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1 ABSTRACT 

Navigational Feasibility of Flyby / Impact Missions to Interstellar Objects 

Declan M. Mages 

In October 2017, the first interstellar object, designated 1I/2017 U1 and more commonly 

referred to as Oumuamua, was detected passing through our solar system by the Pan-STARRS 

telescope, followed recently by the detection of 2I/Borisov in August 2019. These detections came 

much sooner than thought possible, and have redefined our understanding of the population of 

interstellar objects. With the construction of the next generation of powerful observatories, future 

detections are estimated to occur as frequently as two per year, and while there is significant 

scientific understanding to be gained from observing these objects remotely, a spacecraft sent to 

intercept one might be the only way to collect up-close, detailed information on the composition of 

an extra solar object. The ideal mission scenario would be a combination flyby and impact as 

performed and proven feasible by the Deep Impact encounter with the comet Temple 1. A study 

has already been done showing that trajectories to interstellar objects are feasible with current 

chemical propulsion and a “launch on detection” paradigm, with an estimated 10 year wait time 

between favorable mission opportunities, assuming future detection capabilities.  

However, while a trajectory to one of these objects might be feasible, accurately performing a 

flyby and impacting an object with a hyperbolic orbit presents unprecedented navigational 

challenges. Spacecraft-target relative velocities can range between 10 km/s to 110 km/s with high 

phase angles between 90 and 180. The goal of this thesis is to determine the required navigation 

hardware – an optical navigation camera and attitude determination system – which could provide 

high mission success probability for many potential encounter scenarios. This work is performed 

via a simulation program developed at the Jet Propulsion Laboratory that generates simulated 

images of a target during the terminal guidance phase of a mission, and feeds them into the 

algorithms behind autonomous navigation software (AutoNav) used for the Deep Impact mission. 
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Observations are derived from the images and used to perform target-relative orbit determination 

and calculate correction maneuvers. 
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Chapter 1 

1 INTRODUCTION 

1.1 Problem Statement 

Every year robotic spacecraft explore new destinations in the solar system, performing 

meaningful science in increasingly remote and challenging locations. From New Horizons flying 

by the most distant object ever explored in the Kuiper Belt in 2019, to Osiris-Rex orbiting the 

smallest asteroid ever orbited in 2018, missions push the boundaries of what is possible. In 2017 a 

new class of object was discovered, interstellar objects (ISOs), presenting a new challenge for 

exploration. These objects come as orphans from other solar systems elsewhere in the galaxy, and 

pass through our solar system at extremely high speeds on hyperbolic trajectories.  

These ISOs provide a window into the composition of other solar systems, their surfaces would 

give information on effects of weathering in interstellar space, with recent studies suggesting these 

objects could be vehicles in which life is transported between planetary systems. The potential 

science returns from exploring one is immense. Project Lyra investigated rendezvous with an ISO 

and showed would require a heavy lift launch vehicle to launch a dozen kilogram spacecraft to then 

perform a Jupiter flyby and solar Oberth maneuver with solid rocket boosters and Parker Solar 

Probe heatshield technology just to catch up with a target [11]. Matching velocity would then 

require electric and magnetic sails. Ultimately, matching the hyperbolic orbits of ISOs is extremely 

challenging and potentially infeasible with current technology. An alternative investigated by this 

thesis is to intercept ISOs while they are within our solar system with a flyby spacecraft combined 

with an impactor spacecraft that strikes the ISO’s surface releasing a plume of ejecta that the flyby 

spacecraft then images for subsurface compositional information. However, as these objects are on 

hyperbolic trajectories, they can appear with minimal warning thus requiring rapid response times 

to launch. The minimal warning time combined with their extremely high velocities, presents 
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unique challenges for sending a spacecraft to an ISO and accurately navigating an encounter in 

which meaningful science is performed. 

1.2 Proposed Solution 

Autonomous optical navigation is a powerful tool that has enabled several small body 

encounters over the past two decades. During the final two hours of a spacecraft’s approach to a 

small body, the spacecraft autonomously images the target and performs relative orbit 

determination to continuously improve the spacecraft’s knowledge of its relative state to the target. 

Without this autonomy, the spacecraft would have to attempt to image the target using the 

knowledge accuracy from the last ground update, which would typically be around 24 hours before 

encounter, which when dealing with the high orbital speeds of ISOs can be several million 

kilometers away. The accuracy at this distance would require the spacecraft to scan a large region 

of where the ISO could be and thus diminish the potential science returns and provide no chance 

of getting a spacecraft to impact. Autonomously refining the knowledge during the final hours 

would mean that more images taken during flyby would actually have the target in the field of view 

and would enable the accuracies required for impacting. 

This thesis will first characterize the potential encounter environments that future ISOs might 

present. Relative velocity and phase angle are the two most important parameters (along with object 

size) that define how challenging an encounter is. With the realistic encounter environments 

constrained, this thesis then seeks to determine what equipment – primarily the camera and attitude 

determination system – will enable accurate autonomous optical navigation and broad mission 

success across the realistic encounter space. This is accomplished by fully simulating the critical 

final two hours of each encounter scenario. This is done by propagating equations of motion and 

generating images that are fed into the mathematical models of the autonomous navigation system 

to perform orbit determination and calculate correction maneuvers. Each encounter scenario is 

simulated multiple times and a Monte-Carlo analysis is performed to estimate success rates. 
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1.3 Past Missions and Research 

Flybys have been a key class of space missions from the beginning of the space exploration era. 

They have been executed on every planet and on numerous small bodies. The list of asteroids 

includes 951 Gaspra, 243 Ida, 253 Mathilde, 433 Eros, 9969 Braille, 5535 Annefrank, 25143 

Itokawa, 2867 Steins, 21 Lutetia, 4 Vesta, 4179 Toutatis, 1 Ceres, 101955 Bennu, and 486958 

Arrokoth. Along with comets Giacobini-Zinner, Halley, Grigg-Skjellerup, Borelly, Wild 2, Tempel 

1, Hartley 2, and Churyumov-Gerasimenko. The most relevant to this ISO mission concept are 

small body encounters where the spacecraft used autonomous optical navigation. This capability 

was developed at the Jet Propulsion Laboratory and was first demonstrated on the mission Deep 

Space 1 [21], and has since enabled the flybys of comets Borrelly, Wild 2, Tempel 1, Hartley 2, 

and asteroid Annefrank.  These establish the fundamental method in which an encounter with an 

ISO would be navigated.  

The NASA mission Deep Impact and its encounter with comet Tempel-1 illustrates the only 

time that a combination flyby and impact has been implemented and therefore forms the foundation 

from which this thesis builds off. The flyby spacecraft released a small 350 kg impactor spacecraft 

24 hours prior to encounter. This impactor spacecraft then autonomously guided itself to collide 

with Temple-1 at 10.3 km/s while the flyby spacecraft also operating autonomously imaged the 

target and resulting ejecta [15]. The encounter sequence had the flyby and impactor spacecraft 

imaging the comet every 15 seconds, compiling 4 images before performing an orbit determination 

update and executing targeting maneuvers at 100 min, 35 min, and 7.5 min from impact. This 

encounter sequence design [14] gives the baseline sequence design from which the terminal phase 

of an interstellar visitor flyby/impact is simulated in this thesis. 
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Figure 1.1: Artist’s rendition of Deep Impact spacecraft and encounter image taken by 

the flyby spacecraft of the impactor colliding with Tempel-1. 

The most relevant prior research for this thesis is by Shyam Bhaskaran and Brian Kennedy of 

NASA’s Jet Propulsion Laboratory [1]. They expanded on the success of Deep Impact’s 

autonomous navigation and investigated the general navigational feasibility of impacting and 

deflecting a wide range of asteroids with varying sizes, relative velocities, and approach angles via 

simulation and Monte Carlo analysis. The scenarios investigated and the resulting success rates 

given different attitude determination methods are outlined in Table 1.1. 

Table 1.1: Probability of asteroid impact.

 

An important conclusion from their analysis showed that attitude error is the most critical 

parameter in determining mission success. When entering the terminal guidance phase of a 

flyby/impact mission, the target often becomes significantly brighter than the background star 

which prevents imaging of both simultaneously. The stars are typically used to determine the 
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attitude of each image, and without them the spacecraft is required to instead rely on its IMU for 

attitude determination. The errors associated with using an IMU are significantly greater than when 

using stellar reference and are discussed in greater detail in 3.3. This effect of this IMU error was 

highlighted by the results of their simulations which showed that without the most accurate inertial 

measurement unit available, the Scalable SIRU (SSIRU) [31], the likelihood of impacting smaller 

asteroids drops significantly as shown in Figure 1.2. 

 
Figure 1.2: Cumulative probability as a function of target diameter for three attitude 

modes [1]. 

The results of this analysis showed that the most significant parameter in determining impact 

success was the attitude error and phase angle, while higher velocities up to 20 km/s did not seem 

to significantly affect the success rate. Unfortunately, as analysis later shows in section 4.2, 20 km/s 

is on the low end of potential relative velocities ISOs may present.  

The highest relative velocity flyby to date was with Halley’s Comet at 68 km/s. Multiple 

spacecraft were sent to Halley and navigated using only radiometric tracking and without the use 

of optical navigation. With consecutive distant flybys (~8000 km) from multiple spacecraft, 

Halley’s ephemeris was refined [10] and made accurate enough for the closest flyby by the Giotto 

spacecraft at 600 km. This technique proved successful and resulted in the first-ever images of a 

comet nucleus, but it only provided a relative state knowledge accuracy of roughly 40 km. This 
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was sufficient as Halley is a large body around 15 km x 9 km and the highest resolution image was 

taken 5 minutes before closest approach at a distance of 20,000 km. However, as ISOs are 

potentially much smaller bodies, the resolution achieved with this level of accuracy would be 

unacceptable. The accuracies required for a flyby and impact mission of an ISO in the hundreds of 

meters size is an order of magnitude greater than achieved in the Halley encounters, and so 

ultimately little can be said about these missions and their feasibility based on the Halley flybys. 

Another relevant mission is the flyby of asteroid Annefrank. Executed primarily as systems test 

for the Stardust spacecraft before its encounter with Wild 2, this flyby was unique for its approach 

phase angle of 130. This is the highest for a flyby ever, yet still is only in the middle of the range 

that ISOs might present. Annefrank’s high phase angle combined with a much dimmer surface than 

expected meant the optical navigators were unable to detect it during approach and before the 

initialization of the autonomous phase [2]. Even under these circumstances the spacecraft was able 

to identify Annefrank when it got brighter and track it during encounter. This is an important 

reference mission because the ISO high phase angles will likely result in very dim targets that may 

not be detectable during approach, as I discuss in Section 4.3. 
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Chapter 2 

2 A FLYBY & IMPACT MISSION 

2.1 Interstellar Objects 

The first step in understanding how to execute a mission is understanding the target, ISOs. 

Looking at our own solar system, it is theorized that the early belts of small bodies were heavily 

depleted by the gravitational perturbations of the giant plants [25]. These objects were ejected and 

sent to drift through the interstellar medium, a preserved sample of their home solar system. It was 

initially believed that with the construction of the Large Synoptic Survey Telescope (LSST), there 

was a possibility that these objects might be detected passing through our own solar system [16]. 

And then, significantly ahead of schedule, the first interstellar object (ISO), designated 1I/2017 U1 

and more commonly referred to as Oumuamua, was detected passing through our solar system by 

the Pan-STARRS telescope in October 2017 with a hyperbolic escape velocity of 26.3 km/s [Figure 

1.1]. Very quickly Oumuamua was found to have interesting properties. Its brightness varied by a 

magnitude of 10 over its 7-hour rotational period – a larger variation than anything else observed 

in our solar system -- suggesting a very elongated shape. It was initially assumed to be a comet, but 

when no coma was detected, it was classified as an asteroid. However, while observing 

Oumuamua’s outbound trajectory, it had clearly been affected by some acceleration inconsistent 

with solar gravity. There are many theories that attempt to explain this, with the most prevalent 

being that Oumuamua actually was comet-like and experienced small amounts of outgassing during 

its approach with the sun [25]. Much is unclear about Oumuamua, and now that it is forever beyond 

observational range, much will remain unclear. Because this detection was much sooner than 

thought possible, it redefined our understanding of the population of interstellar objects. Multiple 

studies now have estimated densities of these objects to be around ~0.1/AU-3, which implies that 

on average, at any given time at least one interstellar object is passing within a 1.35 AU radius 
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sphere centered at the sun. Estimates then predicted that with the construction of the LSST, future 

detections might be as regular as two per year, with higher estimates of ten per year [7].  

Astronomers were shocked again by the discovery of 2I/Borisov [10]. First identified in August 

of 2019 as an unknown object on a peculiar orbit, it was confirmed within weeks to be of interstellar 

origins with a hyperbolic escape velocity of 32.2 km/s [Figure 2.1]. 2I/Borisov had a clear cometary 

coma, quite different from Oumuamua. Its discovery was also different from Oumuamua’s, as it 

was found while still headed into the solar system, with its closest approach to the Sun still to occur 

on December 8th 2019. This has provided ample opportunity for observation and characterization 

with the latest data suggesting it has similar properties to our solar system’s long period comets 

and Oort cloud comets. As 2I/Borisov’s body is hidden by its coma only rough estimates of its size 

can be made. Initial estimates suggested a diameter range of 2 to 16 km, with more recent estimates 

claiming a range between 1.4 and 6.6 km. Given this small size, astronomers will look to see if it 

disintegrates as it nears its closest approach distance of 1.9 AU. With this discovery the number of 

known ISOs has doubled, but since both objects have entirely different properties, their mystery 

has only deepened. 

 
Figure 2.1: Oumuamua’s and 2I/Borisov’s orbits through our solar system. 
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2.1.1 Intercept Trajectories 

Before a mission to an ISO can be considered from a navigational standpoint, we should 

understand whether trajectories to intercept future ISOs will even be possible with current launch 

vehicle capabilities. With funding from NASA, Darryl Seligman and Gregory Laughlin 

investigated this by modeling the estimated population of interstellar objects in our galaxy, the 

possible paths they might take through our solar system, the detection capabilities of the LSST to 

estimate detection rates [24]. From there they estimated the rate at which interstellar objects would 

enter our solar system on orbits that present favorable intercept trajectory opportunities. They 

concluded that with the LSST, and with a “launch on detection” paradigm (meaning that a 

spacecraft is already built before initial detection), mission opportunities would present themselves 

roughly every 10 years. They estimated a median total V required for these opportunities to be 12 

km/s. While this is large, it is feasible with heavy launch vehicles such as the Delta IV Heavy and 

Falcon Heavy, and a spacecraft with several km/s of onboard V capability. This study was 

conducted before the additional detection of 2I/Borisov which has likely significantly changed the 

best estimates of ISO population densities. 

Using Oumuamua’s orbit as an example, it presented extremely favorable intercept trajectory 

opportunities (had it been detected early enough), with potential impacting on October 26th 2017 

requiring V from Earth of only 4 km/s. Using JPL’s online mission design tool [32], we see that 

there were multiple months during which a multi-thousand-kilogram spacecraft could have been 

launched to intercept Oumuamua [Figure 2.2]. For 2I/Borisov, it needed to be detected before July 

2018 to enable the launch of a 2000 kg spacecraft on a heavy launch vehicle for an encounter in 

October 2019. The orbits for both these intercept trajectories are presented in Figure 2.3. 
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Figure 2.2: Spacecraft mass vs departure date from intercept trajectories to Oumuamua. 

 
Figure 2.3: Orbits of Oumuamua and 2I/Borisov and their corresponding intercept 

trajectories. 

2.2 Navigating a Flyby/Impact  

Having shown that intercept trajectories are possible with heavy launch vehicles and/or onboard 

propellant, navigation to a hyperbolic-orbit object is the next part of this problem. Navigation is 

particularly difficult since the “launch on detection” paradigm requires a spacecraft to be designed 

without knowledge of its eventual encounter scenario. Fundamentally, executing a flyby and impact 

mission to a target demands two knowledge requirements be satisfied. First, the flyby spacecraft 

needs to know its own relative state to the target well enough to flyby at a desired location while 

pointing the instruments on target to achieve its science goals, the most demanding of which is 
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often the high- resolution close approach imaging. Second, the impactor spacecraft needs to know 

its relative state to the target well enough to impact an illuminated portion of its surface. Initially 

the relative state between target and spacecraft is known from independently having solutions for 

the target’s orbit and the spacecraft’s trajectory, and differencing the two. The target’s orbit solution 

is primarily generated from ground-based or space-based optical observations, while the 

spacecraft’s trajectory is known via radio tracking data such as Doppler and Delta-Differential One-

Way Ranging (DOR). The state error for most asteroids is on the order of tens of kilometers in 

position and several cm/s in velocity, while spacecraft state knowledge is also often in the low tens 

of kilometers and cm/s range. Together these errors result in a target relative error that would make 

it impossible to get detailed close approach images or get close to impacting potential even multi 

kilometer sized bodies. These errors must be reduced [or corrected] to achieve mission science 

goals. 

2.2.1 Optical Navigation 

An effective way to reduce this error is through optical navigation. Optical navigation is the 

process of imaging the target with an imager that is onboard the spacecraft itself, shown 

schematically in Figure 2.4. Images are sent back to the ground and processed by the navigation 

team who locate the target in the image and use the background stars to determine the pointing of 

the image. Together that forms an observation of the target, which is used to perform target-relative 

orbit determination. The nature of this data being target-relative, means it directly observes the key 

knowledge of interest, the relative state to the target, thus mitigating the individual state errors of 

the target orbit and spacecraft trajectory. Also, as optical navigation data is angular it gets more 

accurate as the spacecraft gets closer, which leads to extremely powerful measurements during the 

final few hours of approach.  
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Figure 2.4: Optical navigation diagram from Matt Bergman [5]. 

2.2.2 Autonomous Optical Navigation 

Only by operating autonomously can a spacecraft capitalize on these extremely powerful images 

taken during the final few hours of approach since the turnaround time of ground communication 

is prohibitive. Spacecraft have operated autonomously in this fashion many times before in 

previous missions, utilizing the software AutoNav, developed at the Jet Propulsion Laboratory. 

AutoNav was first demonstrated on the mission Deep Space 1, and has since enabled flybys of 

comets Borrelly, Wild 2, Tempel 1, Hartly 2, and asteroid Annefrank [20], [20]. Utilizing AutoNav 

for terminal phase observations is required to achieve enough knowledge accuracy for an impact 

mission, and due to the nature of ISO’s extreme hyperbolic velocities and often poor illumination 

detailed later, the object might only be first detected by AutoNav during this period. This thesis 

will therefore focus on analyzing the terminal phase of possible ISO encounter scenarios to 

determine the feasibility of accurately performing a combination flyby and impact mission. 

2.2.3 Determining Feasibility 

AutoNav’s ability to successful navigate an encounter is defined by a complex interaction of 

many spacecraft subsystems. A more detailed breakdown is given in AutoNav’s Technology 
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Validation Report [21], while a simplified version of how the subsystems come together and 

interact is depicted in Figure 2.5. 

 

Figure 2.5: Breakdown of spacecraft subsystem interaction with AutoNav. Green 

identifies the most important parameters that are investigated in this thesis. 

Breaking this figure down from left to right, the first parameters to consider are the quality and 

design of camera itself and the spacecraft’s attitude control system (ACS) for stable pointing. 

Together these define the camera’s ability to image. With the accuracy of the target model and the 

image processing included, the overall ability to derive and observation from an image is defined. 

The approach impact parameter describes the location of where the spacecraft will fly by the target. 

At greater distances the spacecraft can measure parallax and thus gain insight on the distance to the 

target. This effect combined with pointing knowledge errors defines the overall optical orbit 

determination (OD) capability. Then the spacecraft’s agility and thruster accuracy define the ability 

to execute maneuvers, which together with the time of last control defines the final delivery to the 

target. 

The most critical of these parameters that define a majority of the AutoNav system’s ability to 

succeed are; 1 - the camera instrument and 2 - the attitude determination system (outlined Green in 

Figure 2.5). These systems are the most important because they define the accuracy of the optical 

observations. The camera’s angular resolution directly translates to the angular accuracy of the 

observed target’s center. That combined with the attitude knowledge at the time each image is 
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taken, defines the total angular accuracy of the observation. The ACS system is typically designed 

to stability requirements that are defined by the camera, while proper image processing parameters 

can maximize the accuracy of an observation the effect is an order of magnitude less than the 

camera and attitude system’s errors. More capable cameras and attitude determination methods will 

produce more accurate observations which then produce a more accurate relative state estimation, 

which, if accurate enough and with the required propulsive agility, enables impact and the desired 

flyby images. By simulating the terminal phase of possible encounter scenarios while varying the 

capabilities of these systems, this thesis seeks to develop understanding of what is required for high 

impact and flyby imaging success rates across potential ISO mission scenarios.    
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Chapter 3 

3 PROBLEM SETUP 

3.1 Overview 

The simulation program used for this analysis was taken directly from Jet Propulsion Laboratory 

spacecraft navigators Bhaskaran and Kennedy who initially used the program to investigate the 

challenges of navigating to and impacting small asteroids. Their software was taken and modified 

for the distinct encounter scenarios involved with ISOs and so much of this section repeats the 

concepts they outline. Reference [1] gives more detailed explanations of much of the mathematical 

models behind the simulation while a general overview is included here. The terminal guidance 

simulation begins with the truth target-relative state two hours from encounter, which is controlled 

as an input to define the relative velocity and encounter phase angle. Knowledge errors are applied 

to this state to approximate the error from the last orbit determination done with the ground in the 

loop. Next, simulated images are generated based on the state, the spacecraft’s camera properties, 

and the input physical characteristics of the target. The simulated images are then processed to 

determine the center of brightness of the target, which along with the attitude knowledge associated 

with the image, defines an observation. Once several observations are taken, orbit determination is 

performed to update the estimate of the state. Then at predefined times, the required correction 

maneuver is calculated and ‘executed’ with errors and applied to the state. This process is repeated 

until the last maneuver is applied to the state and propagated to determine impact success. A 

breakdown of the inputs, mathematical models, and methods involved in this simulation is 

presented in the rest of this chapter. 
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3.2 Camera 

The spacecraft’s camera is the primary instrument that defines the angular accuracy of the 

observed center of the target in each image. A camera works by collecting light through a series of 

apertures and lenses that focus the light onto the camera’s detector, often a charge-coupled device 

(CCD), which converts the amount of light collected on each pixel into photoelectrons which are 

then measured and recorded as an array of data numbers or DN values to define a picture. The goal 

with each picture is to derive the center of the target and the centers of cataloged stars also captured 

in the image. While the target is unresolved (smaller than a single pixel), its signal is still diffracted 

and slightly blurred from diffraction and imperfect optics, resulting in a shape called the camera’s 

point spread function (PSF). Centerfinding techniques such as fitting to a light envelope function 

(e.g. Gaussian) can be applied to the PSF to locate the center of the target. These methods typically 

have accuracies on the order of a tenth of a pixel when the target source has a good signal to noise. 

When the target becomes resolved, other methods such as limb scanning or a brightness moment 

algorithm can be used to derive the center. The accuracies of these methods depend on several 

factors including how well the target is illuminated and how well its shape is known. Generally, 

the accuracy is inversely proportional to the size of the target in the image. 

In using one of these centerfinding methods, the observed center is found in the pixel coordinate 

system of the image: sample and line (s, l). The sample and line location of the center needs to be 

converted into its physical location on the detector. This is accomplished via a simple 2x2 

transformation matrix that describes the physical dimensions of a pixel, often in mm/pixel. With 

the physical location on the detector known, the next step is to derive what vector, as described in 

the coordinates of the camera, that location projects into. For an ideal camera, the location of the 

observed center translates directly into a vector based on the focal length as illustrated in Figure 

3.1. However, cameras are never ideal and thus distort the projected image. The primary aberrations 

are radial distortion, and tip and tilt misalignment. These effects are carefully measured before 
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launch so that simple corrections can be applied to the observed center location to adjust it to its 

‘ideal’ camera location. Next a simple conversion based on focal length gives a physical vector 

within the camera. This vector within the camera can then be converted to a vector within inertial 

space given knowledge of the camera’s attitude at the time of the image. 

 
Figure 3.1: A pinhole camera showing a gnomonic projection for a star [19]. 

It is important to highlight the importance of the pixel size in deriving accurate observations as 

the origin of this vector observation is derived from centerfinding techniques that have accuracies 

proportional to the pixel. This means that smaller the angle subtended by a single pixel (the 

instantaneous field of view (IFOV)), the more accurate the center is in metric space. Also, the 

smaller the IFOV, the sooner the target becomes resolved and the particular illuminated portion of 

it can be targeted. The IFOV can be reduced by two ways, increasing the focal length of the camera 

or decreasing the physical pixel’s size. The relationship is presented in equation 3.1, where f is the 

focal length and K describes the size of the pixel in pixels/mm. 

IFOV =  𝐾 / 𝑓                                                             (3.1) 

Developing and verifying new space rated CCD detectors with smaller pixels to the levels required 

for interplanetary spacecraft is a long and expensive process. Increasing focal length to decrease 

the IFOV, while straightforward in principle also increases camera size and cost. This is an 

extremely simplified description of camera design, but the basics of this tradeoff is the primary 

focus of this thesis, since with a high enough IFOV, observations can in principle become so 

accurate that any navigational challenge can be overcome. Thus, the question becomes: how 

accurate of a camera is needed to give high success rates for all realistic ISO encounter scenarios? 
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3.3 Attitude Determination 

The attitude of the camera is described by three angles, right ascension, declination, and twist. 

The right ascension and declination together describe where the center of the camera is pointed (L 

in Figure 3.1), while twist describes the camera’s rotation about that axis. These angles define 

rotation matrices that transform camera coordinates to the inertial frame. The most accurate method 

for determining the attitude of every image is through the stars in the image itself. This can be done 

as long as at least two (and ideally three or more) cataloged stars appear in the image along with 

the target. Again, highlighting the effect of a small IFOV, the pointing accuracy of this method 

depends on the centerfinding of the stars, which too is dependent on the size of the pixel. An issue 

arises when the target becomes so bright that shorter exposures are needed which fail to capture 

enough background stars. When exactly this happens depends a variety of factors which are 

discussed further in section 4.3. Regardless, one solution is to take alternating frames with different 

exposure times to capture the dimmer background stars, then the target and then the background 

stars again, referred to as flash-flash imaging in this thesis. Assuming the spacecraft has a constant 

drift rate and direction during this image sequence one can interpolate between the derived attitude 

of the star images to determine the attitude of the target image. The drawback to this method is a 

reduced number of actual target observations for orbit determination. Alternatively, and what has 

always been done in the past, one can rely on the spacecraft’s own attitude determination system. 

This consists primarily of the IMU, which takes the attitude handed off at the beginning of terminal 

guidance and propagates it throughout the terminal phase to give an associated attitude with every 

image. Analysis has been done on use of star trackers to compliment the IMU during the terminal 

phase, and the conclusion drawn was that it is optimal to leave the star trackers off during the 

terminal guidance phase to avoid the sudden attitude error shifts that occur when stars move in and 

out of the tracker frame, called the “star tracker spatial error” problem [1].  The dominant errors 
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that are introduced into the solution are a result of the IMU’s initial attitude bias and the angle 

random walk error that propagates over time. 

3.4 Orbit Determination 

Once a series of optical navigation observations of the target are made, orbit determination can 

be performed. The observations are combined and batch-filtered and fit via a least-squares method 

to improve the state estimate at a given epoch which is then propagated forward to the desired 

times. The full state vector (X) defined in equation 3.2 is comprised of the position and velocity 

components and the pixel bias (P) and line bias (L) measurements and their rates.  

𝑋 = [ 𝑥 𝑦 𝑧    𝑥̇ 𝑦̇ 𝑧̇    𝑃 𝑃̇    𝐿 𝐿̇]                                        (3.2) 

 
The full AutoNav flight code utilizes a full dynamic model that integrates equations of motion that 

include accelerations from the Sun, planets, and solar radiation pressure. However, for this 

simulation the target relative motion is simplified and modeled as straight-line motion. Inaccuracies 

in the modeling of the gravitational forces and solar radiation pressure have little effect in the 

simulated two-hour terminal guidance period while the computational speed gained from this 

simplification is extremely significant. The orbit determination (OD) follows the standard 

mathematical process of least squares fitting. The partial derivatives of the pixel and line 

observations with respect to the parameters in the state vector are calculated. How to calculate the 

partials with respect to the position and velocity components is outlined in [19], while the partials 

with respect to the biases are simple derivatives. With the partials, the data weights, the observation 

residuals, and an initial guess, the least squares fit is calculated, and after several iterations, 

converges to a solution. More details of the simulation’s OD process, such as the data weights, are 

outlined by Bhaskaran and Kennedy in [1]. 
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3.5 Maneuver Computation 

The navigational goal of a flyby / impact mission is to deliver the flyby spacecraft to a desired 

flyby location relative to the target and deliver the impactor into the target. These locations and the 

spacecraft’s miss distance are represented in the B-plane coordinate which is classically utilized 

for flybys and gravity assists. As depicted in Figure 3.2, the B-plane is centered on the target and 

is perpendicular to the spacecraft’s incoming asymptote with axis denoted T and R. T is normal to 

the incoming asymptote and typically lies parallel to the ecliptic or the J2000 equator. R is then 

defined by the cross product of the incoming asymptote and T. The last dimension along the 

asymptote is described by the linearized time of flight (LTOF), which is the spacecraft’s position 

divided by the relative velocity. The figure depicts the use of the B-plane for a gravity assist around 

a planet, in which case the spacecraft’s trajectory is significantly diverted from its original incoming 

asymptote. As we are dealing with small bodies with minimal gravitational fields, the approach and 

departing trajectories are effectively the same, and again the relative motion is modeled as a straight 

line. 

 
Figure 3.2: B-plane coordinate system. 



 21 

The goal of a maneuver is to eliminate any offsets in the B-plane from the desired delivery. As 

the encounter is linearized the calculation to determine the required V vector is straightforward. 

A targeted parameter Z is defined which contains the desired location in R and T, and the desired 

LTOF. For impacting these are all zero. For a flyby spacecraft it is assumed that the desired location 

is a flyby offset towards the sun to maximize illumination and at a distance that results in the target 

filling one third of the closest approach image, with zero LTOF. A sensitivity matrix K is then 

calculated via finite differencing to relate a V to the resulting effect in the B-plane. V is then 

solved for as seen in equation 3.3. A more detailed breakdown of the mathematics just mentioned 

is given by Bhaskaran and Kennedy [1].  

𝑉 =  𝐾−1 𝑍                                                                 (3.3) 

3.6 Terminal Guidance Sequencing 

The impactor maneuver sequencing in this thesis is derived from the Deep Impact mission [14], 

presented in Figure 3.3, which consisted of three burns, the first Impact-90 minutes. This allowed 

for enough observations to be collected to generate an accurate OD before the maneuver. The 

second burn is then at I-35 minutes, followed by the final burn at I-12.5 minutes. Delaying the time 

of this final burn can significantly improve impact success, however pushing the burn later can also 

leads to higher Vs as the spacecraft may have to deal with large handoff errors from the second 

burn. Between each burn, images are taken at regular intervals around 10 seconds apart to allow 

for processing time. The imaging sequence must also take into account any time required for the 

spacecraft to orient itself to perform the V maneuver.  
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Figure 3.3: Deep Impact encounter with Tempel 1  [9]. 

The maneuver sequencing for the Deep Impact flyby spacecraft is much less complicated. As 

shown in Figure 2.4 the flyby spacecraft executed only one maneuver 12 minutes after detaching 

from the impactor, which occurred 24 hours before encounter. This is possible because delivery 

accuracy requirements to get good flyby images are far less intense than those for impacting and 

for Deep Impact those requirements could be satisfied with the knowledge levels 24 hours before 

encounter, which is typical with all small body encounters. For example, the most recent flyby was 

of Kuiper Belt object Arrokoth by New Horizons which executed its final maneuver nearly two 

months before encounter. However, determining delivery requirements for flybys is a complicated 

process that depends on the size of the object, the sciences goals, and instrumentation requirements. 

How far in advance of encounter those requirements can be met is then determined via a covariance 

analysis study that simulates a realistic radiometric tracking schedule and opnav campaign. While 

an important aspect of mission design, this analysis would be beyond the scope of this thesis. 

Instead I assumed that the initial state errors, described later in 5.2.1, at the beginning of terminal 

guidance are within the theoretical delivery requirement, and so no maneuvering of the flyby 
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spacecraft will be done during the terminal guidance phase. The objective is to purely update the 

knowledge to maximize close approach flyby images. 
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Chapter 4 

4 ENCOUNTER SCENARIOS 

To design and build a spacecraft before a unique target is identified means designing for all 

realistic object sizes, shapes, relative velocities, and phase angles that could present themselves. 

Again, the nature of ISOs’ hyperbolic orbits presents a uniquely challenging environment never 

investigated from a navigational standpoint. The next sections establish first what the physical 

properties ISOs are assumed to have in this thesis, and then what their orbits imply for encounters. 

4.1 Size and Shape 

When considering the possible object sizes, the two references Oumuamua and 2I/Borisov 

provide a wide range, with Oumuamua estimated to be 250 meters long, and 2I/Borisov between 

1.4 and 6.6 kilometers in diameter. With only two data points it is difficult to confidently constrain 

the potential size range of ISOs. However, as this range brackets the lower and upper bounds of 

known asteroids it is also used to bracket the range of ISOs simulated in this thesis. Other 

justifications for this assumption include the fact that as targets get into the multi-kilometer size 

range mission success becomes guaranteed and so the potential for larger ISOs is not a concern. 

Also, as ISO’s get smaller than Oumuamua and their brightness drops it becomes much less likely 

that such objects will be detected with enough advanced warning for an intercept mission. 

Therefore, simulating sub-100-meter ISOs is not considered realistic. Bhaskaran and Kennedy’s 

work also demonstrated almost 100% impactor success rates with a 300 m diameter object with a 

high phase angle of 140 and relative velocity of 12.5 km/s, and while ISOs are shown to have 

much higher relative velocities and phase angles than this, the results with a 300 m object suggest 

it is safe to use Oumuamua’s size as the lower bound for simulated encounters. Ultimately three 

object average diameters were selected for investigation in this thesis: 200 m, 600 m, and 1,500 m.  
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Defining the realistic shapes to consider is made particularly difficult by the unprecedented 9:1 

length to width ratio of Oumuamua and with 2I/Borisov’s shape hidden by its cometary coma. 

While it is possible that the planetary mechanisms that eject these objects from their home systems 

consistently produce highly elongated objects there are currently no models that suggest this. And 

with there being only two data points, the best place to interpolate additional information from is 

the asteroid and comet population, for which the highest length to width ratio is around 4:1 with 

most objects being very well rounded. Therefore, for this thesis all objects are were assumed to 

have length to width ratios of 1.5:1, an assumption also made by Bhaskaran and Kennedy. The 

unique dimensions and encounter scenario of Oumuamua is also investigated separately from the 

general simulation space. 

4.2 Relative Velocity and Phase Angle 

Realistically constraining the encounter relative velocities and angles is a challenge as these 

objects can enter the solar system at potentially any angle, with a wide range of escape velocities, 

and distances from the sun. The trajectory to intercept one of these possible orbits is then dependent 

on how early detection is and where the Earth is relative to the object. Fully modeling all these 

possibilities and optimizing all the intercept trajectories could be a thesis in itself, and so instead 

this thesis establishes basic assumptions that realistically constrain spacecraft intercept trajectories 

and builds off the trajectory analysis performed by Seligman and Laughlin [24]. Based on their 

analysis of the optimal trajectory to intercept Oumuamua they establish the assumption that on 

average most intercepts will occur somewhere on the 1 AU sphere centered at the sun. This 

assumption is somewhat flawed in that it doesn’t properly consider that launching on an inclined 

orbit to intercept an ISO above or below the ecliptic is often much more costly than intercepting on 

the ecliptic which is highlighted by the optimum intercept trajectories for both Oumuamua and 

2I/Borisov which both have very low inclinations. Otherwise this assumption is well justified by 

several concepts outlined below: 
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1) With limited warning times there will be fundamentally very little time for a spacecraft 

to significantly deviate from Earth’s orbit to intercept an ISO.  

2) When dealing with objects in the same size category as Oumuamua, which if the 

population is comparable to asteroid size distributions are likely the vast majority of 

ISOs, only those with close approaches to the sun (~ 1 AU) will ever get bright enough 

to be consistently detected by LSST [7].  

3) Intercept before these objects on their inbound trajectories require such early detections 

that it is likely infeasible. Thus intercept must occur after perihelion and during the 

object’s path out of the 1 AU sphere.  

These concepts are used in this thesis to justify defining the nominal orbit of the intercepting 

spacecraft as the Earth’s orbit with an assumed intercept distance of 1 AU. While this will never 

be the case, it serves as a baseline from which the general geometry of encountering an ISO can be 

understood and then modified to account for the realistic variations of intercepting trajectories. 

When dealing with an object on an orbit like 2I/Borisov, this 1 AU assumption falls apart as the 

closest approach for 2I/Borisov is 1.9 AU. These trajectories will require especially early detection, 

but are not infeasible without large ISOs. The effects these trajectory scenarios have on the 

encounter space is therefore made sure to be encapsulated by variations applied to the nominal 

Earth orbit spacecraft trajectory. A breakdown of how these assumptions are applied in the 

encounter analysis is demonstrated in the remainder of this section.   

There are three orbital parameters that define the ISO’s trajectory as it leaves the 1 AU sphere; 

hyperbolic escape velocity (V), radius of perihelion (rp), and orbit inclination. Orbit inclination is 

defined as zero in this analysis as the encounter phase angle can be defined by the combination of 

two angles depicted in Figure 4.1; the first being the angle between the spacecraft to ISO vector 

and component of the ISO to Sun vector that lies on the plane formed by the spacecraft and ISO’s 

trajectories. The second angle is then defined by the orientation of this plane with respect to the 

sun, referred to in this thesis as the encounter plane inclination. If this angle is increased at all, it 
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will reduce the encounter phase angle as the target is guaranteed to have illumination from either 

above or below. Therefore, by assuming the ISO has zero inclination the encounter plane 

inclination is also guaranteed to be zero, thus the potential phase angles are maximized which 

encapsulates the worst-case scenario encounter for any given escape velocity and radius of 

perihelion. Under this worst-case scenario framework, the range of realistic escape velocities 

addressed in this thesis is from 3 km/s to 70 km/s, while the radius of perihelion is constrained to 

be between 0.1 AU and 1 AU. It is also important to note that for each combination of escape 

velocity and radius of perihelion, the ISO can then also be either prograde or retrograde. 

 
Figure 4.1: Encounter plane phase angle breakdown. 

To translate these ranges of escape velocity and radius of perihelion to phase angle and relative 

velocity, first ISO flight path angle (∅) and velocity (𝑣) at 1 AU are calculated via basic orbital 

equations outlined in Appendix A. As the spacecraft is initially defined as always being on a 

circular intercept orbit at 1 AU, its flight path angle is zero and velocity is ~ 30 km/s. By 

approximating the final two hours of encounter as linear, the ISO and spacecraft flight path angles 

and velocities can then be used to define the encounter geometry. With the geometry defined, phase 

angle and relative velocity can be calculated as outlined in Appendix B. The realistic ranges of 

escape velocity and radius of perihelion can then be translated to the orange and blue nominal phase 
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angle and relative velocity regions plotted in Figure 4.2. The encounter space here is again a 

depiction of the worst-case scenarios with the spacecraft on the assumed nominal Earth orbit. 

Real phase angles will likely always be less as inclination in the ISO or spacecraft orbits will 

translate to additional illumination. An inclined encounter plane can at most reduce the encounter 

phase angle to 90, which is depicted and accounted for in the ‘Inclined Encounter Plane’ region 

in Figure 4.3. Also, if the spacecraft’s intercept trajectory has a non-zero flight path angle, this too 

will affect the resulting relative velocity and phase angle. To expand the encounter space to include 

the effects of spacecraft trajectory variation, the median Earth departure velocity of 12 km/s as 

determined by Seligman and Laughlin is be applied as a vector to the Earth’s velocity in all possible 

directions in the encounter plane. Applied perpendicularly this at most results in a flight path angle 

of 21.8 which serves to approximate the spacecraft’s possible flight path angle deviation from 

zero. The resulting additional encounter scenario range is depicted as purple in Figure 4.3. These 

regions are then sampled as depicted to provide the particular encounter scenarios that are 

simulated. 
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Figure 4.2: ISO hyperbolic escape velocity and radius perihelion mapped to worst case 

phase angle and relative velocity. (The gap is a result of the possible radius of perihelion 

being limited to 0.1 AU). 

 
 

Figure 4.3: Possible encounter scenarios, factoring in variations in spacecraft trajectory 

and Sun location relative to encounter plane. Encounters scenarios for relevant real targets 

also plotted. 
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4.3 ISO Brightness 

An important consideration for this thesis as demonstrated by Bhaskaran and Kennedy in their 

kinetic impactor study is the ability to do star relative navigation. While this thesis already attempts 

to take advantage of this form of attitude determination via ‘flash-flash’ photography, the potential 

high phase angles may translate to significantly dimmer targets such that stars can also be imaged 

in the background along with the target throughout the autonomous guidance phase. To better 

understand this possibility,  Figure 4.4 was generated using the H-G magnitude system for asteroids 

[8] which defines the relationship between an asteroid’s absolute magnitude, its reduced magnitude 

(H) which takes into account the asteroid-observer phase angle, and the apparent magnitude which 

then considers distance from the observer to the asteroid. The absolute magnitudes used to generate 

these results were taken from the JPL Small Body Database [33]. Information on the absolute 

magnitudes of all asteroids with sizes within 50m of the simulated ISO sizes was extracted and 

averaged to give an assumed absolute magnitude for each simulated ISO size. Then by applying 

the equations that define the H-G magnitude system, the apparent magnitude during approach is 

calculated. It is important to note that this method is meant to be used on asteroids with phase angles 

< 120 as very little data exists on the brightness of asteroids at such high phase angles. The analysis 

of the phase curve of the Annefrank mission [6] gives one of the few examples of high phase 

asteroid brightness. The 150 phase and 170 phase lines are therefor likely not definitive in light 

of the lack of data on high phase-angle brightness, but as the goal of this analysis is to establish a 

baseline understanding of these encounters, the H-G magnitude system is probably sufficient. 
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Figure 4.4: ISO apparent magnitude vs time to encounter, based on a 50 km/s relative 

velocity. Stops at 5 minutes from encounter as this is the final maneuver. 

The apparent magnitudes shown in Figure 4.4 present both an additional challenge and a 

potential advantage to executing ISO encounters. The challenge comes primarily with the 170 

phase angles where so little of the illuminated portion of the ISO is seen by the spacecraft that the 

apparent magnitude is almost 25 when the spacecraft is an hour away from encounter with a 200 m 

ISO. This is extremely dim and likely undetectable given current spacecraft capable camera 

technology. This is also amplified by the enormous relative velocity that results in the spacecraft 

simply being farther away from the ISO during approach. To relate these magnitudes to a real 

mission, the dimmest object ever navigated to was the Kuiper Belt object Arrokoth n 2019. At the 

beginning of the optical navigation campaign, more than three months before encounter, Arrokoth 

had an apparent magnitude of 19 [17]. It was only barely detectable even after combining 48 images 

of 30-second exposure, which translates to an effective 24-minute exposure time. Furthermore, 
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additional processing was necessary to subtract out background stars. Near the end of the approach, 

in the final optical navigation images Arrokoth had an apparent magnitude of 11 and was easily 

detectable with 0.5 s exposures.  

Ultimately, as shown by this analysis, even larger ISOs could have similar apparent magnitudes 

and thus pose serious detection challenges when at high phase angles. The ability to observe these 

dim objects is defined by a complex relationship between optical instrument, detector sensitivity 

and noise characteristics, and tracking capabilities for longer exposures. It is also likely necessary 

to improve the understanding and brightness modeling of small bodies at high phase angles. 

Considering all this, while the design of an instrument to observe the potential dim magnitudes will 

be a very important aspect of the problem, such work would constitute another thesis topic entirely. 

As the focus of thesis is on the overall ability to navigate ISO encounters given relative velocity 

and phase angle, it is simply assumed that the signal strength of the ISO is observable throughout 

approach and so, while with current technology and techniques, it is likely impossible to detect a 

200 m ISO at 170 and at 50 km/s this thesis will still analyze that encounter environment and all 

others regardless of apparent magnitude. As mentioned later in the conclusion aspect of this thesis 

a potential way to overcome these low visual magnitudes is the use of infrared imaging. Future 

work will likely have to emphasize the thermal modeling of ISOs and the potential detectability 

improvements of infrared at high phase angles. 

To be more positive, Figure 4.4 also illustrates a potential advantage offered at higher phase 

angles and higher relative velocities. Usually the target is so bright during terminal guidance that it 

is impossible to image the background stars and the target at the same time. These background stars 

are ideally at least 9th apparent magnitude [19] and again referring to Figure 4.4, there are many 

scenarios where the target and background stars would be of similar brightness. For a 200 m ISO 

all phase angles could likely achieve this as at brightest the target is estimated to be around 5th 

magnitude at a 60 phase. Looking at the 600 m chart, while 170 phase clearly presents a detection 
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challenge, at 150 phase the ISO is right at the magnitude of ideal background stars and so both 

could confidently be imaged together. Down to 60 phase there may be potential for imaging the 

stars as well. Even 1500 m sized ISOs could present opportunities for background star imaging at 

higher phase angles. And while as ISOs get larger, they will inevitably reach magnitudes that wash 

out the stars, larger objects are fundamentally easier to navigate to in all other aspects. Overall this 

could be a powerful tool in enabling these missions as the errors from star relative navigation are 

an order of magnitude less than when using IMU propagation. However, a significant amount of 

work would need to be done before this can be implemented as there are numerous variables to 

consider. For a given encounter one must first know what the actual background stars will be and 

their apparent magnitudes. Those magnitudes, given the dynamic range of the imaging instrument, 

will give a range of ISO apparent magnitudes that can be imaged along with the stars. Then again, 

more work needs to be done improving our understanding of high phase angles and their effect on 

asteroid brightness as inaccuracies in this modeling could easily result in underexposed images and 

detection failure. This additional analysis is deemed outside the bounds of this thesis and is instead 

heavily recommended as a focus for future work. Since little can be said with confidence regarding 

when stars can and cannot be imaged, I take a conservative approach and assume the impactor only 

uses flash-flash imaging when attempting to derive attitude from the star field images. 
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Chapter 5 

5 FLYBY AND IMPACTOR MONTE-CARLO ANALYSIS 

5.1 Overview 

In an initial attempt to characterize the challenges of a mission to an ISO, a broad Monte-Carlo 

analysis of a variety of the possible combinations of relative velocity, phase angle, object size, 

attitude determination method, and camera parameters, for both flyby and impactor spacecraft is 

performed. Each possible combination is then simulated 100 times, each time with a new sampling 

of the errors outlined in section 5.2. With each simulation the amount of ‘successful encounters’ is 

tracked. For the impactor spacecraft determining success/failure is simple as the impactor either 

hits the illuminated surface of the ISO or it does not. For the flyby spacecraft, success is more of a 

continuous regime defined by how many close approach images have the target in the field of view. 

This statistic is collected for each flyby simulation and is expressed as the percentage of images 

with the target in the field of view at a distance at which the target is at least 30 pixels across. This 

percentage is then averaged across the 100 simulations for each scenario. 

5.2 Inputs and Errors 

5.2.1 Initial Ephemeris and Errors 

The initial ephemeris error refers to the error in the target relative state at the beginning of the 

terminal guidance phase. The target relative solution at that time is a combination of the ISO 

ephemeris from ground observations, the spacecraft ephemeris from radiometric tracking, and all 

optical navigation data collected during approach. As stated in section 2.2, the spacecraft’s 

trajectory will typically have errors in the low tens of kilometers in position, with order of cm/s 

velocity error, while asteroids typically also have tens of kilometers position error and cm/s velocity 

error. However, the accuracy of an ISO’s ephemeris cannot be assumed the same as typical 
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asteroids as an ISO’s orbit inherently offers a much more limited time for observation. On the other 

hand, a mission like this would likely have unprecedented support from observatories in an effort 

to improve the target ephemeris as much as possible. A full orbit determination study on how these 

errors would map out to potential ISO orbits and sizes is also outside the bounds of this thesis, 

especially as these missions would likely rely on next generation observatories, and so I assume 

that for all simulated ISOs the initial ephemeris error is twice that assumed by Bhaskaran and 

Kennedy (Ref [1]),  resulting in a 60 km 1 position uncertainty and 10 cm/s 1 velocity 

uncertainty. This uncertainty is sampled from a normal distribution and added to the nominal state 

of both the impactor spacecraft and flyby spacecraft.  

For the impactor the nominal state is a trajectory that results in center of mass impact at the 

defined impact time. For the flyby spacecraft the nominal state is a trajectory offset such that it will 

produce a flyby distance that results in the illuminated side of the target ISO filling 1/3 of the 

imager’s FOV. While the impactor spacecraft seeks to both refine the knowledge and perform 

maneuvers to eliminate the added error’s effect on the B-plane, the flyby spacecraft only performs 

knowledge updates to enables accurate pointing during close approach. This does not change the 

fact that the initial added error to the nominal trajectory maps directly into the delivery location. 

5.2.2 Maneuver Sequence and Execution Error 

As stated earlier, the maneuver sequence implemented here is based on Deep Impact mission 

technique and follows a three-burn sequence. An initial burn is performed after an hour of 

observations are collected and one hour from impact, then a second burn is executed 30 minutes 

from impact, followed by the final burn at 5 minutes from impact. The timing of this sequence is 

not identical to Deep Impact as Deep Impact’s target Tempel 1 was a multi-kilometer wide body. 

As some significantly smaller bodies are being targeted in this thesis, the sequence from Bhaskaran 

and Kennedy which implements somewhat later burns for additional accuracy is used instead.  
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When executing these burns in a real mission, there will always be a difference between a 

desired maneuver V and the actual V that results from firing thrusters. This difference can be 

the result of many factors including alignment errors, attitude errors, and timing error on startup 

and shutdown. The method of modeling these errors used by Bhaskaran and Kennedy and in this 

work is the Gates method. These error sources for V are outlined in Table 5.1. 

 

Table 5.1: Gates maneuver execution error model. 

 

5.2.3 Imaging Sequence and Attitude Determination Errors 

There were three imaging sequences used in this broad initial analysis: one for the impactor 

when using the SSIMU for attitude determination, one for the impactor when using flash-flash 

attitude determination, and one for the flyby spacecraft while using the SSIMU. These sequences 

are outlined in Table 5.2. The sequence for the impactor SSIMU is again meant to mimic that of 

the Deep Impact impactor with images taken in increasing frequency leading up to impact. The 

impactor with flash-flash is derived from this sequence while taking into consideration that fewer 

images can be taken for target object observation since every other image is a longer exposure of 

the background stars as the target ISO brightness saturates the CCD. Again, as this has never been 

implemented before there is no precedent regarding the spacing between these images and so I 

assume a 50% increase in time between images after the first burn. The flyby spacecraft sequence 

is a simplified sequence of typical flyby imaging sequences. Images are initially taken at intervals 

similar to the impactor for state estimation, and then around the time the target is expected to extend 

to 30 pixels, rapid imaging takes place to collect as many images of the target as possible in these 

extremely fast encounters. 
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Table 5.2: Imaging sequences simulated during terminal guidance. 

 
The two attitude determination methods considered in this thesis are again IMU propagation via 

the SSIRU and interpolation between target and background star imaging aka ‘flash-flash’. The 

IMU errors begin accumulating at the start of each simulation and are characterized by the bias and 

angle random walk values listed in Table 5.3 for the SSIRU. The orbit determination filter is 

capable of estimating the bias while proper data weighting attempts to minimize the effects of the 

random walk. The errors associated with interpolating between background images on the other 

hand is not well characterized as this technique has never been implemented in a mission. In 

principle, there is an initial attitude error with the first background image, and another attitude error 

with the second. If the spacecraft has a constant attitude drift between these background star images, 

then the image taken of the target has an associated attitude error that is simply the average of the 

two background images’ errors. However additional attitude error is introduced by vibrations 

within the spacecraft and any disturbances that might produce a non-linear path between images 

and so the attitude error assumed for this method is twice the assumed attitude error of the 

background images themselves, listed in Table 5.3.  

In this thesis the flyby spacecraft is simulated using only the IMU for attitude determination as 

utilizing flash-flash imaging significantly reduces the number of well exposed images of the target 

and thus signifyingly reduces the science return. For the impactor spacecraft this is not as big a 

concern as the primary goal is to just achieve impact. 
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Table 5.3: Attitude determination errors. 

 

5.2.4 Cameras 

In attempting to determine what camera properties give high success rates this thesis first 

considers real flight heritage hardware used for previous flybys. These cameras, their description, 

and property of interest the IFOV are presented in Table 5.4.  

Table 5.4: Existing cameras implemented in initial analysis. 

 

 

5.3  Impactor Results 

First simulations were run utilizing the SSIRU for attitude determination, the results of which 

are outlined in Figure 5.1, where Green identifies  97% success rates, Yellow identifies  97% 

success rates with two impactors, Orange identifies  97% success rates with three impactors, Pink 

identifies the need for four or more impactors, and Red requires five or more.  
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Figure 5.1: Impact percentage success rates for 200 m, 600 m, and 1500 m ISOs utilizing 

various cameras and SSIRU for attitude determination. Green identifies >97% success 

rates, Yellow identifies >97% success rates with two impactors, Orange identifies > 97% 

success rates with three impactors, Pink identifies the need for four or more impactors for 

> 97% success rate, and Red requires five or more.  

 

The challenge these encounters will present is immediately apparent. Attempting to impact the 

illuminated portion of a smaller 200 m ISO, with any imager is demonstrated to be infeasible using 

the same strategy as Deep Impact. At best, the HRI achieves an 89% illuminated impact success at 

10 km/s and 60 phase. Using an IMU to propagate the attitude knowledge is only somewhat 

feasible in high probabilities in limited low relative velocity and low phase angles and with larger 
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ISOs.  For a 600 m ISO high success rates are still only possible at 10 km/s, and only with a 1500 

m ISO can high success rates be possible at 30 km/s. Ultimately, while the OD filter is able to 

estimate much of the attitude bias and drift, the random walk proves too significant almost 

immediately as the encounter scenarios get more challenging. This means that even with the HRI, 

the smallest IFOV ever flown on a flyby spacecraft, the attitude error will wash out its centerfinding 

accuracy, which is exemplified at the higher relative velocities and phase angles where the use of 

any of the three cameras results in effectively the same impact success. The gains with increased 

centerfinding accuracy from the camera simply plateau.  

On the other hand, implementing a Flash-Flash attitude determination approach as shown in 

Figure 5.3 appears to be a very appealing alternative. First considering 200 m class ISOs, even with 

a lower resolution imager like MRI, reasonable success rates are achievable up to 90 phase and 

even at an extreme relative velocity of 90 km/s. When utilizing LORRI and even more so with HRI, 

high success rates can be achieved up to 120 phase and 110 km/s. For 600 m class ISOs the HRI 

extends the high success rates to 150 phase, while LORRI provides high success rates with two 

impactors. Going to 1500 m class ISOs, LORRI and HRI both provide 100% success rates no matter 

the relative velocity up to 150, while even MRI provides high success with the use of two 

impactors up to 30 km/s.  

However very notably, across all sizes and no matter the imager or attitude determination 

technique it is almost infeasible to impact the illuminated portion of an object at 170 phase. The 

challenge presented by such a high phase angle is highlighted in Figure 5.2, which shows how 

much of a spherical target is shadowed at various phases for a 600 m ISO and the distribution of 

impactor b-plane location (blue crosses). The reduction of area available to impact is one of the 

most limiting aspects of these high phase encounters. A phase angle reduces not only the total 

affective area but results in typically a very long thin illuminated region. Thus, in order to get high 

success rates an impactor’s delivery distribution must be able to fit within the width of the region. 
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A rough estimate of this width for an assumed spherical ISO with radius R and phase angles greater 

than 90  is given in equation 4.1. 

𝑤 =  𝑅 − 𝑅𝑐𝑜𝑠(180 − 𝑝ℎ𝑎𝑠𝑒)                                              (4.1) 

 

 

 
Figure 5.2: B-plane plots showing how terminator (red line) moves with increased phase 

angle. All plots show distributions at 50 km/s and using LORRI. Top row utilizes Flash-

Flash and bottom the SSIRU. 

The best performing spacecraft setup, the HRI with Flash-Flash imaging for attitude 

determination, produced a 3 delivery accuracy of just under 20 meters at 70 km/s. Applying 

equation 4.1, we determine that in order to fit the 3 distribution within the illuminated portion of 

a 170 phase spherical ISO, that ISO must at least be 2,360m in diameter. On the other hand, if the 

SSIRU is used to propagate attitude, even in combination with the HRI the best case 3 delivery 

accuracy is 530m which requires a roughly 70km diameter ISO for high illuminated surface impact 

success rates. Illuminated impact is an enforced requirement as it guarantees the ejecta will also be 

illuminated. However as demonstrated by Deep Impact the ejecta can extend hundreds of meters 

above the target’s surface. As a result, with a dark impact at least near the target’s terminator line, 

the resulting ejecta would likely extend past the shadowed region and be partially illuminated for 
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flyby imaging. This potential loosening of the impactor delivery requirement could significantly 

improve success rates and is discussed as a topic of future work. 

 
Figure 5.3: Impact percentage success rates for 200 m, 600 m, and 1500 m ISOs utilizing 

various cameras and Flash-Flash attitude determination. Green identifies >97% success 

rates, Yellow identifies >97% success rates with two impactors, Orange identifies > 97% 

success rates with three impactors, Pink identifies the need for four or more impactors for 

> 97% success rate, and Red requires five or more. 

Another important consideration for the impactor encounter is the maneuvering V. As the 

simulation simply calculates a maneuver and applies it, the resulting Vs must then be considered 

to determine if they are actually feasible. For each simulation the Vs of each maneuver are 

Relative 

Velocity

Phase 

Angle
MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI

60° 100 100 100 100 100 100 - - - - - -

90° 100 100 100 100 100 100 99 100 100 97 100 100 94 100 100 90 99 100

120° 100 100 100 94 99 100 86 97 100 81 91 100 75 89 99 68 86 99

150° 79 84 90 65 75 85 50 67 82 36 57 79 32 54 70 -

170° 20 23 27 13 14 20 5 20 29 3 13 17 - - - -

Relative 

Velocity

Phase 

Angle
MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI

60° 100 100 100 100 100 100 0 - -

90° 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

120° 100 100 100 100 100 100 100 100 100 99 100 100 96 100 100 94 100 100

150° 96 100 100 91 99 100 80 93 99 74 89 98 65 84 97 -

170° 34 35 37 31 34 47 16 32 46 9 31 39 - - - -

Relative 

Velocity

Phase 

Angle
MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI MRI LORRI HRI

60° 100 100 100 100 100 100

90° 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

120° 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

150° 98 99 100 99 99 100 98 100 100 94 100 100 88 100 100 -

170° 33 73 78 55 63 69 43 57 67 27 50 65 0

Flash-Flash, 200m ISO

10 km/s 30 km/s  50 km/s 70 km/s 90 km/s 110 km/s

Flash-Flash, 1500m ISO

10 km/s 30 km/s  50 km/s 70 km/s 90 km/s 110 km/s

Flash-Flash, 600m ISO

10 km/s 30 km/s  50 km/s 70 km/s 90 km/s 110 km/s
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collected, summed, and then averaged across the 100 Monte-Carlo runs. The results are presented 

in Table 5.5. 

Table 5.5: Average total Delta-V for each combination of imager and attitude 

determination method versus the simulated relative velocities. 

 

These results present high but not unreasonable Vs. For comparison, Deep Impact’s total V 

during the terminal guidance phase was 5.81 m/s. With the sampled state errors, each scenario on 

average has to remove 60 km of position error and 10 cm/s velocity error in each axis. When most 

of this error can be resolved before the first maneuver, we see that roughly 20 m/s of V is required.  

This is highlighted by the fairly constant V for all imagers when using flash-flash attitude 

determination. The overall observational accuracy when using this method enables the removal of 

almost all of the initial ephemeris error with the first burn even at the substantial distances this 

relates to at 110 km/s. The following burns then refine the targeting with slight adjustment 

maneuvers on the order of cm/s. However, when using the SSIRU there is a significant increase in 

V as the relative velocities increase. The additional attitude error results in significant error in the 

state at the time of the first burn which then must be removed in the second and third burns. At the 

higher relative velocities, the final burn becomes much more costly as even at the time of the second 

burn the spacecraft can be over 100,000 km away. For example, at 90 km/s relative velocity, the 

observational accuracy at the time of the second burn is equivalent to the observational accuracy at 

130 minutes from impact with 20 km/s relative velocity. Correcting this error with the last burn is 
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then expensive in V. Optimizing the timing of the maneuvers for each encounter scenario can 

likely reduce these maneuvers significantly and will be a subject of future work. For now, the 

resulting V demonstrate order of magnitude feasibility and the potential benefits of flash-flash 

attitude determination. 

5.4 Flyby Results 

As stated earlier in section 5.2.3, the flyby analysis focuses on using the SSIRU to propagate 

attitude and determines success based on the fraction of captured images that include the center of 

the ISO in the frame during the period when the ISO goes from being 30 pixels across on the 

inbound trajectory to the time it stops being 30 pixels across on the spacecraft’s outbound 

trajectory. The spacecraft’s ability to do this is defined by how accurately the spacecraft can 

determine its relative state to the target during the terminal phase so that during closest approach it 

knows where to point to get high-resolution images. However, with these high-speed flybys it is 

shown that knowledge errors can often cause the spacecraft to lose tracking of the ISO and miss 

portions of the close approach images. Specifically, the error of concern is the downtrack error, or 

how well the distance to the target is known. This is always the largest error as each image captures 

where the target is in the sky, but cannot directly measure how far away it is. As a result, the error 

ellipse of a target during approach will have the shape of a long pencil that is oriented towards the 

spacecraft. This error is primarily reduced during the closest approach period when the spacecraft 

starts to see the error ellipse from the side. The rapid elimination of this error is key to maintaining 

on target imaging during the closest approach. The challenge this presents is demonstrated in the 

rest of this section.  

For each scenario, the percentages of images on target are collected and averaged across 100 

encounter simulations and presented in Figure 5.4. Once again, a fairly grim picture is depicted by 

these success rates. In attempting to flyby a 200 m ISO only the HRI is on average capable of 
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getting more than 80% of the images of the target and only at the slowest relative velocity. That 

percentage drops to roughly 50% at the second lowest relative velocity and past that the percentages 

are unacceptably low, with the MRI even being incapable of getting any close approach images.  

 

Figure 5.4: Flyby close approach imaging percentage success rates for 200 m, 600 m, and 

1500 m ISOs utilizing various cameras and SSIMU for attitude determination. Green 

identifies >80% of close approach images on target, Yellow identifies >60%, Orange 

identifies >40% and Red represents <40% close approach images on target.  

The success of these flybys is most strongly limited by the speed at which they occur. The high 

speeds mean there is very little time spent close to the target to get enough images to pinpoint the 
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relative state to the levels required. This effect and the overall speed of these flybys is illustrated in 

Figure 5.5 and Table 5.6. which shows the how quickly ISOs change in pixel size during various 

encounters. It is also shown in the resulting success rates in Figure 5.4, which are clearly much 

more dependent on relative velocity than phase angle as the success rate variation with respect to 

phase is statistically insignificant. 

 
 

Figure 5.5: Encounter period of when ISO starts being 30 pixels across on inbound 

trajectory to when ISO stop being 30 pixels across on outbound trajectory. 

 

Table 5.6: 200 m ISO encounter times for each imager vs simulated relative velocities. 

 
 

Even with the HRI, whose higher resolution allows for a more distant and thus longer flyby, the 

total time of encounter is only a couple of minutes at maximum. As shown, the encounters with 

speeds in excess of 30 km/s lose track of the ISO right as its resolution spikes and the downtrack 

error starts to be mapped into the image plane. While the flyby distance was set so the target filled 

1/3 of the FOV, the size of is much less important compared to the desired spatial resolution of the 
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close approach images. For a flyby to result in a 200 m ISO filling 1/3 of the camera FOV, each 

pixel would have a spatial resolution of   0.58m, which implies that the area of the region within 

the entire FOV is then about 600 m x 600 m. Therefore, the relative state, including crucially the 

downtrack error (which is now completely mapped into the image plane), must be known to that 

precision. With a flyby at such high velocities, the spacecraft has very little time to observe the 

downtrack error and correct for it before it is mapped into the image field of view and the target is 

lost. Table 5.6 outlines how rapid these encounters are, giving the encounter times with a 200 m 

ISO for each imager at the simulated relative velocities. These short encounter times mean images 

must be taken rapidly to capture the downtrack error before it is too late. With the simulated 5 

second intervals, the MRI only has time to take a couple of close approach images for most of the 

encounters. This presents a potential design constraint for fast imaging that may only be possible 

with CMOS detectors as opposed to more traditional CCDs. With larger simulated ISOs, the 

success rates do significantly improve. At 70 kms/s with a 600 m ISO and 1.76m/pixel, the HRI is 

able to get around 60% of the close approach images, which is a potentially acceptable rate. And 

once the resolution is above 4.4m/pixel, almost all the imagers start to enter the acceptable success 

rates range, while the HRI would perform well up to 90 km/s.  

It is important to note that the standard deviations for these results, given in Appendix C, 

especially at the lower success rates can be very high. This stems from how the power of 

observation and difficulty to obtain observations increases during the encounter sequence. If the 

spacecraft’s state error is small enough to get images on target past the initial ‘ramp-up’ mapping 

of the downtrack error period at the beginning of the curves in Figure 5.5, those images also 

increase in metric resolution at the same rate as the curves. Thus, if those images are on target, the 

knowledge gained enables the next image and so on. This leads to some ‘all or nothing’ results 

where if those images are collected on target, they can enable the collection of a high percentage 

of the total encounter images. On the other hand, if those initial images fail (are not on-target) then 

the remainder of the flyby will fail. This “all or nothing” behavior leads to bimodal Monte-Carlo 
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results with many instances of high success rates and many instances of very low success rates, 

resulting in high standard deviations in the averaged success rate. High average success rates and 

smaller standard deviations are produced when the knowledge is typically good enough to 

consistently capture those images after the initial ‘ramp up’ of metric resolution. 
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Chapter 6 

6 INVESTIGATION OF ADDITIONAL FACTORS AND OUMUAMUA / 2I BORISOV 

6.1 Overview 

The broad initial analysis performed in the previous section established the fundamental 

baseline challenge these missions present and how the most important aspects of the spacecraft, the 

imager and the attitude determination method define success rates for simulated ISOs. This section 

investigates a few additional concepts, including the consideration of more phase angles to better 

understand how quickly impacting success rates drop from 140 to 170, how an imagined “super 

high resolution” imager might improve success rates for a 200 m ISO flyby and impact, and the 

particular encounter scenarios of the only two known ISOs: Oumuamua and 2I/Borisov.  

6.2 Additional Phase Angles 

In Figure 5.3, the low success rates seen at 170 phase stand out as they drop significantly from 

those at 150 phase. Characterizing this drop is important as the high velocities of ISOs make phase 

angles between 150 and 170 are a very realistic possibility. To accomplish this the additional 

phase angles of 130, 140, 155, 160, and 165 are simulated at the same previous relative 

velocities while using flash-flash attitude determination with LORRI. The results are presented in 

Table 6.1. The success rates again demonstrate the challenge of achieving an illuminated impact 

with a small 200 ISO with a 130 phase effectively being the limit for high success rates. While for 

larger 1500 m class ISOs the higher phase angles between 150 and 170 are actually fairly 

reasonable as the drop in success rate appears to just start around 165.  
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Table 6.1: Impact percentage success rates for 200 m, 600 m, and 1500 m ISOs at high 

phase angles between 130 and 165 utilizing LORRI and flash-flash attitude 

determination. Green identifies >97% success rates, Yellow identifies >97% success rates 

with two impactors, Orange identifies >97% success rates with three impactors, Pink 

identifies the need for four or more impactors for >97% success rate, and Red requires five 

or more. 

 

6.3 Super Resolution Imager 

The low encounter image percentages for the higher surface resolutions of 0.58 m/pixel and 

1.76 m/pixel is a concern, as getting this close-up data will be the primary goal of the first ISO 

mission, regardless of whether an impactor is included. The results of the impactor simulations 

with the SSIRU depict a plateau in which additional accuracy from the imager has little effect past 

LORRI. But this plateau is not seen when using the SSIRU for a flyby and so the benefits of an 
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even higher resolution imager is assessed for a theoretical Super Resolution Imager (SRI) with a 

0.5 rad IFOV. Using the SRI, the encounters with 200  

m, 600 m, and 1500 m ISOs were simulated with the resulting success rates presented in Table 

6.2. Each scenario has an assumed 120 phase angle as the previous analysis showed that phase 

angle was not a significant factor. 

 

Table 6.2: On target image percentages using the theoretical Super Resolution Imager. 

 

 
The gain in on-target image percentage is significant compared to the HRI. Where previously 

imaging at 0.58 m/pixel at 30 km/s was challenging, the added accuracy of the SRI and resulting 

longer encounter time is shown to be very powerful in enabling similar success rates out to 90 km/s. 

With this theoretical imager almost all 1.76 m/pixel cases are extremely successful and enable a 

much higher confidence in the ability to execute flybys with mid-sized ISOs. At the 4.4 m/pixel 

resolution for the 1500 m ISO, even at 110 km/s every image is on target. 

6.4 Oumuamua and 2I/Borisov 

While both Oumuamua and 2I/Borisov were detected after the time period during which 

launching on an intercept trajectory was feasible, it is worth considering those transfers and their 

associated encounter relative velocities and phase angles (Table 6.3) to ground the previous 

theoretical scenario simulations. Looking at Oumuamua first, its relative velocity and phase angle 

fits nicely within the broad simulation space as Oumuamua’s trajectory and the spacecraft’s 
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intercept trajectory follow the principles discussed in section 4.2. The intercept occurs very near to 

1AU, the spacecraft has a small flight path angle, and the plane formed by Oumuamua’s and the 

spacecraft’s incoming trajectories is just slightly inclined.  

 

Table 6.3: Encounter scenarios for Oumuamua and 2I/Borisov. 

 

However, Oumuamua does present a unique challenge that stems from its unprecedented roughly 

9:1 elongation ratio. This elongation ratio does several things to make executing a mission difficult. 

First, while it may have a length or roughly 520m, the small width of roughly 58m is what drives 

the delivery accuracy requirement for impacting. On top of that Oumuamua has a rotational period 

of about 7.2 hours. As it rotates with its elongated body, the illuminated portion of its surface 

changes significantly, which will induce perceived motion in the center of brightness observables, 

which is then interpreted by the orbit determination filter as an incorrect relative motion.  

 
Figure 6.1: Delivery locations of impactor about Oumuamua for LORRI using flash-flash 

(left), and LORRI using the SSIRU (right). 

The combination of these factors results in the poor impactor success rates in the table portion of 

Table 6.4 generated by 100 runs of the Monte-Carlo simulation. No combination of imager or 

attitude determination method provided any form of success. Only the theoretical Super Resolution 
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Imager produced success rates greater than 97% although for a mission with four impactors. In 

attempting to perform close approach imaging, the small width of Oumuamua is not a limiting 

factor and so moderate success rates are achievable. If highly elongated bodies are somehow are 

typical of ISOs through some yet unknown planetary formation process, then developing orbit 

determination filters designed to handle the perceived rotating brightness could help improve these 

rates. 

 

Table 6.4: Success rates for the Oumuamua encounter for both impactor and flyby 

spacecraft. 

 
 

2I/Borisov presents a much easier encounter scenario compared to Oumuamua. Its orbit is 

highly inclined as it come down nearly perpendicular to the ecliptic, piercing the ecliptic plane at 

roughly 2AU. This is where a best transfer trajectory has the spacecraft intercepting 2I/Borisov. 

While it is much farther out than the assumed nominal 1AU intercept distance, the resulting 

encounter scenario is perfectly captured by the broad simulation space. Again, the spacecraft has a 

small flight path angle and a velocity well within the assumed +/- 12 km/s range from the Earth’s 

orbital velocity while the resulting phase angle is described by the ‘inclined encounter plane’ region 

depicted in Figure 4.3. Both the relative velocity and phase angles are more favorable for success 



 54 

compared to Oumuamua, and with the assumed size of 3 km, these factors result in a 100% success 

rates across all variations depicted in Table 6.5. Regardless of attitude determination method or 

imager, a kinetic impactor will collide with an illuminated portion of 2I/Borisov while the flyby 

spacecraft collects continuous, on-target close approach imaging. The distribution of impact  

locations is depicted in Figure 6.2. The flash-flash method is extremely accurate with a very 

tight distribution of impact locations. Using the SSIRU and its associated errors, while an issue in 

previous encounter scenarios, does not prevent on-target illuminated impacts with such a large and 

well-lit body. 

Table 6.5: Success rates for the 2I/Borisov encounter for both impactor and flyby 

spacecraft. 
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Figure 6.2: Delivery locations of impactor about the assumed 3km spherical ISO 

2I/Borisov with the MRI using flash-flash (left), and MRI using the SSIRU (right).  
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Chapter 7 

7 CONCLUSION 

7.1 Conclusions 

This thesis sought to establish a foundational understanding of the challenges that will be faced 

when attempting an impact/flyby encounter with a future ISO and how different equipment and 

techniques can enable this mission concept. As intercepting an ISO requires a ‘launch on detection’ 

paradigm, the spacecraft must be designed to perform in a wide range of potential encounter 

scenarios. The findings of this thesis first show that ISO hyperbolic orbits will likely result in these 

encounter scenarios being in the extremes of both relative velocity and phase angle. This presents 

a challenge to in deciding how much of the encounter space needs to be designed for. This is 

highlighted by the vastly different levels of difficulty presented by Oumuamua and 2I/Borisov. 

Designing for an ISO more similar to 2I/Borisov could result in an almost zero percent success rate 

if a smaller ISO on an orbit more like Oumuamua’s shows up first. On the other hand, designing 

for Oumuamua and its reliance for success on significant improvements in an imager package 

would add significant cost to a mission that needs to be funded and built without a guaranteed 

target. The results of this thesis give an initial constraint on what fundamentally is and is not feasible 

and most importantly informs the direction of future work. 

First, if a spacecraft is designed to use only the heritage processes implemented in Deep Impact 

then the region of potential ISO encounter scenarios in which the full impact and flyby can be 

executed will be severely limited. An impactor utilizing an IMU for attitude propagation cannot 

regularly achieve illuminated impact for any acceptable portion of the encounter space. The 

application of star-based attitude determination via flash-flash imaging was shown to be an 

extremely powerful alternative. While the number of observations of the target decreases, since the 

error is orders of magnitude lower than what is produced by IMU random walk, the result is huge 
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improvements to precise orbit determination. If applied to the impactor, success rates increase 

dramatically and give coverage of all the considered relative velocities and only fail at the most 

extreme phase angles. At these extreme phase angles around 160 to 170, the size of sunlit surface 

becomes so small and thin that achieving illuminated impact requires unprecedented accuracies. I 

argued here that these results establish that flash-flash attitude determination is a requirement for 

the impactor. 

For the flyby spacecraft the tradeoffs between using an IMU or attempting flash-flash is less 

definitive. While demonstrably feasible even with a lower resolution imager, without a powerful 

long-range imager spatial resolution will likely have to be reduced in order to get on-target images 

during closest approach. If there is a requirement to get the highest spatial resolution reasonably 

possible, there is also potential to apply flash-flash imaging initially during the terminal guidance 

phase and then switching to the SSIRU just before encounter. As demonstrated by the impactor 

analysis, flash-flash imaging can significantly increase knowledge accuracy. While this knowledge 

is still mostly in the cross-track direction, the tighter constraints on this error would allow for earlier 

identification of the downtrack error. There are some risks with attempting to use flash-flash for 

the flyby as an unexpected error in time-of-flight could result in the flyby spacecraft encountering 

the ISO sooner than expected and thus missing out on critical close approach images while longer 

exposures of the stars are being taken, especially as these flybys can start and end in less than a 

minute. 

A summary recommendation informed by this work would be to design for the launch of 

multiple small and agile kinetic impactors, each equipped with a low-cost imager with resolutions 

comparable to the MRI. As also suggested by Seligman and Laughlin [24] this takes advantage of 

the fact that with such high relative velocities, the impactors can be small and still impart the 

necessary energy to generate similar ejecta to Deep Impact. By utilizing flash-flash attitude 

determination, each impactor will then have sufficient individual success rates that combined will 

cover all but the most extreme phase angles. The flyby spacecraft then is best equipped with at least 
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a LORRI class imager and SSIRU to take advantage of the benefits listed earlier that come with 

higher resolution imagers. 

7.2 Future Work 

With that recommendation there is also the caveat that a long list of things to still need to be 

investigated. There is a lot to add to these simulations to give the necessary confidence in the 

success rates for preliminary design, starting with the proper simulation of flash-flash imaging. 

While a conservative assumption is made regarding the errors when doing this, the actual 

generation of over-exposed images of the target and surrounding stars and autonomous processing 

of these images has not been investigated and needs to be done to give confidence in this thesis’ 

simplified results. Overall additional complexity to the image simulation should be implemented 

to include complex shape models with varying albedos and shadowing effects. To give full validity 

to the simulation, non-linear orbital mechanics and perturbational effects should be implemented 

as well. 

As mentioned in Section 3.8, further analysis also needs to be done on the brightness of these 

ISOs and how that pertains to detectability and the ability to avoid flash-flash imaging by simply 

imaging both the target and stars throughout the terminal guidance phase. The result of this analysis 

will likely eliminate the possibility of performing high phase angle flybys of smaller ISOs as they 

simply won’t be detectable. It will also likely show that imaging the stars can be done for a large 

portion of encounter scenarios thus remove the need for the SSIRU for the flyby spacecraft and 

impactor. If the dimness of these targets is a limiting factor, then one might consider infrared 

imaging. This will also need to be heavily investigated and simulated to understand how ISOs’ 

hyperbolic orbits affect object surface temperatures.  

Another consideration for the high phase angle encounters is the illuminated impact 

requirement. Even if 170 phase objects can be reliably detected, the size of the sunlit surface 

becomes so small and thin that achieving consistent illuminated impact is impossible. As mentioned 
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earlier the ejecta will likely extend past the shadowed region even without illuminated impact. If 

the region of acceptable impact location can be extended outside the terminator line than success 

rates can improve dramatically and make impacting sub-kilometer ISOs at even the highest phase 

angles feasible. Thus, modeling dark impacts and understanding when the ejecta is sufficiently 

illuminated is a key topic of future research if an impactor is to be seriously pursued. 

The constant improvement of our understanding of ISOs will also be critical to constraining this 

mission concept. As there are still only two known ISOs, the understanding of their population is 

expected to change significantly in the next decade as more discoveries are made. Some of the most 

important questions are where are they likely to come from? What are typical sizes and shapes? 

Will we be ready the next time one presents itself? A mission with such inherent risk will face 

serious challenges in acquiring funding from NASA and other space agencies. But while those 

political challenges are significant, the alternative of sending a spacecraft to another star system to 

collect data is infeasible with any current or foreseeable future technology. Thus, a flyby/impact of 

an ISO may be the only way to observe an object from outside of our solar system’s bubble. 
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9 Appendix A 

10 ISO FLIGHT PATH ANGLE AND VELOCITY CALCULATION 

The following steps are used to calculate the flight path angle and velocity of an ISO at 1 AU 

given its escape velocity and radius of perihelion. 

 

1. Calculate the orbit’s semi-major axis. Here 𝜇 is the gravitational parameter of the 

Sun:  

 

𝑎 =  −𝜇/𝑣∞
2                                                (A.1) 

 

2. Calculate orbit eccentricity: 

 

𝑒 = 1 −  𝑟𝑝/𝑎                                              (A.2) 
 

3. Calculated orbit true anomaly: 
 

𝜃 =  cos−1( (
𝑎(1 −𝑒2)

1𝐴𝑈
 − 1)/𝑒)                                (A.3) 

 

4. Flight Path Angle: 

 

∅𝐼𝑆𝑂 =  tan−1(
𝑒∗sin(𝜃)

1+𝑒∗cos(𝜃)
)                                      (A.4) 

 

5. Velocity: 

 

𝑣𝐼𝑆𝑂 =  √𝜇(
2

1𝐴𝑈
 −

1

𝑎
)                                          (A.5) 

 

 

 

 

 

 

 

 
 

https://ssd.jpl.nasa.gov/sbdb.cgi
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11 Appendix B 

12 ENCOUNTER PHASE ANGLE AND RELTAIVE VELOCITY CALCULATION 

The following steps were used to calculate the possible phase angles and relative velocities that 

would present themselves when attempting to intercept ISOs.  

 

 
 

1. As the trajectories are assumed linear in the terminal guidance phase with t = 2 

hours, the distance the ISO and S/C are from nominal encounter location are as 

such: 

 

𝑎 =  𝑣𝐼𝑆𝑂  𝑡   &   𝑐 =  𝑣𝑆𝐶  𝑡                                           (B.1) 

 

2. The angle 𝛽 is then determined simply via the flight path angles of the ISO and 

spacecraft determined via steps in Appendix A: 

 

𝛽 = 180 − 𝜃𝐼𝑆𝑂 − 𝜃𝑆𝐶                                               (B.2) 

 

3. Looking at the triangle formed by 𝑎, 𝑏, 𝑎𝑛𝑑 𝑅 and using the law of cosines the 

distance from the ISO to the spacecraft is determined: 

 

Intercept occurs at ~ 1 AU 

𝑐 

𝜃 

∅𝐈𝐒𝐎 

∅𝐒/𝐂 

𝑎 

𝑅 

𝛽 

𝛿 



 65 

𝑅 = √(𝑣𝐼𝑆𝑂𝑡)2 + (𝑣𝐼𝑆𝑂𝑡)2 − 2(𝑣𝑆𝐶𝑡)(𝑣𝐼𝑆𝑂𝑡) cos(𝛽)                           (B.3) 

 

4. The angle 𝛿 is then calculated via the law of sines: 

 

𝛿 = sin−1(
𝑐 sin (𝛽)

𝑅
)                                                 (B.4) 

 

5. Which gives the phase angle of the encounter: 

 

𝜃 = 90 + ∅𝐼𝑆𝑂 − 𝛿                                                  (B.5) 

 

6. And to complete the definition of the encounter, the relative velocity is derived as 

such: 

 

𝑉𝑟𝑒𝑙 =
𝑅

𝑡
                                                           (B.6) 
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13 Appendix C 

14 FLYBY SUCCESS RATE STANDARD DEVIATIONS 

Table C.1: Flyby close approach imaging percentage success rate standard deviations for 200 m, 

600 m, and 1500 m ISOs utilizing various cameras and SSIMU for attitude determination. 
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