difference between the projected development cost and actual cost.

4.1 Timeline

The project spans approximately 11 months as demonstrated in the Gantt chart from EE460 in

Figure 4a below. The Project Plan phase consists mainly of researching a chosen topic and

submitting an outline of a possible project, as part of EE460. Time allocation must initially allow

at least two design, build, test iterations to optimize device performance. The first design

iteration involves lower level system design; the process of building a system from scratch

provides excellent learning opportunities absent from top level approaches. The second design

makes use of knowledge gained during the first iteration and considers the benefits of a top-

down approach. The expected time spent on a senior project varies from 180 – 230 hours per

student. The weekly time requirement generally varies from 4-6 hours throughout EE460,

EE461, and EE462. This approximation derives from a simple calculation: 180 hours divided

into three quarters, with 10 weeks each quarter, results in 6 hours per week not including

summer.

14

Figure 4a: Preliminary Gantt chart for programmable BMS design and documentation process.

EE461 and EE462 mainly include additional researching, designing, building, and evaluating the

design. Figures 4b and 4c on the following pages demonstrate the updated project timeline at

each stage of the development process. The initial predictions utilize the summer quarter gap

between EE461 and EE462 to provide additional time to complete development as needed.

However, as the COVID-19 global pandemic developed during the first and second phases of the

project, unforeseen circumstances continue to require constant reevaluation of the available time

for development. The loss of development time during summer increases the required weekly

time requirement to at least 6 hours during EE462. The project’s actual timeline in EE461 trails

the predicted timeline by approximately four weeks; part acquisition and unforeseen additional

steps, including circuit design and PCB assembly, require at least twice the initial allotted time.

15

Figure 4b: Gantt chart for programmable battery management system design and documentation

process from EE461. Green bars signify completion; red indicates the specified objective is off

track; yellow indicates work progressing.

Additionally, the Gantt chart in Figure 4c includes only one design iteration due to time

constraints. While building and evaluating two designs provides the best result, this requires two

complete designs to evaluate. Near the beginning of EE462, the project concentrates on

completing a single functioning system that accomplishes the requirements. The knowledge

gained from working with each subsystem increases the educational value of the project versus

an approach that incorporates an off the shelf BMS. Creating a complete system from scratch

that meets the minimum specifications provides a better foundation for future development and

improvements like those listed in the initial Gantt charts.

16

Figure 4c: Actual Gantt chart update near the end of EE462

Table VIII below lists major milestones in the project reporting process. Expected project

completion occurs approximately one month before the end of EE462 according to initial

estimates. Various setbacks throughout the course of the project delay project completion,

resulting in a final demonstration that includes various subsystems but fails to meet some

requirements.

TABLE VIII:

PROGRAMMABLE BATTERY MANAGEMENT SYSTEM DELIVERABLES

Delivery

Date
Deliverable Description

04/17/2020 EE 461 Design Review

05/29/2020 EE 461 Demonstration

06/12/2020 EE 461 report

09/15/2020 Project Status Update

12/02/2020 EE 462 Demonstration

12/04/2020 ABET Sr. Project Analysis

12/04/2020 EE 462 Report

17

4.2 Cost Estimation

Most costs associated with BMS production include obtaining the hardware (excluding labor).

High quality batteries and control circuitry demand higher prices but provide maximum safety

and benefit to the user and public. Development costs occur predominately in Spring 2020 and

extend to Fall 2020.

The total predicted cost for this project including labor should not exceed $4,870 as

demonstrated in Table IX below. The Gantt chart in Figure 4a and the calculation described

earlier provide the approximate time allocation. A fair hourly rate for a fourth-year engineering

intern in California averages $30 per hour and is the figure used to estimate labor costs.

Individual component costs may vary greatly from the initial prediction, but a balance of

conservative and exaggerated values provide an accurate overall cost estimation. For example,

the interface hardware may consist only of a $10 LCD touchscreen whereas the battery

management modules may include costly systems and fabrication of printed circuit boards.

Inexpensive resistors, capacitors, and most necessary passive components likely sum to less than

$20. Potential interface hardware components including potentiometer knobs and LCDs average

$10; a simple interface requires no more than ten components. The BMS also requires internal

modules like a cell balancing circuit, which should generally cost about $10. A basic BMS like

the one in Cheng [16] Figure 1 can be built using 10 of these modules or fewer. A

microcontroller contains built in modules and offers the ability to develop solutions using

software instead of additional hardware. Assembly of a complete system requires hardware

including wire, solder, battery connectors, batteries, and an enclosure; the cost estimation for

these stems from similar projects in previous courses.

TABLE IX: PREDICTED PARTS AND LABOR COSTS

 Price Qty Total

Labor $30/hr 150

hrs

$4500

Parts

Resistors, Capacitors, etc $20 1 $20

Interface Hardware $10 10 $100

Microcontroller $25 2 $50

Battery Management

Modules

$10 5 $50

Batteries $10 10 $100

Wires, Connectors $50 1 $50

Enclosure $50 1 $50

Project Cost $4870

The actual costs mostly line up with predictions, although some individual costs far exceed

predictions due to unforeseen development challenges. Table X below features a summary of the

18

true cost of parts and labor. The method of exaggerating some expenses and conservatively

estimating others results shows success; while the interface hardware cost approximately half the

initial prediction, passive components require over five times the expected capital. Initial

estimates assume a complete LTC6804 BMS costs approximately $200 to produce, and

additional modifications necessary to meet the requirements increase both development time and

parts cost. The cutoff circuitry explained in Chapter 5.3 allow the BMS to meet the current and

voltage requirements listed in Chapter 2, but it adds at least 20 hours of labor and $50 in

hardware. The Bill of Materials in Appendix C provides a complete list of the hardware prices.

The BOM indicates approximately $424 for the total price of the hardware required for a

complete PBMS. Development includes ordering additional parts in case prototypes break thus

increasing up front cost. In addition, the BOM quotes only a single PCB for both the LTC6804

Arduino BMS and the cell balancing PCB. This results in a lower unit cost than possible for a

single board; the true cost for the PCBs increases to approximately $400 total when factoring in

the number of boards ordered. The total sum for all development hardware equates to $866.

TABLE X: ACTUAL DEVELOPMENT COST BREAKDOWN

 Price Qty Total

Labor $30/hr 180

hrs

$5400

Parts

Batteries $2.75 40 $110

Res, Caps, FETs, etc $60 2 $120

LCD Touchscreen $60 1 $60

Microcontroller $15 1 $15

Sensors $10 2 $20

Battery Management Modules $25 3 $75

LTC6804 BMS PCB $26 5 $130

Cell Balance PCB $64 4 $256

Wires, Connectors $30 1 $30

Miscellaneous Supplies $10 5 $50

Project Cost $6266

Most of the increase in the cost of development relative to predictions stems from the labor

involved. Design modifications, complications, and other unrelated issues result in at least 30

hours of additional time dedication. This 20% increase raises the total cost of labor by $900 to

$5,400. The following chapter details the project design, construction, troubleshooting, and

evaluation process.

19

Chapter 5. Design, Build, and Evaluate

This chapter covers all completed steps of the design phase including battery design and

construction, BMS design, circuit assembly, and graphical interface design. Each section

includes evaluation plans for the subsystem, and the final section describes the plan for, and

results of, testing the BMS as a complete system.

5.1 Battery Construction

Figure 5: Spot welding one bank of 18650’s together with nickel strip (left) and welded battery

(right).

Construction begins with an appropriately sized battery in need of management. Batteries

intended for small electric vehicle use generally contain 500Wh or lower. This project uses a

36V 10S4P battery with a maximum capacity of 10Ah resulting in a 370Wh rating, which can

power a 500W electric bicycle motor. 10S4P indicates ten lithium battery cells in series and four

in parallel. The Samsung 25R 18650 lithium ion cells used for construction provide a relatively

low capacity, low cost option useful for the scope of this project. Each cell features a nominal

voltage rating of 3.6V, with a total range from 2.5V at 0% to 4.2V at 100% [14]. The cells can

each receive up to 4 amps of charging current and output up to 20 amps continuously, meaning

the pack can theoretically safely receive up to 16 amps and output up to 80 amps. The 2500mAh

cell capacity adds in parallel resulting in the 10Ah rating. Pure (99.5% or higher) nickel strips

measuring 0.2mm x 8mm provide low contact resistance and high current carrying capability

between cells. Spot welding the strips to the cells results in a reliable connection without

injecting dangerous amounts of heat into the cells during construction. Each button push on the

20

welder sends 2 pulses, 100 ms and 50 ms each, between the copper tips; the pulses include

hundreds of amps of current and quickly melt the nickel strip to the electrodes of the cells at the

contact points. Welding starts by joining cells in parallel before connecting them in series. Ten

sets of parallel banks, each containing four 18650s and measuring 3.50V during construction,

alternate polarity to create the required voltage as in Figure 5. The white ring indicates the top of

the battery cell (positive). All cells are tested for quality before connection; each cell selected for

use measures 3.50V + 5mV. “Dead” cells measure below 2.5V and reduce the reliability and

capacity of a pack [17][18]. Additionally, connecting unbalanced cells in parallel forces the

voltage to immediately equalize, driving large amounts of current from one cell to another. As

discussed previously, high charge/discharge rates lead to decreased battery longevity and may

cause fire due to excessive heat production. Figure 5 above shows the complete battery ready for

a management system. After soldering cell balancing wires to the individual cell banks, heat

shrink encapsulates the battery and exposed terminals thus preventing accidental shorts. All main

power connections from the battery utilize XT60 connectors for their high current capability (60

amps), protection against reverse polarity, and ease of swapping.

According to the specifications list in Chapter 2, the battery falls in the desired power range for

the PBMS. The design requires a battery that can supply up to 20 amps at a voltage between 11V

and 50V. Measurement across the terminals with a multimeter proves the output voltage of ~36V

nominally (34.8V at time of testing). A load test using the BK Precision 8540 150W DC

Electronic Load in constant resistance mode shows the battery safely provides at least 3 amps at

11 ohms, which approaches the power limit of the electronic load and proves the battery serves

the required purpose for this project.

5.2 Arduino LTC6804 BMS PCB

The PBMS design makes use of the common Linear Technologies LTC6804 battery

management system intended for automotive applications. Many experts, including Davide

Andrea, utilize the LTC6804 in lithium BMS designs for its expansive feature list, precision,

compatibility in daisy chains, and C++ library support from Analog Devices [4]. The inspiration

for this project builds on the “Arduino LTC6804 BMS” article written by Instructables.com user

David M. Caditz, which provides many opportunities for expansion [19]. The LTC6804 allows

up to twelve banks of parallel batteries to connect in series resulting in a maximum output

voltage 50.4V, which enables the device to meet the 1000W power requirement assuming a

maximum 20 amp current draw. The 6804 measures the voltage of each cell bank using a 16 bit

ADC and sends the values to the Arduino using either 2-wire isoSPI or 4-wire SPI up to 1 MHz.

The LTC6804 facilitates cell balancing by providing internal circuitry while also supporting

external balancing hardware. The specific part number for this project, LTC6804HG-2, includes

the “HG” to denote the higher temperature rating relative to the “IG”. The “2” distinguishes

between the LTC6804-1 (allows connecting multiple BMS in series for higher voltage packs)

and LTC6804-2 (allows connecting multiple BMS in parallel).

21

The Arduino LTC6804 BMS design by Caditz utilizes a shield approach to connect the BMS

with the microcontroller. It provides five general purpose input/output ports for external

temperature sensors, current sensors, and other peripherals. Filter networks made of resistors and

capacitors, suggested on the LTC6804 datasheet, attenuate high frequency noise during operation

[6]. Based on the Arduino Uno, Caditz’s design lacks the number of inputs and outputs necessary

to utilize both the BMS and user interface while allowing future expansion. An Arduino

MEGA2560 replaces the Uno due to the increased I/O capacity and shield compatibility.

Selected circuit diagram segments shown below in Figure 6 demonstrate the LTC6804 and

Arduino connections. The PBMS excludes the relay driver circuit (right) and instead uses pin

D26 (not pictured) to control the cutoff circuitry. The PCB designed by Caditz provides

advantages and disadvantages compared to designing a PCB from scratch. Starting with a

functioning BMS significantly reduces the required development time associated with board

layout, component selection, and debugging. However, the board includes connections and

circuitry not needed for this project, which increases fabrication cost and troubleshooting

difficulty. Modifications to the design necessary to fulfill the requirements, such as the cutoff

circuit in Section 5.3, also add unexpected development time.

22

Figure 6: Selected segments of Arduino LTC6804 BMS circuit diagram by Caditz demonstrate

connections between the Arduino and LTC6804 [19].

Caditz suggests Sunstone Circuits as the PCB manufacturer. Figure 7 on the following page

shows a snapshot from ViewMate with all layers of the PCB. Upon obtaining quotes from

competitors, Sunstone provides the best balance of quick turnaround, confidence, and cost. Other

PCB manufacturers advertise lower prices but require additional time for fabrication and

shipping. The proven history of producing a satisfactory BMS PCB according to the designer

distinguishes Sunstone as the best option. Due to the time sensitive nature of the project, faulty

PCBs due to manufacturing errors have significant potential to impact the project’s success. The

Gantt chart in Figure 4a lacks time allocation for delayed PCB acquisition.

23

Figure 7: ViewMate snapshot of PCB files designed by Caditz [19]

Budgetary constraints result in manual soldering for all components in this project. Although

paying a supplier to fabricate and populate the PCB with components reduces both turnaround

time and likelihood of soldering mistakes, the prohibitive cost forces manual assembly. The PCB

uses predominantly surface mount components, which complicate the assembly process but

decrease overall size relative to through-hole components. The LTC6804 features a 48 pin SSOP

package with leads spaced 0.5mm apart; John Gammel’s surface mount soldering tutorials

provide the methods necessary to solder similarly sized components [20]. Copper braid solder

wick helps to remove unintended solder bridges without overheating the sensitive components.

Until verifying the LTC6804 functions as intended, the PCB uses the fewest components

necessary as shown in Figure 8 below. The LTC6804 requires the battery voltage, V+, to set

internal reference voltages according to the block diagram on page 19 of the datasheet. For this

reason, construction of the cell balancing circuitry occurs before evaluating the 6804. The

LTC6804 also requires three bypass capacitors between Vref1, Vref2, Vreg, and ground. A 4.99k

pullup resistor between MISO and ground permits the device to communicate using SPI.

Connection of the ISOMD pin to the V- pin sets the device to use traditional 4-wire SPI instead

of 2-wire isoSPI [6], which filters out communication noise.

24

Figure 8: Partially populated Arduino BMS shield. The red circle contains an unused relay driver

circuit.

To confirm the LTC6804 BMS PCB helps the project meet the specifications in Chapter 2, it

must possess the ability to accurately measure and communicate the cell voltages to the Arduino.

The datasheet claims a cell measurement error of less than 1 mV at specified voltages. However,

according to Davide Andrea, the protection circuits may introduce a small voltage difference

between C0 and V-, significantly affecting the error between the reported “SOC” voltage and

actual string voltage [4]. Verification begins by measuring the voltage of the entire battery pack

connected to the BMS with a known reliable voltmeter. The voltage reading from the BMS

should agree within 100mV. Repeating this test for each bank of cells proves the device

functions as required. Next, verification includes measuring the BMS reaction speed to

overvoltage and undervoltage faults; cutoff must occur less than 1 second after meeting the

condition. The device also must balance the voltage of each cell bank; see Section 5.4.

After uploading code to the LTC6804, covered in section 5.8, expected behavior includes a

response from the chip indicating successful configuration of internal registers. The code then

sends the cell voltages to the LCD to display. Failure to establish communication results in

receiving 255 on the Arduino. Before debugging the code, a multimeter in continuity mode

assists in verifying hardware connections and ruling out any mishaps like solder bridges.

Connection between ISOMD and V– verifies the LTC6804’s configuration for 4-wire SPI mode.

25

Pins 45-48 (A0 – A3) connect to V- (ground) on the 6804 to set the device address to 0 in a daisy

chain. The datasheet requires connection of pins 36 and 37 to enable the software timer.

Measuring various reference voltages on the 6804 assists in ruling out other hardware issues.

VREG must read between 4.5V and 5.5V. The device generates reference voltages on pins 34

and 35 measuring 3.2V and 3V; it also outputs between 5.2V and 6.0V on the DRIVE pin.

Confirmation of all hardware connections and reference voltages indicates that any existing

errors likely stem from programming the device.

During initial construction, an unknown issue causes unintended current to flow from C2 to C1

and from C1 to ground when the BMS and battery are connected; after measuring with the

multimeter, only 104 ohms separates C1 from ground, and 66k ohms separates C2 from C1. This

creates a dangerous situation as uncontrolled current flow can damage a cell. A functioning PCB

has much higher isolation between cells, on the order of mega ohms. Disconnecting the cell

balancing PCB from the LTC6804 PCB demonstrates that the issue lies in the LTC6804 PCB;

after populating a new LTC6804 PCB with new components, the issue resolves and the device

can undergo safe evaluation. Possible causes of this problem include excessive heat during

soldering and failed components; further analysis is required to confirm the root cause and

address the potential design flaw.

A communication issue between the Arduino and LTC6804 initially stifles further progress. An

oscilloscope shows the Arduino sends some data over SPI but receives no response from the

LTC6804. Careful measurement with a multimeter confirms all pin connections with the

schematic, and reference voltages with the datasheet. Upon further inspection, the Arduino UNO

R3 and MEGA2560 use different pins for the default SPI communication. The SPI hardware

within the UNO defaults to pins 10, 11, 12, and 13, whereas the MEGA utilizes pins 50, 51, 52,

and 53. Figure 9 above demonstrates the necessary modification to use code and shield hardware

designed for the UNO on the MEGA. Additionally, the code sets pins 10-13 to high impedance

inputs to allow the signals to pass through. After correcting this issue, the device measures the

overall pack voltage (V+) approximately 0.5V below the true value, and it accurately measures

the voltage of cell banks 1 through 7; an unknown issue leads to inaccurate and fluctuating

values for cells 8, 9, and 10. Altering the configuration array solves related problems; the issue

likely stems from improper initialization of the LTC6804 ADC or related internal hardware (see

Section 5.8 for code discussion).

26

Figure 9: A wiring modification to the MEGA2560 solves the communication issue.

5.3 Charge/Discharge Cutoff Circuitry

Caditz’s design uses relays for cutoff switches to disconnect the battery from the load due to a

fault condition; a signal generated by the Arduino turns on a transistor that activates the relay.

However, relays capable of withstanding the required 50V and 20A specifications significantly

increase the cost and size of the device, requiring consideration of alternative cutoff circuits. This

project modifies the design by replacing the two charge/discharge relays with versatile, high

power MOSFETs to act as a high side switch. The circuit diagram in Figure 10 illustrates the

suggested circuit replacement, and the red circle in Figure 8 demonstrates the unused section of

Caditz’s PCB design. Figure 6 contains the obsolete relay driver circuit diagram; Arduino pin

D26 provides the cutoff signal to the optocoupler in the replacement circuit. Before construction,

LTSpice simulation of the circuit in Figure 10 verifies correct output toggling with minimal

power dissipation. The design requires two cutoff circuits; one circuit switches current that enters

the battery (OVP), and the other switches current that exits the battery (UVP, OCP,

overtemperature).

27

Figure 10: Proposed MOSFET-based cutoff circuit from LTSpice simulation.

The proposed replacement circuit utilizes the common 4N25 optocoupler to isolate the Arduino

and power FETs. The circuit requires both an N-type and P-type power FET to act as a high side

switch. The optocoupler requires at least 10mA from the Arduino to turn on the LED, which

turns on the N-type FET thus turning on the P-type FET and allowing the battery to connect with

the load. Zener diodes provide the 12V necessary to turn on the NMOS and limit the gate-source

voltage drop across the PMOS. Vishay’s SQM120P06 P-Channel MOSFET features high

voltage, current, and power tolerances required for use in automotive applications without

significant external heat sinks. Vishay claims the FET features an RDS(on) of 6.7 milliohms; the

maximum current limit (20A) and on resistance (.0067 Ω) limit the maximum power dissipation

to 2.68W using Ohm’s Law. The Vishay FET can handle up to 375W and features a junction-to-

ambient temperature resistance of 40 °C/W [21]. Under these assumptions, temperatures of the

FET remain safe under normal operating conditions with a maximum of approximately 110 °C

versus the specified maximum of 175 °C. The N-type FET experiences lower currents than the P-

type in this circuit; thus, the specifications of this FET carry less significance, and cost becomes

the primary factor in the component selection process. The RFP30N06LE enjoys widespread

usage in BMS for its cost to performance ratio. Additionally, the widely available Spice models

for these FETs simplify the design and simulation process.

28

Figure 11: Prototype of MOSFET based cutoff circuit (left) and final version (right).

Figure 11 depicts the functioning prototype cutoff circuit before implementation with the

LTC6804. Scrap prototyping board provides a safe and somewhat reliable backbone for testing

compared to breadboards. Simple tests show the board functions as expected by simulations.

Confirming functionality of the prototype permits construction of the final version of the cutoff

circuit used in this project as shown in Figure 11. Evaluating the cutoff circuit includes verifying

the circuit’s capability to quickly disconnect the battery from the load based on an input received

from the Arduino. The device outputs zero volts when the Arduino pulls the optocoupler input to

ground, and it outputs the battery voltage (34.8V) in the presence of the 5V signal. Verification

requires testing for the entire specified voltage range from 11V to 50V. The device cannot

introduce significant voltage drop between the battery and the load; the drop across the FET

measures less than 10mV at 1A. Finally, the time between receiving a fault signal and turning off

the voltage must span less than 0.5 seconds while coordinating with the rest of the system to

meet the 1 second timing specification in Chapter 2.

Initial attempts at evaluating the circuit fail to produce the expected results after integrating with

the rest of the system. After addressing an issue with insufficient current driving the optocoupler,

the circuit performs as expected. The initial design uses a 4.7k Ω resistor between the Arduino

digital pin and the input to the optocoupler; this provides less than the 10mA required to turn on

the LED, but the device appears to function in simulation and with an external power supply.

Replacing the 4.7k Ω resistor with a 220 Ω fixes the issue and allows the circuit to perform as

expected with the Arduino. The next steps include thorough evaluation of the cutoff circuit to

verify it acts as a safe replacement for the relays. If the circuit fails to meet the specifications,

29

future design improvements can likely address any issues. For example, the SQM120P06

features poor compatibility with the chosen prototype board because it requires surface mount

soldering, resulting in poor connection quality between the FET and circuit output. Future work

also involves designing a dedicated PCB for this section of the BMS to safely handle the high

current, increase volumetric efficiency, and improve connection quality with other components

of the BMS.

5.4 Cell Balancing

As mentioned in the specifications list in Chapter 2, the BMS must feature passive cell

balancing. The LTC6804 offers multiple options for balancing; the user may utilize the FETs

internal to the IC or provide their own external circuitry. The internal FETs limit the balancing

current to milliamps, and the external circuits allow the user to decide the balancing current as

needed. Figure 12 illustrates the two options from the LTC6804 datasheet.

Figure 12: Cell balancing options offered by the LTC6804 [6].

While the simple method using internal discharge circuitry shows potential, the relative lack of

available information highlights the attraction of the external method. Caditz provides an

additional PCB that stacks vertically with the LCT6804 Arduino BMS PCB. While this

facilitates connection to the Arduino, it complicates troubleshooting, because it covers the

LTC6804 Arduino BMS entirely. PCB fabrication also adds significant production cost to the

project. Multiple design paths emerge from this tradeoff, and they are summarized in Table XI

along with their weights for each aspect of the development process and score in each section.

Option 1 involves ordering and using the PCB designed by Caditz. Option 2 uses the same

components as Option 1 but saves money by constructing the circuit on prototyping board

30

instead of a custom PCB. Option 3 includes an unknown amount of researching the internal cell

balancing within the LTC6804 and constructing the required additional circuitry.

TABLE XI: CELL BALANCING DESIGN TRADEOFF MATRIX

Initially, the design tradeoff matrix suggests Option 2 over the others due to misjudging the

complexity and time requirement. Option 3 carries excessive uncertainty and limits the device’s

capabilities. After attempting Option 2, it fails to meet expectations; issues related to soldering

small components and ensuring safe connections prevent the idea from succeeding. Thus, the

design path changes to incorporate Option 1 in the final design. The cell balancing components

electrically connect to the LTC6804 in parallel with the cell filtering networks as shown in

Figure 13. Since the design uses fewer than the maximum 12 cell banks in series, the top two cell

pins of the LTC6804 (C11 and C12) connect to the V+ pin for proper functionality. Both Options

1 and 2 utilize the concept shown in Figure 36 from the LTC6804 datasheet (found in Figure 12

above). When the device detects an imbalance in cell voltage, the LTC6804 signals the FETs to

drain current from the overcharged cells through the resistors. The FETs in this design

(BSS308PE) permit up to two amps of balancing current; however, the resistor used (16 ohms)

limits the current to approximately 250mA. This exceeds the capabilities of the internal circuits

by a factor of 5.

31

Figure 13: LTC6804 cell balancing circuit diagram. The reference designations differ from those

in Figure 14.

This project makes two modifications to Caditz’ balancing PCB. First, the programmable BMS

excludes the LEDs that indicate when each cell’s balancing MOSFET conducts. The LEDs

consume power and provide an additional point of failure. Although the cell balance PCB stacks

vertically on the LTC6804 BMS PCB using 2.54 mm headers, this prevents access to the pins of

the LTC6804 and significantly complicates troubleshooting during the design process. Thus, the

alternative connection method in Figure 14 using jumper wires provides the best method to meet

present needs. The final implementation benefits from the compact design achieved using the

headers. The connections between the battery voltage banks and LTC6804 BMS require extreme

attention. Reversing the polarity destroys the costly LTC6804. The design requires modification

to include a keyed connector that prohibits reverse polarity.

32

Figure 14: Cell balancing PCB designed by Caditz; this implementation eliminates the LEDs and

uses minimal components.

The specification list requires the BMS to balance the cells within 2-3% of each other. With cell

voltages ranging from 2.5 – 4.2V, this results in acceptable measurement error up to 75 – 126

mV. To confirm the BMS balances the cells, at least one cell bank must read a different voltage

than the others. To achieve this, the battery initially reads around 20-50% of the full capacity.

Then, additional current applied to only one cell bank increases the voltage of that bank relative

to the others. After connecting the entire battery to a charger, the device charges the cells equally

until any one bank reaches a predetermined voltage set within the LTC6804. Once detecting this

voltage, the LTC6804 diverts current from the overcharged cell through the 16 ohm resistors

until the cells all read equal voltage. The cells should all read the same voltage, within 126 mV,

once the pack reaches full capacity to meet the specified requirements. After establishing

communication between the LTC6804 and the Arduino, the display must show accurate cell

voltages for all banks before evaluating the cell balancing functionality. If the device falsely

detects one cell bank much lower than the others, it attempts to balance the pack according to the

lowest measured value. The measurements for cells 8, 9, and 10 currently fluctuate and prevent

evaluation of the cell balancing feature.

5.5 Current Sensor

The specifications in Chapter 2 demand current measurement up to at least 20 amps. The

ACS712 module, based on the Hall effect, supports up to 30 amps in either direction and

promises simple integration with the Arduino microcontroller [22]. The current sensor detects

the current of the positive wire from the battery while in series with the load/charger. The

ACS712 datasheet specifies a measurement resolution of 66 mV/A and 1.2 mΩ conductor

resistance. XT60 connectors facilitate removal of the sensor during prototyping, if necessary.

33

The XT60 connectors use 14 AWG wire; however, the current sensor input requires a smaller

diameter despite supporting up to 30 amps. For this reason, soldering the wires directly to the

PCB provides the best connection. Containing only 3 pins, few hiccups arise while integrating

the current sensor with the Arduino. The sensor requires a 5V and ground connection from the

Arduino; it outputs an analog voltage to the Arduino on pin A8. As a widely used device, an

internet search provides countless examples of implementation. The current sensing circuit’s

small dimensions allow versatility in its location within the BMS. Figure 15 features the current

sensor with the battery connectors and wires to the Arduino.

Figure 15: Current sensor based on ACS712 IC.

A library built for the ACS712 by GitHub user Ruslan Koptiev facilitates incorporation of the

module with the Arduino [23]. Utilization of the library only requires the sensor model number

to set the input sensitivity. The library contains functions to automatically calibrate the sensor,

measure AC or DC current, and set the zero point of the sensor. The Arduino calibrates the

sensor on startup and measures the current during each loop. Recalibration occurs when the

output is disabled, as calibration requires zero current flow through the ACS712. After

measurement, the Arduino stores the value and displays it on the Nextion 4.3” LCD.

The datasheet for the ACS712 claims 1.5% measurement error from -30A to 30A at 66mV/A

sensitivity for the 30 amp model (x30A). Verification of the current sensor’s capabilities requires

measuring the current under different loads and comparing the sensor’s measurement to the real

value. The test setup includes the battery, Arduino, current sensor, and load. USB noise forces

the Arduino to use two spare 18650 cells in series as a low noise, isolated power supply. While

unable to test the device at the maximum 36V and 30A, the BK Precision 8540 Electronic Load

features a maximum power sink of 150W, permitting verification up to 3 amps safely at the

nominal voltage. The device permits the user to adjust the resistance and displays the current

absorbed by the load with 1mA precision. Comparing the measured value from the sensor with

the reading on the BK Precision 8540 indicates the sensor features higher error than expected.

The measurement constantly fluctuates despite the code averaging many samples. The results in

34

Table XII summarize the device’s capabilities in this implementation. The results indicate higher

uncertainty at lower current values than higher values, with a minimum measurement error of

4% versus the claimed 1.5%. With this accuracy, the device succeeds in meeting the

specification of 1A accuracy while including room for improvement. At full load (20A), 5%

error converts to a margin of 1A, an acceptable error for a battery measurement device in this

operating range [8]. The measured on resistance of ~1 milliohm indicates a maximum of 0.5W

dissipation at full load, helping the device remain under 5W total consumption.

TABLE XII: MEASURED CURRENT SENSOR RESULTS VS ACTUAL CURRENT

READING FOR VALUES UP TO 3 AMPS AT 35V

Actual Current Value (A) Current Sensor Reading (A) % Error

0.00 -0.04 + 0.06 -

0.50 0.5 + 0.03 + 6%

1.00 1.01 + 0.03 + 4%

2.00 2.05 + 0.04 + 4.5 %

3.00 3.10 + 0.03 + 4.3%

The root cause of the discrepancy between the observed and expected accuracy lies in the

combination of the low sensor sensitivity and the low resolution ADC. At 66mV/A, the

maximum voltage output from the sensor relative to the baseline is 66mV/A * 30A = 1.98V. For

the Arduino’s 10 bit ADC, this corresponds to approximately 2mV per bit. While the system

detects these small changes, noise can lead to significant error in the reported measurement. The

accuracy may also stem from poor calibration or Arduino ADC instability. Arduinos using the

5V power from USB experience noise which may cause issues with the reference voltage. A test

replaces the USB power with two 18650s to eliminate noise and provide a consistent, high-

power supply; however, the current reading shows little improvement. To improve resolution,

precision, and volumetric efficiency, future designs can incorporate a low resistance shunt

resistor on the cutoff circuit PCB and measure the voltage drop using a precision ADC.

5.6 Temperature Sensor

The PBMS design allows incorporation of multiple temperature sensors. The low cost MCP9700

thermistor pictured in Figure 16 provides a simple and inexpensive method of confirming this

functionality. The sensor features only 3 pins; +5V, ground, and an analog voltage for the

Arduino. Implementation in the software requires simply reading the analog pin value and

converting the ADC measurement to the corresponding temperature, as demonstrated in the code

example below. The voltage generated by the temperature sensor increases by 10mV for each

degree Celsius [24].

35

float T;

int tempPin = A9;

void loop () {

 T = (analogRead(tempPin)*5./1024. - 0.5) * 100.;

};

Figure 16: MCP9700-E/TO temperature sensor and cable.

The attached wires allow a maximum distance of 12 inches from the Arduino, providing

sufficient length to measure any location of the battery. The sensor features a measurement

accuracy of ± 4°C from 0°C to +70°C when placed directly against a battery cell [24]. Evaluation

includes comparing the measured temperature of the cell by the MCP9700 to a reading by a

device with verified accuracy. With a relative lack of equipment at disposal, a multimeter with

thermocouple provides the best option for the reference temperature measurement. To ensure

equal temperature of both sensors, they are suspended in warm water while taking care not to

short the leads of the MCP9700 in the water. The test then compares the measurement from the

thermocouple with the values generated by the sensor before and after ADC conversion. The

measured voltage from the middle pin of the MCP9700 converts to temperature using the

10mV/°C equation from the datasheet. The code snippet above generates the temperature after

ADC conversion. Table XIII below illustrates the results and relative error for each

measurement.

36

Table XIII: MCP9700 characterization results. All measurements listed in degrees Celsius.

Actual tests show accuracy to approximately 2 degrees Celsius using the voltage from the sensor,

and 2 - 5 degrees of fluctuation after ADC conversion. The data directly from the sensor shows a

reasonably linear response as in Figure 17, but the ADC conversion introduces nonlinearity.

Despite these issues, the temperature sensor meets the + 5 °C specification in Chapter 2. After

characterizing the sensor, additional Arduino code takes 25 temperature measurements and

reports the average result. Averaging greatly improves accuracy of display value; now, the

measurement from the ADC indicates agreement within 1-2 degrees. The nonlinearity introduced

by the ADC likely stems from noise from the USB power supply influencing the ADC reference

voltage AREF. The measured value using USB power reads 4.8V instead of the require 5.0V.

37

Figure 17: MCP9700 Characterization results. Linearity of sensor voltage (top) vs linearity after

ADC conversion (bottom).

Although the temperature sensors meet the requirements, the design leaves room for

improvement. The next step incorporates the temperature sensors with different 3-pin connectors

on the BMS PCB to improve connection quality. The connectors from Caditz’s design (TE/APM

5-103634-2) fit together loosely and fail to make consistent contact. The MCP9700 datasheet

also includes a calibration method for + 0.5C accuracy for further enhancements to the PBMS

temperature measurement accuracy (see AN1001 [25]).

5.7 Graphical User Interface

The requirements of the project include a simple user interface that provides direct access to the

BMS limits. The Nextion Touchscreen LCD allows fast and simple prototyping of a user-

friendly interface; the manufacturer provides software called Nextion Editor which significantly

decreases complexity. The editor includes quick methods to place pages, buttons, and values.

The picture used as the background for each page must match the screen’s resolution (480 x 272

pixels). Each picture starts as shapes in Microsoft PowerPoint, and Microsoft Paint permits

20 30 40 50 60 70 80

20

30

40

50

60

70

80

Thermocouple Temperature Measurement (°C)C
a

lc
u

la
te

d
 T

em
p

 f
ro

m
 S

en
so

r

V
o

lt
a

g
e

(°
C

)

MCP9700 Accuracy Characterization

20 30 40 50 60 70 80

20

30

40

50

60

70

80

Thermocouple Temperature Measurement (°C)

C
a

lc
u

la
te

d
 T

em
p

 f
ro

m
 A

D
C

M
ea

su
re

m
en

t
(°

C
)

MCP9700 Accuracy Characterization

38

saving the image in the correct resolution. Placing some of the static objects in the background

reduces the number of objects stored by the display and simplifies the code. The Arduino easily

controls these objects through serial communications (UART) and preset commands. For

example, to change the value of the “Output Voltage” monitor, the Arduino sends the command

“Vout.txt=” before sending the output voltage as a string. The Nextion display features poor

support for floating point numbers; the simplest method converts floats in Arduino to strings

before sending to the LCD to display. Likewise, the user sends signals to the Arduino by tapping

the screen. Buttons created in the Nextion editor contain a method of sending string objects over

the serial port after detecting a touch. The Arduino waits for any user input and determines the

next action by comparing the received string with a list of expected commands. After designing

the GUI in the editor, an SD card transfers the code from the computer to the LCD. The display

must connect to a 5V source that supplies at least 500mA during an SD update; the computer’s

USB port lacks the current necessary to power the screen and Arduino during this update.

The graphical interface features two sections; the first page shows battery measurements and

characteristics, while the second allows the user to change the operating limits. Depicted in

Figure 18 below, page one of the PBMS features measurements of the battery pack’s output

voltage, output current, pack temperature, number of cycles, and state of charge (SOC). It also

indicates the status of the output with a colored indicator and provides a reset button for the user

if the BMS encounters a fault. The current implementation uses the simple SOC estimation based

on the open circuit voltage described in Chapter 1. The number of cycles does not currently

reflect the actual number of battery cycles; this feature requires additional programming after

verifying the accuracy of the voltage measurement from the LTC6804. Both page one and page

two display the real time cell voltage measurements (C1 – C10). If the user presses the green

“Edit Mode” button at the bottom of the GUI, the LCD changes to display page two, seen in

Figure 19. Indicators for the presence of each type of fault event can provide useful information

to the battery operator and warrant inclusion in future versions.

Page two provides the user access to the maximum pack voltage, minimum pack voltage,

maximum output current, and maximum pack temperature. The user changes the values by

tapping either the “-“ or “+” buttons to decrement/increment the value. The voltage and current

values change by 0.1 V or A for each tap. The maximum temperature in memory changes 1

degree Celsius for each button press, although the MCP9700 sensor used in this iteration only

provides ± 4°C accuracy. The user must set the maximum temperature to 4°C below the actual

maximum allowable temperature. The corresponding values stored in the Arduino change

immediately as the user interacts with the device. When the user finishes changing the values,

tapping “Monitor” returns the user to page one.

39

Figure 18: Page one (“Monitor”) of PBMS graphical interface.

Figure 19: Page two (“Edit Mode”) of PBMS graphical interface.

5.8 Arduino Code

The Elegoo MEGA2560 (Arduino) provides the central processing unit of the programmable

battery management system. The peripherals, including the LTC6804, LCD, and sensors, act as

minion devices communicating with the controller. While nonfunctional, Appendix B includes

the complete Arduino code used in development. The program builds from the code provided by

Caditz in the Instructables article to incorporate this design’s modifications including the unique

40

cutoff method, temperature sensor, current sensor, and touchscreen based user interface. The

flowchart in Figure 20 illustrates the theory behind the BMS operation. Each loop includes

monitoring each subsystem and updating stored values as needed. The program compares the

measured values with the stored limits and sends a signal to the cutoff circuit if necessary. The

device then waits for the user’s input before continuing operation.

Figure 20: Top level flowchart of PBMS V1.0 software.

One of the advantages gained by the programmable battery management system includes the

user’s ability to adjust the operating limits during operation. If the user reaches the lower limit of

the pack voltage, the software permits the user to lower the limit and continue operation.

Comparable battery management systems disable the output until the user charges the battery

voltage to the minimum value. However, a software bug may reset the user’s selection if they

press the “reset” button after changing a value. In order to properly change the value in storage,

41

the user must remove the condition causing the fault before pressing reset; then, the value

entered by the user serves as the new limit until pushing the “reset” button again. Future

refinements to software include allowing the user to set a default value at the beginning of

operation and storing changes without requiring the user to re-enter the value after resetting the

output. This also enables the user to continue battery operation without removing the fault

condition.

The code contains functions to measure the pack temperature, measure the output current, and

communicate with the LCD. The ACS712 library contains all functions necessary to use the

current sensor. The temperature sensor, also based on an analog voltage measurement, utilizes

similar functions. Both the current and temperature measurements include averaging of multiple

readings to reduce measurement error. The code to communicate with the LCD simply checks

for user inputs by waiting for an indication through the serial port, and it updates objects on the

display by sending the values back though UART.

Linear Technologies (LT) provides multiple libraries to facilitate designs utilizing the LTC6804.

The code uses “Linduino”, “LT_SPI”, and “LTC68042” to reduce the required software

development. The first two simplify communication setup between the Arduino and LTC6804

BMS. Specifically, they allow the program to utilize SPI write and read functions with the

LTC6804. The IC’s library contains functions that initialize the BMS, begin specific processes

within the BMS like ADC conversion, and force the IC to “wake up” or “sleep”. These included

functions save time by automatically generating the bytes that configure the chip’s internal

registers. They also facilitate interpretation of the PEC (packet error code), which communicates

the BMS error status. Additional functions provide access to features such as the LTC6804’s

GPIO pins, but the PBMS ignores these in the current design. The LTC6804 datasheet includes

extensive explanation of utilizing multiple LTC6804 chips with one another. The PBMS can

expand to make use of this capability in future applications as the design scales to larger

batteries.

After solving communication issues, the code fails to configure the LTC6804 to measure all 10

cell voltages accurately. At first, the device only reports the values of the first three cell banks;

further research reveals errors in the configuration array sent to the device using Caditz’ code for

this implementation. The initialization function configures the LTC6804 using the CFGRx[]

arrays. CFGR0 bits 3-7 initialize the LTC6804 GPIO pins (unused); bit 2 indicates use of the

WDT; bit 1 is a “don’t-care”; bit 0 configures the ADC operating mode. The other registers set

over/undervoltage limits (CFGR1-3) and dictate which cells may discharge for balancing

(CFGR4-5). A presentation by GitHub user Ayush Agrawal assists in setting these registers [26].

After altering the configuration array to exclude the GPIO and UVP/OVP features, the device

reports cell voltages C1 through C7 within a few mV of the true value; C8 through C10 fluctuate

and do not represent the actual voltage of that cell bank. The next steps include closer inspection

of the WDT and ADC initialization (CFGR0[2] and CFGR0[0]) and consultation with the

datasheet to determine the proper configuration data.

42

5.9 Enclosure

Although this project lacks an enclosure during the development phase, a case facilitates

eventual integration with a battery for regular usage. Table XIII below lists the dimensions of

each component in preparation of enclosure design for a final product. The current design fails to

meet the specification of 4”x4”x1” due to the connection methods during troubleshooting. Fully

integrated as a final product, the estimated dimensions measure 0.75” deep by 3” wide by 5”

long using the measurements from Table XIV. A new shield containing all supporting circuitry,

including the BMS, cell balancing hardware, cutoff circuitry, and peripheral interfacing allows a

depth of approximately 0.7”, since the thickest component is the BMS PCB. Integrating the

microcontroller onto the same PCB as the other electronics permits a total depth under the

specified 1”. Additionally, the LCD used in prototyping features an excessively large size for the

function it provides. A screen measuring closer to 2” by 3” accomplishes the same task while

saving significant space. This product adds 11.25 cubic inches of volume to the battery’s 69.3,

which equates to an increase of 16%. At smaller scales, the size of the BMS becomes a

significant factor; however, the added volume is negligible in larger implementations as the

product scales up. Commercial systems with similar capabilities measure between 5 and 114

cubic inches in volume [9][5]. For the battery used in this project, this correlates to a volume

increase of 7.2% to 164%. The smaller BMS from Bestech features no screen nor simple method

of adjusting limits. The larger system from Orion generally fits in stationary systems due to the

enormous volume. Based on other offerings in the industry, the potential size of the final BMS

meets the requirement of adding an insignificant volume to the battery while adding valuable

features.

TABLE XIV:

SUBSYSTEM AND COMPONENT DIMENSIONS

 W L D

Battery Pack 3.15” 8.0” 2.75”

Microcontroller 2.11” 4.26” 0.50”

LTC6804 BMS PCB 2.11” 2.7” 0.68”

Cell Balance PCB 2.11” 2.35” 0.22”

Cutoff Circuit 1.63” 3.1” 0.5”

Nextion LCD 2.92” 4.73” 0.48”

Current Sensor 0.52” 1.25” 0.56”

43

5.10 Design Evaluation

After building and evaluating each subsystem independently, the next step involves

incorporating all components into a complete system. Figure 21 encompasses the first prototype

programmable battery management system with all subsystems integrated. The first prototype

system uses the Arduino’s USB port for power; final implementation requires a DC-DC

converter between the battery and the Arduino’s VIN pin. A converter like the 3796 from Pololu

Corporation outputs a constant 12V up to 600mA with an input ranging anywhere from 12.2V to

50V, allowing the system to function using power from the battery pack itself [27]. After finding

the USB supplies insufficient power for the entire system, two 18650 cells in series (not

pictured) replace the USB power supply and provide a noiseless source for troubleshooting.

Figure 21: Programmable Battery Management System Version 1.0 with all subsystems integrated

Despite many of the subsystems functioning as intended, the final device fails to perform some

of the required functions. The code provided by Caditz does not function in this implementation;

the wiring modification in Section 5.2 and the configuration array change in Section 5.8 correct

the issues and allow the device to communicate. After addressing these, additional hardware and

software problems stagnate progress. The unintentional current flow, mentioned in Section 5.2,

44

poses a potential safety issue as the root cause remains unknown. Measurement errors likely

stem from incorrect configuration of the LTC6804. In its current form, the LTC6804 provides a

voltage measurement of the pack approximately 0.5V below its true value, and it accurately

reports the voltages of cells 1 through 7. As altering the configuration array resolves similar

issues, the next step includes further inspection of the values in these registers to verify proper

initialization. The failure to produce accurate cell measurements inhibits further progress and

evaluation and remains the top priority in development.

The cutoff circuit initially performs as predicted by simulation; it achieves the goal of quickly

disconnecting the battery from the BMS power input/output with a low voltage drop and power

consumption. This design adds immense capability relative to the relay based approach while

reducing cost. It also features component flexibility if future design expansions require different

limits. Issues with both the prototype and final version reveal the design flaw documented in

Section 5.3; addressing this flaw appears to allow the circuit to function as expected with the

Arduino. While the current sensor offers an inexpensive and simple means of prototyping, the

design leaves room for improvement and requires additional research regarding methods of

accurately measuring current. After integrating the current sensor with the other subsystems, the

current measurement appears to fluctuate approximately 100mA and suffers from poor

sensitivity. One method to possible address this problem inserts a current calibration function in

the code with a button on the GUI. Alternative current measurement methods may provide

increased reliability without the need for constant calibration by the user in future design

iterations. One current measurement concept utilizes a precision ADC measurement of the

voltage drop across a low resistance shunt resistor. The temperature sensor provides accurate

results, but a lack of proper testing equipment prevents thorough evaluation. The sensor meets

the requirements of this project and can detect when pack temperature exceeds safe values, but

the measurement contains room to improve. Future opportunities for design improvement begin

by taking advantage of the calibration method provided by Microchip to achieve +0.5C

precision.

Preliminary tests indicate the device successfully measures and reports the output current and

operating temperature within the required margins from Chapter 2; the voltage measurements fail

by approximately 400mV due to a measurement error from the LTC6804. Discovering the source

of issues late in the development cycle limits the extent of system integration and evaluation

currently possible. Before evaluating the complete system, the BMS must report accurate voltage

measurements for C8 – C10; this also enables verification of the cell balancing function. After

resolving all issues and verifying the success of each subsystem, complete system evaluation

indicates whether the PBMS design achieves the requirements from Table III. Table XV below

lists the steps to evaluate the system after completion.

45

TABLE XV: EVALUATION PLAN FOR PBMS V1.0

Requirement Test Result

Measures pack and cell

voltages to 100mV accuracy

Compare the reported values from

the LCD to the multimeter values

for all voltages from 11.1V to

50.4V

The system measures the pack

voltage with ~0.5V error. The

BMS only measures cells 1

through 7 within 100mV

Measures current to 1A

accuracy

Compare reported values on LCD

to multimeter values for all

currents from 1A to 20A

The PBMS provides

approximately 100mA of accuracy

for all measured currents above 1A

(up to 3A possible on test

platform)

Measures temperature to 5C

accuracy

Compared reported values on

LCD to thermocouple values for

temperatures from 0 C to 70 C

The measured values agree within

3 - 4 C

Balances cell voltages within

2-3%

Observe cell voltages throughout

multiple charge/discharge cycles

Currently impossible; to be

completed

Responds to OVP, UVP,

OCP, OTP faults in less than

1 second

Verify each fault triggers at the

specified value; measure the time

between initiating a fault and

disconnecting battery output

The device initiates an output

cutoff within approximately

250ms for each type of fault

Reports SOC and number of

cycles

Observe the values on LCD;

verify accuracy (if possible)

The system provides the SOC but

lacks the number of cycles.

Consumes less than 5W Measure power consumption of

all subsystems with various loads

(0A up to 20A)

Some subsystems approach this

limit; verification requires further

evaluation

Small volume Measure dimensions of final

system

The system fails due to the

experimental setup prioritizing

ease of troubleshooting over

compactness

Fast setup Remove the system from the

current battery and time the setup

process on a new battery

The system fails due to inefficient

connection methods between the

battery, BMS PCB, and

subsystems

Fast settings change Measure the required time to

change the operating limits using

the GUI

The device allows changes within

seconds. A reset bug erases user

settings when recovering from a

fault.

Low cost prototype Estimate the cost of development

for a single PBMS

The prototype costs approximately

$420 as explained in Section 4.2

46

With safety a priority, steps to evaluate the PBMS include monitoring the output voltage under

various loads and conditions. The system must quickly respond to events that warrant battery

cutoff; full evaluation involves measuring the reaction time in each scenario. Overcurrent,

overvoltage, undervoltage, and overtemperature events should all measure approximately the

same time (under 1 second) from initiating a fault event to turning off the battery’s input/output

for all expected conditions. Additionally, all cell voltages should remain within approximately

100mV throughout full charge and discharge cycles. Further evaluation includes measuring the

power consumption of the device during operation. Initial tests estimate less than 5W of power

consumption by the entire system. Using a regulated 12V supply, the Arduino and LCD together

draw 330mA resulting in 4W. The other peripherals, including the LTC6804, current sensor,

temperature sensor, and cutoff circuit, draw relatively small amounts of current (less than

100mA total) that do not significantly impact overall power consumption. While current

estimates predict the system meets specifications, the system includes room to improve

efficiency in all subsystems.

The current state of the BMS serves as a proof of concept that allows many options for future

development. The device allows programmability and interfacing that other systems lack,

accomplishing the main objective of the design. Additional software can increase the number of

features of the PBMS, like an adjustable balance threshold voltage or a “sleep” mode for the

LCD to improve efficiency. The design permits the comparison of multiple SOC calculation

methods to select the best option, such as those provided by Xiong et al. [28] and Wilkinson

[29]. Other possible additions include graphs and plots that facilitate battery monitoring and offer

useful information to the user. The Nextion display offers excellent potential for expansion

during development; GUI development requires no prior experience, and the Nextion Editor

facilitates troubleshooting. However, the screen contains excessive capabilities for the function it

provides to the project; to meet the price needs of a consumer, the design must port the GUI from

the Nextion display to a smaller, simpler, and lower cost display. An alternative method includes

developing an application for a cellphone; this reduces the size of the device and cost to

manufacture over time but increases the required investment up front.

Future designs may reconsider utilizing the LTC6804, as search engine results indicate many

cases of communication issues [4]. While it provides useful functionality by measuring and

balancing cell voltages, the unneeded features, excessive price, and communication problems

encourage research into alternative methods. For example, a standalone ADC can measure all

cell voltages, costs less to manufacture, and easily integrates with the Arduino, but they

generally do not contain the ability to balance the cells or trigger an over/undervoltage fault.

These functions require additional systems in hardware or software. Future versions of the

PBMS also incorporate all electronics on a single PCB; this simplifies and strengthens the

connections while increasing safety and reducing volume. This also permits higher current

specifications than listed in Chapter 2 and reduces the number of possible points of failure. Many

47

of the included components feature higher limits than required, but other bottlenecks, like cable

diameter and connection quality, limit the maximum safe current. The next and final chapter

wraps up thoughts about the PBMS design and development.

48

Chapter 6. Conclusions

Currently in the troubleshooting phase, the Programmable Battery Management System remains

incomplete. Several factors inhibit progress as expected, stemming from unanticipated design

modifications to a global pandemic. Due to the number of subsystems incorporated in the PBMS

and extra care required when working with lithium batteries, excessive fabrication provides a

significant time sink in this project that ultimately prevents completion. For example,

constructing the battery from bare cells adds unnecessary development time to the project; an off

the shelf battery can provide the same utility for the purposes of this project with slight

modification. Additionally, any setback in assembly delays evaluation and integration with the

rest of the system. Manual soldering of all components leaves many opportunities for mistakes

costing both time and money. Weeks spent on a failed approach add value to the project from the

knowledge gained but hinder progress toward a fully functioning system. Failure to consider the

connections between all subsystems before beginning to build the system introduces significant

slow downs during development; thus, future designs of all types require closer attention to

connectors early in the design phase.

In general, developing a successful programmable battery management system requires

significantly more time investment than anticipated. Designing a BMS using multiple

subsystems seems simple initially, but the intricacies of each subsystem hinder progress.

Struggling for a long period with one system forces attention to time management such that no

one part of the project gets neglected. The current design succeeds in its main objective despite

failing to meet some requirements; it adds the programmable functionality to a BMS but requires

additional troubleshooting and refinement. However, each success and failure provide valuable

learning opportunities that ultimately benefit both the project and designer eventually. As an

electric bicycle enthusiast, attempting to construct a PBMS offers invaluable insight into the field

of lithium battery management systems. The field features a seemingly infinite number of rabbit-

holes to explore from advanced calculation methods for evaluating the remaining charge of a cell

to methods of reducing noise in ADC measurements on the Arduino. The new experiences from

this project include ordering a custom PCB from the Gerber files, developing a graphical

interface using a touchscreen display, and exposure to the vast field of power electronics design,

which is a new interest and potential career focus. This project lays an excellent foundation for

future BMS development and expansion by providing a platform open to refinement from all

directions. After addressing issues with the LTC6804 cell measurements, opportunities for

improvement exist from changing the method of current measurement to incorporating all

components on one PCB, adding new features in software, and designing an enclosure that

houses a finished system.

49

References

[1] Occupational Safety and Health Administration (OSHA), “Preventing Fire and/or Explosion

Injury from Small and Wearable Lithium Battery Powered Devices” Safety and Health

Information Bulletin 2019. Available: https://www.osha.gov/dts/shib/shib011819.html

[2] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, “Thermal Runaway Caused Fire

and Explosion of Lithium Ion Battery,” Journal of Power Sources, vol. 208, no. 24, pp. 210–

224, 2012.

[3] Buchmann, Isidor, “Battery University,” Cadex Electronics Inc. 2020. Available:

https://batteryuniversity.com/

[4] D. Andrea, Battery management systems for large lithium battery packs. Norwood: Artech

House Publishers, 2010. See also: http://liionbms.com

[5] BesTech Power, Programmable Battery Management System Product Description, PN HCX-

D270. [Accessed 16 Mar. 2020] Available:

http://www.bestechpower.com/communicationbms/BMS-D270.html

[6] Analog Devices, “Multicell Battery Stack Monitor,” LTC6804 Datasheet, Rev. B, June 2019.

[Datasheet] Available: https://www.analog.com/media/en/technical-documentation/data-

sheets/LTC6802-1.pdf

[7] Texas Instruments, BQ76PL536A Datasheet. June 2011. [Datasheet] Available:

http://www.ti.com/lit/ds/symlink/bq76pl536a.pdf [Accessed 3 Feb. 2020].

[8] JTT Electronics, “Portable Series Lithium-ion Battery Management System Data Sheet” 2013

[Datasheet]. Available: http://www.jttelectronics.com/files/pdf/datasheets/DN000223.C-P-

Series-BMS-Data-Sheet.pdf

[9] Orion BMS, Orion BMS2 Technical Specifications Sheet. [Accessed 16 Mar. 2020]

Available: https://www.orionbms.com/downloads/documents/orionbms2_specifications.pdf

[10] DeSando, Michael, “Universal Programmable Battery Charger with Optional Battery

Management System,” June 2015. DOI: https://doi.org/10.15368/theses.2015.68

Available: https://digitalcommons.calpoly.edu/theses/1409

[11] Chad [unknown], “Charging - research and methodology” AccuBattery. Jan. 2020. [Online

article]. Available: https://accubattery.zendesk.com/hc/en-us/articles/210224725-Charging-

research-and-methodology [Accessed 3 Feb. 2020].

[12] McManus, M.C., 2011, “Environmental consequences of the use of batteries in low carbon

systems: The impact of battery production,” Applied Energy 2012 (93) p. 288-295.

https://www.osha.gov/dts/shib/shib011819.html
https://batteryuniversity.com/
http://www.bestechpower.com/communicationbms/BMS-D270.html
https://www.analog.com/media/en/technical-documentation/data-sheets/LTC6802-1.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/LTC6802-1.pdf
http://www/
http://www.jttelectronics.com/files/pdf/datasheets/DN000223.C-P-Series-BMS-Data-Sheet.pdf
http://www.jttelectronics.com/files/pdf/datasheets/DN000223.C-P-Series-BMS-Data-Sheet.pdf
https://www.orionbms.com/downloads/documents/orionbms2_specifications.pdf

50

[13] W.-Y. Chang, “The State of Charge Estimating Methods for Battery: A Review,” ISRN

Applied Mathematics, vol. 2013, Jul. 2013.

[14] Samsung SDI, “Introduction of INR18650-25R,” Oct. 2013. [Datasheet]. Available:

https://www.powerstream.com/p/INR18650-25R-datasheet.pdf.

[15] R. Ford and C. Coulston, Design for Electrical and Computer Engineers, McGraw-Hill,

2007, p. 37

[16] K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-Management

System (BMS) and SOC Development for Electrical Vehicles,” IEEE Trans. on Vehicular

Technology, vol. 60, no. 1, pp. 76–88, Jan. 2011.

[17] Buchmann, Isidor, “What Causes Li-Ion to Die?” batteryuniversity.com, Aug. 2017.

[Online]. Available:

https://batteryuniversity.com/learn/article/bu_808b_what_causes_li_ion_to_die.

[18] C. Mikolajczak, M. Kahn, K. White, and R. T. Long, “Lithium-Ion Fire Hazard

Assessment,” Fire Protection Research Foundation, Jul. 2011.

[19] D. M. Caditz, “Arduino LTC6804 BMS - Part 1: Main Board,” Instructables, Dec. 2019.

[Online]. Available: https://www.instructables.com/id/Arduino-LTC6804-Battery-Management-

System/.

[20] J. Gammell, (2010, July 25). Professional SMT Soldering: Hand Soldering Techniques -

Surface Mount [Video file]. Available: https://www.youtube.com/watch?v=5uiroWBkdFY

[21] Vishay Siliconix, “Automotive P-Channel 60V (D-S) 175 °C MOSFET,” SQM120P06-07L

Datasheet. Rev. B, 12 July 2012. [Datasheet] Available:

https://www.vishay.com/docs/67026/sqm120p0.pdf

[22] Allegro Microsystems, “ACS712: Fully Integrated, Hall-Effect-Based Linear Current

Sensor IC with 2.1 kVRMS Voltage Isolation and a Low-Resistance Current Conductor,”

ACS712 Datasheet. Rev. 19, 30 Jan. 2020. [Datasheet] Available:

https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-

conductor-sensor-ics/acs712

[23] Ruslan Koptiev, “ACS712-arduino,” GitHub, 11 Sep. 2018. [Online]. Available:

https://github.com/rkoptev/ACS712-arduino.

[24] Microchip, “Low-Power Linear Active Thermistor ICs,” MCP9700 Datasheet. Rev. G, June

2016. [Datasheet] Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/20001942G.pdf

https://www.youtube.com/watch?v=5uiroWBkdFY
https://www.vishay.com/docs/67026/sqm120p0.pdf
https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs712
https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs712
http://ww1.microchip.com/downloads/en/DeviceDoc/20001942G.pdf

51

[25] Microchip, “IC Temperature Sensor Accuracy Compensation with a PIC Microcontroller,”

MCP9700 Application Note AN1001. 8 Sep. 2015. [Online] available:

http://ww1.microchip.com/downloads/en/Appnotes/00001001C.pdf

[26] Ayush Agrawal, “BMS-Arduino,” GitHub¸ 26 Aug. 2016 [Online]. Available:

https://github.com/ayushagrawal/BMS-Arduino

[27] Pololu Corporation, “12V, 600mA Step-Down Voltage Regulator D36V6F12,” 3796

Product Page. [Datasheet] Available: https://www.pololu.com/product-info-merged/3796

[28] Xiong, R., He, H., Sun, F., Zhao, K., “Evaluation on State of Charge Estimation of Batteries

With Adaptive Extended Kalman Filter by Experiment Approach,” IEEE Trans. on Vehicular

Technology, 62(1), pp.108-117, Jan. 2013. [Online]. Available at:

https://ieeexplore.ieee.org/document/6323045 [Accessed 3 Feb. 2020].

[29] J. P. Wilkinson, “Systems and methods for estimation and prediction of battery health and

performance,” U.S. Patent 10 209 314, Nov. 21, 2016.

http://ww1.microchip.com/downloads/en/Appnotes/00001001C.pdf
https://github.com/ayushagrawal/BMS-Arduino
https://www.pololu.com/product-info-merged/3796

52

Appendix A – ABET Senior Project Analysis

Project Title: Programmable Battery Management System

Student’s Name: Jason Erbert

Advisor’s Name: Prof. David Braun Initial: Date:

1. Summary of Functional Requirements

The programmable battery management system (BMS) provides additional capabilities

and functionality to any small scale lithium battery pack (<1000W, 11V to 50V, up to

20A). Maximum charge percentage, minimum voltage, and maximum current among

other quantities directly influence the battery’s health and longevity. The programmable

BMS allows the user to set these values and change all settings without removing the

device from the battery pack. The device protects the user from dangerous events like

thermal runaway by detecting hazardous conditions and intervenes by turning off the

battery output.

2. Primary Constraints

The table in Chapter 2 lists the design specifications, the main source of the project

constraints. The required voltage and current levels complicate component selection and

force design modification (see explanation of cutoff circuitry in Chapter 5.3). The

unexpected modifications early in the project delay progress and leave insufficient time

for complete evaluation of all subsystems. The BMS device primarily targets small scale

applications (<1000W) to minimize risk of injury during development. This restricts the

overall dimensions of the product which adds complexity to the design process.

Efficiency limits the device’s utility at smaller scales – interface electronics consume

relatively low power and remain constant as the product scales to larger power

capabilities.

Challenges to developing the programmable BMS primarily include time restraints,

excessive fabrication, small part size, expense, and lack of documentation. The overall

system complexity limits what is achievable by one project, with five subsystems that

each require design, construction, troubleshooting, and evaluation. The amateur

equipment used for this project creates difficulty in evaluation, occasionally requiring a

creative approach that increases the required time allocation. An example of this includes

developing a method to verify the temperature sensor accuracy using household objects.

In addition, soldering mistakes and equipment failures due to small component size and

inadequate tooling result in unexpected project delays. Three LTC6804 BMS chips burnt

during prototyping, requiring new BMS PCBs. An attempt to save cost by using

prototyping board instead of proceeding with a custom PCB significantly set back

production of the cell balancing hardware and project development. In addition, the

libraries supplied by LT lack sufficient documentation to quickly program the LTC6804.

53

While the provided functions help code development, the LTC6804 remains relatively

complex and requires significant time investment to fully understand all features and

intricacies. Failure to foresee the additional development associated with LTC6804 itself

and supporting hardware severely constrain the success of the project.

Additionally, the COVID-19 global pandemic continues to influence the entire world in

many ways throughout the course of the project. Numerous setbacks due to the pandemic

prevent completion of the PBMS as initially envisioned; development interruptions and

supplies-related issues slow the rate of progress. Equipment access limits the scope of

evaluation to what is achievable with an amateur home setup. The timeframes estimated

during the project planning phase change often due to pandemic related uncertainty.

3. Economics

a. Human Capital

A sufficiently useful BMS requires over 100 hours of work to design and build. A

conservative estimate using Equation (6) from Coulston [1] suggests the project

requires at least 150 hours due to complexity and only one engineer. This includes

design, production, and evaluation of both hardware and software. Once

completed, the device generates demand for human capital in manufacturing

everything from the individual ICs to complete lithium battery powered systems.

The device has the potential to influence the global labor market by encouraging

transition of short distance delivery services to light EV as the technology

advances.

b. Financial Capital

Since the project focuses on small scale devices, the battery and electronics used

in development do not require significant financial capital. Components

incorporated in the design cost less than $500 as shown in Appendix C. The self

funded project requires no outside capital; the design prioritizes commonly found

components, with many salvageable from previous school projects at little cost.

However, the resulting product’s additional features, including the screen and

microcontroller, require significant financial capital relative to a simple BMS.

This increases the upfront cost to the consumer and cost of manufacturing.

c. Manufactured Capital

Since the subsystems mainly consist of entire modules, a significant portion of the

manufactured capital stems from the processes used to create the components

including the LCD screen, microcontroller, and batteries. This project requires

additional manufacturing capital during development as the design evolves; much

of this consists of manual assembly of each subsystem. Development of the

prototype device uses low cost and freely available machines such as soldering

irons, multimeters, amateur oscilloscopes, and basic computers. Assembly of a

54

complete system requires additional hardware such as wire, solder, battery

connectors, and an enclosure.

d. Natural Capital

As the current state of the art in battery storage chemistry, lithium experiences

high demand. Current mining tactics show extremely detrimental effects to the

environment [2]. The previously mentioned subcomponents generate pollution

while shipping from overseas. Each manufactured component comes at a cost to

the environment beginning with material extraction and ending with disposal after

usage.

e. Cost and Benefit Accrual

Most of the costs associated with BMS production arise in obtaining the hardware

(excluding labor). High quality batteries and interfaces demand higher prices but

provide maximum safety and benefits. Development costs occur predominately in

Spring 2020 and extend to Fall 2020. Benefits to the engineer, primarily

knowledge gained, accrue throughout the project’s entire lifecycle beginning with

project planning and extending beyond the end of EE462. Each phase of

development provides a new learning opportunity that helps to improve future

designs.

TABLE VI:

PREDICTED PARTS AND LABOR COSTS

 Price Qty Total

Labor $30/hr 150

hrs

$4500

Parts

Electrical Components

Resistors, Capacitors $20 1 $20

Interface Hardware $10 10 $100

Microcontroller $25 2 $50

Battery Management

Modules

$10 5 $50

Batteries $10 10 $100

Wires, Connectors $50 1 $50

Enclosure $50 1 $50

Project Cost $4870

Equation (6) from Coulston [1]

The total predicted cost for this project sums to $4,870 and splits between labor

and equipment cost, as in Table VI above. Time commitment and price

estimations result from equation (6) from Coulston [1]. The first term in the

55

numerator represents the optimistic estimation; the second term the realistic

estimation; and the third term a pessimistic estimation. A fair rate for a fourth

year engineering intern in California averages $30 per hour and provides the

expected labor costs. According to Prof. Dolan, students should expect to spend

around 100 hours on a senior project. The individual nature and ambitious goals

of the project require at least an additional 50 hours. Using time instead of cost in

the equation above results in 150 hours required. Thus, most of the expected

project cost comes from labor at $4500. Initial hardware price estimates predict

approximately $370 for all subsystems and components. They also assume free

access to supporting hardware, including solder and tools. Actual development

costs exceed predictions as demonstrated in Table VIII in Chapter 4.2. Chapter

4.2 also explains the sources of additional expense.

f. Timing

Figure 22: Preliminary Gantt chart for programmable BMS design and documentation process.

The project spans approximately 11 months as predicted in Figure 22 above; excluding summer

quarter leaves 8 months. Initial estimates budget 6 hours per week of development time. A

physical product emerges in Fall 2020 during EE462. Reevaluation at the end of EE461 and

56

numerous setbacks during EE462 result in the updated Gantt chart in Figure 23 below. Chapter

4.1 contains the Gantt chart created during EE461 as well as explanations of time-reallocation.

Figure 23: Actual Gantt chart of design process

4. If manufactured on a commercial basis

a. Estimated number of devices sold per year: 100,000

High volumes of lithium batteries are produced annually to meet the growing

demand for electric devices. A small but present percentage of these users desire

direct control over the batteries’ characteristics.

b. Estimated manufacturing cost for each device: $50-$100

The first device costs the most, but after optimizing the production process, the

price decreases dramatically.

c. Estimated purchase price for each device: $100-$200

d. Estimated profit per year: $5,000,000 - $10,000,000

e. Estimated operating cost for user: Less than $5 per year at 50Wh daily

consumption and $.20/kWh.

5. Environmental

Lithium is a relatively scare element in the Earth’s crust found in small quantities.

Extraction requires large mining operations with severe impacts to the local environment

[2]. In addition, lithium batteries and electronics production occurs predominately in

57

countries including China where manufacturing operations have significantly harmed on

the environment. Maximizing battery longevity and utility helps decrease the demand for

additional lithium and lessens the environmental impact from battery production. Devices

utilizing lithium batteries like cars benefit from this device, which further helps the global

ecosystem by facilitating the transition from fossil fuel powered transportation to electric.

6. Manufacturability

Lithium batteries provide large amounts of power which carry danger during handling.

Assembling and testing the device requires proper safety precautions to prevent risk of

injury from fires or explosions. Production faces many challenges in the current

economic climate due to COVID-19. Businesses across the world are shut down and

supply chains are interrupted. Electric vehicle components primarily originate overseas

where travel is currently limited, possibly decreasing the available supply and/or

increasing prices until a vaccine permits full production. Budgetary and time constraints

work together to inhibit manufacturability during project development; production of a

satisfactory device requires delicate balancing of functionality/feature list, time, and cost.

Small component size allows the potential for solder bridges on the LTC6804; connecting

the wrong pins can lead to catastrophic failure.

7. Sustainability

This product encourages reuse intrinsically; the versatile design allows a wide array of

applications and adjustability after implementation with a battery. This cuts down on

waste and extends the planet’s limited resources. While this holds true for devices up to

the specified voltage and current limit, future development is required to allow the BMS

to have higher overall limits and decrease the need for different devices. Society’s

transition to battery powered transportation also influences the infrastructure; increased

demand on the electrical grid arises with more battery charging from EVs. With the grid

in California experiencing issues each year, this issue need a solution before widespread

EV adoption approaches feasibility.

8. Ethical

From a utilitarian point of view, the Programmable BMS attempts to achieve the greatest

good for the greatest number. It provides users who value safety over performance direct

control over the battery to prioritize this; users who desire increased longevity can

achieve their goals with the same device. However, while many benefit from the device,

some may experience negative effects. Increased demand for low cost manufacturing of

batteries and electronics enables continued abuse of workers from various countries; the

number of affected workers could possibly outnumber those who benefit from the device,

thus failing from a utilitarian standpoint. Additionally, the safety of the public is a top

priority during the design process, as described by the IEEE code of Ethics #1 guideline

[3]. However, the design process must also consider the potential negatives of allowing

extreme control over batteries to potentially unexperienced users. For example, a user

who removes the temperature limit out of ignorance puts all those around themselves at

58

risk. An ethical solution could include temporary preset limits within the device; if the

user wishes to change the limits, a one-time process initiates developer mode and

removes the limits. This product also offers direct interaction with important technology

in society’s daily life; as a byproduct, users receive lithium battery education. The device

offers a unique means of informing the public about the dangers, capabilities, and

operation of lithium batteries (see IEEE Code of Ethics #2 [3]).

Additionally, the design requires improved connections between subsystems; prototyping

allows development at low power levels but a consumer product requires extreme

attention to connection quality and safety at full power. Public usage mandates a full

evaluation of the device and analysis of the possible modes of failure to prevent possible

injury (see IEEE Code of Ethics II).

The higher up front cost relative to a traditional BMS brings the potential to exclude

users on a tight budget; devices that drastically increase safety should be available

regardless of fortune, but economic feasibility poses an issue due to the difference in

production cost.

9. Health and Safety

All devices incorporating lithium battery technology carry a certain amount of risk. The

devices store large amounts of energy which causes overheating, fires, and even

explosions according to a recent OSHA Safety and Health Information Bulletin [4].

Precautions must be taken during product testing and manufacturing to limit risk of

injury. The extreme fire danger mandates extra attention to accidental shorts across

battery terminals, with a type B.C. extinguisher on standby. It also requires the assembler

to avoid adding excessive heat to the battery cells during pack construction. Production of

the PBMS involves soldering with lead based solder, which causes lead poisoning if

ingested in high quantities. Assembly must occur in a well ventilated area where the

assembler avoids inhaling any fumes. In addition, all connections must meet the current

and voltage specifications listed in Chapter 2, and the design requires thorough safety

evaluation before public usage. Users of the product must take similar precautions,

especially if operating the device publicly. As mentioned previously, punctures in the

side walls, excessive current, high temperatures, and numerous other events in lithium

batteries result in fire [4].

10. Social and Political

Lithium battery technology acts as one of the main bottlenecks in the transition from

petroleum powered to electric vehicles. As battery technology improves and costs

decrease, the demand for electric vehicles grows while the demand for oil decreases. The

oil industry across the globe, with a history of significant political turmoil, suffers if

electric vehicles adequately replace petroleum powered vehicles. The device has a large

impact on the public; it facilitates the transition to electric transportation. As

transportation becomes more dependent on lithium batteries, the demand for the metals

required to manufacture the batteries increases. Certain geographic locations with rich

59

lithium, copper, and nickel deposits may see political turmoil and conflict regarding the

rights to the materials.

The primary stakeholders include small scale lithium battery operators and

manufacturers. Direct benefits of the PBMS to the user include reduced waste, longer

battery lifetime, and improved safety. However, the larger up front cost relative to a

typical BMS reduces accessibility and increases difficulty to manufacturers. Indirect

impacts received by the users include awareness and education about battery safety and

optimization, as having programmable control requires the user to understand the

potential for harm from and to the battery.

11. Development

a. New Tools and Techniques

New methods of managing lithium batteries undergo research each day. As the

PBMS proceeds through development, various approaches are considered

including known reliable methods and relatively new, experimental methods.

New technology learned for this project consists of the graphical user interface

created on the Arduino using the Nextion display, the cutoff circuit that serves as

a replacement for the relays, and the method of spotwelding the 18650 cells using

nickel strip. The unexpected problems from each step of the development cycle

documented in Chapter 5 provided excellent opportunities to learn about the field

of power electronics, which now poses as a potential career focus. Research

completed during EE460 and EE461 assisted me in my summer internship project

between EE461 and EE462. Industry research throughout the course of the project

continues to produce new commercial battery management systems and inspires

ideas for alternative battery control designs.

b. Literature Search:

[1] R. Ford and C. Coulston, Design for Electrical and Computer Engineers, McGraw-Hill,

2007, p. 37

[2] McManus, M.C., 2011, “Environmental consequences of the use of batteries in low carbon

systems: The impact of battery production,” Applied Energy 2012 (93) p. 288-295.

[3] IEEE Std 1233, 1998 Edition, p. 4 (10/36), DOI: 10.1109/IEEESTD.1998.88826

See also: IEEE.org. IEEE (Institute of Electrical and Electronics Engineers) Code of Ethics.

[online] Available at: https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed 17

Feb. 2020].

[4] Occupational Safety and Health Administration (OSHA), “Preventing Fire and/or Explosion

Injury from Small and Wearable Lithium Battery Powered Devices” Safety and Health

Information Bulletin (2019). Available: https://www.osha.gov/dts/shib/shib011819.html

https://www.osha.gov/dts/shib/shib011819.html

60

[5] Chad [unknown]. “Charging - research and methodology” AccuBattery. Jan. 2020. [Online

article]. Available: https://accubattery.zendesk.com/hc/en-us/articles/210224725-Charging-

research-and-methodology [Accessed 3 Feb. 2020].

• This article corrects common misconceptions regarding lithium battery charging and

suggests methods for improving battery longevity. I reference this in the first chapter

when explaining the advantages of increased charging control.

• This article provides primary sources for each claim, and analyzes the integrity of the

data from its sources in-text. The unknown author appears to work for the company that

produces the AccuBattery smartphone application and provides convincing arguments

with evidence for his claims.

[6] K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-Management System

(BMS) and SOC Development for Electrical Vehicles,” IEEE Trans. on Vehicular

Technology, vol. 60, no. 1, pp. 76–88, Jan. 2011.

• The journal article includes a functional block diagram of a BMS with explanations of

each block. It also features mathematical methods for determining state of charge. This

helped develop the initial vision for the BMS structure in Chapter 3.

• Features 232 paper citations and 7 patent citations according to IEEE. Carefully explains

claims using diagrams and evidence.

[7] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory Control of an

Adaptive-Droop Regulated DC Microgrid With Battery Management Capability,” IEEE

Trans. on Power Electronics, vol. 29, no. 2, pp. 695–706, Feb. 2014. [Online]. Available:

https://ieeexplore.ieee.org/document/6497633 [Accessed 3 Feb. 2020]

• The authors provide a unique and robust method of regulating cell voltages during

charging. They provide clear and thorough explanations with diagrams and simulation

results.

• The authors’ credentials and support to back up claims inspire confidence. The article has

390 citations.

[8] Einhorn, M., Roessler, W. and Fleig, J., “Improved Performance of Serially Connected Li-

Ion Batteries With Active Cell Balancing in Electric Vehicles,” IEEE Trans. on Vehicular

Technology, 60(6), pp.2448-2457, July 2011. [Online]. Available:

https://ieeexplore.ieee.org/document/5766056 [Accessed 3 Feb. 2020].

• Includes detailed discussion of active cell balancing methodologies. They use a similar

experimental configuration to my planned prototype.

• IEEE claims 159 citations to this paper. The authors also include numerous in-text

citations to other well reviewed papers.

61

[9] Xiong, R., He, H., Sun, F., Zhao, K., “Evaluation on State of Charge Estimation of Batteries

With Adaptive Extended Kalman Filter by Experiment Approach,” IEEE Trans. on Vehicular

Technology, 62(1), pp.108-117, Jan. 2013. [Online]. Available at:

https://ieeexplore.ieee.org/document/6323045 [Accessed 3 Feb. 2020].

• The authors reinforce the safety aspect of lithium battery control and provide an

advanced approach to state of charge calculation.

• IEEE published the article which has 175 citations since 2013. The main author’s

affiliation with electric vehicle research increases credibility, and they have a number of

publications with hundreds of citations each.

[10] Rahimi-Eichi, H., Ojha, U., Baronti, F., Chow, M., “Battery Management System: An

Overview of Its Application in the Smart Grid and Electric Vehicles,” IEEE Industrial

Electronics Magazine, 7(2), pp.4-16, June 2013. [Online]. Available at:

https://ieeexplore.ieee.org/document/6532486 [Accessed 3 Feb. 2020].

• This article offers examples and specific requirements of a BMS to maximize battery

efficiency. It also provides methods, results, and suggestions for improvements.

• Over 300 citations by papers and 1 patent citation since 2013 demonstrate the

information’s thorough review.

[11] J. P. Wilkinson, “Systems and methods for estimation and prediction of battery health and

performance,” U.S. Patent 10 209 314, Nov. 21, 2016.

• The patent provides computerized implementations of battery state calculations, which

may find application in the PBMS. It introduced me to the problem of calculating the

SOC, which is not as simple as measuring the voltage.

• This patent references a previously cited paper and was produced by Idaho National

Laboratory.

[12] BQ769x0 Multicell Battery Monitor System [Author Unknown]. Texas Instruments. Oct.

2013. [Datasheet] Available: http://www.ti.com/lit/ds/slusbk2h/slusbk2h.pdf [Accessed 3

Feb. 2020].

• The document contains useful descriptions of BMS and their subcomponents. It lists

applications that overlap with the intended usage of the Programmable BMS.

• Texas Instruments has an excellent reputation as a trustworthy supplier for electronic

parts and documentation. This part a long history and recently updated datasheet (last

revised in 2019), indicating the reliability of the information.

[13] BQ76PL536A Datasheet [Author Unknown]. Texas Instruments. June 2011. [Datasheet]

Available: http://www.ti.com/lit/ds/symlink/bq76pl536a.pdf [Accessed 3 Feb. 2020].

http://www/

62

• The datasheet provides technical designs, specifications, and functionalities for a similar

device (expandable BMS), including many concepts possible to incorporate in the

Programmable BMS.

• Again, Texas Instruments is a reliable supplier of both parts and information. This

datasheet has nearly a 10 year history with a recent update within the past 5 years.

[14] Jiang, J., Zhang, C. 2015. Fundamentals and application of lithium-ion battery management

in electric drive vehicles. Wiley. [Book].

• This book contains background information necessary to understand lithium battery

management. Each chapter includes thorough explanations dedicated to important topics

such as battery state of charge estimation. The book also features a chapter focused on

technologies used to implement BMS and applications of such devices.

• The recent publish date permits the assumption that the book contains new and relevant

information. The author uses mathematical proofs to explain concepts and has over 50

publications available on IEEE, with some featuring over 100 citations.

[15] BQ78350-R1 Datasheet [Author Unknown]. Texas Instruments. Aug. 2015 (Rev Nov.

2018) [Datasheet] Available: http://www.ti.com/lit/ds/symlink/bq78350-r1.pdf

 [Accessed 24 Feb. 2020].

[16] DeSando, Michael. “Universal Programmable Battery Charger with Optional Battery

Management System,” June 2015. DOI: https://doi.org/10.15368/theses.2015.68

Available at: https://digitalcommons.calpoly.edu/theses/1409

http://www.ti.com/lit/ds/symlink/bq78350-r1.pdf

63

Appendix B – Arduino Code
//PBMS V1.0

//1 Dec. 2020

//Jason Erbert

//This code builds on the LTC6804 Arduino BMS from David Caditz:

//https://www.instructables.com/Arduino-LTC6804-Battery-Management-System/

#include <SoftwareSerial.h>

#include <Average.h>

#include <UserInterface.h>

#include <Linduino.h>

#include <LT_SPI.h>

#include <LTC68042.h>

#include <ACS712.h> //ACS712 Library from Ruslan Koptiev:

https://github.com/rkoptev/ACS712-arduino

#define currentPin A3

#define tempPin A4

ACS712 Isensor(ACS712_30A, currentPin);

SoftwareSerial Serial1(3, 2); // RX, TX

#define TOTAL_IC 1 // Number of ICs in the isoSPI network

LTC6804-2 ICs must be addressed in ascending order starting at 0.

//Battery measurement variables

float Vout = 34.8;

float CellV = 3.48;

float Iout = 5.2;

int T = 25;

int cycles = 10;

int charge = 65;

/***** Pack and sensor characteristics *****/

float Imax = 2.0; // Maximum battery current(amps) before cutoff

int Tmax = 30; // Maximum pack temperature (deg C) before

cutoff

float Vmin = 33.0; // Minimum allowable cell voltage (10S

cells). Depends on battery chemistry.

float Vmax = 42.0; // Maximum allowable cell voltage.

Depends on battery chemistry.

float CELL_BALANCE_THRESHOLD_V = 3.3; // Cell balancing occurrs when

voltage is above this value

/******** Arduino digital pin definitions ********/

int dischargeCutoffPin = 4;

/******** Variables for tracking cell voltages and states ***************/

int overCharge_state = LOW; // Over charge state. HIGH = relay on,

LOW = relay off

int underCharge_state = LOW; // Under charge state. HIGH = relay on,

LOW = relay off

int overTemp_state = LOW; // Over temperature state. HIGH = relay

on, LOW = relay off

int overCurrent_state = LOW; // Over current state. HIGH = relay on,

LOW = relay off

64

int cutoff_state;

int cellMax_i; // Temporary variable for holding index

of cell with max voltage

int cellMin_i; // Temporary variable for holding index

of cell with min voltage

float cellMin_V; // Temporary variable for holding min

measured cell voltage

float cellMax_V; // Temporary variable for holding max

measured cell voltage

float minV1 ;

float maxV1 ;

int error = 0;

unsigned long tstart;

/**

 Global Battery Variables received from 6804 commands

 These variables store the results from the LTC6804

 register reads and the array lengths must be based

 on the number of ICs on the stack

 **/

uint16_t cell_codes[TOTAL_IC][12];

/*!<

 The cell codes will be stored in the cell_codes[][12] array in the

following format:

 | cell_codes[0][0]| cell_codes[0][1] | cell_codes[0][2]| |

cell_codes[0][11]| cell_codes[1][0] | cell_codes[1][1]| |

 |------------------|------------------|------------------|--------------|--

-----------------|-------------------|-----------------|----------|

 |IC1 Cell 1 |IC1 Cell 2 |IC1 Cell 3 | |

IC1 Cell 12 |IC2 Cell 1 |IC2 Cell 2 | |

****/

uint16_t aux_codes[TOTAL_IC][6];

/*!<

 The GPIO codes will be stored in the aux_codes[][6] array in the following

format:

 | aux_codes[0][0]| aux_codes[0][1] | aux_codes[0][2]| aux_codes[0][3]|

aux_codes[0][4]| aux_codes[0][5]| aux_codes[1][0] |aux_codes[1][1]|

|

 |-----------------|-----------------|-----------------|-----------------|--

---------------|-----------------|-----------------|---------------|---------

--|

 |IC1 GPIO1 |IC1 GPIO2 |IC1 GPIO3 |IC1 GPIO4

|IC1 GPIO5 |IC1 Vref2 |IC2 GPIO1 |IC2 GPIO2 |

..... |

*/

uint8_t tx_cfg[TOTAL_IC][6];

/*!<

 The tx_cfg[][6] stores the LTC6804 configuration data that is going to be

written

65

 to the LTC6804 ICs on the daisy chain. The LTC6804 configuration data that

will be

 written should be stored in blocks of 6 bytes. The array should have the

following format:

 | tx_cfg[0][0]| tx_cfg[0][1] | tx_cfg[0][2]| tx_cfg[0][3]|

tx_cfg[0][4]| tx_cfg[0][5]| tx_cfg[1][0] | tx_cfg[1][1]| tx_cfg[1][2]|

..... |

 |--------------|--------------|--------------|--------------|--------------

|--------------|--------------|--------------|--------------|-----------|

 |IC1 CFGR0 |IC1 CFGR1 |IC1 CFGR2 |IC1 CFGR3 |IC1 CFGR4

|IC1 CFGR5 |IC2 CFGR0 |IC2 CFGR1 | IC2 CFGR2 | |

*/

uint8_t rx_cfg[TOTAL_IC][8];

/*!<

 the rx_cfg[][8] array stores the data that is read back from a LTC6804-1

daisy chain.

 The configuration data for each IC is stored in blocks of 8 bytes. Below

is an table illustrating the array organization:

 |rx_config[0][0]|rx_config[0][1]|rx_config[0][2]|rx_config[0][3]|rx_config[

0][4]|rx_config[0][5]|rx_config[0][6] |rx_config[0][7]

|rx_config[1][0]|rx_config[1][1]| |

 |---------------|---------------|---------------|---------------|----------

-----|---------------|-----------------|----------------|---------------|----

-----------|-----------|

 |IC1 CFGR0 |IC1 CFGR1 |IC1 CFGR2 |IC1 CFGR3 |IC1 CFGR4

|IC1 CFGR5 |IC1 PEC High |IC1 PEC Low |IC2 CFGR0 |IC2 CFGR1

| |

*/

/*!**

 \brief Inititializes hardware and variables

 ***/

void setup()

{

 pinMode(dischargeCutoffPin,OUTPUT);

 pinMode(tempPin, INPUT);

 Serial.begin(9600);

 while(!Serial); // wait for serial port to connect. Needed for native USB

port only

 Serial1.begin(9600); //LCD communication

 Isensor.calibrate();

 LTC6804_initialize(); //Initialize LTC6804 hardware

 init_cfg(); //initialize the 6804 configuration array to be

written

 delay(1000);

 overCurrent_state = HIGH;

 tstart = millis();

 //turn on battery output at startup

66

 digitalWrite(dischargeCutoffPin, HIGH);

 Serial1.print("t1.txt=\"ON\"");

 scmd();

 Serial1.print("t1.bco=2016"); //set output indicator background to green

 scmd();

}

void loop()

{

 //measure current

 Iout = 0.05 + (Isensor.getCurrentDC() * -1);

 if (Iout > Imax) {

 overCurrent_state = LOW;

 Serial.println("OVER CURRENT STATE DETECTED.");

 }

 // read temperature

 overTemp_state = HIGH;

 measureTemp();

 if (T > Tmax) {

 overTemp_state = LOW;

 Serial.println("OVER TEMPERATURE STATE DETECTED.");

 }

 // read cell voltages

 wakeup_idle();

 LTC6804_adcv(); // do cell AD conversion and fill cell registers

 delay(10);

 wakeup_idle();

 error = LTC6804_rdcv(0, TOTAL_IC, cell_codes); // read cell voltages from

registers

 if (error == -1)

 {

 Serial.println("PEC error detected in the received data");

 }

 // print to serial outputs:

 print_cells();

/*

 // test for over charge/undercharge states:

 minV1 = Vmin;

 maxV1 = Vmax;

 if (overCharge_state == LOW) { // add hysteresis

 maxV1 = maxV1 - .2;

 }

 if (underCharge_state == LOW) { // add hysteresis

 minV1 = minV1 + .2;

 }

 // get maximum and minimum cells:

 cellMax_i = -1;

 cellMin_i = -1;

 cellMin_V = 100.;

 cellMax_V = 0.;

 for (int i = 0; i < 10; i++)

67

 {

 float V = cell_codes[0][i] * 0.0001;

 if (V < cellMin_V) {

 cellMin_V = V;

 cellMin_i = i;

 }

 if (V > cellMax_V) {

 cellMax_V = V;

 cellMax_i = i;

 }

 }

*/

 underCharge_state = HIGH;

 overCharge_state = HIGH;

 overCurrent_state = HIGH;

 if(Vout > Vmax){

 overCharge_state = LOW;

 Serial.println("OVER VOLTAGE STATE DETECTED.");

 }

 if(Vout < Vmin){

 underCharge_state = LOW;

 Serial.println("UNDER VOLTAGE STATE DETECTED.");

 }

 if(Iout > Imax){

 overCurrent_state = LOW;

 Serial.println("OVER CURRENT STATE DETECTED.");

 }

/*

 if (cellMin_V <= minV1)

 {

 underCharge_state = LOW;

 }

 if (cellMax_V >= maxV1)

 {

 overCharge_state = LOW;

 }

 // cell balancing:

 // Turn on switch Sx for highest cell x if voltage is above threshold

 // Note: DCP is set to 0 in initialize() This turns off discharge when

cell voltages are read.

 // set values in tx_cfg

 if (cellMax_V >= CELL_BALANCE_THRESHOLD_V)

 {

 balance_cfg(0, cellMax_i);

 } else {

 balance_cfg(0, -1);

 }

 // write tx_cfg to LTC6804. This sets the LTC6804 DCCx registers which

control the S pins for balancing:

 LTC6804_wrcfg(TOTAL_IC, tx_cfg);

 */

68

 // set cutoff state:

 cutoff_state = overCurrent_state && underCharge_state && overCharge_state

&& overTemp_state;

 charge = (Vout - 25.0)/17.0; //calculate state of charge using voltage

method

 //Send values to GUI and receive input

 displayVals();

 if(!cutoff_state){

 digitalWrite(dischargeCutoffPin, LOW);

 Serial1.print("t1.txt=\"OFF\"");

 scmd();

 Serial1.print("t1.bco=63488"); //set output indicator background to

red

 scmd();

 }

 //check for user input on touchscreen

 if(Serial1.available()){

 String data_from_display = "";

 data_from_display = (Serial1.readStringUntil('c'));

 storeVals(data_from_display);

 }

}

void init_cfg()

{

 for (int i = 0; i < TOTAL_IC; i++)

 {

 tx_cfg[i][0] = 0x04;

 tx_cfg[i][1] = 0x00;

 tx_cfg[i][2] = 0x00;

 tx_cfg[i][3] = 0x00;

 tx_cfg[i][4] = 0x00; // discharge switches 0->off 1-> on. S0 = 0x01,

S1 = 0x02, S2 = 0x04, 0x08, 0x10, 0x20, 0x40, 0x80

 tx_cfg[i][5] = 0x20; // sets the software timer to 1 minute

 }

}

/*!***********************************

 \brief sets the configuration array for cell balancing

 uses CFGR4 and lowest 4 bits of CGFR5

 **************************************/

void balance_cfg(int ic, int cell)

{

 tx_cfg[ic][4] = 0x00; // clears S1-8

 tx_cfg[ic][5] = tx_cfg[ic][5] & 0xF0; // clears S9-12 and sets software

timer to 1 min

 if (cell >= 0 and cell <= 7) {

 tx_cfg[ic][4] = tx_cfg[ic][4] | 1 << cell;

 }

69

 if (cell > 7) {

 tx_cfg[ic][5] = tx_cfg[ic][5] | (1 << (cell - 8));

 }

}

/*!**

 \brief Prints Cell Voltage Codes to the serial port

 ***/

void print_cells()

{

 unsigned long elasped = millis() - tstart;

 serialPrint(elasped); //ELAPSED TIME:

 Vout=0;

 //INDIVIDUAL CELL VOLTAGES:

 for (int current_ic = 0 ; current_ic < TOTAL_IC; current_ic++)

 {

 for (int i = 0; i < 10; i++)

 {

 Vout = Vout + cell_codes[current_ic][i] * 0.0001;

 serialPrint(cell_codes[current_ic][i] * 0.0001);

 }

 }

 serialPrint("\r\n");

}

/*!**

**

 \brief print function overloads:

 **

*/

void serialPrint(String val)

{

 Serial.print(val);

 Serial.print("\t");

}

void serialPrint(unsigned long val)

{

 Serial.print(val);

 Serial.print("\t");

}

void serialPrint(double val)

{

 Serial.print(val, 4);

 Serial.print("\t");

}

void serialPrint(int val)

{

 Serial.print(val);

70

 Serial.print("\t");

}

void print_config()

{

 int cfg_pec;

 Serial.println("Written Configuration: ");

 for (int current_ic = 0; current_ic < TOTAL_IC; current_ic++)

 {

 Serial.print(" IC ");

 Serial.print(current_ic + 1, DEC);

 Serial.print(": ");

 Serial.print("0x");

 serial_print_hex(tx_cfg[current_ic][0]);

 Serial.print(", 0x");

 serial_print_hex(tx_cfg[current_ic][1]);

 Serial.print(", 0x");

 serial_print_hex(tx_cfg[current_ic][2]);

 Serial.print(", 0x");

 serial_print_hex(tx_cfg[current_ic][3]);

 Serial.print(", 0x");

 serial_print_hex(tx_cfg[current_ic][4]);

 Serial.print(", 0x");

 serial_print_hex(tx_cfg[current_ic][5]);

 Serial.print(", Calculated PEC: 0x");

 cfg_pec = pec15_calc(6, &tx_cfg[current_ic][0]);

 serial_print_hex((uint8_t)(cfg_pec >> 8));

 Serial.print(", 0x");

 serial_print_hex((uint8_t)(cfg_pec));

 Serial.println();

 }

 Serial.println();

}

/*!***

 \brief Prints the Configuration data that was read back from the

 LTC6804 to the serial port.

 ***/

void print_rxconfig()

{

 Serial.println("Received Configuration ");

 for (int current_ic = 0; current_ic < TOTAL_IC; current_ic++)

 {

 Serial.print(" IC ");

 Serial.print(current_ic + 1, DEC);

 Serial.print(": 0x");

 serial_print_hex(rx_cfg[current_ic][0]);

 Serial.print(", 0x");

 serial_print_hex(rx_cfg[current_ic][1]);

 Serial.print(", 0x");

 serial_print_hex(rx_cfg[current_ic][2]);

 Serial.print(", 0x");

 serial_print_hex(rx_cfg[current_ic][3]);

 Serial.print(", 0x");

 serial_print_hex(rx_cfg[current_ic][4]);

 Serial.print(", 0x");

71

 serial_print_hex(rx_cfg[current_ic][5]);

 Serial.print(", Received PEC: 0x");

 serial_print_hex(rx_cfg[current_ic][6]);

 Serial.print(", 0x");

 serial_print_hex(rx_cfg[current_ic][7]);

 Serial.println();

 }

 Serial.println();

}

void serial_print_hex(uint8_t data)

{

 if (data < 16)

 {

 Serial.print("0");

 Serial.print((byte)data, HEX);

 }

 else

 Serial.print((byte)data, HEX);

}

/*

 * Measure Temperature from MCP9700 with averaging for noise reduction

 * 10mV/ 1C sensitivity; 0.5V offset at 0 C

 * Vcc = 5V

 */

void measureTemp() {

 int avgs = 25; //number of temp measurements to average

 T = 0.0;

 for(int i = 0; i < avgs; i++)

 {

 T += ((analogRead(tempPin) * 5. / 1024.) - 0.5) / 0.01;

 }

 T = T / avgs;

}

void storeVals(String data_from_display){

 if(data_from_display.indexOf("VmaxIn") > -1){

 Vmax += 0.1;

 }

 if(data_from_display.indexOf("VmaxDe") > -1){

 Vmax -= 0.1;

 }

 if(data_from_display.indexOf("VminIn") > -1){

 Vmin += 0.1;

 }

 if(data_from_display.indexOf("VminDe") > -1){

 Vmin -= 0.1;

 }

 if(data_from_display.indexOf("ImaxIn") > -1){

 Imax += 0.1;

 }

 if(data_from_display.indexOf("ImaxDe") > -1){

 Imax -= 0.1;

 }

 if(data_from_display.indexOf("TmaxIn") > -1){

72

 Tmax += 1;

 }

 if(data_from_display.indexOf("TmaxDe") > -1){

 Tmax -= 1;

 }

 if(data_from_display.indexOf("Reset") > -1){

 softReset();

 }

}

//Send all measurement values to display

void displayVals(){

 char buff[6];//buffer for float to str)

 dtostrf(Vout, 3, 2, buff);

 Serial1.print("Vout.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(Iout, 3, 2, buff);

 Serial1.print("Iout.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 Serial1.print("T.val=" + String(T));

 scmd();

 Serial1.print("Cycles.val=" + String(cycles));

 scmd();

 Serial1.print("Charge.val=" + String(charge));

 scmd();

 dtostrf(Vmax, 3, 2, buff);

 Serial1.print("Vmax.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(Vmin, 3, 2, buff);

 Serial1.print("Vmin.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(Imax, 3, 2, buff);

 Serial1.print("Imax.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 Serial1.print("Tmax.val=" + String(Tmax));

 scmd();

 displayCells();

73

}

//Display voltage measurements for each cell

//converts float to string and changes value of text object on LCD

void displayCells(){

 char buff[6];

 dtostrf(cell_codes[0][0]/10000., 3, 2, buff);

 Serial1.print("C1.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(cell_codes[0][1]/10000., 3, 2, buff);

 Serial1.print("C2.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(cell_codes[0][2]/10000., 3, 2, buff);

 Serial1.print("C3.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(cell_codes[0][3]/10000., 3, 2, buff);

 Serial1.print("C4.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(cell_codes[0][4]/10000., 3, 2, buff);

 Serial1.print("C5.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(cell_codes[0][5]/10000., 3, 2, buff);

 Serial1.print("C6.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(cell_codes[0][6]/10000., 3, 2, buff);

 Serial1.print("C7.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(cell_codes[0][7]/10000., 3, 2, buff);

 Serial1.print("C8.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(cell_codes[0][8]/10000., 3, 2, buff);

 Serial1.print("C9.txt=\"");

74

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

 dtostrf(cell_codes[0][9]/10000., 3, 2, buff);

 Serial1.print("C10.txt=\"");

 Serial1.print(buff);

 Serial1.print("\"");

 scmd();

}

//send end bytes to complete command to Nextion display

void scmd(){

 Serial1.write(0xff);

 Serial1.write(0xff);

 Serial1.write(0xff);

}

void softReset(){

asm volatile (" jmp 0");

}

75

Appendix C – Bill of Materials

